ArticlePDF Available

Abstract

In the current review the main physiological aspects of cattle are commented. The topics include estrous behavior, characteristics of follicular development and postpartum anestrous. The knowledge of these events and, specially the Bos indicus and Bos taurus particularities, implicates in different management procedures and responses to hormonal treatments usually applied for artificial insemination, superstimulation , embryo transfer and OPU-IVP.
Rev Bras Reprod Anim, Belo Horizonte, v.31, n.2, p.205-211, abr./jun. 2007. Disponível em www.cbra.org.br
1
Palestra apresentada no XVII Congresso Brasileiro de Reprodução Animal, 31 de maio a 02 de junho de 2007, Curitiba, PR.
Fisiologia reprodutiva de fêmeas taurinas e zebuínas
Reproductive physiology of Bos taurus and Bos indicus females
Pietro Sampaio Baruselli
1
, Lindsay Unno Gimenes, José Nélio de Sousa Sales
Departamento de Reprodução Animal, FMVZ-USP, CEP 05508-000, São Paulo, SP, Brasil.
1Correspondência: barusell@usp.br
Resumo
Na presente revisão são comentados os aspectos fisiológicos de fêmeas bovinas, tais como o
comportamento estral, as características do desenvolvimento folicular e o anestro pós-parto. O conhecimento
desses eventos e, principalmente, das diferenças entre zebuínos e taurinos, implica em diferentes técnicas de
manejo e respostas a tratamentos hormonais. Essas particularidades na fisiologia reprodutiva são fundamentais
para o correto emprego de biotecnologias da reprodução, tais como inseminação artificial, superovulação,
transferência de embriões e aspiração folicular guiada por ultra-som aliada à produção in vitro de embriões
(OPU-PIV).
Palavras-chave: Bos taurus, Bos indicus, Ciclo estral, Onda de crescimento folicular.
Abstract
In the current review the main physiological aspects of cattle are commented. The topics include
estrous behavior, characteristics of follicular development and postpartum anestrous. The knowledge of these
events and, specially the Bos indicus and Bos taurus particularities, implicates in different management
procedures and responses to hormonal treatments usually applied for artificial insemination, superstimulation ,
embryo transfer and OPU-IVP.
Keywords: Bos taurus, Bos indicus, Estrous cycle, Follicular waves.
Introdução
O intenso progresso observado na sincronização do crescimento folicular e da ovulação e na
manipulação do ciclo estral tem facilitado o emprego da inseminação artificial, da transferência de embriões e da
OPU-PIV, colaborando para rápida difusão de material genético superior, seja com finalidade de produção de
carne ou de leite. Isto foi possível graças às pesquisas em áreas básicas, especialmente às relacionadas à
fisiologia reprodutiva. Compreender os fenômenos fisiológicos associados ao crescimento folicular e à ovulação
é fundamental para otimizar as biotécnicas da reprodução e, conseqüentemente, a eficiência reprodutiva dos
rebanhos.
Existem particularidades reprodutivas de Bos indicus e de Bos taurus que devem ser levadas em
consideração quando do emprego de técnicas de manejo, de inseminação artificial, de transferência de embriões
e de aspiração folicular guiada por ultra-som aliada à produção in vitro de embriões.
A presente revisão aborda os aspectos fisiológicos de fêmeas bovinas, apontando as principais
diferenças entre zebuínos e taurinos.
Características do estro comportamental
Durante a fase do estro, as fêmeas bovinas apresentam manifestações comportamentais caracterizadas
por imobilidade durante a monta, comportamento homossexual, descarga de muco vaginal, mugidos freqüentes,
intensa movimentação, aumento na freqüência de micção, entre outras características. Por um longo período
estes sinais foram e ainda são empregados para a detecção convencional do estro. Contudo, as características do
estro são influenciadas por uma série de fatores, entre os principais: idade (De Silva et al., 1981), produção de
leite (Van Vliet e Van Eerdenburg, 1996), condições ambientais (White et al., 2002) e fatores sociais, como
hierarquia (Galina et al., 1994, revisado em Landaeta-Hernández et al., 2004). Adicionalmente, existem
diferenças observadas entre raças (Rae et al., 1999), e embora ainda não completamente elucidadas, entre grupos
genéticos (zebuínos e taurinos).
Fêmeas Bos indicus geralmente apresentam estro de duração mais curta (aproximadamente 10 horas), o
que dificulta sua detecção (Galina e Arthur, 1990 revisado em Bó et al., 2003). Somado a este fator, mais de
50% dos animais desse grupo genético iniciam a manifestação de cio no período noturno (entre 18:00 e 6:00 h;
Fisiologia reprodutiva de fêmeas taurinas e zebuínas.
Rev Bras Reprod Anim, Belo Horizonte, v.31, n.2, p.205-211, abr./jun. 2007. Disponível em www.cbra.org.br
206
Pinheiro et al., 1998; Membrive, 2000), sendo que cerca de 30% iniciam e encerram o estro durante a noite
(Pinheiro et al., 1998), dificultando o manejo e a eficácia da detecção de cio. Em condições brasileiras de
manejo, foi avaliado o comportamento reprodutivo de vacas de corte com auxílio de radiotelemetria (Heat-
Watch). Verificou-se que a duração do estro em Bos indicus é menor do que em Bos taurus (12,9±2,9 horas em
Nelore vs. 16,3±4,8 horas em Angus; Mizuta, 2003). Apesar disso, o intervalo entre o estro e a ovulação não
apresentou diferenças entre estas duas raças (Nelore, 27,1±3,3 h vs. Angus, 26,1±6,3 h). No entanto, estudos
recentes indicam que vacas Holandesas (Bos taurus) de alta produção também apresentam estro de curta
duração. Existem relatos de que há uma relação negativa entre a produção de leite e a duração do estro (Wiltbank
et al., 2006). Esses autores especulam que vacas de alta produção (acima de 40kg de leite por dia) apresentam
diminuição das concentrações circulantes de estradiol, decorrente do aumento do metabolismo desse esteróide
(Wiltbank et al., 2006). Esses dados são indicativos de que é necessário conhecer as características do estro
comportamental e da ovulação para implantar eficientes programas de detecção de cio, levando em consideração
as diferenças entre Bos indicus e Bos taurus.
Desenvolvimento folicular
O desenvolvimento folicular de bovinos ocorre em um padrão de ondas. Cada onda de crescimento
folicular é caracterizada por um grupo de pequenos folículos que são recrutados (emergência folicular) e iniciam
uma fase de crescimento comum por cerca de três dias (Ginther et al., 2003). Destes, apenas um continua seu
desenvolvimento (folículo dominante), enquanto os outros sofrem decréscimo de tamanho (folículos
subordinados; Lucy et al., 1992), estabelecendo-se então, o fenômeno da divergência folicular. Após a
divergência, e na presença de altos níveis de progesterona - que promove redução da freqüência na pulsatilidade
de LH - o folículo dominante torna-se anovulatório. A partir desse momento começa o processo de atresia e
perda da dominância, dando início a uma nova onda de crescimento folicular (Ginther et al., 1989; Webb et al.,
1999). Contrariamente, o folículo dominante presente no momento da regressão luteínica culmina na ovulação
(Fortune et al., 2004).
Existem diferenças na dinâmica folicular entre Bos taurus e Bos indicus. Uma particularidade observada
entre zebuínos e taurinos diz respeito ao número de ondas de crescimento folicular por ciclo estral. Estudos
realizados em animais da raça Holandesa demonstraram predominância de duas e três ondas de crescimento
folicular por ciclo estral (Savio et al., 1988; Sirois e Fortune, 1988; Ginther et al., 1989; Wolfenson et al., 2004).
Contudo, em zebuínos existem relatos que descrevem maior incidência de 3 ondas, sendo notificada a presença
de até 4 ondas de crescimento folicular por ciclo estral (Brahman – Rhodes et al., 1995; Nelore – Figueiredo et
al., 1997; Gir – Viana et al., 2000).
Além da diferença no número de ondas, existem trabalhos que descrevem que fêmeas Bos indicus
recrutam maior número de folículos por onda de crescimento folicular que fêmeas Bos taurus (33,4 ± 3,2 vs 25,4
± 2,5; Carvalho et al., 2007). Essa característica tem influencia direta na eficiência da técnica de transferência de
embriões e de OPU-PIV, indicando vantagem de fêmeas zebuínas sobre taurinas. Existem relatos de que o
número de folículos recrutados por onda de crescimento folicular apresenta diferenças entre indivíduos, e essa
característica possui alta repetibilidade durante a vida reprodutiva da fêmea (Boni et al., 1997).
