ArticlePDF Available

Discovery of outburst deposits induced by the Xuelongnang Paleolandslide-dammed lake in the Upper Jinsha River, China and its environmental and hazard significance

Authors:

Abstract and Figures

A distinct damming incident occurred at the prehistoric period (Late Holocene) in the upper Jinsha River in the Mangkang County, Xi Zang Province, China. The volume of the dammed lake is about 3.1×108 m3. The dammed lake breached and caused a big outburst flood at about 1117 A.D. We can infer that the paleoseismics induced major landslide may be the direct cause triggering the river damming. In the range between the downstream side of the ancient dam body to its downstream 3.5 km, abundence of diamicton consisting of gravels, sands and minor silts and clays was discovered. The sedimental structure of the dam break-outburst sediments includes gravel support-stacked structure, gravel imbricate structure and matrix structure, etc. Besides, it has a special sedimental structure: rhythmites interbedded structure composed of coarser gravel layer and finer sand and gravel layer, no sand lens is formed in the layers. This special structure can be an important origin criteria of the dam break-outburst sediments. Based on back analysis using the hydraulic model, the average flow rate velocity of the outburst flood is 7.48 m/s and the maximum peak discharge is 10786 m3/s. The research on the sedimentary features and its environment of the dam break-outburst sediments can not only be served to help revealing the process and mechanism of ancient flood incidents, but also be significant of knowing of the environmetal evolution in the upper Jinsha River area.
Content may be subject to copyright.
文章编号1000-0550201502-0275-10 doi10.14027 / j. cnki.cjxb. 2015.02.007
国家自然科学基金重点项目批准号41230743与国家自然科学基金青年科学基金项目批准号40901005联合资助
收稿日期2014-03-04收修改稿日期2014-06-16
金沙江上游雪隆囊古滑坡堰塞湖溃坝堆积体的发现
及其环境与灾害意义
1崔之久2
1.国地质大北京工程技术学院 北京 1000832.北京大学城市与环境学院 100871
摘要西藏芒康县金沙江上游雪隆囊河谷史前时期全新世晚期发生了一次明显的堰塞事件
形成了一个湖水体
积约 3.1×108m3的大型堰该堰塞湖形成后期发生溃决并引发异常大洪水
这一溃决事件发生在大约 1 117
A.D
地震诱发山体滑坡可能是金沙江发生堰塞的直接原因在雪隆囊古堰塞坝体的下游一侧到其下游 3.5 km 的范
围内
发现大量由砾石
