ArticlePDF Available

The Panthera Gombaszogensis story: The contribution of the château breccia (Saône-Et-Loire, Burgundy, France)

Authors:

Abstract and Figures

At present, numerous sites from Europe and Asia have yielded up remains of Panthera gombaszogensis. It is without doubt the one Felid most similar to Panthera onca but it is an ancestor, not the present day jaguar. Palaeogenetics estimates the divergence between the lion and the jaguar to 2 Myrs. Obviously, jaguars originate from Africa and they spread in Europe between 1.95 et 1.77 Myrs during the time of Olduvai polarity subchron. Recently Hemmer et al. (2010) demonstrated that the semi-mandible of Dmanissi (Georgia) corresponds with a new taxon Panthera onca georgica ssp. nov., the earliest known Asian member of the species. This taxon spread out through Asia and got to North America during a glacial period between 0.99 and 0.78 Myrs (between the Jaramillo polarity subchron and the end of the Matuyama magnetochron), and finally reached South America not before the Rancholabrean. The Château Breccia (Saône-et-Loire, France) has given an abundant paleontological material of Panthera gombaszogensis (about 400 remains, with a minimum of 6 individuals). It is the mid Middle Pleistocene European form. The pollen analysis indicates temperate climatic conditions but cooler than today and sometimes even quite cold. The landscape was open with grasses spread over the uplands, while woodlands of pine and fir, but also some broadleaved trees were found in the valley. The Château Breccia largely contributes to the story of Panthera gombaszogensis. It demonstrates that the species was at least adapted to a cold temperate climate and to a biotope highly different from that of the today's jaguar. It shows also the replacement of Panthera gombaszogensis by Panthera spelaea fossilis about 0.6 Myrs ago, after a period of coexistence of these two Felids.
Content may be subject to copyright.
Quaternaire, Hors-série, (4), 2011, p. 247-269
THE Panthera gombaszogensis STORY:
THE CONTRIBUTION OF THE CHÂTEAU BRECCIA
(SAôNE-ET-LOIRE, BURGUNDY, FRANCE)
n
Alain ARGANT 1 & Jacqueline ARGANT 1
ABSTRACT
At present, numerous sites from Europe and Asia have yielded up remains of Panthera gombaszogensis. It is without doubt
the one Felid most similar to Panthera onca but it is an ancestor, not the present day jaguar. Palaeogenetics estimates the divergence
between the lion and the jaguar to 2 Myrs. Obviously, jaguars originate from Africa and they spread in Europe between 1.95 et
1.77 Myrs during the time of Olduvai polarity subchron. Recently Hemmer et al. (2010) demonstrated that the semi-mandible of
Dmanissi (Georgia) corresponds with a new taxon Panthera onca georgica ssp. nov., the earliest known Asian member of the species.
This taxon spread out through Asia and got to North America during a glacial period between 0.99 and 0.78 Myrs (between the
Jaramillo polarity subchron and the end of the Matuyama magnetochron), and finally reached South America not before the Rancho-
labrean. The Château Breccia (Saône-et-Loire, France) has given an abundant paleontological material of Panthera gombaszogensis
(about 400 remains, with a minimum of 6 individuals). It is the mid Middle Pleistocene European form. The pollen analysis indicates
temperate climatic conditions but cooler than today and sometimes even quite cold. The landscape was open with grasses spread
over the uplands, while woodlands of pine and fir, but also some broadleaved trees were found in the valley. The Château Breccia
largely contributes to the story of Panthera gombaszogensis. It demonstrates that the species was at least adapted to a cold temperate
climate and to a biotope highly different from that of the today’s jaguar. It shows also the replacement of Panthera gombaszogensis
by Panthera spelaea fossilis about 0.6 Myrs ago, after a period of coexistence of these two Felids.
Key-words: Felids, Panthera gombaszogensis, Pleistocene, Château Breccia, palaeoenvironment.
RÉSUMÉ
L’ HISTOIRE DE PANTHERA GOMBASZOGENSIS : CONTRIBUTION DE LA BRÈCHE DE CHÂTEAU (SAÔNE-ET-LOIRE,
BOURGOGNE, FRANCE)
De nombreux sites d’Europe et d’Asie ont livré des restes de Panthera gombaszogensis. C’est sans doute le Félidé le plus
proche de Panthera onca, mais il s’agit d’un ancêtre, distinct du jaguar actuel. La divergence entre le lion et le jaguar est estimée
par la paléogénétique à 2 Ma. Les jaguars sont clairement originaires d’Afrique et se sont répandus en Europe entre 1,95 et 1,77
Ma, pendant le subchron Oldowai. Récemment, Hemmer et al. (2010) ont prouvé que l’hémi-mandibule de Dmanissi (Géorgie)
correspond à un nouveau taxon Panthera onca georgica ssp. nov., le premier membre de cette espèce connu en Asie, à l’origine de la
dispersion dans tout ce continent, puis du passage en Amérique du nord pendant une période glaciaire entre 0,99 et 0,78 Ma (entre
le subchron Jaramillo et la fin du magnétochron Matuyama), sans atteindre l’Amérique du sud avant le Rancholabréen. La Brèche
de Château (Saône-et-Loire, France) a livré un abondant matériel paléontologique de Panthera gombaszogensis (environ 400 restes,
minimum de 6 individus). C’est la forme européenne du Pléistocène moyen médian. L’analyse pollinique indique des conditions
climatiques tempérées mais plus fraîches qu’aujourd’hui et parfois même froides. Le paysage était ouvert avec des herbacées sur
les hauteurs, tandis qu’un boisement de pins et sapins, mais aussi de quelques feuillus, occupait la vallée. La Brèche de Château
contribue largement à l’histoire de Panthera gombaszogensis. Elle apporte la preuve de l’adaptabilité de l’espèce à un climat
tempéré froid et son adaptation à un biotope bien différent de la ripisylve de grands cours d’eau qu’on connaît pour le jaguar actuel.
Le gisement enregistre également le remplacement, vers 0.6 Ma, de Panthera gombaszogensis par Panthera spelaea fossilis, après
une période de coexistence de ces deux grands félins.
Mots-clés : Félidés, Panthera gombaszogensis, Pléistocène, Brèche de Château, paléoenvironnement.
PREFACE
In relation to spelling, we will respect J. Wagner’s clarification (this volume) recommending Panthera gombaszogensis.
Manuscrit reçu le 13/09/2011, accepté le 24/10/2011
1 LAMPEA, UMR 6636 CNRS, MMSH, 5 rue du Château de l’Horloge, 13094 Aix-en-Provence Cedex 2 .
Courriel : a.argant@wanadoo.fr
1112-052 Mep.indd 247 23/12/11 17:02:51
248
1 - INTRODUCTION
The story of Panthera gombaszogensis began to
become clear in 1971, mainly because of the work of
H. Hemmer (i.e. Hemmer & Schütt 1969; Hemmer, 1971,
1972; Hemmer et al , 2003; Hemmer et al., 2001, 2010).
The European jaguar has always stirred the imagination
of researchers because it has not often been encountered
in palaeontological deposits, and because Panthera onca,
its present-day descendant, lives only in the essentially
tropical environments of Central and South America. The
Château Breccia, which we have been excavating with
teams of diggers since its rediscovery in 1968, is parti-
cularly rich in large Felidae: firstly Panthera gombaszo-
gensis then Panthera spelaea fossilis which replaced it
after a period of coexistence (Argant et al., 2007). The
European jaguar has been much less unobtrusive here
than in other deposits. Indeed, the Château Breccia has
been an abundant source of jaguar remains (about 400
items from at least 6 individuals including a “complete”
skeleton). In addition, palynological studies have clari-
fied contemporary palaeoenvironmental conditions. The
Château Breccia has thus made an important contribution
to our knowledge of the evolution of this species.
2 - HISTORY OF THE SPECIES:
The first reference to the species occurred in 1938
when Kretzoi created the species Leo gombaszogensis
based on isolated teeth from the Gombasek deposit in
Slovakia (fig.1). In France, jaguars were first discovered
in the Escale cave (Saint-Estève-Janson, Bouches-du-
Rhône), where four individuals were found. M.F Bonifay
created a new species she called Jansofelis vaufreyi
(Bonifay, 1971). H. Hemmer (1972) showed that Janso-
felis vaufreyi was synonymous with Panthera gombaszo-
gensis (Kretzoi, 1938) and distinguished two subspecies
P. gombaszogensis toscana and P. gombaszogensis
gombaszogensis. Fossils excavated from 1968 onwards at
the Château Breccia, which is the second jaguar-bearing
site discovered in France, are attributed to Panthera
gombaszogensis (Argant, 1980, 1991). Up until today,
remains of Panthera gombaszogensis have been found in
about 50 Eurasian sites (fig. 2).
The origin of jaguars is African and is related to a subs-
pecies of Panthera of the Villafranchian period around
1.9 Myr in South Africa: Kromdraai (Barry, 1987). Popu-
lations spread across Europe between 1.95 and 1.77 Myr
during the time of the Olduvai polarity subchron. Early
Fig.1: The quarry of Gombasek (Slovakia).
Fig.1 : La carrière de Gombasek (Slovaquie).
5000 km
Château DDmanisi
D
Fig. 2: Panthera gombaszogensis, world distribution and possible
dispersal routes.
Fig. 2: Panthera gombaszogensis, répartition dans le monde et voies
de dispersion possibles.
1112-052 Mep.indd 248 23/12/11 17:02:53
249
Pleistocene European jaguars were first considered as
independent species, P. toscana (Schaub, 1949) from Italy
and P. schreuderi (Koenigswald, 1960) from the Nether-
lands. Later on, they were considered to be conspecific
with the final Early Pleistocene to early Middle Pleisto-
cene European taxon Panthera gombaszogensis (Kretzoi,
1938) and to represent jaguars (Hemmer, 1971).
Recently, H. Hemmer (Hemmer et al., 2010) has shown
that the semi-mandible from Dmanissi (Georgia), dated to
about 1.77 Myr, belongs to the new taxon Panthera onca
georgica ssp. nov., the earliest known Asian member of
the species. Transcontinental dispersal probably brought
the jaguar to North America during a glacial period
between 0.99 and 0.78 Myr (between the Jaramillo
polarity subchron and the end of the Matuyama magne-
tochron), to finally reach South America not before the
Rancholabrean. The lineage connecting P. onca toscana
via P. onca georgica with P. onca augusta reflects quite
well the geographic distribution of the earliest jaguar
palaeopopulations from Europe via western Asia to North
America (fig. 3 and 4).
3 - TAXONOMY
Panthera gombaszogensis is without doubt the Felid
most similar to Panthera onca (Linné, 1758), the present
day jaguar. As is often the case, the taxonomic nomen-
clature has varied over the course of time according to
the different ideas of the authors. All are valid so long as
the synonymies have been made clear. However it seems
to us that the nomenclature Panthera onca quite often
used following the work of H. Hemmer (2001) should be
avoided. Panthera gombaszogensis (the palaeontological
species) corresponds to the ancestral form of the jaguar,
but is not the same as the present-day jaguar (the biolo-
gical species). When we examine sufficient material,
particularly post-cranial, we can see that it has signifi-
cant differences which identify it as the palaeontological
species. In the course of the evolution of the African popu-
lations of the genus Panthera, the divergence between
the “lion” and the “jaguar”, the latter the origin of the
species Panthera gombaszogensis, is estimated through
palaeogenetics to have occurred about 2 Myr (Johnson et
al., 2006). We now hold the view that the species in the
broad sense of Panthera gombaszogensis emerged after
the divergence “2 Myr”, but with several subspecies to
Polarity
Event
Epoch
Series
Stage
Middle-Western Europe
(Zagwijn, 1985)
Dates
(Berggren et al., 1985)
Reunion Oldovai Jaramillo
Gauss Matuyama Brunhes
normal
0.73
0.91
0.98
1.66
1.88
2.01
2.04
2.12
2.14
2.47
WEICHSELIAN
EEMIAN
SAALIAN
HOLSTEINIAN
ELSTER
CROMERIAN
COMPLEX
Leerdam
Bavel
MENAPIAN
WAALIAN
EBURONIAN
TIGLIAN
PRETIGLIAN
REUVERIAN
PLIOCENE
Upper Pliocene
PLEISTOCENE
Early Pleistocene Middle Pleistocene Upper
Pleist.
Isotopic stages
δ O18 curve
(Shakleton, 1995)
1
23
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 23
24
25
27
31
37
47
94
62 63
Fig. 3: Chronology of the Quaternary since 2.47 Myr.
Fig. 3 : Chronologie du Quaternaire depuis 2,47 Ma.
P. gombaszogensis
Africa
P. gombaszogensis toscana
Europe
P. gombaszogensis gombaszogensis
Europe
P. gombaszogensis georgica
Asia
P. onca augusta
North America
P. onca onca
or other subspecies
Central and South
America
1.95 Myr 1.77 Myr
1.7 Myr
0.3 Myr ?
0.78 Myr 0.4 Myr
Fig. 4: Panthera gombaszogensis story, chronology, after Hemmer, 2010 and Spassov, 2000.
Fig. 4: Histoire de Panthera gombaszogensis, chronologie, d’après Hemmer, 2010 and Spassov, 2000.
1112-052 Mep.indd 249 23/12/11 17:02:54
250
be identified if it is possible to validly characterise them,
not losing sight of the paucity of the numeric series, at
times a little too quickly forgotten. Panthera gombaszo-
gensis toscana of the Villafranchian was smaller in size,
Panthera gombaszogensis gombaszogensis of the Middle
Pleistocene was clearly larger in size, Panthera gombaszo-
gensis georgica ( = Panthera onca georgica Hemmer,
2010) had remarkable dental characteristics, Panthera
onca, the present-day jaguar lives only in America.
