ArticleLiterature Review

Monocyte and macrophage Heterogeneity

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... In our study, we utilized HaCaT cells, human keratinocytes, to investigate the cytotoxicity of ZnONP, UVB, and combined exposure. As shown in Fig. 3A, UVB treatment alone (40,50, and 68 mJ/ cm 2 ) resulted in a 75-80% cell survival rate, and ZnONP treatment alone had a concentration-dependent toxic effect on HaCaT cells, with a half-lethal concentration of ~ 12.5 μg/ml. In the combined treatment, we found that there was a significant concentration-dependent toxic effect when ZnONPs were combined with 68 mJ/ cm 2 UVB exposure. ...
... These data suggest that THP-1-MØs exposed to UVB + ZnONPs exosome tended to be polarized to an M1-like phenotype and promoted inflammatory responses. Normally, signal transducers and transcriptional activators affect macrophage polarization; for example, lipopolysaccharide (LPS) initiates the NFκB transcription factor to increase M1 macrophage polarization [13,40]. In skin biopsies, we also examined the populations of M1 and M2 macrophages by surface marker staining. ...
Article
Full-text available
Background Zinc oxide nanoparticles (ZnONPs) are common materials used in skin-related cosmetics and sunscreen products due to their whitening and strong UV light absorption properties. Although the protective effects of ZnONPs against UV light in intact skin have been well demonstrated, the effects of using ZnONPs on damaged or sunburned skin are still unclear. In this study, we aimed to reveal the detailed underlying mechanisms related to keratinocytes and macrophages exposed to UVB and ZnONPs. Results We demonstrated that ZnONPs exacerbated mouse skin damage after UVB exposure, followed by increased transepidermal water loss (TEWL) levels, cell death and epithelial thickness. In addition, ZnONPs could penetrate through the damaged epithelium, gain access to the dermis cells, and lead to severe inflammation by activation of M1 macrophage. Mechanistic studies indicated that co-exposure of keratinocytes to UVB and ZnONPs lysosomal impairment and autophagy dysfunction, which increased cell exosome release. However, these exosomes could be taken up by macrophages, which accelerated M1 macrophage polarization. Furthermore, ZnONPs also induced a lasting inflammatory response in M1 macrophages and affected epithelial cell repair by regulating the autophagy-mediated NLRP3 inflammasome and macrophage exosome secretion. Conclusions Our findings propose a new concept for ZnONP-induced skin toxicity mechanisms and the safety issue of ZnONPs application on vulnerable skin. The process involved an interplay of lysosomal impairment, autophagy-mediated NLRP3 inflammasome and macrophage exosome secretion. The current finding is valuable for evaluating the effects of ZnONPs for cosmetics applications.
... They are also known to have tissue remodeling properties; for example, they are mobilized from the bone marrow in response to ischemia, accelerate reendothelialization, and promote limb salvage in murine models of hindlimb ischemia (HLI) (12)(13)(14). Monocytes also express the FcγIIIA receptor CD16 in conditions that are associated with a requirement for tissue modeling (15,16). The "classical" CD14 + CD16 − subset of monocytes is the inflammatory pool, whereas the CD16 + population, which can be further subdivided into "non-classical/patrolling" CD14 low CD16 + and "intermediate" CD14 + CD16 + cells (17), have a proangiogenic gene profile [higher expression of tyrosine kinase with immunoglobulin and epidermal growth factor homology domains 2 (TIE2), vascular endothelial growth factor receptor 2 (VEFGR2), and endoglin (ENG) (18)]. ...
Article
Despite decades of effort aimed at developing clinically effective cell therapies, including mixed population mononuclear cells, to revascularize the ischemic limb, there remains a paucity of patient-based studies that inform the function and fate of candidate cell types. In this study, we showed that circulating proangiogenic/arteriogenic monocytes (PAMs) expressing the FcγIIIA receptor CD16 were elevated in patients with chronic limb-threatening ischemia (CLTI), and these amounts decreased after revascularization. Unlike CD16-negative monocytes, PAMs showed large vessel remodeling properties in vitro when cultured with endothelial cells and smooth muscle cells and promoted salvage of the ischemic limb in vivo in a mouse model of hindlimb ischemia. PAMs showed a propensity to migrate toward and bind to ischemic muscle and to secrete angiogenic/arteriogenic factors, vascular endothelial growth factor A (VEGF-A) and heparin-binding epidermal growth factor. We instigated a first-in-human single-arm cohort study in which autologous PAMs were injected into the ischemic limbs of five patients with CLTI. Greater than 25% of injected cells were retained in the leg for at least 72 hours, of which greater than 80% were viable, with evidence of enhanced large vessel remodeling in the injected muscle area. In summary, we identified up-regulation of a circulatory PAM subpopulation as an endogenous response to limb ischemia in CLTI and tested a potentially clinically relevant therapeutic strategy.
... Macrophages are common cellular cells found in all tissues and compartments of the body under homeostatic physiological conditions (Gordon and Taylor 2005). In addition, macrophages acquire different phenotypes and exhibit various functions in the context of different diseases and in different stages of the same disease (Peet et al. 2020;Kaukonen et al. 2015;Bosmann and Ward 2013). ...
Article
Full-text available
Background Macrophages play a crucial role in the development of cardiac fibrosis (CF). Although our previous studies have shown that glycogen metabolism plays an important role in macrophage inflammatory phenotype, the role and mechanism of modifying macrophage phenotype by regulating glycogen metabolism and thereby improving CF have not been reported. Methods Here, we took glycogen synthetase kinase 3β (GSK3β) as the target and used its inhibitor NaW to enhance macrophage glycogen metabolism, transform M2 phenotype into anti-fibrotic M1 phenotype, inhibit fibroblast activation into myofibroblasts, and ultimately achieve the purpose of CF treatment. Results NaW increases the pH of macrophage lysosome through transmembrane protein 175 (TMEM175) and caused the release of Ca ²⁺ through the lysosomal Ca ²⁺ channel mucolipin-2 (Mcoln2). At the same time, the released Ca ²⁺ activates TFEB, which promotes glucose uptake by M2 and further enhances glycogen metabolism. NaW transforms the M2 phenotype into the anti-fibrotic M1 phenotype, inhibits fibroblasts from activating myofibroblasts, and ultimately achieves the purpose of treating CF. Conclusion Our data indicate the possibility of modifying macrophage phenotype by regulating macrophage glycogen metabolism, suggesting a potential macrophage-based immunotherapy against CF. Graphical Abstract
... Monocytes in circulation are drawn towards the TME and transform into macrophages, called TAMs, when exposed to cytokines, chemokines, and various stimuli, including high levels of concentration of hypoxia and lactic acid [132][133][134]. Several studies revealed that the CCL2/CCR2 and CXCL17/CXCR8 axes are involved in recruiting monocytes into the site of inflammation and tumor [135,136]. ...
Article
Full-text available
Pancreatic cancer is a major cause of cancer-related death, but despondently, the outlook and prognosis for this resistant type of tumor have remained grim for a long time. Currently, it is extremely challenging to prevent or detect it early enough for effective treatment because patients rarely exhibit symptoms and there are no reliable indicators for detection. Most patients have advanced or spreading cancer that is difficult to treat, and treatments like chemotherapy and radiotherapy can only slightly prolong their life by a few months. Immunotherapy has revolutionized the treatment of pancreatic cancer, yet its effectiveness is limited by the tumor's immunosuppressive and hard-to-reach microenvironment. First, this article explains the immunosuppressive microenvironment of pancreatic cancer and highlights a wide range of immunotherapy options, including therapies involving oncolytic viruses, modified T cells (T-cell receptor [TCR]-engineered and chimeric antigen receptor [CAR] T-cell therapy), CAR natural killer cell therapy, cytokine-induced killer cells, immune checkpoint inhibitors, immunomodulators, cancer vaccines, and strategies targeting myeloid cells in the context of contemporary knowledge and future trends. Lastly, it discusses the main challenges ahead of pancreatic cancer immunotherapy.
... Although newly recruited monocyte-derived macrophages have been shown to be associated with eosinophilic airway inflammation [36], the role of monocytes in the pathogenesis of asthma is not yet fully elucidated. Human monocytes are heterogeneous, divided into subgroups based on the expression of surface CD14 and CD16, with functional and phenotypic differences related to the intensity of these markers' expression [37][38][39]. The differential expression of chemokine receptors CCR2 and CX3CR1 is related to these human monocyte subgroups, with the classic CD14++CD16-subgroup mainly expressing CCR2, while the non-classic CD14+CD16++ subgroup has lower CCR2 and higher CX3CR1 expression [40][41][42]. ...