砂和少量黏土组成的混杂堆积体
判定其为滑坡堰塞湖的溃坝堆积
是滑坡坝体及上游河床
物质在坝体溃决后快速堆积形成整套溃坝堆积体具有支撑叠置构造
叠瓦构造和杂基构造等沉积特征
还具
一种特殊的沉积构造即在垂向剖面上发育粗砾石层与细砂砾层的韵律互层
但剖面中缺少砾或砂的透镜体这种
沉积构造
互层构造是溃坝堆积相区别于冲洪积相
泥石流相等的一种重要判别标志采用水力学模型反演
定雪隆囊古滑坡堰塞湖溃决洪水的平均流速为 7.48 m / s
最大洪峰流量为 10 786 m3/ s雪隆囊溃坝堆积体沉积特征
及其环境的研究
不但有助于揭示古洪水事件发生的过程和机制
同时对于认识金沙江上游地区的环境演变也具有
重要意义
关键词 滑坡堰塞湖 溃坝堆积 沉积特征 古洪水 金沙江上游
第一作者简介 陈剑男1975 年出生 副教授 工程地质与地质灾害 E-mailjianchen@ cugb.edu.cn
中图分类号 P642 文献标识码 A
0引言
自然过程中可以形成不同种类的天然堰塞湖
括滑坡堰塞湖通常由崩塌
滑坡或泥石流共同堰塞
河道形成
此外也有冰川堰塞湖
冰碛堰塞湖及火
山堰塞湖等类型
其中以滑坡堰塞湖最为常见在青
藏高原东缘高山峡谷区
受活动断裂及强烈地震的影
大型滑坡
崩塌
泥石流等广泛发育
且易堵塞河
流形成堰塞湖滑坡坝由于是快速堆积形成
其坝体
结构一般较为松散
因此往往容易产生溃决滑坡堰
塞湖的溃坝堆积作为一种物质记录
蕴含了丰富的地
质地貌信息
成为认识滑坡堰塞湖溃坝过程与山地环
境演变规律的重要途径
对于有效防治地质灾害具有
要的指导作用1根据混杂堆积的沉积学定
2粒径范围
无分选或弱分选
粒物质填充在粗粒间隙或粗粒物质悬浮在细粒基质
中的陆缘碎屑沉积物
按照上述定义
滑坡堰塞湖的
溃坝堆积物应属于杂堆近年来我国在混杂堆
积方面的研究已经取得了一些重要成果1-7
研究对
象则主要以泥石流堆积物和冰碛物等为主然而
前关于滑坡堰塞湖溃坝堆积方面的研究基本缺乏
从发表的论文成果看
国内外均侧重于对冰川坝溃决
和冰碛坝溃决水文和灾害方面的报导8-18但这些
报导中基本未涉及或很少涉及滑坡坝溃坝的沉积特
征及其环境的研究据崔之久等20131的初步研
滑坡坝的溃决堆积不同于山区洪流或河流堆积
也不同于冲积扇的各亚相特征
更不同于作为两相流
的泥石流堆积
这是一种全新的沉积类型
很值得关
本文作者在金沙江上游进行野外考察时
在西藏
芒康县雪隆囊河谷一带发现了约 3.5 km 长的天然溃
坝堆积体
其发育规模实属罕见本文将对该天然溃
坝堆积体的发现及其存在证据进行详细报导
并对雪
隆囊古滑坡堰塞湖溃坝堆积体的沉积特征及其古洪
水事件进行分析和讨论
1区域地质地貌特征
晚新生代以来青藏高原东南缘阶段性隆升
河流
下切作用剧烈
金沙江上游形成了以峡谷为主要特征
33 2
2015 4沉积学报
ACTA SEDIMENTOLOGICA SINICA
Vol.33 No. 2
Apr.2015
的河谷地貌在金沙江上游雪隆囊至王大龙河段
床平均海拔高度在 2 300 m 以上
雪隆囊一带峡谷宽
100 200 m
沿江谷坡较陡
坡度约为 40°雪隆囊至
王大龙河谷地带属亚热带气
为干热型河谷
年降
水量仅 300 mm 左右
且降雨量主要集中在 6 10
雪隆囊峡谷所在地区新构造运动活跃
金沙江断裂带
的主断裂雄松苏哇龙活动断裂在其东部附近穿过
1沿江河谷裸露岩石的岩性主要为二叠纪的
片岩
火山岩及大理该区岩层节理较发育
理风化作用强烈
加之受金沙江活动断裂带的影响
河谷沿岸滑坡
崩塌现象十分发育19
1研究区示意图
a.研究区位置b金沙江上游雪隆囊王大龙河段地质图
Fig.1 Schematic diagram of the study area
a.Geographic location of the study areab.Geological map of the
Xuelongnang-Wangdalong reach of the upper Jinsha River
2雪隆囊古滑坡堰塞湖及溃坝堆积体
的证据
堰塞坝与上游堰塞湖沉积及下游溃坝堆积构成
三位一体如果能找到这种沉积组合
则为溃坝堆积
体的存在提供了最直接的证据
21古滑坡堰塞湖的沉积证据
野外调查发现
在西藏芒康县境内的金沙江上游
西岸雪隆囊河谷附近
存在一大型滑坡体西岸残留
滑坡坝体长约 700 m
宽约 600 m
坝体前缘相对高差
84 m2ab滑坡坝体的物质由砾石
砂和少
量黏土组成的混杂堆积物组成
砾石碎屑为单一的灰
褐色
其中直径最大者可达 3 4 m
基岩斜坡上发现一处松散砾石堆积体2c
积体顶部高出现今金沙江水面约 100 m
其体积约为
1.5×104m3该堆积体物质为灰褐色片岩组成的砾
石碎屑
与西岸的滑坡体物质相一致
表明其为过江
滑坡体的残留堆积整个古滑坡体的原始体积估计
约为 4.1×107m3滑坡体出露位置的河段十分狭窄
易形成急流叠
有多个巨砾堆积于河床砾
滩之上或形成心滩
最大直径可达 5 6 m
且砾石分
选差