4 - PALAEONTOLOGICAL STUDY OF THE
PANTHERA GOMBASZOGENSIS OF THE
CHÂTEAU BRECCIA (CHA.1)
The palaeontology of the Felidae suffers from several
handicaps. The first of these lies in the rarity of palaeon-
tological material. While reasonably numerous, deposits
where large Felidae have been found have not provided
much material. We are a long way from the sizeable series
that we are able to put together for cave bears for
example. It is practically impossible to know in the case
of the Felidae if the morphometric variations observed
relate to sexual dimorphism, subspecific variations, or
simply individual variations. Another factor to take into
account is the morphological homogeneity of Felidae
skeletal components. With a few fortunate exceptions,
it is often the case that too much emphasis is placed on
size when determining the species. A third handicap
arises from the almost exclusive predominance of dental
studies, often based on too few elements to demons-
trate variability. Lastly, the rarity of post-cranial skeletal
studies makes it practically impossible to make compari-
sons between sites.
In this context, the Château Breccia deposit has
provided some particularly important material because it
is unusually rich in Panthera gombaszogensis and in the
ancient form of the cave lion Panthera spelaea fossilis.
The presence of only these two species greatly increases
our capacity to reliably and accurately determine the
species of finds. So great is the difference in the size of
these two Felidae that no hesitation is possible when deci-
ding on the species. Panthera gombaszogensis, the size
of a large present-day jaguar (about the size of a small
African lioness), cannot be confused with the Panthera
spelaea fossilis of Château, among the first populations
arriving in Western Europe in the median Middle Pleisto-
cene, and which is of an especially impressive size.
4.1 - DISTRIBUTION WITHIN THE DEPOSIT
The Château Breccia deposit is found in a very old
karstic system dismantled by erosion and then finally by
a quarry. Practically nothing remains except a few very
fossiliferous breccia fillings corresponding to solifluction
flows which filled the lower galleries and fissures of the
deep “blind” karst, carrying with them numerous faunal
remains and at times complete animal carcasses or body
parts still in anatomical connection. The fauna is domi-
nated by Ursus deningeri, but the remains of big cats
are particularly numerous. Canis lupus mosbachensis
completes this list of large carnivores. The hardening of
the breccia, and the walls of the often narrow fissures
helped protect the fossils before their exposure to the
N
Ensemble
Nord
Northern Section
10 m
(1)
(2)
a
b
ab
Ensemble
Sud
Southern section
SIPO
(2)
a
b
Breccia 4
Breccia 2
N
Ensemble
Nord
Northern Section
10 m
(1)
(2)
a
b
ab
Ensemble
Sud
Southern section
SIPO Breccia 4
Breccia 2
Fig. 5: (1) Distribution of the remains of Panthera gombaszogensis in Château (CHA.1-Ensemble Nord). (2) Section “ab”: projection on a vertical
cross section within C squares alignment. Two layers of bones appear clearly inside breccia: Breccia 2 between 100 and 200 cm depth, with
only Panthera spelaea fossilis (white dots), Breccia 4 between 300 and 400 cm depth, with only Panthera gombaszogensis (black diamonds). The
arrows indicate the origine of the clayish excavated material of the quarry also rich in palaeontological material, but reworked.
Fig. 5 : (1) Répartition des restes de Panthera gombaszogensis à Château (CHA.1-Ensemble Nord). (2) Coupe selon «ab» : projection sur un plan
vertical dans l’axe des carrés C. On distingue nettement deux couches d’ossements dans la brèche : Brèche 2 entre100 et 200 cm avec seulement
Panthera spelaea fossilis (cercles), Brèche 4 entre 300 et 400 cm avec seulement Panthera gombaszogensis (losanges noirs). Les flèches indiquent l’ori-
gine des déblais argileux de la carrière contenant aussi du matériel paléontologique, mais remanié.
1112-052 Mep.indd 250 23/12/11 17:02:58
251
open air partly through erosion but especially as a result
of quarrying.
Panthera gombaszogensis is the only species of large
Felidae found in Breccia 4 (Ensemble Nord), the most
ancient part of the deposit (early Middle Pleistocene). In
Breccia 3 its remains are mixed with those of the very
large Panthera spelaea fossilis (median Middle Pleisto-
cene) dated biochronologically by Arvicola cantianus
(Jeannet in Argant et al., 2007) and contemporaneous
with the German deposit Mosbach 2. In Breccia 2, also in
the Ensemble Nord, (median Middle Pleistocene, a little
more recent), Panthera spelaea fossilis is the only large
Felidae found. In the Ensemble Sud, Panthera gombaszo-
gensis is found only in the final phase of the filling of the
SIPO (Sondage intermédiaire paroi ouest – Intermediate
Excavation West Wall), unfortunately without any other
elements to provide dating information.
4-2 - MORPHOMETRIC DATA
The main objective of this study is to present the grea-
test possible quantity of morphometric data, but given the
size of this article, it will not be possible to enter into the
detail of descriptions or of morphological variations. Nor
will it be possible to develop detailed comparisons with
material already known in a way that this should be done.
Warning
The measurements in this study are always in mm and
this unit does not appear in the tables.
The height of the crown (HC) of a cheek tooth is calcu-
lated on the external side in a direct line, and only given
in the case of teeth that are not very worn.
Abbreviations
A: measure of the alveolus of a tooth , (A) measure
between the alveoli for a series of teeth
* about (after a measure)
Dentition : I = incisive ; C = canine ; P = premolar ; M
= molar
P2/ = second upper premolar
P/2 = second lower premolar
prox. ext.= proximal extremity ; dist. ext. = distal extre-
mity
fragt or fgt = fragment
l. or r. = left or right = droit ou gauche
inf.; sup. ; ant. ; post. ; med. ; art.= inferior ; superior ;
anterior; posterior, median, articular
juv. = juvenile
lat: lateralization (left or right)
mand. = mandible = mandibule
min. ; max. = minimum ; maximum
APD = antero-posterior diameter = length or DAP =
diamètre antéro-postérieur
TD = transverse diameter or DT = diamètre transverse
DPD = dorso-palmar or dorso-plantar diameter = height
or DDP = diamètre dorso-palmaire ou dorso-plantaire =
hauteur
MD = mesio-distal diameter = length (for a tooth) =
diamètre mésio-distal = longueur (pour une dent)
VL = vestibulo-lingual diameter = width (for a tooth) =
diamètre vestibulo-lingual = largeur (pour une dent)
HC = heigtht of the crown = hauteur de la couronne
NR = number of remains (complete or fragments) =
nombre de restes.
MNI = minimum number of individuals
Mtc, Mtt = metacarpal, metatarsal bone ; Mtt 3 = 3rd
metatarsal bone
TN = transfer number (in a table, a figure, a caption)
PFEMA (Plan Félidés d’Enregistrement Morphomé-
trique Argant) = Plan Argant for morphometric record of
Felids.
4.2.1 - Skull
We have collected data from a single complete skull
(CHA.1-00-F.8-73) and we have several fragments from
other individual skulls which give us additional measure-
ments. Figure 6 and table 1 provide the available measu-
1
2 3
4
5
6
7
8
9
10
11
12
13
14
PN
N
FA
A
15
16
18
19
20
21
22
23
24
25
26 27
28
29
30
31
32
33
34
35
36
37
38
39
40
17
PS
PP O
Fig. 6: Measurement of the skull of Felids (PFEMA 10).
Fig. 6: Plan de mesurage du crâne des Félidés (PFEMA 10).
1112-052 Mep.indd 251 23/12/11 17:02:59
252
Plate 1: Château, Panthera gombaszogensis.
1 - CHA.100-F.8-73: “complete” skull, lower view.
2 - CHA.1-07-Y.23-1: a- fragment of the upper left maxilla with P3/ and P/4 and part of the zygomatic arch, lateral view; b- fragment of the right upper
maxilla with P3/ and P4/ of the same individual.
3 - CHA.1-02-G.8-297, right I1/: a-; external lateral view; b-. lingual view
4 - CHA.1-02-G.8-296, right I3/: a- lingual view; b- internal lateral view.
5 - CHA.1-01-G.8-61, upper left canine: a- internal lateral view; b- external lateral view.
Planche 1: Château, Panthera gombaszogensis.
1 - CHA.100-F.8-73: crâne «complet», vue inférieure.
2 - CHA.1-07-Y.23-1: a- fragment de maxillaire supérieur gauche avec P3/ and P4/ et départ de l’arcade zygomatique, vue latérale ; b- fragment de
maxillaire supérieur droit avec P3/ and P4/ du même individu.
3 - CHA.1-02-G.8-297, I1/ droite : a- vue latérale externe ; b- vue linguale.
4 - CHA.1-02-G.8-296, I3/ droite: a- vue linguale; b- vue latérale interne.
5 - CHA.1-01-G.8-61, canine supérieure gauche : a- vue latérale interne; b- vue latérale externe.
1112-052 Mep.indd 252 23/12/11 17:03:00
253
rements. The mark * which follows a measurement
indicates only an approximation because of the condition
of the remains or because they have been reconstructed
on a more solid basis.
The “complete” skull was crushed and the right half of
the neurocranium has been flattened so the most important
part is missing. The central part has slightly lost its shape.
On the left hand side which has been well preserved we
can see the teeth as far as occipital condylus. The left
hand zygomatic arch is in its original state and is in its
correct position. The occipital part of the back of the skull
is missing on the top. The occipital condylus is in place,
a little bit turned towards the left but in a continuous line
with the section that preceeds it.
We were able to open up the ventral, although with
great difficulty, and because of the very fragmented state
of the bone it was necessary to continually strengthen it
with polyurethan varnish. This allowed us to get most
of the data we had hoped for with the exception of the
right part of the neurocranium which was very damaged
Panthera gombaszogensis
Skull
1
CHA.1-00-F8-73
2
CHA.1-07-Y23-1
3
CHA.1-01-
G8-118
left right left right right
1 Length, prosthion - basion 288.0 * - -
-
-
2 Facial length, prosthion - point F 175.0 -
-
-
-
3 Neurocranial length, point F - acrocranion - -
-
-
-
4 Viscerocranial length, prosthion - cranion 129.0 -
-
-
-
5 Lateral length of muzzle 111.2 111.4 -
-
-
6 Max breadth of nasal opening 44.3 -
-
-
-
7 Max breadth at the canines 82.1 -
-
-
-
8 Breadth between infraorbital foramens 85.3 -
-
-
-
9 Min breadth at orbits, entorbital-entorbital 60.4 -
-
-
-
10
Frontal breadth, ectorbital-ectorbital 84.2 -
-
-
-
11
Min breadth of neurocranium 58.8 * -
-
-
-
12
Max breadth of neurocranium at parieto-temporal suture
- -
-
-
-
13
Max breadth of external occipital process - -
-
-
-
14
Bizygomatical breadth, zygion - zygion 180.0 * -
-
-
-
15
Neurocranial length, nasion - nasion 182.0 * -
-
-
-
16
Max height of zygomatical arch - -
-
-
-
17
Min height of zygomatical arch 36.3 - 35.3 -
-
18
Max length of orbit 59.4 62.0 * -
-
-
19
Max height of orbit - - -
-
-
20
Heigth of occipital triangle, acrocranion -basion - - -
-
-
21
Length of cheek teeth, P2/ - M1/ or alveoli 70.3 - 61.0 59.4 66.3 *
22
Lenght of premolars, P3/ - P4/ ou alveoli 62.6 - 64.3 - 62.5
23
Length of diastema between C - P3/ alveoli 7.4 - -
-
8.4 *
24
Condylobasal length 282.2 -
-
-
-
25
Total length, prosthion - acrocranion 264.2 -
-
-
-
26
Basifacial length, prosthion-synsphenion 196.7 -
-
-
-
27
Basifacial length, synsphenion - basion 72.2 -
-
-
-
28
Maxi median palatinal length, prosthion-staphylion 137.3 -
-
-
-
29
Min median palatinal length, prosthion-staphylion 128.9 -
-
-
-
30
Length of incisives or alveoli 39.5 -
-
-
-
31
Interne breadth between the roots of canines 44.2 -
-
-
-
32
Max breadth of palate 115.8 -
-
-
-
33
Max breadth at pterygoid process 38.1 -
-
-
-
34
Max breadth of occipital foramen 28.1 * -
-
-
-
35
Height of occipital foramen, basion-opisthion 22.2 * -
-
-
-
36
Max breadth at condylus occipitalis 60.4 -
-
-
-
37
Breadth, otion - otion 130.0 -
-
-
-
38
Length of tympanic bulla 36.6 - -
-
-
39
Breadth of tympanic bulla 25.8 - -
-
-
40
Max breadth of glenoid fossa (external measure) 22.2 - -
-
-
Tabl. 1
Tab. 1: Château (CHA.1), Panthera gombaszogensis. Measurements of the skull (PFEMA 10, fig. 6).
Tab. 1 : Château (CHA.1), Panthera gombaszogensis. Mesures du crâne (PFEMA 10, fig. 6).
1112-052 Mep.indd 253 23/12/11 17:03:03
254
and what remained of the right hand condylus which had
shifted. It is possible to observe a complete palate which
shows the two long and narrow intact palatal openings
and the choanae. The left tympanic bulla, the only remai-
ning one, was destroyed but its position and its edges can
still be seen. The left zygomatic arch and the condylus of
the left mandible give us the usual measurements.
The teeth are not always there but the basic essentials
are:
The incisives: I1/ l. and r. are damaged ; I2/ l. and r. are
broken but the roots are still in the alveoli; I3/ l. and r. are
very damaged.
The right P2/ was broken. The P3/ l. shows only the
empty alveolus and the area around the P3/ r. is comple-
tely destroyed. The two P4/ which are important teeth,
have been well preserved in their proper place but unfor-
tunately they were embedded in a very hard breccia and
when this was removed the enamel of the crown was
badly damaged on the internal side.
Molars: the two empty alveoli, in their correct place, of
two M1/ l. and r. were able to be measured.
All the observable morphologic characters, whether
they be skull bones or teeth, relate to those of Panthera
onca, the current jaguar. But the skull CHA.1-00-F.8-73
appears to be much bigger and more massive with a parti-
cularly enlarged palate. Its size is about the same as the
skull of a little female lion today.
The morphology of the rear extremity of the palatine at
the opening of the choanae gives us interesting data. N. K.