Esse aumento do número de folículos presentes nos ovários pode estar relacionado ao sistema IGF.
Existem evidências de que o sistema IGF difere entre esses grupos genéticos. Estudos realizados com vacas
Brahman foram sugestivos de que esses animais apresentam maiores concentrações plasmáticas de IGF-I
(Simpson et al., 1994, Alvarez et al., 2000) e menores concentrações de FSH quando compadas com vacas
Angus (Alvarez et al., 2000). Alguns autores levantaram a hipótese de que o maior número de folículos
presentes no ovário de Bos indicus pode ser devido à elevada concentração de IGF-I, mesmo na presença de
baixos níveis de FSH (Bó et al., 2003). Essa diferença nas concentrações de FSH e de IGF-I pode explicar a
maior sensibilidade ao tratamento superovulatório em doadoras Bos indicus (Barros e Nogueira, 2001). Existem
relatos que confirmam que é possível reduzir consideravelmente a dose de FSH para superovular fêmeas Nelore
(Baruselli et al., 2003), empregando doses inferiores às usualmente utilizadas para Bos taurus.
A divergência (ou desvio) folicular é definida pela diferença nas taxas de crescimento entre os dois
maiores folículos, sendo marcada pela continuidade no desenvolvimento do maior folículo e declínio ou parada
no crescimento dos outros (Ginther et al., 1996; 2001). Em bovinos da raça Holandesa (Bos taurus), o desvio
tem início por volta do dia 2,8 após a emergência, quando o folículo dominante atinge em média 8,5 mm e o
folículo subordinado 7,2 mm (Ginther et al., 1996). Já, em novilhas da raça Nelore (Bos indicus), descreve-se
período de 2,5 a 2,7 dias após a ovulação (Gimenes et al., 2005b; Sartorelli et al., 2005; Castilho et al., 2006).
Embora não se tenha testado simultaneamente, os diâmetros do folículo dominante e subordinado parecem ser
menores em Bos indicus do que em Bos taurus. Para Bos indicus, não há grande variação descrita quanto ao
diâmetro do folículo subordinado (5,3 a 5,9 mm; Gimenes et al., 2005b; Sartorelli et al., 2005; Castilho et al.,
2006) e do folículo dominante (5,4 a 6,2 mm, Gimenes et al., 2005b; Sartorelli et al., 2005; Castilho et al.,
Fisiologia reprodutiva de fêmeas taurinas e zebuínas.
Rev Bras Reprod Anim, Belo Horizonte, v.31, n.2, p.205-211, abr./jun. 2007. Disponível em www.cbra.org.br
2
07
2006). Resumidamente, os dados de literatura são indicativos de que a divergência folicular em Bos indicus
ocorre com diâmetros inferiores aos reportados para Bos taurus.
Contudo, apesar de relatos sobre a aquisição de receptores de LH pelo folículo dominante no momento
da divergência, existem estudos demonstrando que este folículo ainda não é responsivo a um indutor de
ovulação. Sartori et al. (2001) verificaram que a capacidade ovulatória em vacas Holandesas ocorre somente
após os folículos alcançarem 10 mm de diâmetro. Recentemente foi realizado um experimento a fim de verificar
o diâmetro no qual os folículos de novilhas Bos indicus (Nelore, Gir e cruzadas Nelore x Gir) adquirem
capacidade ovulatória (Gimenes et al., 2005a). As fêmeas foram tratadas com 25 mg de LH quando o folículo
dominante atingiu os seguintes diâmetros: 7,0 a 8,4 mm; 8,5 a 10,0 mm e >10,0 mm. Constatou-se que 33% das
fêmeas Bos indicus ovularam com diâmetros entre 7,0 e 8,4 mm, e que essa responsividade ao LH aumentou
quando os folículos alcançaram diâmetros entre 8,5 e 10,0 mm (80%) e superiores a 10,0 mm (90%). Esses
dados são sugestivos de que a capacidade ovulatória em Bos indicus é adquirida com diâmetros inferiores aos
observados em Bos taurus.
Estudos recentes sobre sincronização da ovulação em doadoras Bos indicus (Nelore) e Bos taurus
(Holandês) parecem corroborar com a afirmação acima (Martins et al., 2005; Rodrigues et al., 2005; Baruselli et
al., 2006). Nos trabalhos de Martins et al. (2005) e Rodrigues et al. (2005), as doadoras foram tratadas com
dispositivo intravaginal de progesterona e divididas para receber 25mg de LH, 12 ou 24 horas após a última
aplicação de FSH. Foram realizadas duas inseminações artificiais.12 e 24 horas após o tratamento com LH. Em
doadoras da raça Holandesa, a administração do indutor de ovulação 24 horas após o último FSH resultou em
aumento na resposta ovulatória e maior número de embriões transferíveis do que doadoras tratadas com LH 12
horas após o último FSH (Martins et al., 2005; Rodrigues et al., 2005; Baruselli et al., 2006). Inversamente, em
Nelore o atraso de 12 para 24 horas no indutor de ovulação ocasionou redução do número de estruturas
transferíveis e congeláveis e aumento do número de embriões degenerados. Com base nesses resultados é
possível verificar que em Bos indicus a indução de ovulação em protocolos de superestimulação pôde ser obtida
precocemente, ao passo que em Bos taurus foi necessário atrasar o tratamento para melhorar a resposta
ovulatória. Os resultados são indicativos de que o atraso de 12 horas empregado em Bos taurus, permitiu tempo
adicional para que os folículos atingissem diâmetros condizentes com a capacidade ovulatória.
Outra diferença fisiológica entre Bos taurus e Bos indicus está relacionada ao diâmetro máximo
alcançado pelo folículo dominante em cada onda de crescimento folicular. Em Bos taurus com duas ondas são
descritos diâmetros de 17,1 e 16,5 mm para a primeira e segunda onda (Ginther et al., 1989). Já, em Bos indicus,
os diâmetros relatados foram de 11,3 e 12,1 mm, respectivamente (Figueiredo et al., 1997). Para animais com
três ondas de crescimento folicular os diâmetros máximos foram de 16,0; 12,9 e 13,9 mm para Bos taurus
(Ginther et al., 1989) e de 10,4; 9,4 e 11,6 mm para Bos indicus (Figueiredo et al., 1997). A partir desses relatos
pode-se verificar que o diâmetro do folículo dominante e do folículo ovulatório em zebuínos é menor do que em
taurinos.
Também, o diâmetro do corpo lúteo parece ser menor em Bos indicus que em Bos taurus. Corpos lúteos
de zebuínos variam de 17 a 21 mm de diâmetro (Rhodes et al., 1995; Figueiredo et al., 1997), ao passo que em
taurinos são relatados diâmetros entre 20 e 30 mm (Ginther et al., 1989; Kastelic et al., 1990). Da mesma
maneira, há relatos de que a concentração de progesterona produzida pelo CL também é inferior em zebuínos em
relação aos taurinos (Segerson et al., 1984). Segundo Randel (1976) fêmeas zebuínas puras e cruzadas
apresentam menor concentração de progesterona por grama de tecido luteínico do que fêmeas taurinas.
Carvalho et al. (2007) realizaram estudo com sincronização de ovulação em novilhas Bos indicus
(Nelore e Gir), Bos taurus (Angus e Holandês) e cruzadas Bos indicus x Bos taurus (Nelore x Angus e Gir x
Holandês), mantidas contemporaneamente durante o período experimental. O protocolo consistiu no emprego de
dispositivo intravaginal de progesterona e benzoato de estradiol no início do tratamento. Durante a permanência
do dispositivo intravaginal, as concentrações de progesterona sérica foram estatisticamente superiores e
permaneceram mais elevadas em novilhas Bos indicus. Os autores discutem que esse achado pode ser decorrente
da diferença de metabolismo entre esses grupos genéticos, atribuindo menor velocidade metabólica em zebuínos.
Esse resultado deve ser levado em consideração quando do emprego de tratamentos com progesterona em Bos
indicus. Elevadas concentrações de progesterona diminuem a pulsatilidade de LH e podem comprometer o
crescimento folicular e a ovulação.