显然为滑坡坝溃决后的坝体残留堆积
层理十分发育的粉砂黏土湖相沉积直接覆盖在
西岸滑坡坝体的上游坡面上2b
3a
厚度 1
2 m
海拔高程约2 425 m
其底部层理呈倾斜状
与滑
坡坝体的坡面基本平行
湖相沉积层中常见夹含有掉
入的崩塌块石滑坡坝靠上游一侧的大拐弯处
湖相
沉积厚度最大
湖相层呈台阶状
最大厚度约 30
m距东岸残留滑坡堆积体的上游约 150 m 的谷坡
发现有水平层理发育的粉砂黏土层湖相沉
出露厚度 3 5 m
海拔高程约 2 427 m从滑坡
坝至距其约16 km 的上游河段范围看来
湖相沉积呈
平台状几乎连续分布于金沙江两岸的谷坡或者
侵蚀阶地上3b
从湖相沉积物的空间分布上可
以看出古湖的湖形狭位于滑坡坝体上游 9.5 km
处的湖相沉积物度约 20 m
海拔高程约 2 426 m
湖相层中夹含有数层泥石流透镜体
反映了古湖易受
两侧山坡的泥石流堆积影响在距滑坡坝体上游 16
km 处的回水尾端
湖相沉积厚度仅为3 5 m
顶部海
拔高程约2 425 m整套湖相沉积向上游延伸其厚度
逐渐变小
其顶部海拔高程相近
与堰塞湖沉积特征
一致综合湖相沉积物与滑坡坝体的接触关系
沉积
物的空间分布及其厚度的变化等特征
可以确认该套
湖相沉积为一套滑坡堰塞湖沉积
表明雪隆囊滑坡曾
经形成滑坡坝并堰塞金沙江
22古溃坝堆积体的沉积证据
从金沙江雪隆囊古滑坡坝下游一侧至其下游
672 33
2雪隆囊滑坡坝的地貌形态及堆积特征
a.隆囊滑坡坝体的纵剖面图b. 西岸雪隆囊残留滑坡坝体及上游侧湖相沉积c.东岸对岸残留的滑坡堆积体
Fig.2 Landform and sedimentary features of the Xuelongnang landslide dam
a.longitudinal section of the Xuerongnang landslide damb. relict landslide dam deposits at the west bank and
lacustrine deposits at the upstream sidec. relict landslide debris at the eastern bank
3雪隆囊滑坡堰塞湖沉积特征
a.西岸覆盖在雪隆囊滑坡坝体上的堰塞湖沉积b西岸上游侧厚层湖相沉积剖面
Fig.3 Sedimentary features of the Xuelongnang landslide-dammed lake
a. dammed-lake deposits overlying the landslide dam body at the west bankb. sedimentary section at the upstream of west bank
3.5 km 的河
在河流两侧均发现有成因不明的混
杂堆积
有的出露于谷坡基岩之上貌似
河流阶
有的出露于河床的两侧貌似高
河漫滩
在垂
向上堆积体的分布则可分 3个不同的高度为了
便于描述
我们对 6处混杂堆体进编号
4其中号堆积体位于西岸滑坡坝的下游
一侧
海拔高 2 394 m
最大厚度约 15 m
5 号堆积体出露于东岸谷坡基岩之上
海拔
高程约2 420 m
号堆积体位于现代河床的
两侧
海拔高程为2 373 2 363 m
堆积体顶部仅高出
772
2 剑等金沙江上游雪隆囊古滑坡堰塞湖溃坝堆积体的发现及其环境与灾害意义
现今河水位约 2 5 m从几处堆积体的发育位置来
堆积体的周围无大的支沟出现
表明堆积体的物
源与支沟并无太大的关系从砾石碎屑的岩性上看
混杂堆积体上游段部分为单一的灰褐色片岩
与滑坡
坝体的砾石碎屑岩性基本一致
反映滑坡坝体的堆积
物可能是其下游混杂堆积体的重要物质来源母体
混杂堆积体靠近滑坡坝体的位置大小砾石混杂
分选
很差
多为棱角状
可见最大长轴约5 m 的巨砾
砾石
形成支撑叠置构造或杂基构造6ab
反映一
种砾石快速堆积的运动过程砾石堆积层之上可见
覆盖约 30 50 cm 厚的灰色细砂层
推测为回水堆积
标志着早期的水位落差6c中游段和下游段
岩性相对复杂
主要有片岩
花岗岩
大理岩
砂岩等
砾石有一定磨圆
呈次棱角次磨圆状中游的砾石
最大长轴约为 0.7 m
下游砾石最大长轴约为 0.3 m
沉积构造表现为叠瓦构
砾石长轴与扁平面倾向基
本垂直
砾石扁平面倾向上游
倾角为 30°45°
号混杂堆积体紧邻滑坡坝的下游一侧
其规模
最大
沉积特征亦最为典型该堆积体长约1.7 km
面形态上呈一长条
吊坠状4
6d
即堆积体
上游段较宽最宽处约 250 m
下游段较窄宽度约
80 m号混杂堆积体的厚度变化看
靠近滑坡
坝体的上段厚度约13 15 m
堆积剖面中夹含一层约
5米厚的粉质黏土层6c
其层理倾斜
与下伏的
混杂砾石层顶部倾面平该套粉质黏土层可能
来自上游一侧的原湖相沉积层
这是溃坝堆积最直接
的证据号混杂堆积层往河流下游方向逐渐变薄
下游段厚度约 4 5 m该堆积体的运动方向与金沙
江干流流向基本一致
整套堆积体的砾石碎屑粒径自