Vereschagin (1969) put this morphology into two types,
one the shape of the steppe with today’s Panthera leo –
Panthera spelaea and on the other hand the shape of the
forest with Panthera tigris – Panthera onca. The skull of
the Panthera gombaszogensis from Château fits more with
the morphology of the steppe shape with the deep and
round median indentation (fig.7) of Panthera spelaea and
Panthera leo of today, contrary to what the figure of Veres-
chagin shows. Conversely, the skull of the today’s jaguar
that I use by way of comparison, a strong male, shows
the same configuration as the Panthera gombaszogensis
of Château. We think we must conclude that it is not a
specific feature contrary to what Vereschagin suggests, but
a character which shows how certain communities adapt
to particular biotopes. In this case the Panthera gombaszo-
gensis of Château conforms to the shapes of open spaces,
“steppic”, which confirms the pollen analysis of J. Argant.
4.2.2 - Semi-mandible
Four semi-mandibles exist which can give us the
essential measurements but none of them is complete.
Figure 8 relates to the Pfema 20 measurement plan and
the numbers 1 to 16 in the first column refer to measure-
ments in table 2.
Steppic form Forest form
Panthera
spelaea
Panthera
leo
Panthera
tigris
Panthera
onca
Panthera gombaszogensis
CHA1-00-F8-73
Fig.7: Shape of the choanae of P. gombaszogensis (CHA.1-00-F8-73). Comparison with other Panthera (after Vereschagin, 1969).
Fig.7: Formes des choanes de P. gombaszogensis (CHA.1-00-F8-73). Comparaison avec d’autres Panthera (d’après Verescagin, 1969).
1
2
3
4
5
6
7
8
9 10 11
Fig. 8: Measurement of the mandible of Felids (PFEMA 20).
Fig. 8 : Plan de mesurage de la mandibule des Félidés (PFEMA 20).
1112-052 Mep.indd 254 23/12/11 17:03:05
255
Plate 2: Château, Panthera gombaszogensis.
1 - CHA.1-G.8-359: a- left semi-mandible: external lateral view; b- internal lateral view.
2 - CHA.1-00-F.8-140, lower right canine: a- vestibular view; b- lingual view.
3 - Lower incisive 1, lingual view: a- CHA.1-F.6, right I/1; b- CHA.1-00-F.8-22, left I/1; c- CHA1-B.3-6, right I/1.
Planche 2: Château, Panthera gombaszogensis.
1 - CHA.1-G.8-359: a- demi mandibule gauche: vue latérale externe; b- vue latérale interne.
2 - CHA.1-00-F.8-140, canine inférieure droite : a- vue latérale vestibulaire; b- vue latérale linguale.
3 - Incisive 1 inférieure, vue linguale: a- CHA.1-F.6, I/1 droite; b- CHA.1-00-F.8-22, I/1 gauche; c- CHA1-B.3-6, I/1 droite.
1112-052 Mep.indd 255 23/12/11 17:03:06
256
The numbers on the line (1 to 7) refer to the following
samples :
1- CHA.1-G.8-359 ; semi-mandible l.
2- CHA.1-00-F.8-140 ; semi-mandible r.
3- CHA.1-01-G.8-171 ; semi-mandible r.
4- CHA.1-01-G.8-100 ; semi-mandible r.
5- CHA.1-G.7- fissure S.1; condylus l.
6- CHA.1-G.7 ; condylus r.
7- CHA.1-G.8-35 ; condylus r.
4.2.3 - Dentition
In tables 3 and 4, the transfer numbers of the first line,
from 1 to 7 and even 8 for the lower teeth, indicate the
reference inside the site of each measured piece. See the
list below:
Upper dentition:
Incisives :
I1/ : 1- CHA.1-D.5 l. ; 2- CHA.1-02-G.8-297 r. ;
3- CHA.1-00-F.8-73 l. ; 4- CHA.1-00-F.8-73 r.
I2/ : 1- CHA.1-D.4-51 r.
I3/ : 1- CHA.1-02-G.8-296 r. ; 2- CHA.1-G.8-108
l. ; 3- CHA.1-00-E.7-78 r. ; 4- CHA.1-01-G.8-118
r. ; 5- CHA.1-02-G.8-302 l. ; 6- CHA.1-00-F.8-73 l. ;
7- CHA.1-00-F.8-73 r.
Canine: 1- CHA.1-01-G.8-61 l. ; 2- CHA.1-01-G.8-118
r. ; 3- CHA.1-02-G.8-302 l. ; 4-CHA.1-00-F.8-73 l.
Premolars :
P2/ : 1- CHA.1-07-Y.23-1 alveolus l. ; 2- CHA.1-
02-G.8-374 alveolus r. ; 3- CHA.1-01-G.8-118 r. ;
4- CHA.1-02-G.8-302 l.
P3/ : 1- CHA.1-07-Y.23-1 l. ; 2- CHA.1-07-Y.23-1 r. ;
3- CHA.1-02-G.9-10+E.7-22 l. ; 4- CHA.1-00-G.8-19
l. ; 5- CHA.1-02-G.8-374 r. ; 6- CHA.1-01-G.8-118 r. ;
7- CHA.1-02-G.8-302 l.
P4/ : 1- CHA.1-07-Y.23-1 l. ; 2- CHA.1-07-Y.23-1
r. ; 3- CHA.1-02-G.8-374 r. ; 4- CHA.1-01-G.8-118
r. ; 5- CHA.1-02-G.8-302 l. ; 6- CHA.1-00-F.8-73 l. ;
7- CHA.1-00-F.8-73 r.
Molars:
M1/: 1- CHA.1-07-Y.23-1 l. alveolus; 2- CHA.1-
01-G.8-118 r. ; 3- CHA.1-01-G.8-118 l. ; 4- CHA.1-
02-G.8-302 l.
Lower dentition:
Incisives :
I/1: 1- CHA.1-B.3-6 r. ; 2- CHA.1-F.6 r. ; 3- CHA.1-
F.8-22 l. ; 4- CHA.1-07-FF.25-3 l. ; 5- CHA.1-
01-G.8-107 l.
I/2: 1- CHA.1-02-G.8-414 l. ; 2- CHA.1-HS l.
I/3: 1- CHA.1-01-G.8-107 r. ; 2- CHA.1-01-G.8-107 l.
Canines: 1- CHA.1-01-G.8-102 l. ; 2- CHA.1-
00-F.8-140 r. ; 3- CHA.1-01-G.8-110 r. ; 4- CHA.1-
02-G.8-359 l. ; 5- CHA.1-01-G.8-100 r.
Premolars :
P/3: 1- CHA.1-02-G.8-359 l. ; 2- CHA.1-00-F.8-140 r. ;
Panthera gombaszogensis - Mandible
NT Sample
1 2 3 4 5 6 7
1 Length infradental - mid condylus
- - - - - - -
2 Length infradental - angular apophysis
- - - - - - -
3 Length infradental - coronoid apophysis
- - - - - - -
4 Heigth angular process - coronion
99.0 - - - - - -
5 Length of P/3-M/1 or alveoli
62.3 60.8
62.3 65.8
- - -
6 Length of diastema C - P/3 (between alveoli)
14.7 13.3
- 15.3
- - -
7
Horizontal ramus height behind
M/1
43.3 37.7
41.6 - - - -
8
Horizontal ramus height before
P/3
39.8 39.3
40.7 39.4
- - -
9 Length of alveoli of P/3
16.1 16.1
16.1 - - - -
10
Length of alveoli of P/2
23.6 22.4
23.6 24.1
- - -
11
Length of alveoli of M/1
24.9 24.6
24.0 25.3
- - -
12
Breadth at canine
- - - - - - -
13
Horizontal ramus breadth before
P/3
16.6 18.2
18.9 20.0
- - -
14
Horizontal ramus height behind
M/1
16.6 17.0
19.4 - - - -
15
Length of condylus
42.1 - - - - - 50.7
16
Breadth of condylus
- - - -
14.7
15.5
17.8
Tabl . 2
Tab. 2 : Château (CHA.1), Panthera gombaszogensis. Measurements of the half mandible (PFEMA 20, fig. 8). The numbers (TN) on the hori-
zontal line (1 to 7) indicate the references of the samples mentioned in the text.
Tab. 2 : Château (CHA.1), Panthera gombaszogensis. Mesures de la demi-mandibule (PFEMA 20, fig. 8). Les numéros (TN) horizontaux (de 1 à 7)
correspondent aux références des pièces indiquées dans le texte.
1112-052 Mep.indd 256 23/12/11 17:03:08
257
3- CHA.1-G.6-93 l. ; 4- CHA.1-G.7-105 r. ; 5- CHA.1-
01-G.8-102 l. ; 6- CHA.1-01-G.8-171 r.
P/4: 1- CHA.1-02-G.8-359 l. ; 2- CHA.1-00-F.8-140
r. ; 3- CHA.1-01-G.8-171 r. ; 4 - CHA.1-G.7-104-fissure
l. ; 5- CHA.1-01-G.8-63 l. ; 6- CHA.1-01-G.8-35 r. ; 7-
CHA.1-01-G.8-100 r.
Molars :
M/1: 1- CHA.1-02-G.8-359 l. ; 2- CHA.1-01-G.8-35
r. ; 3- CHA.1-00-F.8-140 r. ; 4- CHA.1-G.7-111 l. ; 5-
CHA.1-G.7-15+G.7-38 r. ; 6- CHA.1-01-G.8-171 r. ; 7-
CHA.1-01-G.8-21 l. ; 8- CHA.1-01-G.8-100 r.
4.2.4 - Post-cranial skeleton
The long bones have undergone intense fragmentation
since the time of their accumulation in small upper caves
no longer in existence, initially because of the footsteps
of other animals, (perhaps) also because of blocks of
limestone falling from the ceiling or walls of the cave,
and almost certainly during their transport by solifluc-
tion flows. The ultimate ordeal was that imposed by the
rootlets of trees growing on the site which penetrated
the smallest cracks and then grew larger in size over the
12345
671234567
M.D. 8.5 5.3 6.5 6.4 MD 20.7 20.5 22.4 22.0 21.9 22.0 23.4
V.L. 7.8 5.4 4.2 5.0 V.L.max. 10.5 9.8 11.2 11.2 10.2 10.9 10.8
M.D. 8.1 V.L. ant. 8.5 8.6 9.6 9.1 8.9 9.5 8.8
V.L. 5.6 HC 12.0 12.0 12.0 11.9 12.0 12.7
M.D. 11.8 12.2 12.0 12.1 12.2 12.8 12.6 MD paracone 10.2 10.3 12.0 10.4 11.2 11.0 11.4
V.L. 9.0 9.5 9.9 9.9 9.0 9.6 9.1 MD tub. acces. 4.5 4.5 4.4 4.6 4.5 4.6 5.0
M.D. 21.6 21.7 20.4 19.9 MD ext. 31.2 31.6 30.3 30.4 30.4 32.4 31.9
V.L. 16.4 16.8 16.3 15.8 MD med. 29.7 29.6 29.8 29.8 29.8 30.8 30.8
H.C. 39.5 MD int. 30.2 30.1 30.5 30.7 30.9 31.1 32.7
P.C. 61.8 64.0 60.0 64.4 MD protocone 8.9 8.1 7.7 9.2 7.9 9.6 9.5
MD (A) 7.3 (A) 7.1 7.1 8.7 MD paracone 13.1 12.7 12.5 12.6 12.3 12.2 13.2
V.L. (A) 6.0 (A) 5.6 5.6 5.9 MD metacone 11.7 12.7 11.8 11.8 12.1 13.0 13.3
HC - - 3.2 5.2 VL ant. 17.1 15.9 16.7 16.6 18.4 15.6 16.4
MD (A) 5.6 5.3 6.0 5.7 VL post. 10.9 10.1 10.1 11.1 10.7 10.0 10.3
VL
(A) 11.6
10.2 9.8 10.9 HC paracone 15.4 16.4 15.7 16.4 15.7 16.8 17.9
C
I3/
P2/
M1/
P3/
P4/
I1/
I2/
Panthera gombaszogensis - Château Breccia
UPPER
TEETH
⟵⟵
TN
⟶⟶
12345
6712345678
M.D. 6.7 6.7 6.6 7.6 6.2 MD 24.1 22.5 23.0 22.8 22.7 23.0 24.0
V.L. 4.6 4.8 4.8 5.3 4.6 V.L.ant. 9.3 8.8 9.7 9.5 9.8 9.9 9.3
M.D. 7.2 7.1 V.L. post.max. 10.8 10.1 11.3 11.5 11.1 11.3 10.8
V.L. 6.3 5.8 HC - 14.3 14.2 - - 13.7 13.8
M.D. 6.8 7.2 HT - - - - - - 38.0
V.L. 6.8 - MD paraconid 12.1 12.2 12.4 - - 11.4 12.6
M.D. 21.1 21.8 19.0 19.0 18.4 MD talonide 7.3 7.1 8.1 - - 7.8 8.0
V.L. 14.5 14.9 14.5 15.7 15.6 MD 24.9 25.0 24.4 24.2 22.9* 24.1 - 25.2
H.C. 36.8 36.7 34.7 - - VL max. 12.8 12.9 12.2 11.9 11.8 12.0 12.3 12.8
P.C. 62.3 61.4 - 57.6 58.3 HC paraconid 15.6 13.2 13.5 12.4 - - - -
MD 16.0 16.1 15.5 15.6 16.1 16.3 HC metaconid 14.1 14.3 - 14.4 13.0 - - 14.1
VL post. max. 8.0 8.0 7.7 8.4 8.7 8.5 HC sous sillon 7.0 6.2 7.1 6.7 6.9 7.3 7.8 7.1
HC 9.2 9.4 9.6 10.2 9.8 9.7 MD paraconid 13.3 13.4 12.4 11.7 - - 13.4 13.4
MD protoconid
8.7 10.0 9.3 8.7 8.7 9.0 MD metaconid 15.2 14.9 14.4 14.2 14.4 - - 14.8
LOWER
⟵⟵
TN
⟶⟶
TEETH
I/1
P/4
I/2/
I/3
C
P/3
M/1
Panthera gombaszogensis - Château Breccia
Tab. 3: Château (CHA.1), Panthera gombaszogensis. Upper teeth. The numbers (TN) on the horizontal line (1 to 7) indicate the references of
the samples mentioned in the text.