Fisiologia do pós-parto
A duração da gestação em Bos indicus (292 dias em média) é mais longa que a de Bos taurus (282 dias
em média; Paschal et al, 1991). Portanto, para obtenção de intervalo entre partos de 12 meses, o período de
serviço (intervalo parto/concepção) em Bos indicus deve ser 10 dias inferior ao de Bos taurus, para que a
eficiência reprodutiva seja semelhante.
Após o parto, a fêmea bovina tem que criar um bezerro saudável e em seguida restabelecer uma nova
gestação. O padrão de desenvolvimento folicular ovariano que prevalece durante a gestação deverá agora ser
Fisiologia reprodutiva de fêmeas taurinas e zebuínas.
Rev Bras Reprod Anim, Belo Horizonte, v.31, n.2, p.205-211, abr./jun. 2007. Disponível em www.cbra.org.br
208
substituído por uma seqüência de eventos que culminará no comportamento de cio, seguido de ovulação e
formação de um corpo lúteo normal. Esses requisitos são necessários para o restabelecimento da fertilidade no
período pós-parto nos diversos tipos de criação (Rhodes et al., 2003). No entanto, o que se observa em muitos
casos é um longo período de anestro pós-parto, tanto em Bos indicus quanto em Bos taurus, apesar de haver
crescimento folicular durante essa fase (Wiltbank et al., 2002). Existem pesquisas que indicam que logo após o
parto, verifica-se baixa quantidade de LH armazenado na hipófise, sendo essa característica fisiológica limitante
para o restabelecimento da atividade ovariana no período pós-parto (Yavas e Walton, 2000). Nesse período não
foram relatadas alterações na liberação de FSH.
No final da gestação ocorre diminuição da concentração de gonadotrofinas devido à intensa
retroalimentação negativa da progesterona e do estrógeno. Logo após o parto, verifica-se elevação das
concentrações de FSH e, conseqüentemente, emergência da primeira onda de crescimento folicular (2-7 dias
após o parto; Wiltbank et al., 2002). No entanto, para que ocorra a ovulação do folículo dominante, a freqüência
dos pulsos de LH deve ser de aproximadamente 1 pulso por hora (revisado em Bó et al., 2003). A ausência ou a
inadequada pulsatilidade de LH faz com que essas estruturas não se desenvolvam além do diâmetro da
divergência folicular. Wiltbank et al. (2002) especulam que zebuínos podem apresentar deficiência de FSH no
período pós-parto. Os autores se basearam no estudo de Ruiz-Cortez e Olivera-Angel (1999), no qual se
verificou que folículos de vacas zebuínas não alcançavam diâmetros superiores a 6mm durante o anestro pós-
parto. Contudo, em estudos recentes sobre divergência folicular em Nelore (Gimenes et al 2005b; Sartorelli et
al., 2005; Castilho et al., 2006), constatou-se que o folículo de Bos indicus atinge a dominância em torno de
6mm de diâmetro, menor do que o relatado para Bos taurus (8,5mm). Portanto, condições anovulatórias
freqüentemente verificadas em zebuínos não parecem estar associadas à deficiência de FSH, que promove o
crescimento até a divergência. Esses dados são sugestivos de que o anestro pós-parto em zebuínos está ligado ao
comprometimento da liberação de LH, responsável pela continuidade do crescimento e indução da ovulação do
folículo dominante. Sendo assim, especula-se que em meas zebuínas em anestro severo, com
comprometimento na liberação de LH, os folículos não atingem diâmetros superiores a 6mm. Já, em meas
taurinas nas mesmas condições de anestro os folículos crescem até 8,5mm de diâmetro.
Quanto ao padrão de liberação do LH no período pós-parto, existem indícios de que zebuínos e taurinos
apresentem diferenças nas concentrações plasmáticas dessa gonadotrofina. Em um experimento, D’Occhio et al.
(1990) observaram que, aos 30 dias pós parto, vacas Bos taurus (Hereford x Shorthorn) apresentavam maior
concentração plasmática de LH (0,7±0,1 ng/ml) do que vacas Bos indicus (0,6±0,1 ng/ml; Brahman). Essa
diferença parece aumentar à medida que se distancia do parto. Nesse mesmo estudo, constatou-se que vacas B.
taurus tiveram maior secreção pulsátil de LH e taxa de prenhez entre 50 e 120 dias após o parto que vacas B.
indicus. Estudos realizados com finalidade de sincronizar a ovulação para IATF no período pós-parto em Bos
indicus são indicativos de que o tratamento com eCG (que age estimulando os receptores de FSH e LH)
apresenta significativo aumento na taxa de concepção, quando comparado aos animais não tratados (Baruselli et
al., 2004). Especula-se que esse incremento se deve ao estimulo gonadotrófico da eCG, que aumenta a taxa de
crescimento e de ovulação do folículo dominante de vacas Bos indicus em anestro. Vacas Bos indicus no período
pós-parto apresentam comprometimento na pulsatilidade de LH e no crescimento do folículo dominante. Outro
aspecto positivo do tratamento com eCG é o efeito luteotrófico desse fármaco. Existem trabalhos que apontam
aumento significativo das concentrações circulantes de progesterona produzidas pelo CL formado após o
tratamento com eCG (Baruselli et al., 2004). Vários trabalhos associam o aumento da concentração plasmática
de progesterona com o desenvolvimento embrionário e o estabelecimento da gestação (Binelli et al., 2001).
Após o restabelecimento dos estoques hipofisários de LH (15 a 30 dias de pós-parto; Yavas e Walton,
2000), os principais fatores que comprometem a ovulação é a condição nutricional e a amamentação (Montiel e
Ahuja, 2005).
Quanto à nutrição, sabe-se que animais criados em regiões tropicais apresentam comprometimento na
atividade ovariana pós-parto devido ao inadequado conteúdo energético fornecido pelas pastagens. Dessa
maneira, a energia ingerida pelo animal é priorizada para funções vitais de manutenção e de produção de leite,
em detrimento das funções reprodutivas (revisado em Montiel e Ahuja, 2005). Os efeitos resultantes do
comprometimento nutricional são a supressão na liberação de GnRH e, conseqüentemente, diminuição na
freqüência dos pulsos de LH (Schillo, 1992), reduzindo o diâmetro máximo do folículo dominante e a duração da
onda de crescimento folicular (Rhodes et al., 1995; Wiltbank et al., 2002). De acordo com esses achados, a
avaliação de escore de condição corporal (ECC) e da nutrição do rebanho tornam-se importantes ferramentas do
manejo reprodutivo (Montiel e Ahuja, 2005).
Outro fator que pode inibir a ovulação no pós-parto é a amamentação, por reduzir a liberação de GnRH
e a secreção de LH (Williams, 1990). Essas alterações fisiológicas podem afetar a maturação final e ovulação do
folículo dominante. Além do ato de amamentar, o olfato, a visão, o estímulo til e a audição podem também
induzir essas alterações fisiológicas (Williams et al., 1996) Para atenuar o efeito da presença do bezerro, realiza-
se desmame total, parcial (permitir ao bezerro acesso à mãe uma ou duas vezes ao dia) ou temporário (remoção
do bezerro durante 48 a 96h; revisado em Yavas e Walton, 2000; Montiel e Ahuja, 2005). Essas técnicas de
Fisiologia reprodutiva de fêmeas taurinas e zebuínas.
Rev Bras Reprod Anim, Belo Horizonte, v.31, n.2, p.205-211, abr./jun. 2007. Disponível em www.cbra.org.br
209
manejo podem ser empregadas para aumentar a pulsatilidade de LH e promover o crescimento folicular e a
ovulação de rebanhos em anestro, isoladamente ou em conjunto com tratamentos hormonais.
Assim, os dados acima apresentados demonstram a importância do conhecimento das particularidades
da fisiologia reprodutiva de Bos indicus e de Bos taurus para implementar biotécnicas que buscam a
multiplicação de indivíduos geneticamente superiores e a melhoria da eficiência reprodutiva.
Tabela 1. Principais diferenças na fisiologia reprodutiva de fêmeas Bos taurus e Bos indicus.