上游至下游呈逐渐变小趋势
在这些堆积体的上游段见有发育一种特殊的沉
积构造堆积体剖面发育粗粒层砾石层与细粒层
4雪隆囊滑坡堰塞湖溃坝堆积体的分布范围
Fig.4 Distribution of the outburst deposits induced by the Xuelongnang landslide-dammed lake
5雪隆囊滑坡坝
上游侧湖相沉积及下游侧溃坝堆积的横剖面图
Fig.5 Transverse section showing the association of the Xuelongnang landslide-dam deposits
lacustrine deposits and dam break-outburst deposits
872 33
6溃坝堆积体的沉积特征
a.堆积体上游的砾石支撑叠置构造b. 号堆积体上游段的砾石杂基构造c.号堆积体混杂砾石层中夹含粉质黏土层和上覆砂
d.下游看号堆积体平面呈
吊坠状e. 号堆积体上段的粗粒层与细粒层形成韵律互层
Fig.6 Sedimetary features of the outburst deposits
a. gravel support-stacked structure of Accumulation at the upstream sectionb. matrix structure of Accumulation at the upstream sectionc. intercala-
ted silty clay layer in the diamicton of Accumulation and its overlying sand layerd. pendant shape of outbust deposits Accumulation in plan view
e. rhythmites interbedded structure composed of coarser gravel layer and finer sand and gravel layer Accumulation at the upstream section
砂砾层的韵律互层6e
一粗一细
剖面中缺
少砾或砂的透镜体
互层层理面微倾向下游粗粒层
呈现类似稀性泥石流堆积特征
如具有支撑叠置构
叠瓦构造和杂基构造细粒层具块体构造
基本没
有分选从全剖面的宏观特征看整套堆积体表现为
流水堆积
有大规模粗糙的分选机制从细观特征看
其又具有泥石流堆积特征
大小混杂
反映堆积过程
快速杂乱这种特殊的沉积构造唯有
溃坝堆积
释最为合理
即多层次砾石层互层产生的原因是由于
溃坝时的洪峰所致
一次洪峰代表一个旋回
据砾石
层与砂砾层的旋回次数可以判断溃坝造成的洪峰次
由此推断雪隆囊滑坡堰塞湖的溃坝洪峰至少达
10 综合上研究
可以判定该套混杂堆积体是
一套古滑坡堰塞湖溃坝堆积
号混杂堆积体的上游段
共采集粗粒层和细
粒层的 8个粒度样品
以了解溃坝堆积的粒度特征
8个样品的粒度频率曲线和概率曲线分别如图 7a
7b 所示从粒度频率曲线来看
粗粒
元均表现为多峰型
由一个主峰和两个低矮的次峰组
主峰粒径分布6 4
次峰粒径的别分
2 0 3 4 概率累积曲线表现为上凸型
也反映了源区以砾石为主要成分的碎屑特征
972
2 剑等金沙江上游雪隆囊古滑坡堰塞湖溃坝堆积体的发现及其环境与灾害意义
7溃坝堆积的粒度频率曲线a和概率累积曲线b
Fig.7 Frequency aand accumulated probability bcurves of the grain size samples from the outburst deposits
1光释光样品年龄测定及其参数值
Table 1 OSL dating results of lake deposit samples
样品编号 采样地点 U / ppm Th / ppm K / % 含水量/% 剂量率/ Gy / ka 等效剂量/Gy 年龄/ ka
WDL8-1 上游湖相层下部 2.09 9.75 2.01 2.0 7.01±0.34 3.93±0.16 1. 0.1
WDL8-2 上游湖相层底部 1.97 8.79 1.55 2.0 7.43±0.41 3.33.3± 0.13 2.2±0.1
3雪隆囊古滑坡堰塞湖溃决事件的发
生年代
从坝体上游的湖相沉覆盖级侵蚀阶地之
上以及下游溃坝堆积体仅高出现今河水位约 2 5 m
看来
可以推断雪隆囊滑坡堰塞湖及溃决洪水的发生
时间应在全新世晚期
在滑坡坝上游侧堰塞湖粉质黏土湖相地层中
获得两个光释光年代样
经中国地质科学院水文地质
环境地质研究所释光实验室测定结果分别为 1.8±0.1
ka 2.2±0.1 ka 1
在滑坡坝下游侧溃
坝堆积体顶部上覆砂层中获得一个古木已炭化
代样 WDL6-1
古木样品经北京大学考古文博学院碳
十四实验室测试和树木年轮校正
结果为 1 044
1 190 A.D.P=0.93
中间值为 1 117 A.D.