Tab. 3 : Château (CHA.1), Panthera gombaszogensis. Denture supérieure. Les numéros (TN) horizontaux (de 1 à 7) correspondent aux références des
pièces indiquées dans le texte.
Tab. 4: Château (CHA.1), Panthera gombaszogensis. Lower teeth. The numbers (TN) on the horizontal line (1 to 7) indicate the references of the
samples mentioned in the text. (A)= alveolus.
Tab. 4 : Château (CHA.1), Panthera gombaszogensis. Denture inférieure. Les numéros (TN) horizontaux (de 1 à 7) correspondent aux références des
pièces indiquées dans le texte. (A) = alvéole.
1112-052 Mep.indd 257 23/12/11 17:03:09
258
Plate 3: Château, Panthera gombaszogensis.
1 - Right humerus, CHA.1- F.8-233, distal part: a- frontal posterior view; b- frontal anterior view; c- CHA.1-02-G.8-276, proximal part, upper view.
2 - Radius a- CHA.1-07-EE-25-16, left, proximal part, internal lateral view; b- CHA.1-00-F.8-149, right, distal part, external lateral view; c- the same,
internal lateral view.
3 - Right ulna CHA.1- 07-Y.22-149: a- proximal part, external lateral view; b- dorsal view; c- CHA.1-98-6-7-Eb.tr.3, distal part, internal lateral view.
Planche 3: Château, Panthera gombaszogensis.
1 - Humérus droit, CHA.1- F.8-233, partie distale : a- vue de face, postérieure ; b- vue de face, antérieure; c- CHA.1-02-G.8-276, partie proximale vue
de dessus.
2 - Radius: a- CHA.1-07-EE-25-16, gauche, partie proximale, vue latérale interne ; b- CHA.1-00-F.8-149, droit, partie distale, vue latérale externe;
c- le même, vue latérale interne.
3 - Cubitus droit: CHA.1- 07-Y.22-149: a- partie proximale, vue latérale interne ; b- vue dorsale ; c- CHA.1-98-6-7-Eb.tr.3, partie distale, vue latérale
externe.
1112-052 Mep.indd 258 23/12/11 17:03:10
259
Plate 4: Château, Panthera gombaszogensis.
1 - a- CHA.1-01-F.7-132, left femur, proximal part, lateral posterior view; b- CHA.1-02-G.8-354, right femur, posterior view; c- the same, internal
lateral view.
2 - Patellae of the same individual, CHA.1-01-G.8-114 (right) and CHA.1-01-G.8-389 (left): a- internal view (articular); b- frontal view.
3 - CHA.1-01-F.8-40, right tibia: a- cranial view; b-external lateral view;
CHA.1-01-G.8-338, left tibia: c- distal part, frontal view; d- lower view.
4 - Fibula: a- CHA.1-07-Y.22-145, right, proximal part, internal view; b- CHA.1-G.7-99, distal part, external view.
Planche 4 : Château, Panthera gombaszogensis.
1 - a- CHA.1-01-F.7-132, fémur gauche, partie proximale, vue latérale postérieure; b- CHA.1-02-G.8-354, fémur droit, vue postérieure; c- le même, vue
latérale interne.
2 - Rotules du même individu, CHA.1-01-G.8-114 (droite) and CHA.1-01-G.8-389 (gauche): a- vue interne (articulaire); b-vue frontale.
3 - CHA.1-01-F.8-40, tibia droit : a- vue crâniale; b-vue latérale externe;
CHA.1-01-G.8-338, tibia gauche : c- partie distale, vue frontale; d- vue inférieure.
4 - Fibula: a- CHA.1-07-Y.22-145, droit, partie proximale, vue interne; b- CHA.1-G.7-99, partie distale, vue externe.
1112-052 Mep.indd 259 23/12/11 17:03:10
260
Plate 5: Château, Panthera gombaszogensis.
Carpus: 1 - Right scapholunar, CHA.1-G.7-64: a- proximal view; b- distal view. – 2 - Left pisiform, CHA.1-01-F.8-241: a- anterior view; b- posterior view.
– 3 - Left trapezium, CHA.1-G.7-69 and CHA.1-02-G.8-227 - a - external lateral view; b- internal lateral view. – 4 - Right magnum, CHA.1-02-F.8-274:
a- internal lateral view; b- external lateral view. – 5 - Left unciform, CHA.1-G.7: a- external lateral view; b- internal lateral view. – 6 - Right trapezoid,
CHA.1-G.7-80: proximal view. – 7 - Pyramidal CHA.1-01-F.8-206 (left) and CHA.1-02-G.8-399 (right) : a / b- posterior view; c / d- anterior view.
Tarsus: 1 - Left astragalus, CHA.1-00-F.8-142: a- internal lateral view; b- anterior view; c- posterior view. – 2 - Right calcaneus, CHA.1-00-F.8-146:
a- anterior view; b- internal lateral view. – 3 - Right cuneiform 1, CHA.1-00-F.8-51: a- proximal view; b- internal lateral view. – 4 - Left cuneiform 2,
CHA.1-01-G.8-105 and CHA.1-00-F8-51: a- proximal view; b- internal lateral view. – 5 - Left cuneiform 3, CHA.1-HS-21 and CHA.1-G.5-51: a- distal
view; b- internal lateral view. – 6 - Right cuboid, CHA.1-G.7-67: a- external lateral view; b- anterior view. – 7 - Left navicular, CHA.1-00-F.8-145: a-
proximal view; b- external lateral view. – Planche 5: Château, Panthera gombaszogensis.
Planche 5 : Château, Panthera gombaszogensis.
Carpe :1 - Scapholunaire droit, CHA.1-G.7-64 : a- vue proximale; b- vue distale. – 2 - Pisiforme gauche , CHA.1-01-F.8-241: a- vue antérieure; b-
vue postérieure. – 3 - Trapèzes gauches, CHA.1-G.7-69 et CHA.1-02-G.8-227 - a / b- vue latérale externe; c / d- vue latérale interne. – 4 - Magnum
droit, CHA.1-02-F.8-274 : a- vue latérale interne; b- vue latérale externe. – 5 - Unciforme gauche, CHA.1-G.7: a- vue latérale externe; b- vue latérale
interne. – 6 - Trapézoïde droit, CHA.1-G.7-80 : vue proximale. – 7 - Pyramidaux CHA.1-01-F.8-206 (gauche) et CHA.1-02-G.8-399 (droit) : a / b- vue
postérieure; c / d- vue antérieure.
Tarse : 1 - Astragale gauche, CHA.1-00-F.8-142 : a- vue latérale interne; b- vue antérieure; c- vue postérieure. – 2 - Calcanéum droit, CHA.1-
00-F.8-146 : a- vue antérieure; b- vue latérale interne. – 3 - Cunéiforme 1 droit, CHA.1-00-F.8-51: a- vue proximale; b- vue latérale interne. – 4 -
Cunéiforme 2 gauche, CHA.1-01-G.8-105 et CHA.1-00-F8-51: a- vue proximale; b- vue latérale interne. – 5 - Cunéiformes 3 gauches, CHA.1-HS-21 et
CHA.1-G.5-51: a- vue distale; b- vue latérale interne. – 6 - Cuboïde droit, CHA.1-G.7-67: a- vue latérale externe; b- vue antérieure. – 7 - Naviculaire
gauche, CHA.1-00-F.8-145 : a- vue proximale; b- vue latérale externe.
1112-052 Mep.indd 260 23/12/11 17:03:12
261
Plate 6: Château, Panthera gombaszogensis.
1 - Right metacarpal 3, CHA.1-00-F.8-31, anterior view. – 2 - Metacarpal 5, CHA.1-07-EE-25-31, right, and CHA.1-G.7-124 , left: a / c- anterior
view; b / d- internal lateral view. – 3 - Metacarpal 1, a- CHA.1-G.7-79-fissure, left, and b- CHA.1-01-F.8-186, right: anterior views. – 4 - Phalanx 1,
right finger 1, CHA.1-F.7-125, anterior view. – 5 - Right metatarsal 3, CHA.1-00-F.8-266: a- external lateral view; b- internal lateral view. – 6 - Right
metatarsal 3, CHA.1-G.6-79, proximal part: a- proximal view; b- internal lateral view. – 7 - Left metatarsal 4, CHA.1-00-F.8-211: a- anterior view;
b- internal lateral view. – 8 - Left metatarsal 5, CHA.1-00-F.8-90: a- anterior view; b- internal lateral view.
Planche 6: Château, Panthera gombaszogensis.
1 - Métacarpien 3 droit 3, CHA.1-00-F.8-31, vue antérieure. – 2 - Métacarpien 5, CHA.1-07-EE-25-31, droit, et CHA.1-G.7-124, gauche: a / c- vue
antérieure; b / d- vue latérale interne. – 3 - Métacarpien 1, a- CHA.1-G.7-79-fissure, gauche, et b- CHA.1-01-F.8-186, droit : vue antérieure. –
4 - Phalange 1, doigt 1, droit, CHA.1-F.7-125, vue antérieure. – 5 - Métatarsien 3 droit, CHA.1-00-F.8-266 : a- vue latérale externe; b- vue latérale
interne. – 6 - Métatarsien 3 droit, CHA.1-G.6-79, extrémité proximale: a- vue proximale; b- vue latérale interne. – 7 - Métatarsien 4 gauche, CHA.1-
00-F.8-211: a- vue antérieure; b- vue latérale interne. – 8 - Métatarsien 5 gauche, CHA.1-00-F.8-90 : a- vue antérieure; b- vue latérale interne.
1112-052 Mep.indd 261 23/12/11 17:03:12
262
course of time, splintering even the most resistant long
bones. It is therefore not surprising to notice in table 5
the small number of bones sufficiently well preserved to
allow their length to be measured for example. Only the
right tibia, CHA.1-F.8-14, well protected in the pothole
along with the skull, has reached us intact. It has been
possible to validly work out the length of an ulna using
several sections of different ulna of equivalent size which
when put together covered the full length of a single ulna.
On the other hand, the epiphyses, more massive, have
been much more resistant and have provided conside-
rable information for each type of long bone and certainly
belong to Panthera gombaszogensis.
In table 5, the transfer numbers of the second column
(from 1 to 10 max for the ulna) give the reference inside
the site of each measured piece. See the list below:
1 2 3 4 5 6 7 8 9 10 11 12
L prox TD prox
APD
med TD med APD dist TD dist APD dist art TD dist art APD
1 - 66.8 85.7 - - - - - - 57.8 59.4
2 - - - - - 79.5 49.3 52.1 - - -
3 - 64.9 82.7 - - 80.6 48.4 55.5 - 56.1 58.1
1 - 40.1 26.3 29.0 16.8 - - - - 26.7 -
2 - 39.1 27.0 28.6 16.8 - - - - 26.6 -
3 - - 25.6 - - - - - - 26.7 -
4 - 38.6 25.4 - - - - - - - -
5 - - - 29.9 15.2 53.3 32.8 42.4 26.6 - -
1 - 48.0 62.3 - - - - - - 33.0 26.4 20.6
2 323.0* - - 19.0 27.9 - - - - - 23.8 22.0
3 - - - - - 22.3 29.8 - - - - -
4 - - - - - - - - - - 24.2 19.5
5 - - - - - - - - - - 25.4 19.2
6 - - - - - 21.6 27.6 - - - - -
7 - 41,7 - - - - - - 29.2 - -
8 - - 55,5 - - - - - - - 23.7 20.6
9 - - - 0.0 19.4 28.0 - - - -
10 - - 16.0 24.3 - - - - - 21.1 20.6
1 - 83,3 50,7 31.6 28.1 - - - - - 70.9
2 - - - - 73.3 70,1 71,9 - - -
3 - - - - - - - - 38.1 -
4 - - - - - - - - 37.2 -
5 - - - - - - - - 37.8 -
1 295.5 75.3 78.1 29.4 30.9 52.9 35.1 49.0 -
2 - - - 25.1 27.3 - - - -
3 - - - - - 53.0 35.8 50.8 -
4 - - - - - 56.7 36.1 50.8 -
1 - 26.0 17.5 - - - -
2 - 24.5 15.2 - - - -
3 - 29.3 18.3 - - - -
4 - 26.9 - - - - -
5 - 29.5 14.4
12 3 4 5
1 51.6 38.2 21.6 35.3 38.5
2 - 37.3 23.7 40.2 36.4
3 - 37.2 23.3 37.7 36.6
4 53.9 38.2 22.5 36.7 37.2
Panthera gombaszogensis - Forelimb and Hindlimb long bones
TN Sample
TN Measures
Fibula
Humerus
Radius
Ulna
Femur
Patella
Tibia
TN Measures
Tab. 5: Château (CHA.1), Panthera gombaszogensis. Forelimb and hindlimb long bones, and patella. The vertical numbers (TN) (maximum 1 to
10) indicate the references of the samples mentioned in the text.
The numbers (TN) on the horizontal line (1 to 12) indicate the measurements taken. For long bones, the numbers from 1 to 9 have always the same
meaning. For 10, 11, 12, measurements vary with bones:
– humerus: 10 = prox articular TD; 11 = prox articular APD
– radius: 10 = TD at the neck
– cubitus: 10 = max TD olecranon; 11 = TD anconeus process; 12 = trochlea min. TD
– femur: 10 = TD caput; 11 = distance between greater and lesser trochanters
– For patella: 1 = DPD; 2 = TD; 3 = med APD; 4 = articular DPD; 5 = articular TD.
Tab. 5 : Château (CHA.1), Panthera gombaszogensis. Os longs des membres antérieurs et postérieurs, et rotule. Les numéros (TN) verticaux (de 1 à 10
au maximum) correspondent aux références des pièces indiquées dans le texte.