Preprint
Full-text available
Objective: Using two-sample Mendelian Randomization (MR) and Bayesian Weighted Mendelian Randomization (BWMR), this study explores the causal links between 731 immune cell phenotypes and asthma, providing useful biomarkers for potential therapeutic targets for asthma. Methods: The study employed two-sample MR and BWMR to evaluate the causal relationships between 731 immune cell phenotypes and asthma, using large-scale Genome-Wide Association Study (GWAS) datasets to exclude confounding factors and conduct various sensitivity analyses. Results: The study conducted an in-depth analysis of the causal relationship between 731 immune cell phenotypes and asthma across three databases (ebi, finn, and ukb). Integrating the results from IVW and BWMR across these databases, we identified CD16+ monocyte %monocyte as a protective factor against asthma, whereas CD62L- myeloid Dendritic Cell Absolute Count, CD62L- myeloid Dendritic Cell %Dendritic Cell, CD62L- CD86+ myeloid Dendritic Cell Absolute Count, and CD62L- CD86+ myeloid Dendritic Cell %Dendritic Cell were identified as risk factors. Conclusion: Our research confirms that CD16+ monocyte %monocyte serves as a protective factor against asthma, while CD62L- myeloid Dendritic Cell Absolute Count, CD62L- myeloid Dendritic Cell %Dendritic Cell, CD62L- CD86+ myeloid Dendritic Cell Absolute Count, and CD62L- CD86+ myeloid Dendritic Cell %Dendritic Cell pose risks for asthma.
... Macrophages, as phagocytic tissue-resident cells of the innate immune system, are ubiquitous in almost all tissues and undertake various functions, including phagocytosis, pathogen presentation, clearance of cellular debris, and regulation of tissue homeostasis (67)(68)(69). T. forsythia, along with its OMVs and LPS, elicits the production of diverse pro-inflammatory mediators, notably IL-1β, TNF-α, IL-6, and IL-8, in human U937 macrophages (10,34,46,50,70). ...
Article
Full-text available
Tannerella forsythia , a member of the “red complex” bacteria implicated in severe periodontitis, employs various survival strategies and virulence factors to interact with the host. It thrives as a late colonizer in the oral biofilm, relying on its unique adaptation mechanisms for persistence. Essential to its survival are the type 9 protein secretion system and O -glycosylation of proteins, crucial for host interaction and immune evasion. Virulence factors of T. forsythia , including sialidase and proteases, facilitate its pathogenicity by degrading host glycoproteins and proteins, respectively. Moreover, cell surface glycoproteins like the S-layer and BspA modulate host responses and bacterial adherence, influencing colonization and tissue invasion. Outer membrane vesicles and lipopolysaccharides further induce inflammatory responses, contributing to periodontal tissue destruction. Interactions with specific host cell types, including epithelial cells, polymorphonuclear leukocytes macrophages, and mesenchymal stromal cells, highlight the multifaceted nature of T. forsythia's pathogenicity. Notably, it can invade epithelial cells and impair PMN function, promoting dysregulated inflammation and bacterial survival. Comparative studies with periodontitis-associated Porphyromonas gingivalis reveal differences in protease activity and immune modulation, suggesting distinct roles in disease progression. T. forsythia's potential to influence oral antimicrobial defense through protease-mediated degradation and interactions with other bacteria underscores its significance in periodontal disease pathogenesis. However, understanding T. forsythia's precise role in host-microbiome interactions and its classification as a keystone pathogen requires further investigation. Challenges in translating research data stem from the complexity of the oral microbiome and biofilm dynamics, necessitating comprehensive studies to elucidate its clinical relevance and therapeutic implications in periodontitis management.
... Depending on surrounding cytokine expression, macrophages show a broad variety of functional stages. Here, we focus on the investigation of the proinflammatory M1-macrophages and the immune-regulating M2macrophages (10). While M1-macrophages show anti-tumor effects and are associated with a better prognosis in many solid tumors (11), M2-macrophages promote tumor growth and angiogenesis (12). ...
Article
Full-text available
Objective Vestibular schwannomas (VS), benign tumors stemming from the eighth cranial nerve’s Schwann cells, are associated with Merlin gene mutations, inflammation, and the tumor microenvironment (TME), influencing tumor initiation, maintenance, and potential neural dysfunction. Understanding TME composition holds promise for systemic therapeutic interventions, particularly for NF2-related schwannomatosis. Methodology A retrospective analysis of paraffin-embedded tissue from 40 patients (2013-2020), evenly divided by neurofibromatosis type 2 status, with further stratification based on magnetic resonance imaging (MRI) progression and hearing function. Immunohistochemistry assessed TME components, including T-cell markers (CD4, CD8, CD25), NK cells (CD7), and macrophages (CD14, CD68, CD163, CCR2). Fiji software facilitated image analysis. Results T-cell markers (CD4, CD8, CD7) exhibited low expression in VS, with no significant NF2-associated vs. sporadic distinctions. Macrophage-related markers (CD14, CD68, CD163, CCR2) showed significantly higher expression (CD14: p = 0.0187, CD68: p < 0.0001, CD163: p = 0.0006, CCR2: p < 0.0001). CCR2 and CD163 significantly differed between NF2-associated and sporadic VS. iNOS, an M1-macrophage marker, was downregulated. CD25, a regulatory T-cell marker, correlated significantly with tumor growth dynamics (p = 0.016). Discussion Immune cells, notably monocytes and macrophages, crucially contribute to VS pathogenesis in both NF2-associated and sporadic cases. Significant differences in CCR2 and CD163 expression suggest distinct immune responses. Regulatory T-cells may serve as growth dynamic markers. These findings highlight immune cells as potential biomarkers and therapeutic targets for managing VS.
... To confirm these observations and further characterize the IM subpopulations, we performed complementary flow cytometry using Ccr2 +/RFP Cc3cr1 +/GFP mice. These double reporter mice enable identifying CCR2-expressing cells by RFP expression, and CX3CR1 (fractalkine receptor)-expressing cells by GFP expression; CCR2 is a prototypical marker of classical monocytes, whereas CX3CR1 is a prototypical marker of non-classical monocytes (16), and the recruitment of each population is driven by ligands signaling through these receptors. Three days after intravenous Schistosoma egg challenge, we performed flow cytometry analysis on the peripheral blood and single cell lung digestions ( Figure 1E and Supplementary Figure S3). ...
Article
Full-text available
Background Schistosomiasis is a common cause of pulmonary hypertension (PH) worldwide. Type 2 inflammation contributes to the development of Schistosoma-induced PH. Specifically, interstitial macrophages (IMs) derived from monocytes play a pivotal role by producing thrombospondin-1 (TSP-1), which in turn activates TGF-β, thereby driving the pathology of PH. Resident and recruited IM subpopulations have recently been identified. We hypothesized that in Schistosoma-PH, one IM subpopulation expresses monocyte recruitment factors, whereas recruited monocytes become a separate IM subpopulation that expresses TSP-1. Methods Mice were intraperitoneally sensitized and then intravenously challenged with S. mansoni eggs. Flow cytometry on lungs and blood was performed on wildtype and reporter mice to identify IM subpopulations and protein expression. Single-cell RNA sequencing (scRNAseq) was performed on flow-sorted IMs from unexposed and at day 1, 3 and 7 following Schistosoma exposure to complement flow cytometry based IM characterization and identify gene expression. Results Flow cytometry and scRNAseq both identified 3 IM subpopulations, characterized by CCR2, MHCII, and FOLR2 expression. Following Schistosoma exposure, the CCR2⁺ IM subpopulation expanded, suggestive of circulating monocyte recruitment. Schistosoma exposure caused increased monocyte-recruitment ligand CCL2 expression in the resident FOLR2⁺ IM subpopulation. In contrast, the vascular pathology-driving protein TSP-1 was greatest in the CCR2⁺ IM subpopulation. Conclusion Schistosoma-induced PH involves crosstalk between IM subpopulations, with increased expression of monocyte recruitment ligands by resident FOLR2⁺ IMs, and the recruitment of CCR2⁺ IMs which express TSP-1 that activates TGF-β and causes PH.