Bos indicus Referências Bos taurus Referências
Duração do estro (horas) 12,9±2,9 Mizuta (2003) 16,3±4,8 Mizuta (2003)
Intervalo início do estro-
ovulação (horas)
27,1±3,3 Mizuta (2003) 26,1±6,3 Mizuta (2003)
Número de ondas de
crescimento folicular
2 a 4
Rhodes et al. (1995)
Figueiredo et al. (1997)
Sirois e Fortune (1988)
2 a 3
Savio et al. (1998)
Sirois e Fortune (1988)
Wolfenson et al. (2004)
Dia da divergência
folicular
2,5 a 2,7 d
pós-
ovulação
Sartorelli et al. (2005)
Castilho et al. (2006)
Gimenes et al (2005b)
2,8 d após
a
emergência
Ginther et al. (1996)
Diâmetro do folículo
dominante na
divergência (mm)
5,4/ 5,9/ 6,2
Sartorelli et al. (2005)
Castilho et al. (2006)
Gimenes et al. (2005b)
8,5
Ginther et al. (1996)
Diâmetro do maior
folículo subordinado na
divergência (mm)
5,3/ 5,9
Sartorelli et al. (2005)
Castilho et al. (2006)
Gimenes et al. (2005b)
7,2
Ginther et al. (1996)
Diâmetro que adquire a
capacidade ovulatória
(mm)
7,0 a 8,5
Gimenes et al. (2005a) 10,0 Sartori et al. (2001)
Diâmetro do folículo
ovulatório (mm)
11,6 a 12,1
Figueiredo et al. (1997) 13,9 a 16,5 Ginther et al. (1989)
Diâmetro do corpo lúteo
(mm)
17 a 21
Rhodes et al. (1995)
Figueiredo et al. (1997)
20 a 30 Ginther et al. (1989)
Kastelic et al. (1990)
Agradecimentos
Às Instituições que colaboram em parceria com nosso grupo de pesquisa. Aos órgãos de fomento
FAPESP, CNPq e CAPES pelo auxílio financeiro. Às empresas pela doação dos fármacos para o
desenvolvimento de nossos experimentos.
Referências
Alvarez P, Spicer LJ, Chase Jr CC, Payton ME, Hamilton TD, Stewart RE, Hammond AC,
OlsonTA,Wetteman RP. Ovarian and endocrine characteristics during the estrous cycle in Angus, Brahman and
Senepol cows in a subtropical environment. J Anim Sci, v.78, p.1291-1302, 2000.
Baruselli PS, Marques MO, Reis EL, Nasser LFT, Silva RCP, Menegatti JA, Valentin R, Santos ICC.
Adequação da dose de FSH (Folltropin-v) em protocolos de superovulação de vacas nelore (Bos taurus indicus)
com inseminação artificial em tempo fixo (SOTF). Acta Sci Vet, v.31, p.244-245, 2003.
Baruselli PS, Reis,EL, Marques MO, Nasser LF, Bo GA. The use of hormonal treatments to improve
reproductive performance of anestrous beef cattle in tropical climates. Anim Reprod Sci, v.82-83, p.479-486,
2004
Baruselli PS, Sá Filho MF, Martins CM, Nasser LFT, Nogueira MFG, Barros CM, Bo GA. Superovulation
and embryo transfer in Bos indicus cattle Theriogenology, v.65, p.77-88, 2006.
Barros CM, Nogueira MFG. Embryo transfer in Bos indicus cattle. Theriogenology, v.56, p.1483-1496, 2001.
Binelli M, Thatcher WW, Mattos R, Baruselli PS. Antiluteolytic strategies to improve fertility in cattle.
Theriogenology, v.56, p.1451-1463, 2001.
GA, Baruselli PS, Martinez MF. Pattern and manipulation of follicular development in Bos indicus cattle.
Anim Reprod Sci, v.78, p.307-326, 2003.
Boni R, Roelofsen MWM, Pieterse MC, Kogut J, Kruip ThAM. Follicular dynamics, repeatability and
predictability of follicular recruitment in cows undergoing repeated follicular puncture. Theriogenology, v.48,
p.277-289, 1997.
Fisiologia reprodutiva de fêmeas taurinas e zebuínas.
Rev Bras Reprod Anim, Belo Horizonte, v.31, n.2, p.205-211, abr./jun. 2007. Disponível em www.cbra.org.br
210
Carvalho JBP, Carvalho NAT, Reis EL, Nichi M, Souza AH, Baruselli PS. Effect of early luteolysis in
progesterone-based timed AI protocols in Bos indicus, Bos indicus x Bos taurus, and Bos taurus heifers.
Theriogenology, 2007. (submetido para publicação).
Castilho C, Garcia JM, Renesto A, Nogueira GP, Brito LFC. Follicular dynamics and plasma FSH and
progesterone concentrations during follicular deviation in the first post-ovulatory wave in Nelore (Bos indicus)
heifers. Anim Reprod Sci, v.98, p.189-96, 2006.
De Silva AWMV, Anderson GW, Gwazdauskas FC, McGilliard ML, Lineweaver JA. Correlationships with
estrous behavior and conception in dairy cattle. J Dairy Sci, v.64, p.2409-2418, 1981.
D’Occhio MJ, Neish A, Broadhurst L. Differences in gonadotrophin secretion postpartum between Zebu and
European breed cattle. Anim Reprod Sci, v.22, p.311-317, 1990.
Figueiredo RA, Barros CM, Pinheiro OL, Sole JMP. Ovarian follicular dynamics in Nelore breed (Bos
indicus) cattle. Theriogenology, v.47, p.1489-1505, 1997.
Fortune JE, Rivera GM, Yang MY. Follicular development: the role of the follicular microenvironment in
selectionof the dominant follicle. Anim Reprod Sci, v.82-83, p.109-126, 2004.
Gimenes LU, Carvalho NAT, Sá Filho MF, Santiago LL, Carvalho JBP, Mapletoft RJ, Barros CM,
Baruselli PS. Capacidade ovulatória em novilhas Bos indicus. Acta Sci Vet, v.33, supl.1, p.209,, 2005a
[Resumo].
Gimenes LU, Filho MF, Madureira EH, Trinca LA, Barros CM, Baruselli PS. Estudo ultra-sonográfico
da divergência folicular em novilhas Nelore (Bos indicus). Acta Sci Vet, v.33, supl.1, p.210, 2005b [Resumo].
Ginther OJ, Beg MA, Donadeu FX, Bergfelt DR. Mechanism of follicle deviation in monovular farm species.
Anim Reprod Sci, v.78, p.239-257, 2003.
Ginther OJ, Bergfelt DR, Beg MA, Kot K. Follicle selection in cattle: role of luteinizing hormone. Biol
Reprod, v.64, p.197-205, 2001.
Ginther OJ, Knopf L, Kastelic JP. Temporal associations among ovarian events in cattle during oestrous
cycles with two or three follicular waves. J Reprod Fertil, v.87, p.223-230, 1989.
Ginther OJ, Wiltbank MC, Fricke PM, Gibbons JR, Kot K. Selection of the dominant follicle in cattle. Biol
Reprod, v.55, p.1187-1194, 1996.
Kastelic JP, Bergfelt DR, Ginther OJ. Relationship between ultrasonic assessment of the corpus luteum and
plasma progesterone concentration in heifers. Theriogenology, v.33, p.1269-1278, 1990.
Landaeta-Hernández AJ, Palomares-Naveda R, Soto-Castillo G, Atencio A, Chase Jr CC, Chenoweth PJ.
Social and breed effects on the expression of a PGF2α induced oestrus in beef cows. Reprod Dom Anim, v.39,
p.315-320, 2004.
Lucy MC, Savio JD, Badinga L, De La Sota RL, Thatcher WW. Factors that affect ovarian follicular
dynamics in cattle. J AnimSci, v.70, p.3615-3626, 1992.
Martins CM, Castricini ESC, Reis EL, Torres-Júnior JRS, Gimenes LU, Sá Filho MF, Baruselli PS.
Produção embrionária de vacas Holandesas a diferentes protocolos de superovulação com inseminação artificial
em tempo fixo. Acta Sci Vet, v.33, p.227, 2005 [Resumo].
Membrive CMB. Estudo da sincronização das ondas foliculares e das características de estros, por
radiotelemetrıa, em novilhas cruzadas (Bos indicus x Bos taurus) tratadas com acetato de melengestrol e
prostaglandina associados a hCG, GnRH ou 17b estradiol + progesterona. São Paulo, 2000. 156f. Dissertação
(Mestrado) – Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, 2000.