Les numéros (TN) horizontaux (de 1 à 12) correspondent aux mesures prises. Pour les os longs, les numéros de 1 à 9 ont toujours la même signification.
Pour 10, 11, 12, les mesures varient suivant les os :
– humérus : 10 = DT articulaire prox. ; 11 = DAP articulaire prox.
– radius : 10 = DT du col
– cubitus : 10 = DT max olécrane ; 11 = DT processus anconé ; 12 = DT min. incisure trochléaire
– fémur : 10 = DT tête ; 11 = distance grand trochanter-petit trochanter
– Pour la rotule : 1 = DDP ; 2 = DT ; 3 = DAP méd. ; 4 = DDP articulaire ; 5 = DT articulaire.
1112-052 Mep.indd 262 23/12/11 17:03:13
263
humerus : 1- CHA.1-G.8-276 r. ; 2- CHA.1-01-F.8-233
r. ; 3- CHA.1-07-EE.25-13+21 l.
radius : 1- CHA.1-00-F.8-25 r. ; 2- CHA.1-07-EE.25-16
l. ; 3- CHA.1-01-F.8-135 r. ; 4- CHA.1-G.6-72 l. ;
5- CHA.1-00-F.8-149 r.
ulna : 1- CHA.1-07-Y.22-149 r. ; 2- CHA.1-00-F.8-24+277
r. ; 3- CHA.1-98-F.6/7+Eb.tr.3 r. ; 4- CHA.1-GAR.1 A l. ;
5- CHA.1-G.7-103-fissure S.E. r. ; 6- CHA.1-F.7-16 l. ;
7- CHA.1-00-F.8-125 l. ; 8- CHA.1-01-F.7-104 r. ;
9- CHA.1-00-F.8-32 l. ;10- CHA.1-07-EE.25 l.
femur : 1- CHA.1-01-F.7-132 l. ; 2- CHA.1-
02-G.8-354 r. ; 3- CHA.1-01-F.8-240 l. ; 4- CHA.1-
H.6-10 r. ; 5- CHA.1-G.7-58 r.
patella : 1- CHA.1-02-G.8-389 l. ; 2- CHA.1-
01-G.8-173 l. ; 3- CHA.1-01-F.8-204 l. ; 4- CHA.1-
01-G.8-114 r.
tibia : 1- CHA.1-00-F.8-40 r. ; 2- CHA.1-01-F.8-263
r. ; 3- CHA.1-01-F.8-229 r. ; 4- CHA.1-02-G.8-338 l.
fibula : 1- CHA.1-01-F.7 -110 l. ; 2- CHA.1-01-F.8-218
l. ; 3- CHA.1-07-Y.22-145 r. ; 4- CHA.1-01-F.7-137 r. ;
5- CHA.1-G.7-99 r.
The complete right tibia F.8-40 (tab. 5) allows us to
make a comparison. It is definitely a Felid’s. It has the
same length as that of the today’s lioness which we used
for comparison but its diaphysis is clearly wider. The
median TD vs median APD is :
P. leo (extant female) = 24.3 x 26.7 mm
P. gombaszogensis = 29.4 x 30.9 mm
The tibial crest of Panthera gombaszogensis is strongly
developed, higher and wider, more turned over, and
creates a deeper tibial fossa. The general dip of the upper
edge of the bone towards the middle of the diaphysis is
thus more pronounced. This is a distinctive characteristic
of the jaguar.
As is often the case in deposits, the best preserved
bones the short ones, solid and less fragile. The carpus,
tarsus, metapodials and particularly the phalanges and
sesamoid bones appear well represented and in an excel-
lent state of preservation. Of course these are the most
numerous bones in a skeleton. They allow us to measure
almost everything (tab. 6 and 7). Morphologically, diffe-
rences exist between the Panthera gombaszogensis from
Château, Panthera spelaea and living Panthera leo, and
even with today’s Panthera onca. These differences are
to be spelt out in the future. For example, the metapo-
dial bones of Panthera gombaszogensis look shorter and
relatively more massive; the carpus and tarsus record
variations which reflect slightly different locomotory
adaptations.
The different phalanges and the sesamoid bones, very
well preserved, are still the more numerous. Table 8
provides a statistical evaluation of their size and details
for two individual cases. The first phalanges and the
sesamoid bones retained belong to the same individual as
the complete skull.
With respect to morphology, we can recognise the
characteristics of the large Felidae of the genus Panthera
as well as a clear closeness to the present-day jaguar.
On the other hand, the Panthera gombaszogensis from
Château is clearly bigger than the extant Panthera onca
and keeps some primitive characters.
4.3 - “COMPLETE” INDIVIDUAL: ACCORDING TO
THE SPATIAL DISTRIBUTION F.8 - G.8.
Breccia 4 in the Ensemble Nord (the most ancient) can
reasonably be attributed to the early Middle Pleistocene
because it is older than Breccia 3 and 2 which are contem-
poraneous with Mosbach 2 in Germany (median Middle
Fig.9: Château (CHA.1). Elements of the complete skeleton of Panthera gombaszogensis found in Breccia 4 (after Turner & Antón, 1997, p. 71,
figs 3, 27).
Fig.9 : Château (CHA.1). Eléments du squelette complet de Panthera gombaszogensis trouvé dans la Brèche 4 (d’après Turner & Antón, 1997, p. 71,
figs 3, 27).
1112-052 Mep.indd 263 23/12/11 17:03:14
264
Pleistocene). In Breccia 4 a skull and numerous skeletal
elements in continuity or in anatomical proximity were
discovered. The position in which these components were
found implies that an intact jaguar corpse with its bones
still connected by ligaments was transported by water
and/or mudflows, then deposited with its head inside and
protected by a small pothole which water had hollowed
out in the surrounding limestone a long time before.
It is obviously of the greatest palaeontological interest
to be able to characterise with certainty the same indi-
vidual. The tables of data provide as far as possible the
metric information which pertain to this individual, but
a detailed taphonomic study has not yet been completed
and will be the subject of a later publication.
How heavy was the Panthera gombaszogensis from
the Château Breccia? There are important differences
within present-day populations of Panthera onca, their
body mass being generally between 56 and 96 kg. But the
heaviest males can reach 159 kg, just like a lioness. The
smallest known males weigh only 36 kg. Important varia-
tions are also linked to their geographical location and to
their habitat. The jaguars that live in wet tropical forest
Lat 1 2 3456 7 8
CHA.1-G.7-64 r. 26.0 39.7 33.3 40.8 25.3 38.0 24.6 49.1
CHA.1-02-H.8-43 r. 25.9 - - 40.2 26.1 37.8 27.0 -
CHA.1-01-F.8-194 r. 27.3 41.8 33.4 37.4 24.6 28.2 28.5 48.9
CHA.1-99-I.7-66 l. - 43.3 33.6 -
CHA.1-01-F.8-206 l. 22.9 10.2 15.5
CHA.1-G.8-399 r. 24.1 10.0 16.3
CHA.1-01-F.8-241 l. 22.9 10.2 15.5
CHA.1-01-F.8-196 r. 24.1 10.0 16.3
Unciform CHA.1-G.7 l. 25.0 19.0 24.7
Capitatum CHA.1-02-F.8-274 r. 31.0 23.7 20.6
Trapezoid CHA.1-G.7-80 r. 22.0 11.0 18.9
CHA.1-G.7-69 l. 25.6 14.4 14.5
CHA.1-02-G.8-360 r. 25.4 14.1 14.0
CHA.1-G.7-78-fissure l. 39.0 21.7 14.2 15.0 12.1 17.2 15.4 17.9
CHA.1-02-G.9-11 l. 37.8 21.4 14.4 16.7 12.0 16.4 14.9 17.7
CHA.1-01-D.5-207 l. 36.4 18.5 12.9 13.5 11.0 16.0 15.0 16.4
CHA.1-01-F.8-186 r. 38.3 20.1 14.6 14.2 12.3 16.1 14.6 17.4
CHA.1-01-J.8-15 r. 39.1 * - - 14.4 - 17.2 13.6 16.7
CHA.1-00-F.8-91 r. 79.3 20.1 - 13.3 12.7 19.0 17.4* 16.6
CHA.1-00-F.8-30 r. 79.0* 20.4 - 13.5 13.9 - - -
CHA.1-00-F.8-167 l. - - - 13.5 13.7 19.9 17.1 18.4
CHA.1-00-F.7-53+F.8-
31
r. 98.9* 23.1* 15.1 13.3 13.0 22.3 19.8* 19.6
CHA.1-00-F.7-87 r. 92.5 25.7 13.9 14.0 12.4 22.2 17.2 18.0
Mtc 4 CHA.1-00-F.8-29 r. - 19.1 22.4 13.5 13.0 - - -
CHA.1-G.7-124 l. 73.6 20.7 18.7 12.0 12.3 19.3 17.5 16.8
CHA.1-00-F.8-100 r. 74.6* 20.0 18.5 12.2 12.2 19.5 17.2 17.3
CHA.1-HS-169 l. - 19.6 20.1 12.5 11.6 - - -
CHA.1-07-EE.25-31 r. 70.8 19.0 20.6 11.3 12.6 18.4 17.5 17.2
Panthera gombaszogensis - Carpus and metacarpals
Sample
TN Measures
Scapholunar
Pyramidal
Pisiform
Trapezium
Mtc 1
Mtc 2
Mtc 3
Mtc 5
Tab. 6: Château (CHA.1), Panthera gombaszogensis. Carpus and metacarpus. The numbers (TN) on the horizontal line (1 to 8) indicate the
measurements taken and vary with bones:
– scapholunar: 1 = DPD; 2 = TD; 3 = APD; 4 = prox articular TD; 5 = prox articular APD; 6 = articular TD dist.; 7 = distal articular APD; 8 = max L
(diagonally)
– From pyramidal to trapezium: 1 = APD (length); 2 = TD (width); 3 = DPD (height)
For all metacarpial bones, the numbers (TN) on horizontal line have all the same meaning: 1 = Length; 2 = prox TD; 3 = prox APD; 4 = med TD; 5 =
med APD; 6 = dist TD; 7 = dist APD; 7 = dist APD; 8 = dist articular TD.
Tab. 6 : Château (CHA.1), Panthera gombaszogensis. Carpe et métacarpe. Les numéros (TN) horizontaux (de 1à 8) correspondent aux mesures prises
et varient suivant les os :
– scapholunaire: 1 = DDP ; 2 = DT ; 3 = DAP ; 4 = DT articulaire prox ; 5 = DAP articulaire prox ; 6 = DT articulaire dist. ; 7 = DAP articulaire
distal ; 8 = L max suivant diagonale
– de pyramidal à trapèze : 1 = DAP (longueur) ; 2 = DT (largeur) ; 3 = DDP (hauteur)
Pour tous les métacarpiens, les numéros (NT) horizontaux ont tous la même signification : 1 = Longueur ; 2 = DT prox ; 3 = DAP prox ; 4 = DT méd ;
5 = DAP méd ; 6 = DT dist ; 7 = DAP dist ; 7 = DAP dist ; 8 = DT dist articulaire.
1112-052 Mep.indd 264 23/12/11 17:03:15
265
Lat
1 2 345678
CHA.1-00-F.8-144 l. 96.3 44.6 41.5 - 28.8 73.6 20.6 39.4
CHA.1-00-F.8-148 r. 99.3 46.8 43.3 - 29.0* 73.2 20.1 40.0
CHA.1-G.7-20+35 l. - - 43.9 26.2 29.0 69.2 18.4 -
CHA.1-H.3-73 l. - 45.4 46.2 - - - 20.4 39.8
CHA.1-G.6-24 r. - - 46.0 - - - 23.3* -
CHA.1-G.7-50 l. - 44.8 - - - - - -
CHA.1-I.6-1 l. - - - 28.5 - - - -
CHA.1-00-F.8-142 l. 49.5 43.5 30.2* 25.5 32.3 23.4 29.2 56.5
CHA.1-00-F.8-166 r. 49.5 42.4* 30.6* 27.2 - 23.9 30.3* 58.9
CHA.1-G.6-121 r. 50.2 - - 26.2 31.3 23.0 - 56.9
CHA.1-F.7-9 r. 50.9 - 33.0 27.6 - 23.5 31.2 -
CHA.1-HS-15 l. 28.3 26.7* 28.0
CHA.1-01-J.8-16 l. 28.1* - 27.7
CHA.1-01-G.8-87 r. 27.7 25.8 26.5
CHA.1-G.7-67 r. 28.3 27.2 28.3
CHA.1-00-F.8-145 l. 34.3 31.6 19.6
CHA.1-F.7-3 l. 36.3 36.6 20.1
CHA.1-01-F.8-249 r. 33.4 31.7 20.6
CHA.1-01-I.5-1 l. - - 14.7
CHA.1-00-F.8-51 r. 21.0 10.8 14.5
CHA.1-00-F.8-140 l. - 9.6 15.6
CHA.1-G.7-79 l. 21.5 11.3 14.0
CHA.1-G.8-105 l. 21.2 11.9 14.4
CHA.1-01-F.8-222 l. 20.0 11.2 11.8
CHA.1-01-G.8-144 r. 22.0 13.0 14.1
CHA.1-G.7-51 l. 38.1 23.4 20.1 18.0 7.9
CHA.1-00-F.8-138 l. 36.7 22.2 19.3 15.9 7.4
CHA.1-HS-21 l. 36.8 22.6 19.8 18.8 10.0
CHA.1-HS-154 r. - 24.6 18.4 - -
CHA.1-01-G.8 r. - 23.5 18.2 - -
CHA.1-00-F.8-141 r. 98.0 17.7 26.5 13.8 12.4 20.0 17.4 17.9
CHA.1-G.7-56 r. - 18.9 27.5 - - - - -
CHA.1-01-F.7-146 l. - 22.2* 29.4 16.0 12.6 - - -
CHA.1-00-F.8-15 l. - 25.0 - - - - - -
CHA.1-01-F.8-266 r. - 22.6 29.5 15.8 12.5 - - -
CHA.1-G.6-79 r. - 25.2 32.6 - - - - -
CHA.1-01-F.8-211 l. 112.9 21.7 25.1 13.4 13.3 20.2 18.5 17.8
CHA.1-HS-152 l. - 21.8 25.5 - - - - -
CHA.1-01-F.7-136 r. 112.4 21.6 25.3 13.8 14.0 20.5 18.5 17.9
CHA.1-02-G.8-269 r. 119.9* - - 14.9 15.2 21.0 19.3* 18.7
CHA.1-HS-153 l. - 19.9 22.1 - - - - -
CHA.1-02-H.8-64 r. - 22.2 - 15.7 13.4 20.2 19.8 18.3
CHA.1-00-F.8-89+90 l. 101.4 21.9 17.6 11.3 10.0 17.8 17.1 16.0
CHA.1-G.7-66 l. - - 17.9 - - - - -
CHA.1-00-F.8-89 r. - 20.1 15.5* 10.4 11.3 - - -
CHA.1-02-G.8-220 r. - - - - - 17.7 17.6 16.1
Sample
TN Measures
Calcaneus
Astragalus
Cuboid
Panthera gombaszogensis- Tarsus and metatarsals
Navicular
Mtt 5
Cuneiform 1
Cuneiform 2
Cuneiform 3
Mtt 2
Mtt 3
Mtt 4
Tab. 7: Château (CHA.1), Panthera gombaszogensis. Tarsus and metatarsus. The numbers (TN) on the horizontal line (1 to 8) indicate the
measurements taken and vary with bones:
– Calcaneus: 1 = Length; 2 = prox TD; 3 = prox APD; 4 = TD tuber calcanei; 5 = APD tuber calcanei; 6 = L manubrium; 7 = min TD diaphysis; 8 =
max articular TD
– astragalus: 1 = Length; 2 = prox TD; 3 = prox APD; 4 = TD tuber calcanei; 5 = APD tuber calcanei; 6 = L manubrium; 7 = min TD diaphysis; 8 =
max articular TD
– from cuboid to cuneiform 2 : 1 = APD (Length); 2 = TD (width); 3 = DPD (height)
– cuneiform 3 : 1 = APD; 2 = TD; 3 =DPD; 4 = max TD caput; 5 = min TD col.