... Macrophages display a high degree of plasticity and can adopt different effector-function states in response to microenvironmental cues [21]. Both ADAM10 aKO mice and littermates manifested decreased Adipose tissue M1 and increased Adipose tissue M2 accumulation following prolonged HFD exposure. ...
Article
Full-text available
A Disintegrin And Metalloproteinase domain-containing protein 10 (ADAM10), is involved in several metabolic and inflammatory pathways. We speculated that ADAM10 plays a modulatory role in adipose tissue inflammation and metabolism. To this end, we studied adipose tissue-specific ADAM10 knock-out mice (aKO). While young, regular chow diet-fed aKO mice showed increased insulin sensitivity, following prolonged (33 weeks) high-fat diet (HFD) exposure, aKO mice developed obesity and insulin resistance. Compared to controls, aKO mice showed less inflammatory adipokine profile despite the significant increase in adiposity. In brown adipose tissue, aKO mice on HFD had changes in CD8+ T cell populations indicating a lesser inflammatory pattern. Following HFD, both aKO and control littermates demonstrated decreased adipose tissue pro-inflammatory macrophages, and increased anti-inflammatory accumulation, without differences between the genotypes. Collectively, our observations indicate that selective deletion of ADAM10 in adipocytes results in a mitigated inflammatory response, leading to increased insulin sensitivity in young mice fed with regular diet. This state of insulin sensitivity, following prolonged HFD, facilitates energy storage resulting in increased fat accumulation which ultimately leads to the development of a phenotype of obesity and insulin resistance. In conclusion, the data indicate that ADAM10 has a modulatory effect of inflammation and whole-body energy metabolism.
... But LPMs also migrate to neighboring viscera in the peritoneal cavity such as liver and colon and help repairing damaged tissues [7,[40][41][42]. Tissue resident macrophages such as alveolar macrophages, Kupffer cells, microglia, osteoclasts, and LPMs all have specialized functions and phenotypes, local tissuederived signals control the development of tissue-specific phenotypes [43,44]. Studies reported that zinc finger transcription factor GATA6 uniquely expresses in LPMs, but not other macrophage subsets, regulates a tissue-specific gene expression program in LPMs, controls a subset of LPMs functions, including controlling anatomical localization of LPMs and IgA production by B-1 cells [7]. ...
Article
Full-text available
Background Endometria are one of the important components of the uterus, which is located in the peritoneal cavity. Endometrial injury usually leads to intrauterine adhesions (IUA), accompanied by inflammation and cell death. We previously reported that both the endometrial ferroptosis was increased and monocytes/macrophages were involved in endometrial injury of IUA. Large peritoneal macrophages (LPMs) are recently reported to migrate into the injured tissues and phagocytose dead cells to repair the tissues. We previously demonstrated that mesenchymal stromal cells (MSCs) had made excellent progress in the repair of endometrial injury. However, it is unclear whether MSCs regulate the LPM efferocytosis against ferroptotic monocytes/macrophages in the injured endometria. Methods Here, endometrial injury in IUA mouse model was conducted by uterine curettage and LPS injection surgery and the samples were collected at different times to detect the changes of LPMs and ferroptotic monocytes/macrophages. We conducted LPMs depletion assay in vivo and LPMs and Erastin-induced ferroptotic THP-1 cells coculture systems in vitro to detect the LPM efferocytosis against ferroptotic monocytes/macrophages. The IUA model was treated with MSCs, and their effects on LPMs and endometrial repair were analyzed. Flow cytometry, western blotting, quantitative real-time PCR, immunohistochemical analysis, ELISA, and RNA-sequencing were performed. Results We found that LPMs migrated to the injured uteri in response to the damage in early phase (3 h), and sustained to a later stage (7 days). Astonishingly, we found that ferroptotic monocytes/macrophages were significantly increased in the injured uteri since 12 h after injury. Moreover, LPMs cocultured with Erastin-induced ferroptotic THP-1 cells in vitro, efferocytosis of LPMs against ferroptotic monocytes/macrophages was emerged. The mRNA expression profiles revealed that LPM efferocytosis against ferroptotic monocytes/macrophages was an induction of glycolysis program and depended on the PPARγ-HK2 pathway. Importantly, we validated that MSCs promoted the efferocytic capability and migration of LPMs to the injured uteri via secreting stanniocalcin-1 (STC-1). Conclusion The data collectively demonstrated first the roles of LPMs via removal of ferroptotic monocytes/macrophages and provided a novel mechanism of MSCs in repairing the endometrial injury. Graphical Abstract
... Numerous researches have reported that adipose tissues are endocrine organs, and their homeostasis is controlled by internal immune cells, including adipose tissue macrophages (ATMs) (8)(9)(10). Both macrophages' recruitment and polarization can regulate the microenvironment in the adipose tissues (11)(12)(13)(14). It has been clarified that the main sources of ATMs are monocyte-derived recruited macrophages as well as tissue-resident macrophages. ...
Article
Full-text available
Interactions between macrophages and adipocytes in adipose tissue are critical for the regulation of energy metabolism and obesity. Macrophage polarization induced by cold or other stimulations can drive metabolic reprogramming of adipocytes, browning, and thermogenesis. Accordingly, investigating the roles of macrophages and adipocytes in the maintenance of energy homeostasis is critical for the development of novel therapeutic approaches specifically targeting macrophages in metabolic disorders such as obesity. Current review outlines macrophage polarization not only regulates the release of central nervous system and inflammatory factors, but controls mitochondrial function, and other factor that induce metabolic reprogramming of adipocytes and maintain energy homeostasis. We also emphasized on how the adipocytes conversely motivate the polarization of macrophage. Exploring the interactions between adipocytes and macrophages may provide new therapeutic strategies for the management of obesity-related metabolic diseases.
... Red pulp macrophages reside in venous sinuses of the spleen and screen the blood for pathogens and degradation of aged and damaged erythrocytes. Further, highly specialized macrophages of the lungs (alveolar macrophages), CNS (meningeal macrophages, choroid plexus macrophages, perivascular macrophages, and microglial cells), liver (Kupffer cells) are essential for the repair, remodeling and to maintain the integrity of tissue homeostasis [21][22][23][24]. ...
Article
Full-text available
Background Monocytes and macrophages are essential components of innate immune system and have versatile roles in homeostasis and immunity. These phenotypically distinguishable mononuclear phagocytes play distinct roles in different stages, contributing to the pathophysiology in various forms making them a potentially attractive therapeutic target in inflammatory conditions. Several pieces of evidence have supported the role of different cell surface receptors expressed on these cells and their downstream signaling molecules in initiating and perpetuating the inflammatory response. In this review, we discuss the current understanding of the monocyte and macrophage biology in inflammation, highlighting the role of chemoattractants, inflammasomes, and integrins in the function of monocytes and macrophages during events of inflammation. This review also covers the recent therapeutic interventions targeting these mononuclear phagocytes at the cellular and molecular levels.
... Therefore, cells from the monocytes/macrophage lineages may play a critical role in the formation and persistence of the HIV reservoir [24][25][26]. Circulating monocytes can develop into mature macrophages upon migration to tissues [27][28][29]. Macrophages both in lymphoid and non-lymphoid tissues such as vaginal mucosa [30], urethra [31,32], and duodenal tissue [33] harbor HIV-1 DNA. However, it is not known how and if macrophages establish HIV latency and how they respond to latency-reversing agents, questions that we can begin to answer with appropriate macrophage models. ...
Article
Full-text available
Background Although macrophages are now recognized as an essential part of the HIV latent reservoir, whether and how viral latency is established and reactivated in these cell types is poorly understood. To understand the fundamental mechanisms of viral latency in macrophages, there is an urgent need to develop latency models amenable to genetic manipulations and screening for appropriate latency-reversing agents (LRAs). Given that differentiated THP-1 cells resemble monocyte-derived macrophages in HIV replication mechanisms, we set out to establish a macrophage cell model for HIV latency using THP-1 cells. Methods We created single-cell clones of THP-1 cells infected with a single copy of the dual-labeled HIVGKO in which a codon switched eGFP (csGFP) is under the control of the HIV-1 5’ LTR promoter, and a monomeric Kusabira orange 2 (mKO2) under the control of cellular elongation factor one alpha promoter (EF1α). Latently infected cells are csGFP⁻, mKO2+, while cells with actively replicating HIV (or reactivated virus) are csGFP⁺,mKO2⁺. After sorting for latently infected cells, each of the THP-1 clones with unique integration sites for HIV was differentiated into macrophage-like cells with phorbol 12-myristate 13-acetate (PMA) and treated with established LRAs to stimulate HIV reactivation. Monocyte-derived macrophages (MDMs) harboring single copies of HIVGKO were used to confirm our findings. Results We obtained clones of THP-1 cells with latently infected HIV with unique integration sites. When the differentiated THP-1 or primary MDMs cells were treated with various LRAs, the bromodomain inhibitors JQ1 and I-BET151 were the most potent compounds. Knockdown of BRD4, the target of JQ1, resulted in increased reactivation, thus confirming the pharmacological effect. The DYRK1A inhibitor Harmine and lipopolysaccharide (LPS) also showed significant reactivation across all three MDM donors. Remarkably, LRAs like PMA/ionomycin, bryostatin-1, and histone deacetylase inhibitors known to potently reactivate latent HIV in CD4 + T cells showed little activity in macrophages. Conclusions Our results indicate that this model could be used to screen for appropriate LRAs for macrophages and show that HIV latency and reactivation mechanisms in macrophages may be distinct from those of CD4 + T cells.