Mizuta K. Estudo comparativo dos aspectos comportamentais do estro e dos teores plasmáticos de LH, FSH,
progesterona e estradiol que precedem a ovulação em fêmeas bovinas Nelore (Bos taurus indicus), Angus (Bos
taurus taurus) e Nelore x Angus (Bos taurus indicus x Bos taurus taurus). São Paulo, 2003. 98f. Tese
(Doutorado) – Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, 2003.
Montiel F, Ahuja C. Body condition and suckling as factors influencing the duration of postpartum anestrus in
cattle: a review. Anim Reprod Sci, v.85, p.1-26, 2005.
Murphy MG, Boland MP, Roche JF. Pattern of follicular growth and resumption of ovarian activity in post-
partum beef suckled cows. J Reprod Fertil, v.90, p.523-533, 1990.
Paschal JC, Sanders JO, Kerr JL. Calving and weaning characteristics of Angus-, Gray Brahman-, Gir-, Indu-
Brazil-, Nellore-, and Red Brahman-sired F1 calves. J. Anim. Sci, v.69, p.2395-2402, 1991.
Pinheiro OL, Barros CM, Figueredo RA, Valle ER, Encarnação RO, Padovani CR. Estrous behaviour and
the estrus-to-ovulation interval in Nelore cattle (Bos indicus) with natural estrus or estrus induced with
prostaglandin F2α or norgestomet and estradiol valerate. Theriogenology, v.49, p.667-681, 1998.
Rae DO, Chenoweth PJ, Giangreco MA, Dixon PW, Bennet FL. Assessment of estrus detection by visual
observation and electronic detection methods and characterization of factors associated with estrus and
pregnancy in beef heifers. Theriogenology, v.51, p.1121-1132, 1999.
Randel RD. LH and ovulation in Brahman, Brahman x Hereford and Hereford heifers. J Anim Sci., v.43, p.300,
1976 [Resumo].
Fisiologia reprodutiva de fêmeas taurinas e zebuínas.
Rev Bras Reprod Anim, Belo Horizonte, v.31, n.2, p.205-211, abr./jun. 2007. Disponível em www.cbra.org.br
211
Rhodes FM, De’ath G, Entwistle KW. Animal and temporal effects on ovarian follicular dynamics in Brahman
heifers. Anim Reprod Sci, v.38, p.265-277, 1995.
Rhodes FM, McDougall S, Burke CR, Verkerk GA, Macmillan KL. Invited review: Treatment of cows with
an extended postpartum anestrous interval. J Dairy Sci, v.86, p.1876-1894, 2003.
Rodrigues CA, Mancilha RF, Reis EL, Ayres H, Gimenes LU, Sá Filho MF, Baruselli PS. Efeito do número
de implantes de norgestomet e do momento da administração do indutor de ovulação em vacas holandesas
superovuladas. Acta Sci Vet, v.33, p.229, 2005 [Resumo].
Ruiz-Cortes ZT, Olivera-Angel M. Ovarian follicular dynamics in suckled zebu (Bos indicus) cows monitored
by real time ultrasonography. Anim Reprod Sci, v.54, p.211-220, 1999.
Sartorelli ES, Carvalho LM, Bergfelt DR, Ginther OJ, Barros CM. Morphological characterization of
follicle deviation in Nelore (Bos indicus) heifers and cows. Theriogenology, v.63, p.2382-2394, 2005.
Sartori R, Fricke PM, Ferreira JCP, Ginther OJ, Wiltbank MC. Follicular deviation and acquisition of
ovulatory capacity in bovine follicles. Biol Reprod, v.65, p.1403-1409, 2001.
Savio JD, Keenan L, Boland MP, Roche JF. Pattern of growth of dominant follicles during the oestrous cycle
of heifers. J Reprod Fertil, v.83, p.663-671, 1988.
Segerson EC, Hansen TR, Libby DW, Randel RD, Getz WR. Ovarian and uterine morphology and function
in Angus and Brahman cows. J Anim Sci, v.59, p.1026-1046, 1984.
Schillo KK. Effects of dietary energy on control of luteinizing hormone secretion in cattle and sheep. J Anim
Sci, v.70, p.1271-1282, 1992.
Simpson RB, Chase Jr CC, Spicer LJ, Vernon RK, Hamond AC, Rae DO, Effect of exogenous insulin on
plasma and follicular insulin-like growth factor I, insulin-like growth factor binding protein activity, follicular
estradiol and progesterone, and follicular growth in superovulated Angus and Brahman cows. J Reprod Fertil,
v.102, p.483-492, 1994.
Sirois J, Fortune JE. Ovarian follicular dynamics during the estrous cycle in heifers monitored by real-time
ultrasonography. Biol Reprod, v.39, p.308-317, 1988.
Van Vliet JH, Van Eerdenburg FJCM. Sexual activities and oestrus detection in lactating Holstein cows. Appl
Anim Behav Sci, v.50, p.57-69, 1996.
Viana JHM, Ferreira AM, Sá WF, Camargo LSA. Follicular dynamics in zebu cattle. Pesq Agrop Bras, v.35,
p.2501-2509, 2000.
Webb R, Gosden RG, Telfer EE, Moor RM. Factors affecting folliculogenesis in ruminants. Anim Sci, v.68,
p.257-284, 1999.
White FJ, Wettemann RP, Looper ML, Prado TM, Morgan GL. Seasonal effects on estrous behavior and
time of ovulation in non-lactating beef cows. J Anim Sci, v.80, p.3053-3059, 2002.
Williams GL. Suckling as a regulator of postpartum rebreeding in cattle: a review. J Anim Sci, v.68, p.8331-852,
1990.
Williams GL, Gazal OS, Guzmán Vega GA, Stanko RL. Mechanisms regulating suckling-mediated
anovulation in the cow. Anim Reprod Sci, v.42, p.289-297, 1996.
Wiltbank MC, Gümen A, Sartori R. Physiological classification of anovulatory conditions in cattle.
Theriogenology, v.57, p.21-52, 2002.
Wiltbank MC, Lopez H, Sartori R, Sangsritavong S, men A. Changes in reproductive physiology of
lactating dairy cows due to elevated steroid metabolism. Theriogenology, v.65, p.17-29, 2006.
Wolfenson D, Inbara G, Rotha Z, Kaimb M, Blocha A, Braw-Tal R. Follicular dynamics and concentrations
of steroids and gonadotropins in lactating cows and nulliparous heifers. Theriogenology, v.62, p.1042-1055,
2004.
Yavas Y, Walton JS. Postpartum acyclicity in suckled beef cows: a review. Theriogenology, v.54, p.25-55,
2000.
... On ovary, the mean number of ≥6mm follicles was 3 times lower than that of <6 mm follicles. The reason behind this is that, the Bos indicus cows have been reported to have smaller ovaries (Mutiga et al., 1993) and higher number of follicles having <5 mm diameter (Fair et al., 1995;Baruselli et al., 2007;Caixeta et al., 2009) than Bos taurus cows. The antral follicle population is positively correlated with the plasma concentrations of anti mullerian hormone (AMH). ...
... The circulating concentration of AMH is greater in Bos indicus as compared to Bos taurus cows (Batista et al., 2014). Therefore, the population of follicles on ovaries is greater in Bos indicus (Fair et al., 1995;Baruselli et al., 2007) as compared to Bos taurus cows. ...
Article
Full-text available
The objective of the present study was to determine the effect of follicle size on recovery rate, quality, and in-vitro developmental competence of oocytes in Bos indicus cows. The ovaries (n = 507) of Bos indicus cows having age of 5-8 years, with mixed parity, BCS 2.75 ± 0.25, and clinically normal reproductive tracts were collected from the local abattoir. The follicles on the ovaries were divided into two groups based upon their size; 1) ≥6 mm diameter, and 2) <6 mm diameter. After initial evaluation of quality of the oocytes, the COCs were in vitro matured, fertilized, and cultured to determine the in vitro developmental competence. The oocyte recovery, quality, maturation, cleavage, 4-cell, 8-cell, and 16-cell stages were analyzed using PROC GLIMMIX procedure of SAS. However, the number of oocytes recovered per ovary was analyzed using MIXED procedure of SAS. Results revealed that the recovery of oocytes (LSM ± SEM) derived from the follicles having size <6 mm per ovary was greater (1.02 vs. 3.14 ± 0.13; P < 0. 0001). However, the percentage (n/n) recovery [69.8 (474/679) vs. 62.7% (1454/2320); P = 0.01] and grade I_+_II oocytes [68.4 (324/474) vs. 57.9% (842/1454); P < 0.0001] was greater in ≥6 mm as compared with <6 mm group, respectively. However, maturation rate did not differ [92.9 (288/310) vs. 92.2% (296/321); P = 0.98] between the groups. In contrast, cleavage rate [58.1 (180/310) vs. 47.4% (152/321); P = 0.01], the 4-cell [34.5 (107/310) vs. 18.7% (60/321); P = 0.0003], 8-cell [15.5 (48/310) vs. 7.8% (25/321); P = 0.008], and 16-cell [8.7 (27/310) vs. 2.1% (7/321); P = 0.004] stage embryos were greater in ≥6 mm group. It can be concluded that oocytes derived from follicle ≥6 mm have better in vitro developmental competence based on embryonic conversion in Bos indicus cows. Keywords: Size of follicle, in-vitro developmental competence, Bos indicus cows.