样品 WDL8-1 WDL8-2 采自堰塞湖沉积的下
部位置
代表了堰塞湖开始淤积的年龄WDL6-1
表了堰塞湖的溃坝堆积年龄
即雪隆囊古滑坡堰塞湖
溃决事件发生的上限时间约为 1 117 A.D.
4讨论
4.1 雪隆囊古堰塞事件的原因分析
雪隆囊古堰塞湖是由山体滑坡堵塞金沙江而形
那么是什么原因引发了山体滑坡呢通过调查研
我们推断地震应该是雪隆囊堰塞事件发生的触发
原因
1雪隆囊西岸斜坡为斜交坡
自然情况下比较
稳定出露岩性主要为二叠系片岩
胶结良好
坚硬
致密发育两组节理
一组节理的产状为 120° /
60°
与坡面倾向斜交另一组节理的产状为 215° /
42°
与坡面倾向相反因此
从节理的力学性质及
产状特征看
斜坡稳性好
节理对西岸大型滑坡的
影响很小
2雪隆囊所在地区属温带半干旱气候
降雨量
稀少
年平均降水量小于 400 mm大量的古气候记
录表明
青藏高原及其邻区的水汽主要来源于印度
西南季风对青藏高原及其邻区的气候和环境有着
重要的影响20-30金沙江上游地区处于西南季风的
覆盖区
由孟加拉湾带来的暖湿水汽沿东喜马拉雅
横断山脉侵入青藏高原东南部后首先达到该区
沙江上游地区在 11 5 kyr B. P. 期间气候相对暖湿
大约 3.8 kyr B. P 以后气温
降水量明显下降30-31
全新世晚期以来雪隆囊地区属于西南季风明显减弱
时期
降水量很小
气候干旱因此
该区由于降水诱
发大型岩质滑坡形成堰塞湖的可能性小
3雪隆囊所在地区具备发生强烈地震的地质
条件雪隆囊位于青藏高原东南缘
该区发育有金沙
江活动断裂带
地震活动频繁根据现有的地震历史
资料记录32
雪隆囊及邻近地区自 1722 年以来震级
大于 6级的地活动 7
最大震级为 7.5
该地震曾诱发滑坡塞河金沙江活动断裂带的
主断裂苏哇龙断裂从金沙江东侧穿过该
雪隆囊古滑坡在雄苏哇龙断裂的西侧附
表明雪隆囊大型古滑坡的发生很可能与该断裂的
082 33
活动有着密切关系Chen 19的研究
雪隆囊至
王大龙一带的河谷两岸大型古滑坡
古崩塌十分发
这些古滑坡和古崩塌沿着雄松苏哇龙活动断裂
走向呈线状密集分布并且已有的沉积学及年代学证
据表明
全新世晚期以来金沙江上游雪隆囊至王大龙
河段曾经有过多次古地震发生1933结合该区的区
域活动构造
古气候及滑坡年代学等进行综合分析
我们认为雪隆囊大型古滑坡应该是由地震诱发形成
42溃坝洪峰流量的估算
河流堰塞湖一般在湖水上涨漫过坝顶外溢后发
生溃决消亡
但有些堰塞湖在形成后可以长期地稳定
存在河流天然过程形成的堰塞湖的溃决通常都是
渐溃
而不是瞬时全溃
其消亡既可以通过一次溃决
过程34
也可以通过多次部分溃决完成35
些堰塞湖则不发生溃决而长期存在36
如四川叠溪
堰塞 1933 年形成以来一直保存至今已历时
80
从雪隆囊残留的塞坝2a
其顶部
边缘较为平缓
海拔高程约为2 460 m
坝体中间部分
的鞍部高程约为 2 458 m
两种基本一致因此该残
余坝体边缘的高程可以近似代表坝体的鞍部高程
堰塞湖的最高水位高程拔河 84 m从坝体上游东
岸堰塞湖沉积顶部 2 427 m高于现今金沙江
水面 51 m 看来
可以确定雪隆囊堰塞古湖在形成后
期发生了部分溃坝
且溃决口门深度约为 33 m
分溃决之后形成了水位高程约 2 427 m 的残余堰
塞湖
然后残余堰塞湖继续接受湖相沉积直至最后完
全溃决后从坝体下游的溃坝堆积号堆积
出露剖面5可以看出
溃坝堆积体中夹含了
一套约 5 m 后的粉质黏土湖相
下两套溃坝
堆积体的层理面倾角亦有明显的变化5
6c
表明从形成时间上溃坝堆积体可以分为两期以上
分析可以确定雪隆囊堰塞古湖在形成后至少发生了
两次溃坝或两次洪峰
从溃坝堆积体砾石的粒径大小
及搬运距离看来
初次溃坝堆积的规模最大
其溃坝
的洪峰流量也最大因此
本文重点对初次溃坝的洪
峰流量进行估算假设现今雪隆囊上游的地形与堰
塞湖形成之前
利用数字高程模型DEM
ArcGIS 软件可计算出堰塞湖形成后的最大水体为3.1
×108m3水位高程 2 460 m
残余堰塞湖水体为1.1×
108m3水位高程 2 427 m
则初次部分溃坝时的泄
洪总量约为 2.0×108m3