... Though not significant, there was also a tendency for blood neutrophil counts to increase ( Figure 2B). Murine monocytes can be divided into subsets by their surface expression of the glycoprotein Ly6C into Ly6C low and Ly6C high monocytes (34,35). Monocytes expressing high levels of Ly6C have proinflammatory functions and tend to express low levels of CX3C chemokine receptor 1 (CX3CR1) (25). ...
Article
Full-text available
Individuals with clonal hematopoiesis of indeterminate potential (CHIP) are at increased risk of aging related health conditions and all-cause mortality, but whether CHIP impacts risk of infection is much less clear. Using UK Biobank data, we revealed a positive association between CHIP and incident pneumonia in 438,421 individuals. We show that inflammation enhanced pneumonia risk, as CHIP carriers with a hypomorphic IL6 receptor polymorphism were protected. To better characterize the pathways of susceptibility, we challenged hematopoietic Tet Methylcytosine Dioxygenase 2 knockout (Tet2-/-) and floxed control mice (Tet2f/f) with Streptococcus pneumoniae. As with human CHIP carriers, Tet2-/- mice had hematopoietic abnormalities resulting in the expansion of inflammatory monocytes and neutrophils in peripheral blood. Yet, these cells were insufficient in defending against S. pneumoniae and resulted in increased pathology, impaired bacterial clearance, and higher mortality in Tet2-/- mice. We delineated the transcriptional landscape of Tet2-/- neutrophils and found that while inflammation-related pathways were upregulated in Tet2-/- neutrophils, migration and motility pathways were compromised. Using live-imaging techniques, we demonstrated impairments in motility, pathogen uptake and neutrophil extracellular trap (NET) formation by Tet2-/- neutrophils. Collectively, we show that CHIP is a risk factor for bacterial pneumonia related to innate immune impairments.
... They are of different origins than other macrophages in the body. Microglia are derived from the yolk sac and are later replenished by resident progenitor cells, whereas almost all other macrophages are derived from bone marrow progenitors [21][22][23][24]. They have a key role during infections of the CNS as they display the first line of defense against invading pathogens. ...
Article
Full-text available
Introduction: Streptococcus pneumoniae is the most common cause of bacterial meningitis and meningoencephalitis in humans. The bacterium produces numerous virulence determinants, among them hydrogen peroxide (H2O2) and pneumolysin (Ply), which contribute to bacterial cytotoxicity. Microglia, the resident phagocytes in the brain, are distinct from other macrophages, and we thus compared their susceptibility to pneumococcal toxicity and their ability to phagocytose pneumococci with those of bone marrow-derived macrophages (BMDM). Methods: Microglia and BMDM were co-incubated with S. pneumoniae D39 to analyze survival of phagocytes by fluorescence microscopy, bacterial growth by quantitative plating, and phagocytosis by an antibiotic protection assay. Ply was detected by hemolysis assay and Western blot analysis. Results: We found that microglia were killed during pneumococcal infection with a wild-type and an isogenic ply-deficient mutant, whereas viability of BMDM was not affected by pneumococci. Treatment with recombinant Ply showed a dose-dependent cytotoxic effect on microglia and BMDM. However, high concentrations of recombinant Ply were required and under the chosen experimental conditions, Ply was not detectable in the supernatant during infection of microglia. Inactivation of H2O2 by exogenously added catalase abolished its cytotoxic effect. Consequently, infection of microglia with pneumococci deficient for the pyruvate oxidase SpxB, primarily producing H2O2, resulted in reduced killing of microglia. Conclusion: Taken together, in the absence of Ply, H2O2 caused cell death in primary phagocytes in concentrations produced by pneumococci.
... Phenotypic markers can be utilized to classify monocyte subsets into intermediate (CD16 + CD14 +), classic (CD16-CD14 +) and non-classical (CD16 + CD14 −) categories [33]. Many researches have revealed that CD14 + CD16-classical monocytes can mature into macrophages in the early stages of fibrosis and are closely associated with the development of IPF [33][34][35]. Interestingly, in our study, IPF declined with increasing CD14 + CD16 + monocyte %monocyte ratio, whereas past studies have indicated that intermediate monocytes are associated with a worse prognosis in IPF patients [36]. Furthermore, it has been reported that the combination of pirfenidone and a PDL-1 inhibitor improves the efficacy of treatment in lung cancer patients with IPF [37]. ...
Article
Full-text available
Background The potential pathogenic mechanism of idiopathic pulmonary fibrosis is widely recognized to involve immune dysregulation. However, the current pool of studies has yet to establish a unanimous agreement regarding the correlation between various types of immune cells and IPF. Methods By conducting a two-sample Mendelian randomization analysis using publicly available genetic data, the study examined the causal relationship between IPF and 731 immune cells. To ensure the reliability of the results, combined sensitivity analyses and inverse Mendelian analyses were conducted. Moreover, within subgroups, multivariate Mendelian randomization analyses were utilized to investigate the autonomous causal connection between immune cell characteristics and IPF. Results After adjusting for false discovery rate, it was discovered that 20 immunophenotypes exhibited a significant association with IPF. After subgrouping for multivariate Mendelian randomization analysis, there were six immunophenotypes that remained significantly associated with IPF. These included CD33 + HLA DR + CD14dim (OR = 0.96, 95% CI 0.93–0.99, P = 0.033), HLA DR + NK (OR = 0.92, 95% CI 0.85–0.98, P = 0.017), CD39 + CD8 + T cell %T cell (OR = 0.93, 95% CI 0.88–0.99, P = 0.024), CD3 on activated & secreting Treg (OR = 0.91, 95% CI 0.84–0.98, P = 0.026), PDL-1 on CD14- CD16 + monocyte (OR = 0.89, 95% CI 0.84–0.95, P = 8 × 10–4), and CD45 on CD33 + HLA DR + CD14- (OR = 1.08, 95% CI 1.01–1.15, P = 0.011). Conclusion Our study reveals a noteworthy association between IPF and various immune cells, providing valuable insights for clinical research and aiding the advancement of immunologically-based therapeutic strategies.
... Subsequently, developed techniques, including immunohistochemistry, flow cytometry, DNA microarray, and fate-mapping/lineage tracing with genetically modified mice, gradually revealed that during ontogeny, primitive macrophage populations derived from the embryonic yolk sac or fetal liver spread into entire peripheral tissues, colonize, and maintain themselves in tissues by self-renewal. These populations are the sources of some tissue-resident macrophages in adulthood, such as microglia and Langerhans cells [29][30][31][32][33][34][35][36]. Finally, all these discoveries led to an improved notion of the in vivo macrophage system. ...
Article
Full-text available
Tissue-resident macrophages play an important role in the local maintenance of homeostasis and immune surveillance. In the central nervous system (CNS), brain macrophages are anatomically divided into parenchymal microglia and non-parenchymal border-associated macrophages (BAMs). Among these immune cell populations, microglia have been well-studied for their roles during development as well as in health and disease. BAMs, mostly located in the choroid plexus, meningeal and perivascular spaces, are now gaining increased attention due to advancements in multi-omics technologies and genetic methodologies. Research on BAMs over the past decade has focused on their ontogeny, immunophenotypes, involvement in various CNS diseases, and potential as therapeutic targets. Unlike microglia, BAMs display mixed origins and distinct self-renewal capacity. BAMs are believed to regulate neuroimmune responses associated with brain barriers and contribute to immune-mediated neuropathology. Notably, BAMs have been observed to function in diverse cerebral pathologies, including Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, ischemic stroke, and gliomas. The elucidation of the heterogeneity and diverse functions of BAMs during homeostasis and neuroinflammation is mesmerizing, since it may shed light on the precision medicine that emphasizes deep insights into programming cues in the unique brain immune microenvironment. In this review, we delve into the latest findings on BAMs, covering aspects like their origins, self-renewal capacity, adaptability, and implications in different brain disorders.