... Morales y Cavestany (2012) señalaron que todas las hembras, principalmente las que están en la fase de posparto, pueden pasar por un balance energético negativo; y que cuando la CC es menor que 2,5 no debe manifestarse ningún signo de estro; no obstante, en el presente estudio por el tiempo que transcurrió desde que fueron separadas como hembras problema, se presume que ese no sea el diagnóstico y que se deba mayormente a la nutrición, tanto en calidad como en cantidad. Sin embargo, Baruselli et al. (2007) plantearon que las vacas altas productoras de leche de tipo Bos taurus no acumulan grasa en los tejidos como las Bos indicus, por lo que las primeras pueden manifestar el estro de manera clínica y subclínica después del parto. ...
Article
Full-text available
The objective of the study was to evaluate the effect of body condition (BC) on ovarian activity. The study was conducted in the Guayabal genetic farm, belonging to the Agricultural University of Havana -Mayabeque, Cuba-, with 57 empty cows from four dairy farms. The animals were under similar management and feeding conditions, and were divided into three groups according to the body condition scale for the cattle dedicated to milk production: I: < 2,5; II: 2,5-3,5; III: > 3,5. To determine the ovarian activity the general status was inspected and gynecological exploration was carried out. Afterwards, the cows were divided into two groups: those which showed anestrus and the ones that were cycling. A high percentage of anestrus cows with BC lower than 2,5 was found. Likewise, there was a low percentage of cows which were cycling in this group in the four studied dairy farms. Anestrus values of 48,0; 51 and 0 % were observed for groups I, II and III, respectively; while in the ones diagnosed as cows that were cycling after rectal palpation and could be incorporated to reproduction it was 16; 79 and 4 % for groups I, II and III, respectively. It is concluded that the cows with body condition lower than 2,5 had ovaries with characteristics compatible with functional anestrus; while the highest ovarian activity was shown in the cows that had BC between 2,5 and 3,5. To analyze possible solutions for the animals of this herd is recommended, due to the implications in subsequent milk production.
... Age at first calving (AFC) is usually utilized in breeding programs as an indicator trait of female sexual precocity, because this information can be easily obtained; the use of this information is directly related to shortening generation intervals and increasing genetic gains [5,6]. However, selection cannot easily affect AFC because it is a sex-limited trait, is measured after maturity, and its heritability range from low to moderate (0.09 to 0.28) [7][8][9][10][11]. ...
Article
Full-text available
Zebu cattle (Bos taurus indicus) are highly adapted to tropical regions. However, females reach puberty after taurine heifers, which affects the economic efficiency of beef cattle breeding in the tropical regions. The aims of this study were to establish associations between the haplotype alleles of the bovine genome and age at first calving (AFC) in the Nelore cattle, and to identify the genes and quantitative trait loci (QTL) related to this phenotype. A total of 2,273 Nelore cattle (995 males and 1,278 females) genotyped using the Illumina BovineHD BeadChip were used in the current study. The association analysis included females with valid first calving records as well as open heifers. Linkage disequilibrium (LD) analysis among the markers was performed using blocks of 5, 10, and 15 markers, which were determined by sliding windows shifting one marker at a time. Then, the haplotype block size to be used in the association study was chosen based on the highest r² average among the SNPs in the block. The five HapAlleles most strongly associated with the trait (top five) were considered as significant associations. The results of the analysis revealed four genomic regions related to AFC, which overlapped with 20 QTL of the reproductive traits reported previously. Furthermore, there were 19 genes related to reproduction in those regions. In conclusion, the use of haplotypes allowed the detection of chromosomal regions associated with AFC in Nelore cattle, and provided the basis for elucidating the mechanisms underlying this trait.
... However, this technique, although of great value to modern animal husbandry, became stagnant for various reasons, in particular the need for skilled labour and the difficulties in management and oestrus detection. According Baruselli et al. (2007), the average duration of oestrus behaviour in Zebu cattle (Nellore,12.9 h) was similar to that of crossbred cows (Nellore · Angus, 12.4 h) and 3.4 h less than B. taurus cows (Angus,16.3 ...
Article
Full-text available
The objective of this trial was to evaluate different post-timed artificial insemination (TAI) reproductive managements in postpartum beef cows to produce crossbred calves from artificial insemination (AI). Nellore cows (n = 607), with 45 days postpartum, were inseminated at a fixed time, using a protocol that included an intravaginal progesterone-releasing device along with oestradiol benzoate, prostaglandin, equine chorionic gonadotropin, and oestradiol cypionate, followed TAI 48 h post-device removal. Four post-TAI treatments were evaluated: in CONTROL (T1, n = 161), cows were exposed to Nellore clean-up bulls until the end of the breeding season (75 days). In OBSERVATION (T2, n = 132), heat detection was performed for 15-25 days post-TAI, followed by AI. In RESYNC22 (T3, n = 157) and RESYNC30 (T4, n = 157), resynchronisation started after 22 or 30 days, following second TAI at Day 32 or 40 days after first TAI. In T2, T3 and T4, after the second AI, cows were exposed to Nellore clean-up bulls until the end of the breeding season (75 days). The pregnancy rate (PR) for the first TAI did not differ (54.6%, 53.0%, 59.2%, and 51.6% for CONTROL, OBSERVATION, RESYNC 22, and RESYNC 30, respectively P = 0.66), and no difference was observed for the second TAI (RESYNC 22 = 45.31% and RESYNC30 = 46.05% P = 0.137), in the PR at the end of the breeding season (86.33%, 86.36%, 78.98%, and 81.52%, P = 0.43), or embryonic losses (4.54%, 2.85%, 6.45% and 7.40%, respectively P = 0.61), but the percentage of crossbred pregnancy was higher in groups with resynchronisation (RESYNC22 and RESYNC30) than CONTROL and OBSERVATION (98.38%, 90.62%, 63.30%, 78.95%, P < 0.001). In conclusion, resynchronisation programs of 22 or 30 days are more efficient to produce AI products, and the final pregnancy rate is similar among the treatments, differing only in the amount of calves produced by AI.
Article
Full-text available
In Mexico, reproductive efficiency of cows in calf production systems is low and the use of estrus and ovulation synchronization schemes can contribute to improve it. The objective of this review was to describe the endocrine regulation of the estrous cycle and follicular dynamics in cattle, highlighting how, using exogenous hormones, and these processes can be manipulated to implement different estrous and ovulation synchronization protocols. In addition, results of pregnancy rate at synchronized estrus (PRSE) with the different estrous and ovulation synchronization protocols reported in the literature are presented. Reviews and original articles on topics of estrous cycle and follicular development in cattle were collected and PRSE data were obtained from scientific articles published between 2000 and 2023. The reported PRSE ranges from 23 to 76 %, however, although the range is wide, in estradiol and GnRH based protocols about 50 % of the PRSE data collected are between 45 and 55 %. In progesterone-based protocols, 50 % of the data report PRSE between 55 and 65 %. Currently, there are three main estrous and ovulation synchronization protocols with which, according to the literature reviewed, PRSE between 45 and 65 % can be obtained in most occasions.