For all metatarsial bones, the numbers (TN) on horizontal line have all the same meaning: 1 = Length; 2 = prox TD; 3 = prox APD; 4 = med TD; 5 = med
APD; 6 = dist TD; 7 = dist APD; 7 = dist APD; 8 = dist articular TD.
Tab. 7 : Château (CHA.1), Panthera gombaszogensis. Tarse et métatarse. Les numéros (TN) horizontaux (de 1 à 8) correspondent aux mesures prises
et varient suivant les os :
– calcanéum: 1 = Longueur ; 2 = DT prox ; 3 = DAP prox ; 4 = DT tuber calcanei ; 5 = DAP tuber calcanei ; 6 = L manubrium ; 7 = DT min diaphyse ;
8 = DT max articulaire
– astragale : 1 = Longueur ; 2 = DT ; 3 = DAP ; 4 = DAP min ; 5 = DT trochlea ; 6 = DT col ; 7 = DT tête ; 8 = L. diagonale max.
– de cuboïde à cunéiforme 2 : 1 = DAP (Longueur) ; 2 = DT (largeur) ; 3 = DDP (hauteur)
– cunéiforme 3 : 1 = DAP ; 2 = DT ; 3 =DDP ; 4 = DT max tête ; 5 = DT min col.
Pour tous les métatarsiens les numéros (TN) horizontaux ont tous la même signification : 1 = Longueur ; 2 = DT prox ; 3 = DAP prox ; 4 = DT méd ;
5 = DAP méd ; 6 = DT dist ; 7 = DAP dist ; 8 = DT dist articulaire.
1112-052 Mep.indd 265 23/12/11 17:03:16
266
areas reach an average body mass of 42 kg for the females
and 57 kg for the males, and respectively 76 and 87 kg
in the Pantanal plain in Brasil (Medellin et al., 2002).
H. Hemmer estimates that the body mass of Panthera
gombaszogensis toscana, the smaller and older villafran-
chian subspecies, varies from 70 to 210 kg and from 90
to 120 kg for Panthera gombaszogensis gombaszogensis,
the average being 140 kg (10 individuals) (Hemmer,
2001). Using the calculations of B. Valkenburgh (1990)
in the body mass of Felids based on the skeleton and the
teeth, for the M/1: log of body mass = 3,05 x log of length
of the M/1 (mean of 7 values) -2,15, we get weights from
95 to 150 kg at the maximum and an average body mass
of 130 kg for the Panthera gombaszogensis of Château.
These results seem coherent.
4.4 - BIOCHRONOLOGY
Felid’s lower carnassial is generally a well-studied
tooth. Figure 10 is the diagram of the width vs length
distribution of this molar in P. gombaszogensis toscana,
P. gombaszogensis gombaszogensis as well as in modern
P. onca. In this diagram, we have not retained the data
from the new fossil felid material from the Plio-Pleis-
tocene site of Tegelen (Netherlands) (O’Reagan &
Turner, 2004) because we think that there occur two
different species of Felids. Figure 1, p. 1184, shows the
external view of a left half-mandible (NGM 103142)
which belongs to Puma pardoides of big size rather than
Panthera gombaszogensis toscana. It is very similar to
that of Puma pardoides from Saint-Vallier (Drôme,
France) (Viret, 1954 ; Argant, 2004), excepted the poste-
rior part of the M/1, but the authors indicate that this part
of the tooth is damaged. Tegelen probably yielded both
Puma pardoides and Panthera gombaszogensis. Only the
biggest form should be P. gombaszogensis. Because of
the mode of occurence, its stratigraphic position remains
uncertain. The site of Untermassfeld (Germany) also
yields such an association during the Early Pleistocene.
The distribution of the M/1 of the Felid from Château
shows that it is really P. gombaszogensis gombaszogensis.
The size of the M/1 of P. gombaszogensis toscana and of
TN
⟶⟶
12345678
Phalanx 1 n 88888887
min 41.6 15.9 14.7 9.6 10.5 15.2 10.7 14.2
max 50.9 20.4 16.7 16.1 12.7 16.9 12.9 16.8
mean 47.3 19.1 15.7 13.7 11.1 15.8 12.0 15.7
σ n 3.4 1.5 0.7 2.0 0.7 0.7 0.7 0.9
Phalanx 1, finger 1 39.00 21.73 13.43 15.46 11.22 17.13 15.99 18.41
Phalanx 2 n 11 9 11 11 11 11 11 11
min 27.4 14.8 12.5 9.4 8.5 13.2 9.6 13.2
max 38.3 19.6 17.4 11.6 12.0 16.0 12.2 16.0
mean 33.62 16.39 15.34 10.51 10.39 14.53 11.09 14.40
σ n 3.53 1.36 1.41 0.81 1.01 0.91 0.75 0.85
TN
⟶⟶
123
Phalanx 3 n 858
min 11.5 26.9 3.5
max 13.5 34.7 3.8
mean 12.55 30.19 3.63
σ n 0.69 2.91 0.14
TN
⟶⟶
123
Sesamoid bones n 10 10 10
min 7.2 18.9 9.2
max 9.6 23.0 12.1
mean 8.41 21.55 11.00
σ n 0.73 1.20 0.85
CHA.1, Panthera gombaszogensis , phalanges and sesamoid bones
Tab. 8: Château (CHA.1), Panthera gombaszogensis. Phalanges and sesamoid bones. The numbers (TN) on the horizontal line (1 to 8) indicate
the measurements taken:
– phalanges 1 and 2: 1 = Length; 2 = prox TD; 3 = prox APD; 4 = med TD; 5 = med APD; 6 = dist TD; 7 = dist APD; 8 = dist articular TD.
– phalanx 3 : 1 = prox TD; 2 = prox APD; 3 = med TD blade
– sesamoid : 1 = articular TD; 2 = APD (Length); 3 = DPD (thickness)
The series of phalanges 1 and the series of sesamoid bones are from the same individual, the one with «complete» skull.
Tab. 8 : Château (CHA.1), Panthera gombaszogensis. Phalanges et sésamoïdes. Les numéros (TN) horizontaux (de 1 à 8) correspondent aux mesures
prises.
– phalanges 1 et 2 : 1 = Longueur ; 2 = DT prox ; 3 = DAP prox ; 4 = DT méd ; 5 = DAP méd ; 6 = DT dist ; 7 = DAP dist ; 8 = DT dist articulaire.
– phalange 3 : 1 = DT prox ; 2 = DAP prox ; 3 = DT méd lame
– sésamoïde : 1 = DT articular ; 2 = DAP (Longueur) ; 3 = DDP (épaisseur)
La série des phalanges 1 et la série des sésamoïdes proviennent du même individu, celui du crâne «complet».
1112-052 Mep.indd 266 23/12/11 17:03:17
267
Panthera onca is clearly smaller. The Felid from Château
is of average size, which confirms that it belongs to the
Middle Pleistocene forms, at the end of their evolution.
Referring to present-day jaguars, the forms from open
areas tend to be the biggest while those from woodlands
tend to be darker and lighter.
5 - PALAEOENVIRONMENTAL CONTRIBUTION
OF THE CHÂTEAU BRECCIA
Two samples of the Breccia 4 have been analyzed by J.
Argant (Argant et al., 2007) for pollen study (fig. 11):
– CHA.1-01-G.8-21bis has been taken from under
a block covering the tooth of a Carnivore. The pollen
spectra is based on 300 pollen grains and spores which
represent 30 different taxa : 45,4 % of arborean pollen
(AP), 48,8 % of herbs and 5,7 % of fern spores. It reflects
a largely open landscape. The dominant tree pollen is that
of Pinus (27 %), then Quercus (10,4 %). We find also
Abies (2,7 %), and broadleaved trees, essentially Betula,
Alnus and Juglans.
The herbs are all heliophilous and mostly represented
by Poaceae and Cichorioideae. Ranunculaceae, Brassica-
ceae and Plantago occur among other numerous taxa.
This relative diversity implies grassy areas in various
ecological niches.
– CHA.1-F.8-158, taken under the complete skull of
Panthera gombaszogensis ((F.8-73) gives us a similar
result (341 pollen grains and spores, 25 taxa) in spite of
some divergences concerning the amount of fern spores
(40 %) probably due to the local presence of these plants
on limestone walls.
These spectra indicate a temperate climate but colder
than today and sometimes even quite cold. The lands-
cape was open with grasses spread on the uplands, while
woodlands of pine and fir, but also of some broadleaved
trees such as oak, birch, walnut tree distributed in the
valley.
Panthera gombaszogensis has traditionally been consi-
dered as a forest dweller, with a preference for loca-
tions close to large streams (Hemmer, 2010). This idea,
obviously influenced by our knowledge of the present-
day jaguar of Central or South America, cannot be gene-
ralised without significant qualification.
In the small valley where the Repentir flows today, a
small permanent stream about a meter wide has always
flowed, in all likelihood throughout the Pleistocene if the
width and form of the valley is any indication. About 5 km
downstream, the Repentir flows into the Grosne, a small
river about 3 m wide at this location. After a journey of
about forty kilometres from this point, the Grosne joins
the Saône, the only large river in this region. However
one does the calculation, the Saône is always at least 30
km away from the Château Breccia. Palynology suggests
that the vegetation in the vicinity of the Château Breccia
consisted of a concentration of trees on the lowlands and
in the valleys, with herbaceous plants and grasses on the
uplands and summits. This was not a riparian forest envi-
ronment.
Panthera gombaszogensis benefitted from favourable
conditions at Château: 385 m above sea level, upstream
from a small brook valley, with small caves opening
towards the south-east at the bottom of low cliffs, and
not far from three permanent springs. The area probably
Fig.10: Panthera gombaszogensis, scatter diagram for the length and width of the M/1 from various sites. Position of CHA.1.
Fig.10: Panthera gombaszogensis, diagramme de répartition de la longueur et de la largeur de la M/1 de différents sites. Position de CHA.1.
1112-052 Mep.indd 267 23/12/11 17:04:08
268
attracted herbivores on their way towards the granite
summits (e.g. Mont Gremoi, 555 m asl), the Guye valley
(Pontot pass) and the Grosne valley (Les Granges pass).
Over the course of the Early Pleistocene, the Eurasian
expansion of Panthera gombaszogensis continued as far
as North America, via what is now the Bering Strait. The
need for a terrestrial passage means that the current stretch
of water about 60 m deep could not have been there. The
continuity of the two “Beringia” continents can only be
explained by a climate cold enough to greatly lower the
sea level. Panthera gombaszogensis has obviously proved
to be capable, at least at a particular time, of adapting to
the especially harsh climates of glacial periods. It should
not be forgotten that large cats such as the Siberian tiger
(for example) are able to withstand very harsh climatic
conditions in winter while other populations of the same
species are perfectly adapted to tropical conditions.
We should therefore refine our first impressions of the
palaeoclimatic significance of Panthera gombaszogensis
and of its ethology. A key feature of the latter is the great
adaptive capacity of the carnivores. It is probably the
presence of potential prey that has played the decisive
role in population dynamics.
6 - CONCLUSION: “THE PANTHERA
GOMBASZOGENSIS STORY”
The palaeontological study of jaguars is far from
finished but palaeontologists have begun to reconstruct
with some degree of certainty the history of this large
feline which underwent a considerable geographic expan-
sion during the course of the Pleistocene, passing from
Africa into Europe, then into Asia before finally ending
up in Central and South America where its remaining
populations live today. There are obviously many points
still to be clarified, particularly its very early history, its
expansion in Africa, and the time of its disappearance
from this continent. There has been spectacular progress
in our knowledge of this animal in Eurasia but numerous
points remain to be clarified, particularly the precise time
and causes of its disappearance. The Château Breccia
is making a significant contribution to this history. It
confirms the very wide expansion of the species during
the Middle Pleistocene including its presence in Burgundy
where the evidence suggests it found favourable condi-
tions. The deposit provides proof of the adaptability of
the species to a cold temperate climate, much colder than
today’s climate, and to a biotope quite different to that
found in riparian forests bordering large rivers where
the jaguar lives today. The Château Breccia also allows
us to follow over time the evolution of an association
between the large carnivores and other fauna, from the
early and median Middle Pleistocene (Ensemble Nord,
SIPO) up until the late Middle Pleistocene (Ensemble
Sud). It records the disappearance of the jaguar and its
replacement, after a period of coexistence, by the very
large cave lion, Panthera spelaea fossilis. The dating that
we are able to put forward for this event corresponds at
Château to the late Middle Pleistocene, about 0.6 Myr.