... The role of macrophages in triggering and modulating inflammatory responses has long been a focal point in the intricate system of the oral cavity. Macrophages function as vital immune cells participating in innate and adaptive immunity, thereby establishing a frontline defense against invading pathogens, including oral bacteria [1]. These cells uphold oral homeostasis by phagocytosing invaders and apoptotic cells and generating signaling molecules, including cytokines and chemokines. ...
... Because monocytes and macrophages have been implicated in the progression to pain chronicity 12,13 , we examined whether NAAAregulated lipid signaling in this cell population might contribute to HP. We generated mutant mice that selectively lack NAAA in CD11b + cells (Fig. 3A), which include monocytes, macrophages, and neutrophils 45,46 . Successful recombination was confirmed by subjecting blood samples to fluorescence-activated cell sorting (FACS) coupled to RT-qPCR analysis (Fig. 3B, C). ...
Article
Full-text available
Circulating monocytes participate in pain chronification but the molecular events that cause their deployment are unclear. Using a mouse model of hyperalgesic priming (HP), we show that monocytes enable progression to pain chronicity through a mechanism that requires transient activation of the hydrolase, N-acylethanolamine acid amidase (NAAA), and the consequent suppression of NAAA-regulated lipid signaling at peroxisome proliferator-activated receptor-α (PPAR-α). Inhibiting NAAA in the 72 hours following administration of a priming stimulus prevented HP. This effect was phenocopied by NAAA deletion and depended on PPAR-α recruitment. Mice lacking NAAA in CD11b⁺ cells – monocytes, macrophages, and neutrophils – were resistant to HP induction. Conversely, mice overexpressing NAAA or lacking PPAR-α in the same cells were constitutively primed. Depletion of monocytes, but not resident macrophages, generated mice that were refractory to HP. The results identify NAAA-regulated signaling in monocytes as a control node in the induction of HP and, potentially, the transition to pain chronicity.
... Macrophages play a central role in detecting and eliminating bacterial, parasitic, and viral pathogens [1,2]. They are uniquely positioned to sample the environment in order to detect pathogens, dead cells, and inflammatory mediators for the initiation of immune responses and tissue repair [3][4][5][6][7][8][9]. ...
Article
Full-text available
Host resistance to a common protozoan parasite Toxoplasma gondii relies on a coordinated immune response involving multiple cell types, including macrophages. Embryonically seeded tissue-resident macrophages (TRMs) play a critical role in maintaining tissue homeostasis, but their role in parasite clearance is poorly understood. In this study, we uncovered a crucial aspect of host defense against T . gondii mediated by TRMs. Through the use of neutralizing antibodies and conditional IFN-γ receptor-deficient mice, we demonstrated that IFN-γ directly mediated the elimination of TRMs. Mechanistically, IFN-γ stimulation in vivo rendered macrophages unresponsive to macrophage colony-stimulating factor (M-CSF) and inactivated mTOR signaling by causing the shedding of CD115 (CSFR1), the receptor for M-CSF. Further experiments revealed the essential role of macrophage IFN-γ responsiveness in host resistance to T . gondii . The elimination of peritoneal TRMs emerged as an additional host defense mechanism aimed at limiting the parasite’s reservoir. The identified mechanism, involving IFN-γ-induced suppression of CD115-dependent mTOR signaling in macrophages, provides insights into the adaptation of macrophage subsets during infection and highlights a crucial aspect of host defense against intracellular pathogens.
Preprint
Single-cell sequencing enables to reveal cellular heterogeneity and discover new cellular subpopulations. In terms of the strategy of single-cell sequencing, the main methods are based with combinatorial index, microwell and microfluidic. Due to the simplicity, methods based droplets are widely used for single-cell sequencing for multi-omics. Therefore, in order to facilitate researchers to choose a suitable platform to meet their application scenarios, we compared several commercial platforms: the Chromium X platform of 10x Genomics, the MobiNova-100 platform of MobiDrop, the SeekOne platform of SeekGene, and the C4 platform of BGI. Based the comprehensive assessment of the data analysis, the Chromium X platform shows a excellent performance, closely followed by MobiNova-100 platform. One-Sentence Summary As droplet-based single-cell sequencing platforms, Chromium X and MobiNova-100 have comparable data performance.
Article
Full-text available
Background Epstein-Barr virus (EBV) is a double-stranded DNA oncogenic virus. Several types of solid tumors, such as nasopharyngeal carcinoma, EBV-associated gastric carcinoma, and lymphoepithelioma-like carcinoma of the lung, have been linked to EBV infection. Currently, several TCR-T-cell therapies for EBV-associated tumors are in clinical trials, but due to the suppressive immune microenvironment of solid tumors, the clinical application of TCR-T-cell therapy for EBV-associated solid tumors is limited. Figuring out the mechanism by which EBV participates in the formation of the tumor immunosuppressive microenvironment will help T cells or TCR-T cells break through the limitation and exert stronger antitumor potential. Methods Flow cytometry was used for analyzing macrophage differentiation phenotypes induced by EBV-infected and EBV-uninfected tumors, as well as the function of T cells co-cultured with these macrophages. Xenograft model in mice was used to explore the effects of M2 macrophages, TCR-T cells, and matrix metalloprotein 9 (MMP9) inhibitors on the growth of EBV-infected tumors. Results EBV-positive tumors exhibited an exhaustion profile of T cells, despite the presence of a large T-cell infiltration. EBV-infected tumors recruited a large number of mononuclear macrophages with CCL5 and induced CD163+M2 macrophages polarization through the secretion of CSF1 and the promotion of autocrine IL10 production by mononuclear macrophages. Massive secretion of MMP9 by this group of CD163+M2 macrophages induced by EBV infection was an important factor contributing to T-cell exhaustion and TCR-T-cell therapy resistance in EBV-positive tumors, and the use of MMP9 inhibitors improved the function of T cells cocultured with M2 macrophages. Finally, the combination of an MMP9 inhibitor with TCR-T cells targeting EBV-positive tumors significantly inhibited the growth of xenografts in mice. Conclusions MMP9 inhibitors improve TCR-T cell function suppressed by EBV-induced M2 macrophages. TCR-T-cell therapy combined with MMP9 inhibitors was an effective therapeutic strategy for EBV-positive solid tumors.
Preprint
Type 2 diabetes mellitus (T2DM) is associated with poor outcome after stroke. Peripheral monocytes play a critical role in the secondary injury and recovery of damaged brain tissue after stroke, but the underlying mechanisms are largely unclear. To investigate transcriptome changes and molecular networks across monocyte subsets in response to T2DM and stroke, we performed single-cell RNA-sequencing (scRNAseq) from peripheral blood mononuclear cells and bulk RNA-sequencing from blood monocytes from four groups of adult mice, consisting of T2DM model db/db and normoglycemic control db/+ mice with or without ischemic stroke. Via scRNAseq we found that T2DM expands the monocyte population at the expense of lymphocytes, which was validated by flow cytometry. Among the monocytes, T2DM also disproportionally increased the inflammatory subsets with Ly6C+ and negative MHC class II expression (MO.6C+II−). Conversely, monocytes from control mice without stroke are enriched with steady-state classical monocyte subset of MO.6C+II+ but with the least percentage of MO.6C+II− subtype. Apart from enhancing inflammation and coagulation, enrichment analysis from both scRNAseq and bulk RNAseq revealed that T2DM specifically suppressed type-1 and type-2 interferon signaling pathways crucial for antigen presentation and the induction of ischemia tolerance. Preconditioning by lipopolysaccharide conferred neuroprotection against ischemic brain injury in db/+ but not in db/db mice and coincided with a lesser induction of brain Interferon-regulatory-factor-3 in the brains of the latter mice. Our results suggest that the increased diversity and altered transcriptome in the monocytes of T2DM mice underlie the worse stroke outcome by exacerbating secondary injury and potentiating stroke-induced immunosuppression. Significance Statement The mechanisms involved in the detrimental diabetic effect on stroke are largely unclear. We show here, for the first time, that peripheral monocytes have disproportionally altered the subsets and changed transcriptome under diabetes and/or stroke conditions. Moreover, genes in the IFN-related signaling pathways are suppressed in the diabetic monocytes, which underscores the immunosuppression and impaired ischemic tolerance under the T2DM condition. Our data raise a possibility that malfunctioned monocytes may systemically and focally affect the host, leading to the poor outcome of diabetes in the setting of stroke. The results yield important clues to molecular mechanisms involved in the detrimental diabetic effect on stroke outcome.