Article
In an attempt to develop accessible methods for the precocious individual selection based on phenotypic attributes related to reproductive superiority, this study evaluated the effects of follicular wave stages (emergence and dominance) and the repeatability coefficients of potential fertility predictors (vulvar morphometry, uterine biometry, echogenicity and echotexture, ovarian biometry, and antral follicle count – AFC) in two breeds of purebred prepubertal heifers. Nellore (n = 30) and Caracu (n = 28) heifers were submitted to a sequence of 11 evaluations conducted every 48 hours (D0 – random day of the antral follicular wave until D20) to study potential fertility indicators under natural conditions. The data obtained were compared according to breed and follicular wave stage. Statistical analysis included the fixed effects of breed, evaluation day, and their statistical interaction and was performed using MIXED, GENMOD, GLM, and CORR procedures of the SAS program. Breed was found to influence rima height, ovarian area, and AFC, which were greater in Nellore heifers (P < 0.02). The follicular wave stage also influenced most of the potential predictors, highlighting AFC which was higher in the presence of a dominant follicle in both breeds (P < 0.0001). The repeatability coefficients for vulvar width (0.76 and 0.66), ovarian area (0.70 and 0.62), and AFC (0.76 and 0.74) were considered to be high in Nellore and Caracu heifers, respectively. Only ovarian biometry was able to predict AFC (Pearson correlation coefficient ≥ 0.66; P < 0.0001) in prepubertal heifers. The results indicate that most of the phenotypic reproductive parameters analyzed can be characterized throughout prepuberty using a single measure since they are intrinsic attributes of the individual.
Article
We compared the pregnancy rates of beef heifers resynchronized 14 days after first TAI by a P4 intravaginal device associated with either long-acting injectable progesterone (iP4) or estradiol benzoate (EB). Braford and Brangus heifers were submitted to a TAI (D0). On D14, all animals received a P4 intravaginal device and were randomly divided into two groups to receive: EB (1 mg; n = 339); or iP4 (75 mg; n = 338). On D22, P4 devices were removed, and non-pregnant (NP) heifers were identified by assessing morphological luteolysis with Doppler ultrasonography. The NP heifers had the dominant follicle diameter measured and were submitted to a second TAI on D24. The dominant follicle diameter (mm) on D22 in NP heifers did not differ (P > 0.05) between EB (9.77 ± 0.25) and iP4 (9.92 ± 0.22) groups. No difference was observed between EB and iP4 groups for pregnancy rate on D22 (56.3% vs. 60.1%, respectively), and D40 post-first TAI (49.6% vs. 53.3%, respectively). The rate of potential pregnancy losses from D22 to D40 did not differ between EB (12%, 23/191) and iP4 (11.3%, 23/203) groups. The resynchronization pregnancy rate in iP4 group (31.8%, 43/135) was lesser (P < 0.05) than EB group (45.9%, 68/148). In conclusion, treatment with either 1 mg EB or 75 mg iP4 in combination with P4 device at 14 days after TAI are equally safe for the ongoing pregnancy. The EB treatment can improve the reproductive efficiency, as it results in greater resynchronization pregnancy rates than iP4 treatment in beef heifers resynchronized 14 days after TAI.
Article
An experiment was performed to evaluate the association between the antral follicle count (AFC) plus body condition score (BCS) and the pregnancy rate in Bos indicus undergoing timed artificial insemination (TAI). A total of 736 Nelore cows with BCSs ranging from 2 to 4 received a conventional protocol for TAI. On a random day of the estrous cycle (Day 0), all cows received an intravaginal P4 device and an intramuscular (i.m.) injection of 2.0 mg estradiol benzoate. On Day 8, the P4 device was removed, and 150 μg sodium D-cloprostenol, 300 IU equine chorionic gonadotrophin and 1.0 mg estradiol cypionate were administered by i.m. injection. TAI was performed 48 h after P4 device removal, and pregnancy diagnosis was performed by ultrasonography after 30 days. On Day 0, all cows were examined by ultrasonography to determine the AFC by counting the number of follicles >3 mm in diameter that were present in both ovaries and to evaluate the BCS (scale of 1-5). The cows were then classified based on their AFCs as those with low (≤10 follicles), intermediate (11-29 follicles) and high AFC (≥30 follicles). Furthermore, cows were classified as having low (≥2.0 to ≤ 2.9) and high (≥3.0 to ≤ 4.0) BCSs. The AFCs and BCSs were analyzed using the generalized linear model, and the pregnancy rate was assessed with the binary logistic regression model (P ≤ 0.05). The pregnancy rate was influenced (P < 0.05) by AFC and BCS classification and by interactions (P = 0.034) between these factors. Cows with a low AFC exhibited higher a pregnancy rate than did cows with a high or an intermediate AFC (57.7% a, 47.9% b and 49.7% b, P = 0.008). Low BCS resulted in a higher pregnancy rate than did high BCS (55.2% vs. 50.4%, P = 0.008). Cows with a high BCS and a low AFC had a higher pregnancy rate (P < 0.05) than did those with a high BCS and an intermediate or a high AFC (59.8%a, 48.0%b, and 38.0%b, respectively). An interaction (P < 0.05) was observed between the AFC and BCS, and the pregnancy rate decreased significantly in cows with an AFC > 30 and a BCS between 3 and 4. In conclusion, AFC and BCS classifications influence the pregnancy rate of Bos indicus beef cattle subjected to TAI. In addition, an important interaction between these factors was observed, namely, the lowest pregnancy rates were found in cows with high BCSs and high AFCs.
Article
Full-text available
Reproductive biotechniques such as embryo production are important tools to increase the reproductive performance in cattle in a short time. In this context, the antral follicle count (AFC), which reflects the population of antral follicles present in an ovary, has been indicated as an important phenotypic characteristic related to female fertility and closely correlated to the performance of in vivo and in vitro embryo production (IVEP). A positive correlation was evidenced between AFC and oocyte retrieval by ovum pick up (OPU) sessions and and with the number of embryos produced. Several studies have reported that females with a high AFC had greater embryo yields compared to those with medium and low AFC. However, controversial results were obtained by studies conducted in different bovine breeds. Many conflicting data may be due to the differences in the experimental design, particularly regarding the classification of animals in AFC groups, subspecies particularities, herd aptitude or even issues related to animal management. Therefore, aspects such as the choice of donor, type of aspirated follicles and the stage of follicular wave need to be clarified. Thus, this text aims to discuss the use of AFC as a reproductive tool and its applications in the in vivo and in vitro production of embryos, besides describing consistent results and new challenges regarding AFC and embryo production.
Article
Full-text available
Reproductive efficiency is one of the main tools to improve performance and profitability of livestock production. Among the main alternatives to increase the reproductive performance of beef cows would increase the number of cows in estrus at the beginning of the breeding season and increase the conception rate at first service. A variety of hormonal treatments for productive and reproductive management, but require a knowledge of them for better handling and obtaining the benefits of pharmacological regulation of the estrous cycle. The aim of this review is to provide an overview of the estrous cycle approaching from the drugs commonly used in cattle protocols.
Article
Full-text available
Studies of ovarian follicular dynamics in cattle may lead to methods for improving fertility, for synchronizing estrus with more precision, and for enhancing superovulatory responses. Within an estrous cycle, two or three large (> 10 mm) follicles develop during consecutive waves of follicular growth. The last wave provides the ovulatory follicle, whereas preceding wave(s) provide follicles that undergo atresia. The life span of large follicles seems to depend on the pulsatile secretion of LH; decreased frequency of LH pulses results in atresia of large follicles. Aromatase activity in the walls of the largest follicles is greatest during the first 8 d of the estrous cycle and decreases by d 12. Steroidogenesis of the largest and second-largest ovarian follicles differs on d 5, 8, and 12 of the estrous cycle. Follicular dynamics are altered by negative energy balance and lactation. The number of large follicles and concentration of estradiol during the preovulatory period differs between postpartum lactating and nonlactating cows. Dietary fats stimulate follicular growth when they are fed to increase energy balance. Administration of bovine somatotropin decreases energy balance and has a differential effect on ovarian follicular responses; growth of the largest follicle does not change, but growth of the second-largest follicle is stimulated by somatotropin. Studies of follicular dynamics in lactating cows demonstrate changes in ovarian function associated with energy balance that may be related to inefficient reproductive performance of cows producing high yields of milk.