目前关于天然古滑坡堰塞湖的溃坝洪峰流量的
计算方法通常有两种一种是通过分析溃坝洪峰流量
与溃决形成的口门深度
排泄水量等之间的关系进行
拟合
得出经验回归方进行37-42
该方法的计
算结果误差往往较大另一种方法则是通过建立水力
学参数与水流能搬运的颗粒大小之间的关系式
对溃
坝洪峰流量进行反演计算10-12在获得准确水力学
参数的条件下
采用水力学模型反演计算溃坝的洪峰
流量其计算结果相对精确可靠本文采用水力学模
型对雪隆囊滑坡堰塞湖的初次溃坝洪峰流量进行计
采用 FD+FL=F10计算出雪隆囊滑坡堰塞湖
溃坝洪水的平均流速 V
河床流速Vb=2γsγfd1gμ
γfCL+CD
[ ]
051
洪水平均流速V
=12Vb2
式中 γs是砾石的密度实测取平均值2. 85 g /cm3
γf是水的密度取值 1 g / cm3d1是砾石中间轴的长度
m g是重力加速取值 9 .8 m / s2μ是砾石与河
床的静摩擦系数取值 0.7CL是洪水的升力系数取值
0.178CD是砾石与河床的修正平均阻力系数实测取
值为 1.2砾石粒径从距溃口距离 8 120 m 处分段测
最大粒径求平均值按公式1计算出洪水的河床
流速为 6.22 m / s按公式2计算出洪水的平均流速
7.48 m / s
采用曼宁公式10求出洪水的平均深度 D
D
=V
n
S
[ ]
153
式中 V
为洪水的平均流速n是河床的粗糙系数
取值为 0.04S是河床的坡率实测值为 0.005
可以计
算出洪水的平均深度为 8.68 m
采用公式4计算溃坝的最大洪峰流量
Qp=V
A4
式中 V
为洪水的平均流速A为溃口洪水形成的
断面面积以现今残留溃口的几何形状作为参考
西
岸坡度取 40°
东岸坡度取 70°野外测量确定溃口
底宽 159.4 m
顶宽 172.9 m
求得溃口的过水断面面
A1 442 m2按公式4计算出溃坝洪水最大流
量为 10 786 m3/ s据长江流域规划办公室竹巴龙水
文站的实测资料统计43
该河段常年平均流量约为
943 m3/ s由此说明
堰塞湖溃决形成的最大洪峰流
182
2 剑等金沙江上游雪隆囊古滑坡堰塞湖溃坝堆积体的发现及其环境与灾害意义
量约是常年流量的 10
当时可能发生的是万年一
遇的异常大洪水
5结论
我们在雪隆囊滑坡坝的下游发现的 6处混杂堆
积体
综合混杂堆积体中的物质组成
地貌结构和沉
积特征来看
可以判定这些混杂堆积是滑坡堰塞湖的
溃坝堆积物雪隆囊滑坡坝
坝体上游湖相沉积和坝
体下游溃坝堆积的这套完整沉积组合则为研究大型
滑坡堰塞湖溃坝洪水灾害的形成过程以及山地环境
演变提供了丰富的原型主要结论如下
1在全新世晚期金沙江上游雪隆囊河段发生
过一次明显的堰塞事件
形成了一个大型堰塞湖
水体积约 3.1×108m3结合该区的区域活动构造
古气候及滑坡年代学等综合分析
我们认为地震诱发
大型滑坡是导致这一堰塞事件发生的主要原因
塞湖形成后大约在 1 117 A.D.发生了一次大溃坝
形成了十分罕见的异常大洪水
2在雪隆囊滑坡坝体下游发育的几处混杂堆
积体为溃坝堆积
是由坝体及上游河床物质在坝体溃
决后快速堆而成溃坝堆积体除了具有支撑
置构造
叠瓦构造和杂基构造等沉积特征外
还具有
一种特殊的沉积
互层构造即在垂向剖
面发育粗粒层砾石层与细粒层砂砾层的韵律互
而中间缺少砾或砂的透镜体这种沉积构造可以
作为溃坝堆积相区别于冲洪积相
泥石流相等的一
种重要判别标志
3采用水力学模型反演确定雪隆囊古滑坡堰
塞湖部分溃坝的洪水平均流速为 7.48 m / s
最大洪
流量为 10 786 m3/s开展堰塞湖溃坝堆积体的研究
可以获得有关溃坝洪水的沉积学信息和水力学参数
加强堰塞湖溃坝堆积体的沉积学及水动力学机制方
面的研究
其对于认识滑坡堰塞湖溃坝洪水的演进过
程以及山地环境演变规律无疑具有重要意义
同时也
为现代重大地质灾害的预测预报和风险决策提供科
学依据
致谢 ( )
黎艳和刘丽娜等学参加工作
在此表示
感谢
参考文献References
1崔之久
葛道凯
关保德
混杂堆积与环境M石家庄河北科
学技术出版社20131-718.Cui ZhijiuGe DaokaiGuan Baodeet