Article
Full-text available
White adipose tissue is not only a highly heterogeneous organ containing various cells, such as adipocytes, adipose stem and progenitor cells, and immune cells, but also an endocrine organ that is highly important for regulating metabolic and immune homeostasis. In individuals with obesity, dynamic cellular changes in adipose tissue result in phenotypic switching and adipose tissue dysfunction, including pathological expansion, WAT fibrosis, immune cell infiltration, endoplasmic reticulum stress, and ectopic lipid accumulation, ultimately leading to chronic low‐grade inflammation and insulin resistance. Recently, many distinct subpopulations of adipose tissue have been identified, providing new insights into the potential mechanisms of adipose dysfunction in individuals with obesity. Therefore, targeting white adipose tissue as a therapeutic agent for treating obesity and obesity‐related metabolic diseases is of great scientific interest. Here, we provide an overview of white adipose tissue remodeling in individuals with obesity including cellular changes and discuss the underlying regulatory mechanisms of white adipose tissue metabolic dysfunction. Currently, various studies have uncovered promising targets and strategies for obesity treatment. We also outline the potential therapeutic signaling pathways of targeting adipose tissue and summarize existing therapeutic strategies for antiobesity treatment including pharmacological approaches, lifestyle interventions, and novel therapies.
Article
Full-text available
The COVID-19 pandemic has made assessing vaccine efficacy more challenging. Besides neutralizing antibody assays, systems vaccinology studies use omics technology to reveal immune response mechanisms and identify gene signatures in human peripheral blood mononuclear cells (PBMCs). However, due to their low proportion in PBMCs, profiling the immune response signatures of dendritic cells (DCs) is difficult. Here, we develop a predictive model for evaluating early immune responses in dendritic cells. We establish a THP-1-derived dendritic cell (TDDC) model and stimulate their maturation in vitro with an optimal dose of attenuated yellow fever 17D (YF-17D). Transcriptomic analysis reveals that type I interferon (IFN-I)-induced immunity plays a key role in dendritic cells. IFN-I regulatory biomarkers (IRF7, SIGLEC1) and IFN-I-inducible biomarkers (IFI27, IFI44, IFIT1, IFIT3, ISG15, MX1, OAS2, OAS3) are identified and validated in vitro and in vivo. Furthermore, we apply this TDDC approach to various types of vaccines, providing novel insights into their early immune response signatures and their heterogeneity in vaccine recipients. Our findings suggest that a standardizable TDDC model is a promising predictive approach to assessing early immunity in DCs. Further research into vaccine efficacy assessment approaches on various types of immune cells could lead to a systemic regimen for vaccine development in the future.
Article
BACKGROUND Coronary artery disease (CAD), the leading cause of death worldwide, is influenced by both environmental and genetic factors. Although over 250 genetic risk loci have been identified through genome-wide association studies, the specific causal variants and their regulatory mechanisms are still largely unknown, particularly in disease-relevant cell types like macrophages. METHODS We utilized single-cell RNA-seq and single-cell multiomics approaches in primary human monocyte–derived macrophages to explore the transcriptional regulatory network involved in a critical pathogenic event of coronary atherosclerosis—the formation of lipid-laden foam cells. The relative genetic contribution to CAD was assessed by partitioning disease heritability across different macrophage subpopulations. Meta-analysis of single-cell RNA-seq data sets from 38 human atherosclerotic samples was conducted to provide high-resolution cross-referencing to macrophage subpopulations in vivo. RESULTS We identified 18 782 cis-regulatory elements by jointly profiling the gene expression and chromatin accessibility of >5000 macrophages. Integration with CAD genome-wide association study data prioritized 121 CAD-related genetic variants and 56 candidate causal genes. We showed that CAD heritability was not uniformly distributed and was particularly enriched in the gene programs of a novel CD52-hi lipid-handling macrophage subpopulation. These CD52-hi macrophages displayed significantly less lipoprotein accumulation and were also found in human atherosclerotic plaques. We investigated the cis-regulatory effect of a risk variant rs10488763 on FDX1 , implicating the recruitment of AP-1 and C/EBP-β in the causal mechanisms at this locus. CONCLUSIONS Our results provide genetic evidence of the divergent roles of macrophage subsets in atherogenesis and highlight lipid-handling macrophages as a key subpopulation through which genetic variants operate to influence disease. These findings provide an unbiased framework for functional fine-mapping of genome-wide association study results using single-cell multiomics and offer new insights into the genotype-environment interactions underlying atherosclerotic disease.
Article
Full-text available
Skin is the primary and largest protective organ of the human body. It produces a number of highly evolved arsenal of factors to counter the continuous assault of foreign materials and pathogens from the environment. One such potent factor is the repertoire of Antimicrobial Peptides (AMPs) that not only directly destroys invading pathogens, but also optimally modulate the immune functions of the body to counter the establishment and spread of infections. The canonical direct antimicrobial functions of these AMPs have been in focus for a long time to design principles for enhanced therapeutics, especially against the multi-drug resistant pathogens. However, in recent times the immunomodulatory functions performed by these peptides at sub-microbicidal concentrations have been a point of major focus in the field of host-directed therapeutics. Such strategies have the added benefit of not having the pathogens develop resistance against the immunomodulatory pathways, since the pathogens exploit these signaling pathways to obtain and survive within the host. Thus, this review summarizes the potent immunomodulatory effect of these AMPs on, specifically, the different host immune cells with the view of providing a platform of information that might help in designing studies to exploit and formulate effective host-directed adjunct therapeutic strategies that would synergies with drug regimens to counter the current diversity of drug-resistant skin opportunistic pathogens.
Article
Full-text available
Macrophages are exceptionally diversified cell types and perform unique features and functions when exposed to different stimuli within the specific microenvironment of various kidney diseases. In instances of kidney tissue necrosis or infection, specific patterns associated with damage or pathogens prompt the development of pro-inflammatory macrophages (M1). These M1 macrophages contribute to exacerbating tissue damage, inflammation, and eventual fibrosis. Conversely, anti-inflammatory macrophages (M2) arise in the same circumstances, contributing to kidney repair and regeneration processes. Impaired tissue repair causes fibrosis, and hence macrophages play a protective and pathogenic role. In response to harmful stimuli within the body, inflammasomes, complex assemblies of multiple proteins, assume a pivotal function in innate immunity. The initiation of inflammasomes triggers the activation of caspase 1, which in turn facilitates the maturation of cytokines, inflammation, and cell death. Macrophages in the kidneys possess the complete elements of the NLRP3 inflammasome, including NLRP3, ASC, and pro-caspase-1. When the NLRP3 inflammasomes are activated, it triggers the activation of caspase-1, resulting in the release of mature proinflammatory cytokines (IL)-1β and IL-18 and cleavage of Gasdermin D (GSDMD). This activation process therefore then induces pyroptosis, leading to renal inflammation, cell death, and renal dysfunction. The NLRP3–ASC–caspase-1–IL-1β–IL-18 pathway has been identified as a factor in the development of the pathophysiology of numerous kidney diseases. In this review, we explore current progress in understanding macrophage behavior concerning inflammation, injury, and fibrosis in kidneys. Emphasizing the pivotal role of activated macrophages in both the advancement and recovery phases of renal diseases, the article delves into potential strategies to modify macrophage functionality and it also discusses emerging approaches to selectively target NLRP3 inflammasomes and their signaling components within the kidney, aiming to facilitate the healing process in kidney diseases.
Article
Full-text available
White adipose tissue (WAT) is a vital endocrine organ that regulates energy balance and metabolic homeostasis. In addition to fat cells, WAT harbors macrophages with distinct phenotypes that play crucial roles in immunity and metabolism. Nutrient demands cause macrophages to accumulate in WAT niches, where they remodel the microenvironment and produce beneficial or detrimental effects on systemic metabolism. Given the abundance of macrophages in WAT, this review summarizes the heterogeneity of WAT macrophages in physiological and pathological conditions, including their alterations in quantity, phenotypes, characteristics, and functions during WAT growth and development, as well as healthy or unhealthy expansion. We will discuss the interactions of macrophages with other cell partners in WAT including adipose stem cells, adipocytes, and T cells in the context of various microenvironment niches in lean or obese condition. Finally, we highlight how adipose tissue macrophages merge immunity and metabolic changes to govern energy balance for the organism.