Article
This review addresses the reasons for the lack of progress in the control of superovulation and highlights the importance of understanding the mechanisms underlying follicular development. The present inability to provide large numbers of viable embryos from selected females still restricts genetic improvement, whilst variability in ovarian response to hormones limit the present capacity for increasing reproductive efficiency. Females are born with a large store of eggs which rapidly declines as puberty approaches. If these oocytes are normal then there is scope for increasing the reproductive potential of selected females. Oocytes must reach a certain size before they can complete all stages of development and the final changes that occur late in follicular development. It is likely that oocytes that do not produce specific factors at precise stages of development will not be viable. Hence, it is important to characterize oocyte secreted factors since there are potential indicators of oocyte quality. The mechanisms that determine ovulation rate have still not been fully elucidated. Indeed follicular atresia, the process whereby follicles regress, is still not known. A better understanding of these processes should prove pivotal for the synchronization of follicular growth, for more precise oestrous synchronization and improved superovulatory response. Nutrition can influence a whole range of reproductive parameters however, the pathways through which nutrition acts have not been fully elucidated. Metabolic hormones, particularly insulin and IGFs, appear to interact with gonadotrophins at the level of the gonads. Certainly gonadotropins provide the primary drive for the growth of follicles in the later stages of development and both insulin and IGF-1, possibly IGF-2, synergize with gonadotrophins to stimulate cell proliferation and hormone production. More research is required to determine the effects of other growth factors and their interaction with gonadotropins. There is evidence, particularly from studies with rodents, that steroids can also modulate follicular growth and development, although information is very limited for ruminants. There may be a rôle for oestrogens in synchronizing follicular waves, to aid in oestrous synchronization regimes and for removing the dominant follicle to achieve improved superovulatory responses. However more information is required to determine whether these are feasible approaches. Heritability for litter size is higher in sheep than in cattle. Exogenous gonadotropins are a commercially ineffective means of inducing twinning in sheep and cattle. Although there are differences in circulating gonadotropin concentrations, the mechanism(s) responsible for the high ovulation appear to reside essentially within the ovaries. The locus of the Booroola gene, a major gene for ovulation rate, has been established but not specifically identified. However sheep possessing major genes do provide extremely valuable models for investigating the mechanisms controlling ovulation rate, including a direct contrast to mono-ovulatory species such as cattle. In conclusion, the relationship between oocyte quality, in both healthy follicles and those follicles destined for atresia, must be resolved before the future potential for increasing embryo yield can be predicted. In addition, a greater understanding of the factors affecting folliculogenesis in ruminants should ensure that the full benefits ensuing from the precise control of ovarian function are achieved. The improved use of artificial insemination and embryo transfer that would ensue from a greater understanding of the processes of folliculo genesis, coupled with the new technologies of genome and linkage mapping, should ensure a more rapid rate of genetic gain.
Article
Patterns of LH and FSH secretion were determined for Brahman (GB, Bos indicus), Hereford Shorthorn (HS, Bos taurus) and Brahman-Hereford Shorthorn cross (BX) primiparous and multiparous cows at different times post partum. From around day 30 post partum a higher proportion of HS compared with GB cows showed pulsatile LH secretion and at around days 40 and 50 mean LH concentrations were higher in HS than in GB cows. These differences were particularly noticeable between multiparous HS and GB cows. BX cows were intermediate with regard to numbers showing pulsatile LH and mean LH concentrations. For all genotypes plasma FSH concentrations were highest around day 18 post partum; there were no consistent genotype effects on FSH. During a mating period from days 50 to 120 post partum, a higher proportion of HS cows became pregnant compared with GB and BX cows. The differences in LH between HS and GB cows could reflect genotype differences in LH-secreting capacity of cows in a comparable reproductive state or, alternatively, the differences could have been temporally related to the onset of cyclic ovarian activity.
Article
During 6 weeks, the oestrus behaviour of all non-pregnant cows on two dairy farms was observed for periods lasting 30 min at 2 h intervals. Cows were housed in a free stall with cubicles and a concrete slatted floor. Pedometers were used to measure the physical activity of the cows throughout the oestrous cycle. Milk progesterone levels were used for confirmation of the oestrus date.Overall oestrus behaviour was less intense than described in previous studies. In only 37% of the oestruses was a standing heat observed. The behavioural oestrus symptoms were seen more frequently during the nocturnal period. Duration and intensity of the oestrus behaviour were influenced by the number of cows in oestrus.Pedometer readings were correlated with mounting other cows, resting with the chin on other cows, and total oestrus behaviour score.Two observations of 30 min per day would result in a detection efficiency of 74% and an accuracy of 100%. The time of observation during the day was found to be very important. Observations before milking gave a lower detection rate than observations after milking and feeding.
Article
The aims of the current study were to determine if the pattern of ovarian follicular growth and development in Bos indicus heifers is different to that reported in Bos taurus breeds, and to examine the factors that determine which dominant follicle will ovulate. In addition, the extent to which variation in follicular dynamics is attributable to variation between animals and over time was evaluated. The ovaries of 17 Brahman heifers were examined daily by transrectal ultrasonography using a 7.5 MHz transducer for a total of 117 interovulatory intervals over a period of 10 months. Size and position of individual follicles ⪖5 mm in diameter, and size of corpora lutea (CL) were recorded. Circulating progesterone concentrations were determined from plasma samples obtained twice weekly. Although size of dominant follicles and CL within the ovaries of Bos indicus heifers were smaller than reported for Bos taurus breeds, the overall patterns of dominant follicle growth were similar. There were significant correlations between number of dominant follicles occurring prior to ovulation and time of appearance of the second dominant follicle, duration of detection of CL and size of the ovulatory follicle in the preceding oestrous cycle (P < 0.05). There were significant animal effects on a number of ovarian characteristics including number of dominant follicles per oestrous cycle (P < 0.001), with one heifer having four dominant follicles in more than a third of oestrous cycles observed. In addition, changes in daylength over the 10 month period were related to changes in duration of the interovulatory interval, persistence and maximum diameter of CL and size of ovulatory follicles. Liveweight change over the same period was related to changes in maximum diameter of the first dominant follicle.
Article
This review summarizes our current understanding of mechanisms through which the suckling calf attenuates gonadotropin secretion and extends the postpartum anovulatory interval of cattle. Recent research has clearly demonstrated the importance of the maternal-offspring bond in mediating these effects, including roles for maternal vision, olfaction, and calf identity. However, little is known about the hormonal and neural control of maternal behavior in cattle. Goals to further define the physiological regulation of this behavior and its relationship to hypothalamic GnRH secretion have recently been facilitated by techniques for monitoring GnRH release in cerebrospinal fluid (CSF) of the third ventricle. Glucose availability, the insulin-like peptides, and uterine prostaglandin F2α have also been shown to play pivotal roles in the transition out of the anovulatory state. Continuing advances in these areas of fundamental biology should lay the groundwork for the development of novel management strategies of the future.
Article
In nulliparous Holstein heifers, ultrasonography was used to measure cross-sectional areas of corpora lutea, central luteal cavities and luteal tissue on Days 2, 5, 8, and 11 and daily on Days 14 to 21 (pregnant heifers, n = 7) or Day 14 to the day of the subsequent ovulation (nonbred and bred nonpregnant heifers, n = 7 and n = 8, respectively). A blood sample for progesterone assay was collected prior to each ultrasound examination. Combined for the three reproductive statuses, luteal tissue area and plasma progesterone concentration increased (P < 0.0001) over Days 2, 5, 8, and 11; the rate of increase was not significantly different between the two endpoints (12 and 13% of the maximum/day, respectively). There were significant main effects of day and interactions of day by reproductive status for luteal tissue area and for plasma progesterone concentration over Days 14 to 20; luteal tissue area and plasma progesterone concentration were first significantly lower on Days 19 and 17, respectively, in nonbred and nonpregnant heifers than in pregnant heifers. Combined for nonbred and nonpregnant heifers, both luteal tissue area and plasma progesterone concentration first decreased significantly between Days -6 and -4 relative to the second ovulation. Luteal tissue area decreased slower (P < 0.01) than plasma progesterone concentration (mean rates combined for nonbred and nonpregnant heifers, -20 and -28% of the maximum/day, respectively). The correlation coefficients combined for all reproductive statuses were 0.76 and 0.72 during Days 2 to 11 and following Day 14, respectively. The presence and size of central luteal cavities did not affect luteal tissue area or plasma progesterone concentration. Results indicated that ultrasonic assessment of the corpus luteum is a viable alternative to the determination of peripheral progesterone levels for assessment of luteal function in nulliparous Holstein heifers.