al. Diamicton and Environment
M ShijiazhuangHebei Science and
Technology Press20131-718.
2崔之久论混杂堆积和混杂岩的成因判别原则与标志J地质论
1988344 369-376.Cui Zhijiu. Discussion on the discrimina-
tion principle and symbol of origin on the diamicton and diamictite
J
Geological Review1988344 369-376.
3谢又予
崔之久电子扫描镜下我国若干冰碛石英砂的表面特征
J198132 52-55.Xie YouyuCui Zhijiu. Some
surfacial characteristics of till quartz sand in China under electronic
scanning microscope
J Journal of Glaciology and Geocryology1981
32 52-55.
4方小敏
沈明智
牟昀智武都泥石流显微构造及其形成机制初探
J中国科学B 1991 2 205-215.Fang XiaominShen
MingzhiMou Yunzhi. Preliminary study on the microstructure and fo-
mation mechanism of the debris-flow deposits in Wudu areaJ Sci-
ence in China Seri. B 19912 205-215.
5邓养鑫冰碛转化为冰川泥石流堆积过程及其沉积特征J
学报199513 4 37-48.Deng Yangxin. Process of accumulation
and characteristics of glacial debris flow deposits transformed by mo-
raineJ Acta Sedimentologica Sinica1995134 37-48.
6崔之久
刘耕年
王晓辉
泥石流沉积与环境M北京海洋出
版社19961-192.Cui ZhijiuLiu GengnianWang Xiaohuiet al.
Debris-Flow Deposits and Their EnvironmentM BeijingChina O-
cean Press19961-192.
7崔之久
熊黑钢
刘耕年
中天山冰冻圈地貌过程与沉积特征
M石家庄河北科学技术出版社19981-305.Cui Zhijiu
Xiong HeigangLiu Gengnianet al. Landform Processes and Sedimen-
tary Features on the Cryosphere of the Central TianshanM Shiji-
azhuangHebei Science and Technology Press19981-305.
8 Baker V R. Paleohydrology and Sedimentology of Lake Missoula Flood-
ing in Eastern WashingtonM BoulderColoradoThe Geological So-
ciety of America197379.
9 Clayton LMoran S R. Chronology of late Wisconsinan glaciation in
middle North AmericaJ Quaternary Science Reviews198211
55-82.
10 Costa J E Paleohydraulic reconstruction of flash-flood peaks from
boulder deposits in the Colorado Front Range
J Geological Society
of American Bulletin1983948 986-1004.