Article
Full-text available
The urgency to address skeletal abnormalities and diseases through innovative approaches has led to a significant interdisciplinary convergence of engineering, 3D printing, and design in developing individualised bioceramic bioscaffolds. This review explores into the recent advancements and future trajectory of non-antibiotic antibacterial bioceramics in bone tissue engineering, an importance given the escalating challenges of orthopaedic infections, antibiotic resistance, and emergent pathogens. Initially, the review provides an in-depth exploration of the complex interactions among bacteria, immune cells, and bioceramics in clinical contexts, highlighting the multifaceted nature of infection dynamics, including protein adsorption, immunological responses, bacterial adherence, and endotoxin release. Then, focus on the next-generation bioceramics designed to offer multifunctionality, especially in delivering antibacterial properties independent of traditional antibiotics. A key highlight of this study is the exploration of smart antibacterial bioceramics, marking a revolutionary stride in medical implant technology. The review also aims to guide the ongoing development and clinical adoption of bioceramic materials, focusing on their dual capabilities in promoting bone regeneration and exhibiting antibacterial properties. These next-generation bioceramics represent a paradigm shift in medical implant technology, offering multifunctional benefits that transcend traditional approaches.
Article
Full-text available
Background and Objectives: Despite the fact that biologic drugs have transformed inflammatory bowel disease (IBD) treatment, addressing fibrosis-related strictures remains a research gap. This study explored the roles of cytokines, macrophages, and Krüppel-like factors (KLFs), specifically KLF4, in intestinal fibrosis, as well as the interplay of KLF4 with various gut components. Materials and Methods: This study examined macrophage subtypes, their KLF4 expression, and the effects of KLF4 knockdown on macrophage polarization and cytokine expression using THP-1 monocyte models. Co-culture experiments with stromal myofibroblasts and a conditioned medium from macrophage subtype cultures were conducted to study the role of these cells in intestinal fibrosis. Human-induced pluripotent stem cell-derived small intestinal organoids were used to confirm inflammatory and fibrotic responses in the human small intestinal epithelium. Results: Each macrophage subtype exhibited distinct phenotypes and KLF4 expression. Knockdown of KLF4 induced inflammatory cytokine expression in M0, M2a, and M2c cells. M2b exerted anti-fibrotic effects via interleukin (IL)-10. M0 and M2b cells showed a high migratory capacity toward activated stromal myofibroblasts. M0 cells interacting with activated stromal myofibroblasts transformed into inflammatory macrophages, thereby increasing pro-inflammatory cytokine expression. The expression of IL-36α, linked to fibrosis, was upregulated. Conclusions: This study elucidated the role of KLF4 in macrophage polarization and the intricate interactions between macrophages, stromal myofibroblasts, and cytokines in experimental in vitro models of intestinal fibrosis. The obtained results may suggest the mechanism of fibrosis formation in clinical IBD.
Article
Full-text available
A homologue of binding immunoglobulin protein/BiP—IRL201805 alters the function of immune cells in pre-clinical in vivo and in vitro studies. The aim of the study was to select biomarkers that clearly delineate between RA patients who respond to IRL201805 and placebo patients and reveal the immunological mode of action of IRL201805 driving the extended pharmacodynamics observed in responding patients. Biomarkers that distinguished between responding patients and placebo patients included downregulation of serum interferon-γ and IL-1β; upregulation of anti-inflammatory mediators, serum soluble CTLA-4, and intracellular monocyte expression of IDO; and sustained increased CD39 expression on CD3+CD4+CD25hi CD127lo regulatory T cells. In the responding patients, selected biomarkers verified that the therapeutic effect could be continuous for at least 12 weeks post-infusion. In secondary co-culture, pre-infusion PBMCs cultured 1:1 with autologous PBMCs, isolated at later time-points during the trial, showed significantly inhibited IL-6 and IL-1β production upon anti-CD3/CD28 stimulation demonstrating IRL201805 alters the function of immune cells leading to prolonged pharmacodynamics confirmed by biomarker differences. IRL201805 may be the first of a new class of biologic drug providing long-term drug-free therapy in RA.
Article
Full-text available
Bone is a common organ for solid tumor metastasis. Malignant bone tumor becomes insensitive to systemic therapy after colonization, followed by poor prognosis and high relapse rate. Immune and bone cells in situ constitute a unique immune microenvironment, which plays a crucial role in the context of bone metastasis. This review firstly focuses on lymphatic cells in bone metastatic cancer, including their function in tumor dissemination, invasion, growth and possible cytotoxicity-induced eradication. Subsequently, we examine myeloid cells, namely macrophages, myeloid-derived suppressor cells, dendritic cells, and megakaryocytes, evaluating their interaction with cytotoxic T lymphocytes and contribution to bone metastasis. As important components of skeletal tissue, osteoclasts and osteoblasts derived from bone marrow stromal cells, engaging in ‘vicious cycle’ accelerate osteolytic bone metastasis. We also explain the concept tumor dormancy and investigate underlying role of immune microenvironment on it. Additionally, a thorough review of emerging treatments for bone metastatic malignancy in clinical research, especially immunotherapy, is presented, indicating current challenges and opportunities in research and development of bone metastasis therapies.
Preprint
Full-text available
Approaches to regenerating bone often rely on the integration of biomaterials and biological signals in the form of cells or cytokines. However, from a translational point of view, these approaches face challenges due to the sourcing and quality of the biologic, unpredictable immune responses, complex regulatory paths, and high costs. We describe a simple manufacturing process and a material-centric 3D-printed composite scaffold system (CSS) that offers distinct advantages for clinical translation. The CSS comprises a 3D-printed porous polydiolcitrate-hydroxyapatite composite elastomer infused with a polydiolcitrate-graphene oxide hydrogel composite. Using a continuous liquid interface production 3D printer, we fabricate a precise porous ceramic scaffold with 60% hydroxyapatite content resembling natural bone. The resulting scaffold integrates with a thermoresponsive hydrogel composite, customizable in situ to fit the defect. This hybrid phasic porous CSS mimics the bone microenvironment (inorganic and organic) while allowing independent control of each material phase (rigid and soft). The CSS stimulates osteogenic differentiation in vitro and in vivo . Moreover, it promotes M2 polarization and blood vessel ingrowth, which are crucial for supporting bone formation. Our comprehensive micro-CT analysis revealed that within 4 weeks in a critical-size defect model, the CSS accelerated ECM deposition (8-fold) and mineralized osteoid (69-fold) compared to the untreated. Our material-centric approach delivers impressive osteogenic properties and streamlined manufacturing advantages, potentially expediting clinical application for bone reconstruction surgeries.
Article
Full-text available
Childhood maltreatment has been repeatedly linked to a higher incidence of health conditions with an underlying proinflammatory component, such as asthma, chronic obstructive pulmonary disease, stroke, and cardiovascular disease. Childhood maltreatment has also been linked to elevated systemic inflammation prior to the onset of disease. However, childhood maltreatment is highly comorbid with other risk factors which have also been linked to inflammation, namely major depression. The present analysis addresses this issue by assessing the association of maltreatment with genome-wide transcriptional profiling of immune cells collected from four orthogonal groups of adolescents (aged 13–17): maltreated and not maltreated in childhood, with and without major depressive disorder. Maltreatment and psychiatric history were determined using semi-structured clinical interviews and cross-validated using self-report questionnaires. Dried whole blood spots were collected from each participant (n = 133) and assayed to determine the extent to which maltreatment in childhood was associated with a higher prevalence of transcriptional activity among differentially expressed genes, specific immune cell subtypes, and up- or down-regulation of genes involved in immune function after accounting for current major depression. Maltreatment was associated with increased interferon regulatory factor (IRF) transcriptional activity (p = 0.03), as well as nuclear factor erythroid-2 related factor 1 (NRF1; p = 0.002) and MAF (p = 0.01) among up-regulated genes, and increased activity of nuclear factor kappa beta (NF-κB) among down-regulated genes (p = 0.01). Non-classical CD16+ monocytes were implicated in both the up- and down-regulated genes among maltreated adolescents. These data provide convergent evidence supporting the role of maltreatment in altering intracellular and molecular markers of immune function, as well as implicate monocyte/macrophage functions as mechanisms through which childhood maltreatment may shape lifelong immune development and function.