But its final extinction in Europe is generally accepted,
Fig. 11: Château (CHA.1), simplified results of pollen anlysis of two samples from Breccia 4.
Fig. 11 : Château (CHA.1), représentation schématique des résultats de l’analyse pollinique de deux échantillons de Brèche 4.
30,00
40,00
50,00
60,00
F8-158
G8-01-21 bis
0,00
10,00
20,00
1112-052 Mep.indd 268 23/12/11 17:04:09
269
HEMMER H., 2001 - Die Feliden aus dem Epivillafranchium von
Untermaßfeld. – In: Kahlke, R.-D. (Ed.): Das Pleistozän von Unter-
maßfeld bei Meiningen (Thüringen), Teil 3. – Monographien des
Römisch-Germanischen Zentralmuseums Mainz, 40, 699-782.
HEMMER H., KAHLKE R-D., & KELLER T., 2003 - Panthera
onca gombaszoegensis (Kretzoi, 1938) aus den frühmittelpleisto-
zänen Mosbach-Sanden (Wiesbaden, Hessen, Deutschland) . Ein
Beitrag zur Kenntnis der Variabilität und Verbreitungsgeschichte des
Jaguars. Neues Jahrbuch für Geologie und Paläontologie, Abhand-
lungen, 229, 31-60.
HEMMER H., KAHLKE R-D., & VEKUA A.K., 2001 - The jaguar
Panthera onca gombaszoegensis (KRETZOI, 1938) (Carnivora:
Felidae) in the late Lower Pleistocene of Akhalkalaki (South Georgia;
Transcaucasia) and its evolutionary and ecological significance. –
Géobios, 34, 475-486.
HEMMER H., KAHLKE R-D., & VEKUA A.K., 2010 - Panthera
onca georgica ssp. nov. from the Early Pleistocene of Dmanisi (Repu-
blic of Georgia) and the phylogeography of jaguars (Mammalia,
Carnivora, Felidae). – Neues Jahrbuch für Geologie und Paläonto-
logie Abhandlungen, Stuttgart, 257, 115–127.
JOHNSON W.E., EIZIRIK E., PECON-SLATTERY J., MURPHY
W.J., ANTUNES A., TEELING E., & O’BRIEN S.J., 2006 - The
Late Miocene radiation of modern Felidae: A genetic assessment. –
Science, 311, 33-77.
KOENIGSWALD (von) G.H.R., 1960 - Fossil cats from the Tegelen
clay. – Publicaties van het Natuurhistorisch Genootschap in Limburg,
12, 19-27.
KRETZOI M., 1938 - Die Raubtiere von Gombaszög nebst einer Über-
sicht der Gesamtfauna (Ein Beitrag zur Stratigraphie des Altquar-
tärs). Annales Musei Nationalis Hungarici. Budapest, 31, 88-157.
MEDELLIN R., EQUIHUA C., CHETKIEWICZ C.L.B.,
CRAWSHAW P.G., RABINOWITZ A., REDFORD K.H.,
ROBINSON J.G., SANDERSON E.W., & TABER A.B., 2002 -
El jaguar en el nuovo milenio. Ediciones cientificas Universitarias,
Universidad Nacional Autonoma de Mexico, Fondo de Cultura
Economica, Wild Life Conservation Society, Mexico, 647 p.
O’REAGAN H.J., & TURNER A., 2004 - Biostratigraphic and
palaeoecological implications of new fossil felid material from the
Plio-Pleistocene site of Tegelen, The Netherlands. Palaeontology, 47,
1181-1193.
SCHAUB S., 1949 - Révision de quelques Carnassiers villafranchiens
du niveau des Etouaires (Montagne de Perrier, Puy-de-Dôme).
Eclogae Geologicae Helvetiae, 42 (2), 492-506.
SPASSOV N., 2000 - Biochronology and Zoogeographic Affinities of
the Villafranchian Faunas of Bulgaria and South Europe. Historia
naturalis Bulgarica, 12, 89-128.
TURNER A., & ANTÓN M, 1997 - The big cats and their fossil rela-
tives. Columbia University Press, New York, 234 p.
VALKENBURGH (van) B., 1990 - Skeleton and dental predictors of
body mass in carnivores. In Damuth J. & MacFadden, B. J (eds.)
Body size in mammalian paleobiology: Estimation and biological
implication Cambridge University Press, Cambridge, 181-205.
VERESCHAGIN N.K., 1969 - Le lion des cavernes : Panthera
(Leo) spelaea Goldfuss et son histoire dans l’Holarctique. Etudes
sur le quaternaire dans le monde, VIIIe Congrès INQUA, Paris, 1,
463-464.
VIRET J., 1954 - Le loess à bancs durcis de Saint-Vallier (Drôme)
et sa faune de mammifères villafranchiens. Nouvelles Archives du
Muséum d’Histoire naturelle de Lyon, 4, 1-200.
not without argument, to have occurred at the end of the
second last glaciation (in the course of OIS 6) (D. Janossy,
oral comm.). This last point deserves future clarification.
7 - ACKNOWLEDGEMENTS
We would very much like to thank the Service
Régional de l’Archéologie, Direction des Affaires Cultu-
relles – Bourgogne which has funded the various exca-
vation campaigns since 1997 as well as the necessary
analyses. The Commune of Château, the owner of the
site, has always facilitated our work. Agnès Testu and
Roland Ballesio kindly agreed to read this work within a
very short time and we must thank them for their helpful
advice. Equally deserving of our thanks are the members
of the scientific team and all those who have helped exca-
vate the site over the last fourteen years.
8 - REFERENCES
ARGANT A., 1980 - Une brèche fossilifère du Pléistocène moyen de
Saône-et-Loire : étude paléontologique du gisement de Château.
Diplôme d’Etudes Supérieures Sciences naturelles, Sciences de la
Terre, n° 81, Faculté des Sciences de Lyon, 140 p.
ARGANT A., 1991 - Carnivores quaternaires de Bourgogne. Docu-
ments des Laboratoires de Géologie, Lyon, 115, 1-301.
ARGANT A., 2004 - Les Carnivores du gisement Pliocène final de
Saint-Vallier (Drôme, France). In Faure, M., Guérin, C. (Eds), Le
gisement pliocène final de Saint-Vallier (Drôme, France). Geobios,
37, 133-182.
ARGANT A., JEANNET M., ARGANT J., & ERBAJEVA M., 2007
- The big cats of the fossil site Château Breccia Northern Section
(Saône-et-Loire, Burgundy, France): stratigraphy, palaeoenviron-
ment, ethology and biochronological dating. Courier Forschung-
institut Senckenberg, 259, Frankfurt a. Main, 121-140.
BARRY J.C., 1987 - The large carnivores from the Laetoli region of
Tanzania. In: M. D. Leakey & J. M. Harris (eds.): Laetoli, a Pliocene
site in northern Tanzania, Clarendon Press, Oxford, 48-52.
BONIFAY, 1971 - Carnivores Quarternaires du Sud-Est de la France.
Mémoires du Muséum National d´Histoire Naturelle, C, XXXI (2),
377 p.
HEMMER H., & SCHÜTT G., 1969 - Ein Unterkiefer von Panthera
gombaszoegensis (kretzoi, 1938) aus den Mosbacher Sanden.
Mainzer Naturwissenschaftliches Archiv, 8, 90-101.
HEMMER H., 1971 - Zur Charakterisierung und stratigraphischen
Bedeutung von Panthera gombaszoegensis (Kretzoi, 1938). – Neues
Jahrbuch für Geologie und Paläontologie, Monatshefte, 1971,
701-711.
HEMMER H., 1972 - Zur systematischen Stellung von “Jansofelis
vaufreyi” BONIFAY, 1971, und “Felis lunellensis BONIFAY, 1971,
aus dem Pleistozän Südfrankreichs (Carnivora, Felidae). – Neues
Jahrbuch für Geologie und Paläontologie, Monatshefte, 1972,
215-223.
1112-052 Mep.indd 269 23/12/11 17:04:10
... Distribution This species is known from several Eurasian localities; Argant and Argant (2011) refer that, up to now, it is known from more than 50 Eurasian sites. In Greece, the taxon is known from Gerakarou 1 and Apollonia 1 in Mygdonia Basin, as well as from Alykes and Volos in Thessaly. ...
... Hemmer et al. (2010) classified all material in the modern species Panthera onca and separated three subspecies, P. o. toscana, P. o. gombaszogensis, and P. o. georgica. Argant and Argant (2011) proposed that P. gombaszogensis is a valid species, appeared in Africa at ~1.90 Ma and migrated to Europe; the Upper Valdarno and Olivola material represent the oldest European evidence of the species and reported to as P. g. toscana. This subspecies gave two branches: the one of P. g. gombaszogensis that survived in Europe until 0.3 Ma, and the other of P. g. georgica from which P. onca originates. ...
... There is only one reference without description for the presence of P. gombaszogensis in Volos (van der Meulen and van Kolfschoten 1986). The taxon is characterized by elongated and high skull, large infraorbital foramen, very high sagittal crest, very strong and canine like I3, strong and relatively small upper canine, elongated P3 without anterior and with strong posterior accessory cusps, elongated and narrow upper carnassial, relatively strong protocone with its mesial margin aligned to that of the parastyle, absence of ectoparastyle, small M1, relatively weak p3 with large anterior accessory cuspid and well-developed distal cingulum, p4 with large anterior and posterior accessory cuspids, and m1 without talonid (Kretzoi 1938;Koufos 1992Koufos , 2018Argant and Argant 2011). ...
Chapter
The felidae constitutes a large carnivoran family with several living and fossil species, which appeared at the end of the Oligocene and dispersed into the Old and New World. In Greece, the felids are quite common in the Neogene–Quaternary deposits including several species. The earliest occurrence of the family in Greece is dated at the early/middle Miocene boundary with the ancestral, for the family, genus Pseudaelurus. In the late Miocene, the felids are represented by several taxa, including small- and large-sized animals. In the Pliocene the known felids are a few, but in the Pleistocene, there are several species. The Greek fossil record includes ten genera and 13 valid species, including two new.
... Panthera occurs during the Villafranchian with one species, which Hemmer et al. (2010) refer to as P. onca Linnaeus, 1758, including the subspecies P. o. toscana, P. o. gombaszogensis, and P. o. georgica. More recently, Argant and Argant (2011) reverted to the more common species name of P. gombaszogensis Kretzoi, 1938, retaining however the three subspecies P. g. toscana, P. g. gombaszogensis, and P. g. georgica. The latter authors argued that since these Plio-Pleistocene forms differ significantly from the extant jaguar (P. ...
... Dimensions (in mm) of the humerus of M. cultridens from Karnezeika and comparison with other Plio-Pleistocene Felidae. Data fromBallesio (1963),Athanassiou (1996),Argant (2004),Christiansen and Adolfssen (2007),Madurell-Malapeira et al. (2010),Argant andArgant (2011) andHemmer et al. (2011). ...
Article
Karnezeika is a Lower Pleistocene locality in the Peloponnese, South Greece. More than 3000 specimens have been unearthed and studied, revealing the presence of a large mammal assemblage, which corresponds to the Middle Villafranchian biochronological unit. The bovid fauna of the site has already been presented, as well as the scarce remains of a large cercopithecid, which characterize Karnezeika as a primate-bearing fossil site. Herein, we describe the Carnivora of this locality. The carnivore guild of Karnezeika was found to consist of seven different taxa including Vulpes alopecoides, Felis sp., Megantereon cultridens, Ursus etruscus, Pachycrocuta brevirostris, Baranogale helbingi, and Mustelidae indet. Interestingly, the presence of the giant, short-faced hyena P. brevirostris among the assemblage shows that this species was present in SE Europe before the Olduvai subchron, similarly to West Europe. Furthermore, based on the new and relatively well-preserved specimens belonging to the rare mustelid B. helbingi, we discuss some possible taxonomic interpretations of this species. Finally, the majority of the carnivora taxa present in Karnezeika indicate a mixed habitat which agrees with previous palaeoenvironmental results concerning the site.
... Finally, the evolutionary history of Old World jaguars is far from being resolved. Most of the authors hypothesized an African origin of this species (Hemmer et al., 2010;Argant and Argant, 2011) linking their first appearance in Europe at ca. 1.8 Ma with the record of a large pantherine form in the Late Pliocene of Laetoli Upper Beds (ca. 3.7 Ma) ascribed to Barry (1987) to Panthera leo aff. ...
... augusta (Hemmer et al., 2010;Argant and Argant, 2011;Jiangzuo and Liu, 2020). In any case, Hemmer et al. (2010) described the jaguar from Dmanisi as an ambush predator with an estimated body mass of ca. 100 kg, which preferred riparian landscapes in both forested and open grassland areas. ...
Article
The carnivore guild of the Early Pleistocene site of Dmanisi is among the most diverse of the Early Pleistocene of the entire Old World. It includes 14 carnivoran taxa: Homotherium latidens, Megantereon whitei, Panthera onca georgica, Acinonyx pardinensis, Lynx issiodorensis; Pachycrocuta brevirostris; Canis (Xenocyon) lycaonoides, Canis borjgali, Vulpes alopecoides; Ursus etruscus; Lutra sp., Martes sp., Meles sp. and Pannonictis sp. The analysis of this rich carnivoran guild was carried out under different methodological approaches in order to compared the assemblage with other chronological coeval European, Asian and African sites from a paleobiological perspective. Our results suggest a close proximity among the Dmanisi carnivore assemblage and other guilds recorded from European late Villafranchian sites such as Pirro Nord, Venta Micena and Apollonia 1 and, in a lesser extent, to European Epivillafranchian sites as Vallonnet, Untermassfeld or the Vallparadís Section. Early to Middle Pleistocene Asian carnivore assemblages display several similarities with the Dmanisi guild mainly in the record and diversity of felid and the canid ecomorphotypes. Eastern African sites such as Olduvai and Omo, as well as South African sites display a lower similarity with the studied sample, basically for the most diverse hyenid taphocoenoses.