Article
Full-text available
Macrophages are the major players and orchestrators of inflammatory response. Expressed proteins and secreted cytokines have been well studied for two polar macrophage phenotypes—pro-inflammatory M1 and anti-inflammatory regenerative M2, but little is known about how the polarization modulates macrophage functions. In this study, we used biochemical and biophysical methods to compare the functional activity and mechanical properties of activated human macrophages differentiated from monocyte with GM-CSF (M0_GM) and M-CSF (M0_M) and polarized into M1 and M2 phenotypes, respectively. Unlike GM-CSF, which generates dormant cells with low activity, M-CSF confers functional activity on macrophages. M0_M and M2 macrophages had very similar functional characteristics—high reactive oxygen species (ROS) production level, and higher phagocytosis and survival compared to M1, while M1 macrophages showed the highest radical-generating activity but the lowest phagocytosis and survival among all phenotypes. All phenotypes decreased their height upon activation, but only M1 and M2 cells increased in stiffness, which can indicate a decrease in the migration ability of these cells and changes in their interactions with other cells. Our results demonstrated that while mechanical properties differ between M0 and polarized cells, all four phenotypes of monocyte-derived macrophages differ in their functional activities, namely in cytokine secretion, ROS production, and phagocytosis. Within the broad continuum of human macrophages obtained in experimental models and existing in vivo, there is a diversity of phenotypes with varying combinations of both markers and functional activities.
Article
Full-text available
Tissue ischemia, caused by the blockage of blood vessels, can result in substantial damage and impaired tissue performance. Information regarding the functional contribution of the complement system in the context of ischemia and angiogenesis is lacking. To investigate the influence of complement activation and depletion upon femoral artery ligation (FAL), Cobra venom factor (CVF) (that functionally resembles C3b, the activated form of complement component C3) was applied in mice in comparison to control mice. Seven days after induction of muscle ischemia through FAL, gastrocnemius muscles of mice were excised and subjected to (immuno-)histological analyses. H&E and apoptotic cell staining (TUNEL) staining revealed a significant reduction in ischemic tissue damage in CVF-treated mice compared to controls. The control mice, however, exhibited a significantly higher capillary-to-muscle fiber ratio and a higher number of proliferating endothelial cells (CD31+/CD45−/BrdU+). The total number of leukocytes (CD45+) substantially decreased in CVF-treated mice versus control mice. Moreover, the CVF-treated group displayed a shift towards the M2-like anti-inflammatory and regenerative macrophage phenotype (CD68+/MRC1+). In conclusion, our findings suggest that treatment with CVF leads to reduced ischemic tissue damage along with decreased leukocyte recruitment but increased numbers of M2-like polarized macrophages, thereby enhancing tissue regeneration, repair, and healing.
Article
Full-text available
The tumour-necrosis-factor-family molecule osteoprotegerin ligand (OPGL; also known as TRANCE, RANKL and ODF) has been identified as a potential osteoclast differentiation factor and regulator of interactions between T cells and dendritic cells in vitro. Mice with a disrupted opgl gene show severe osteopetrosis and a defect in tooth eruption, and completely lack osteoclasts as a result of an inability of osteoblasts to support osteoclastogenesis. Although dendritic cells appear normal, opgl-deficient mice exhibit defects in early differentiation of T and B lymphocytes. Surprisingly, opgl-deficient mice lack all lymph nodes but have normal splenic structure and Peyer's patches. Thus OPGL is a new regulator of lymph-node organogenesis and lymphocyte development and is an essential osteoclast differentiation factor in vivo.
Article
Full-text available
Langerhans cells (LCs) are bone marrow (BM)-derived epidermal dendritic cells (DCs) that represent a critical immunologic barrier to the external environment, but little is known about their life cycle. Here, we show that in lethally irradiated mice that had received BM transplants, LCs of host origin remained for at least 18 months, whereas DCs in other organs were almost completely replaced by donor cells within 2 months. In parabiotic mice with separate organs, but a shared blood circulation, there was no mixing of LCs. However, in skin exposed to ultraviolet light, LCs rapidly disappeared and were replaced by circulating LC precursors within 2 weeks. The recruitment of new LCs was dependent on their expression of the CCR2 chemokine receptor and on the secretion of CCR2-binding chemokines by inflamed skin. These data indicate that under steady-state conditions, LCs are maintained locally, but inflammatory changes in the skin result in their replacement by blood-borne LC progenitors.
Article
We characterized scavenger receptor pathways of human alveolar macrophages and cultured monocytes using radiolabeled maleylated bovine serum albumin (MAL-BSA) and acetylated low-density lipoprotein (Ac-LDL) as ligands. Human alveolar macrophages and cultured human monocytes degraded both MAL-BSA and Ac-LDL. Both ligands were bound and degraded in a specific and saturable fashion. Specificity of degradation was tested using excess MAL-BSA and Ac-LDL, polyanionic compounds, and alpha-casein as inhibitors. Alveolar macrophages utilized the classical scavenger receptor pathway to degrade MAL-BSA and Ac-LDL. In contrast, cultured monocytes utilized two receptor pathways to degrade MAL-BSA: the classical scavenger receptor pathway and a secondary alpha-casein-inhibitable pathway. These results demonstrate differences in the activities of receptor systems in cultured monocytes compared to alveolar macrophages.
Article
Because of positive and negative selection to molecules of the major histocompatibility complex (MHC), only a small proportion of the massive numbers of T cells generated in the thymus are selected for export. Immature thymocytes have a rapid turnover, and it has long been assumed that most thymocytes die in situ, presumably from apoptosis. This has yet to be proved, however, and conventional staining techniques have shown only minimal evidence of cell death in the normal thymus. Using a method for detecting cells with DNA strand breaks, we now present direct evidence for apoptosis in the normal thymus. In sections of thymus from adult mice, apoptotic cells are scattered throughout the cortex and are engulfed locally by F4/80+ macrophages. Apoptosis in the thymic cortex is not reduced in MHC-deficient mice, which suggests that T-cell death is primarily a reflection of lack of positive selection rather than negative selection. Direct evidence for apoptosis due to negative selection was obtained by crossing a V beta 5 transgenic line to I-E+ and I-E- mice: I-E+ mice are known to eliminate V beta 5+ T cells in the thymus whereas I-E- mice do not. In marked contrast to I-E- mice, the medulla of I-E+ V beta 5 transgenic mice contains dense aggregates of apoptotic cells; these cells are engulfed by a distinct population of F4/80- MAC-3+ macrophages. Negative selection of V beta 5+ cells is thus restricted to the medulla.
Article
Primitive macrophages first develop in the murine and human yolk sac and then differentiate into fetal macrophages. Primitive or fetal macrophages enter the blood stream and migrate into the fetal liver. Fetal macrophages possess a high proliferative capacity and express antigens and peroxidase activity of resident macrophages with the progress of gestation; they become mature and then transform into Kupffer cells. In contrast, myelopoiesis and monocytopoiesis are not active in yolk sac hematopoiesis and in the early stages of hepatic hematopoiesis. Precursor cells of primitive or fetal macrophages exist and granulocyte/macrophage colony-forming cells develop in the yolk sac and in the early stages of fetal liver development, whereas macrophage colony-forming cells emerge and increase later in fetal liver development. In vitro, similar colonies were formed from each fetal hematopoietic cell in the presence of different macrophage growth factors. During culturing of the yolk sac cells and hepatic hematopoietic cells on a monolayer of mouse stromal cell line, ST2, primitive or fetal macrophage colonies developed before the formation of monocyte colonies, suggesting the existence of a direct pathway of differentiation from primitive macrophages into fetal macrophages during ontogeny. In severely monocytopenic mice induced by the administration of strontium-89, Kupffer cells have a proliferative capacity and are maintained by self-renewal. In macrophage colony-stimulating factor (M-CSF)-deficient (op/op) mice, the number of Kupffer cells is reduced, and they are characterized by immature morphology and a proliferative potential similar to that of primitive or fetal macrophages during ontogeny. Immediately after the administration of M-CSF to op/op mice, Kupffer cells start proliferating and become mature. This finding indicates that M-CSF plays an important role in the differentiation and proliferation of Kupffer cells.