... The Mt. V is slightly shorter than that of Acinonyx pardinensis whose Mt. V length is 116.7 (van Valkenburgh et al., 1990), and very close to that of Panthera gombaszogensis, whose Mt V length is 101.4 (Argant and Argant, 2011). Comparing with the Panthera tigris (Mt. ...
Article
In the Shanshenmiaozui (SSMZ) fauna from Nihewan Basin, Canis chihliensis, Nyctereutes sp., Homotherium sp., Acinonyx sp., Lynx shansius and Pachycrocuta licenti have been identified. C. chihliensis is the dominant and best represented species whose fossil materials include crania, mandibles and postcranials, including nearly complete manus and pes. The giant cheetah Acinonyx sp. is only represented by postcranial skeletons (scapula, radius, proximal ulna and an almost complete manus), which represent the richest collection for its kind ever known in China. Nyctereutes sp. is only represented by a partial cranium and distal part of a humerus. Homotherium sp. is only represented by a partial lower m1. Lynx shansius is represented by a nearly complete mandible with p3 and m1 preserved in situ. The fossil materials of Pachycrocuta licenti include a juvenile mandible with dp2–4 and m1 attached, an isolated dp4 and a partial ascending ramus. The SSMZ carnivoran guild resembles those of the classic Nihewan fauna (CNF) and the Dmanisi fauna, which means they probably have a similar geologic age or slightly younger of the SSMZ fauna; and they also share the same open grassland/shrubland habitat. The postcranial bones of C. chihliensis and Acinonyx sp. from SSMZ represent the first records for their kinds in China.
... The most peculiar feature of the small lioness specimen from Kryshtaleva Cave is its extremely small dimensions, which are far below the size range of Eurasian cave lions and in the lowermost range of modern lionesses (Online Resource1, Table S7). The total length of the skull (~ 268 mm) is even smaller than in P. gombaszoegensis, whose skull length varied within 273-330 mm in the Early Pleistocene P. g. toscana (N = 3; Kotsakis and Palombo 1979;Koufos 1992) and within 280-300 mm in P. g. gombaszoegensis (N = 3; Tournepiche 1996; Argant and Argant 2011). The Kryshtaleva lioness is even smaller than some individuals of the leopard Panthera pardus (Linnaeus, 1758) whose skulls can reach about 280 mm (Prater 1921;Kiabi et al. 2002;Moqanaki et al. 2010), even if the Pleistocene European skulls of the species very rarely exceed 250 mm (Kotsakis and Palombo 1979 and references therein). ...
Article
Full-text available
The fossil record of the cave lion, Panthera spelaea, suggests a gradual decrease in body size, the process peaking just before the extinction of the species at the end of the Late Pleistocene. Such an evolutionary trend appears rather unusual for a large felid species and requires further investigation. This study reviews the cave lions of Ukraine, whose fossils are known from 46 localities dated from 800 kyr to 18–17 kyr ago, with a special emphasis on size changes through time. We describe several important finds including those of Panthera spelaea fossilis from Sambir, Panthera spelaea ssp. from Bilykh Stin Cave and Panthera spelaea spelaea from Kryshtaleva Cave. We make subspecific identifications of specimens from the region and focus on their size characteristics. Our analysis of Ukrainian cave lions agrees with the temporal trend of decreasing size, particularly accelerating during MIS 2, as exemplified by the extremely small female skull from Kryshtaleva Cave. We provide a direct AMS date for this specimen (22.0–21.5 cal kyr BP), which suggests that the Kryshtaleva lioness must have belonged to a Panthera spelaea spelaea population forced south by the spreading ice sheet. We discuss some palaeoecological aspects of the evolutionary history and eventual extinction of the cave lion. Finally, we review the subfossil records of the extant lion Panthera leo known from several Ukrainian sites archaeologically dated to 6.4–2.0 kyr BP. These finds most probably represent the Persian lion Panthera leo persica.
... The identification of the specimen was made through observation and study of available specimens, including comparison with other Felidae, using reference collections, such as the Guajá Ethnographic Collection and the 'Renato Kipnis' Reference Collection (both curated at the LEEH-IB-USP), and with the scientific literature, consulting the works by Merriam and Stock (1932), Kurtén (1965), Paula Couto (1979), Seymour (1989), Langer (2008, 2011)), Hemmer et al. (2010), Argant and Argant (2011), Baryshnikov (2011), Diedrich (2011), Faure and Guérin (2014, Moreno and Lima-Ribeiro (2015), Chimento and Agnolin (2017), Rodriguez et al. (2018), Sabol et al. (2018), and Chahud (2020b). ...
Article
The region of Lagoa Santa, State of Minas Gerais (Brazil) presents an important karst complex that includes several caves with a large amount of osteological material. Among the places of great palaeontological importance is the Cuvieri Cave, known for the diversity of extinct and extant animal species, including large cats. The Felidae emerged in South America during the Great American Biotic Interchange, and in a short period, they became the main predators of the region, with considerable osteological record. Currently, Panthera onca is the main carnivore in Neotropical America, even so Pleistocene specimens are little known or studied. An adult specimen, represented by teeth, small appendicular bones (calcaneus, astragalus, phalanges, metacarpals and metatarsals) and fragmented larger bones (ulna, femur and tibia), of Pleistocene age found in the Cuvieri Cave is presented here, providing anatomical and preservation data, adding information about this species in the Brazilian Quaternary.
Article
Full-text available
The jaguar (Panthera onca) is the largest living cat species native to the Americas and one of few large American carnivorans to have survived into the Holocene. However, the extent to which jaguar diversity declined during the end-Pleistocene extinction event remains unclear. For example, Pleistocene jaguar fossils from North America are notably larger than the average extant jaguar, leading to hypotheses that jaguars from this continent represent a now-extinct subspecies (Panthera onca augusta) or species (Panthera augusta). Here, we used a hybridization capture approach to recover an ancient mitochondrial genome from a large, late Pleistocene jaguar from Kingston Saltpeter Cave, Georgia, USA, which we sequenced to 26-fold coverage. We then estimated the evolutionary relationship between the ancient jaguar mitogenome and those from other extinct and living large felids, including multiple jaguars sampled across the species’ current range. The ancient mitogenome falls within the diversity of living jaguars. All sampled jaguar mitogenomes share a common mitochondrial ancestor ~400 thousand years ago, indicating that the lineage represented by the ancient specimen dispersed into North America from the south at least once during the late Pleistocene. While genomic data from additional and older specimens will continue to improve understanding of Pleistocene jaguar diversity in the Americas, our results suggest that this specimen falls within the variation of extant jaguars despite the relatively larger size and geographic location and does not represent a distinct taxon.
Article
The Early Pleistocene site of Palan-Tyukan (MNQ18, ca 1.85 Mya) is located in Transcaucasia, northwestern Azerbaijan. More than 300 mammalian bones were laid close to each other in a 25 m² lens-like accumulation, in a stratum of normally magnetised (the upper part of the Olduvai subchron) yellowish-grey Lower Apsheron loams. The Palan-Tyukan fauna includes two species of sabertoothed cats. The medium-sized sabertoothed cat remains are ascribed here to Megantereon cf. cultridens. The large size of the massive fossil ulna from Palan-Tyukan is comparable to that of a broadly lion-sized felid. We attribute the bone to the species Homotherium cf. crenatidens. The morphological characters and the size of the Panthera remains from Palan-Tyukan suggest its similarities with the P. gombaszogensis remains from Olivola, Upper Valdarno and Dmanisi localities (the initial phase of Early Pleistocene). The occurrence of P. cf. gombaszogensis in Palan-Tyukan provides information on stratigraphic range of these taxa: it represents one of the earliest records of the genus Panthera in all of Eurasia. The hyaenid remains are ascribed here to Pliocrocuta perrieri. A Feliformia community of the Palan-Tyukan type presents evidence of the wider variety of environments ranging from wooded areas and savanna landscape.
Article
Full-text available
Panthera gombaszoegensis is a fossil pantherine from the Pleistocene of Eurasia. It has been considered to be the closest ancestor the jaguar (Panthera onca) due to dental similarities, and has even sometimes been considered to be a subspecies of jaguar. However, our knowledge of this taxon is limited by the scarcity of cranial remains, which has made it difficult to properly assess the phylogenetic affinities and possible ecological role of this taxon. Here, we describe a new cranium of P. gombaszoegensis from Belgium, and present a morphometric analysis of the cranium and dentition of extinct and extant pantherines. Whereas the lower dentition of P. gombaszoegensis is similar to that of P. onca, similarities were not recovered in other parts of the skull. Some cranial traits of P. gombaszoegensis resemble those of other pantherines, especially larger species such as the tiger (P. tigris), while some similarities to taxa such as tiger (P. tigris), lion (P. leo) and leopard (P. pardus) in the skull of P. gombaszoegensis suggest a diet adapted to a wide prey spectrum. The first ever assessment of the phylogenetic placement of P. gombaszoegensis places this taxon closer to P. tigris than to P. onca, which considerably simplifies the biogeographic history of pantherines.
Article
Panthera gombaszoegensis was recorded over from 100 African and Eurasian localities, ranged between 2.5 and 0.3 Myr. Among them, seven cave sites, Żabia, Tunel Wielki, Kozi Grzbiet, Draby 3, Południowa, Biśnik, and Komarowa caves, dated in the range of 1.7–0.3 Myr, were those in Poland. They were located in Sudety Mts, Kraków-Częstochowa Upland, Wieluń Upland and Holy Cross Mts. The material from Polish sites is not very numerous, being represented mostly by isolated teeth, metapodials and phalanges, however it is well informative diagnostically. From each site, except the Biśnik Cave, remains of a single large-sized individual, mostly of males, were found. The oldest record from Żabia Cave, dated on 1.7–1.5 Myr, because of lack of suifficient diagnostic features, was classified as P. gombaszoegensis. Bones from the other sites were assigned to Panthera gombaszoegensis gombaszoegensis, late Early and Middle Pleistocene chronoform widespread in Eurasia. Analysis of a large series of teeth size in the course of time does not showed any particular changes, and the size of the Eurasian jaguar was more or less comparatively large through its entire timespan occurrence. Panthera gombaszoegensis was ecologically flexible species able to hunt in a wide prey spectrum; its size, comparable with that of a small lion Panthera leo (Linnaeus, 1758) or island tiger Panthera tigris (Linnaeus, 1758), guaranteed this jaguar one of the leading position among large carnivores. This was a member of stabile by 1 Myr carnivore paleoguild, single, conical-toothed cat, and it was well adapted to changed environmental conditions initiated by glacial-interglacial cycles. It seems that climate changes do not affected so much on P. gombaszoegensis as previously thought. The main factor responsible for the jaguar decline was the arrival of the Pleistocene lion, which affected negatively and caused strong competition. Because to its flexibility, jaguar was able to survive relatively longer than other ancient carnivores. Gradually as the density and abundance of the lion increased, a compact and wide geographic range started to shrink up to the form of isolated areas. Areas with the last, relict jaguar survivors were located far away one from another and overwhelmed by populations of P. s. fossilis. The final extinction of the species was between 350 and 300 kyr, and among them Polish find from the layer 19ad of Biśnik Cave should be highlighted as one of the latest Eurasian record of Panthera gombaszoegensis.
Article
Full-text available
The Château site, known since 1863, was rediscovered in 1968 and new excavations were carried out there between 1997 and 2006. Bear remains largely dominated the Château Breccia fossil assemblage, but the characteristic peculiarity of this site was the abundance of big cats. The old karstic system, including the Château Breccia fossil site, has been completely destroyed, primarily by erosion, but later by quarrying. During the Pleistocene the cave served as hibernation dens for bears. This was most likely also the birthplace for bear cubs. These bear cubs, whether alive or dead, could be a significant source of food for big cats during the winter. The stratigraphy of the infill (Northern Section) reveals successive phases of occupation. The two main fossiliferous layers were labelled Breccia 4 (Br. 4) and Breccia 2 (Br. 2), the former being the earliest. In both cases, we noticed different, though equivalent, animal associations: a bear (Ursus deningeri), a big cat (Panthera gombaszoegensis, Panthera spelaea fossilis), a canid (Canis lupus mosbachensis), and constantly Arvicola cantianus (= A. mosbachensis). Palynological analysis indicates a milieu of moderately cold temperatures for the two breccias. It suggests an open landscape with grassy areas and a forest of pine, fir, oak and other broadleaved trees. Thus far, all attempts to obtain absolute dates for the Northern Section of the site have been unsuccessful: 14C and thermoluminescence cannot he used, U/Th and Uranium series dating has failed up to now and ESR is not possible because of the absence of herbivore molars with thick enamel. Therefore, only Ursus deningeri, Panthera gombaszoegensis, Panthera spelaea fossilis, lagomorphs and microfauna with Arvicola cantianus biochronologies allow us to suggest an early Middle Pleistocene age for Breccia 4 and a mid Middle Pleistocene age for Breccia 2. The Château Breccia stratigraphy permits biochronologic dating but also the reliable reconstruction of the evolution of two big cats. Panthera gombaszoegensis is found in the Breccia 4 sediments, the oldest from the site. P. spelaea fossilis and P. gombaszoegensis probably coexisted in Breccia 3. Breccia 2 contains only P. spelaea fossilis, which conforms exactly to what is known about its first appearance in Europe. © E. Schweizerbart'sche Verlagsbuchhandlung (Nägele u. Obermiller), 2007.