11 Kehew A ELord M L. Origin and large-scale erosional features of
glacial-lake spillways in the northern Great Plains
J Geological So-
ciety of American Bulletin1986972 162-177.
12 Lord M LKehew A E. Sedimentology and paleohydrology of glacial-
lake outburst deposits in southeastern Saskatchewan and northwestern
North DakotaJ Geological Society of American Bulletin198799
5 663-673.
13 徐道明西藏波曲河冰湖溃决泥石流的形成与沉积特征J
川冻土198791 23-34.Xu Daoming. Characteristics of debris
flow caused by outburst of glacial lakes on the Boqu River in Xizang
ChinaJ Journal of Glaciology and Geocryology198791 23-
34.
14 徐道明
冯清冰川泥石流与冰湖溃决灾害研究J冰川冻
282 33
1988103 284-289.Xu DaomingFeng Qinghua. Studies on
catastrophes of glacial debris flow and glacial lake outburst flood in
ChinaJ Journal of Glaciology and Geocryology198810 3
284-289.
15 Cutler P MColgan P MMickelson D M. Sedimentologic evidence
for outburst floods from the Lauorentide Ice Sheet margin in Wiscon-
sinUSAImplications for tunnel-channel formationJ Quaternary
International2002901 23-40.
16 崔鹏
马东涛
陈宁生
冰湖溃决泥石流的形成
演化与减灾对
J第四纪研究2003236 621-627.Cui PengMa Dong-
taoChen Ningshenget al. The initiationmotion and mitigation of
debirs flow caused by glacial lake outburstJ Quaternary Sciences
2003236 621-627.
17 Benn D IOwen L AFinkel Cet al. Pleistocene lake outburst
floods and fan formation along the eastern Sierra NevadaCalifornia
implications for the interpretation of intermontane lacustrine records
J Quaternary Science Reviews20062521 / 22 2729-2748.
18 Korup OMontgomery D R. Tibetan plateau river incision inhibited by
glacial stabilization of the Tsangpo gorgeJ Nature2008455
7214 786-789.
19 Chen JDai F C T Yet al. Holocene landslide-dammed lake de-
posits in the Upper Jinsha RiverSE Tibetan Plateau and their ages
J Quaternary International2013298107-113.
20 Clemens SPrell WMurray Det al. Forcing mechanisms of the In-
dian Ocean monsoonJ Nature19913536346 720-725.
21 Lister G SKelts KZao C Ket al. Lake QinghaiChinaclosed -
basin like levels and the oxygen isotope record for ostracoda since the
latest PleistoceneJ PalaeogeographyPalaeoclimatologyPalaeo-
ecology1991841 / 2 /3 / 4 141-162.
22 Gasse FArnold MFontesJ Cet al. A 13000-year climate record
from western TibetJ Nature19913536346 742-745.
23 王苏明
王富葆全新世气候变化的湖泊记录M/ /施雅风
孔昭
王苏民
中国全新世大暖期气候与环境洋出
1992146-152.Wang SumingWang Fubao. The Limnological
record of Holocene fluctuationM/ /Shi YafengKong Zhaochen
Wang Suminet al. The Climates and Environments of Holocene
Megathermal in China. BeijingChina Ocean Press1992146-
152.
24 Wu Y HAndreas LJin Z Det al. Holocene climate development
on the central Tibetan PlateauA sedimentary record from Cuoe Lake
J PalaeogeographyPalaeoclimatologyPalaeoecology2006234
2 /4 328-340.
25 蒋雪中
王苏民
羊向东云南鹤庆盆 30ka 以来的古气候与环
境变迁J 199810 2 10-16. Jiang Xuezhong
Wang SuminYang Xiangdong. Paleoclimatic and environmental
changes over the last 30000 years in Heqing BasinYunnnan prov-
inceJ Journal of Lake Sciences1998102 10-16.
26 Hodell D ABrenner MKanfoush S Let al. P aleoclimate of south-
western China for the past 50000 yr inferred from lake sediment re-
cordsJ Quaternary Research1999523 369-380.
27 唐领余
沈才明
廖淦标
末次盛冰期以来西藏东南部的气候
变化西藏东南部的花粉记录J国科D 地球
2004345 436-442.Tang LingyuShen CaimingLiu Kam-
biuet al. Changes in South Asian monsoonNew high-resolution pa-
leoclimatic records from TibetChinaJ Science China Seri. D
Earth Sciences2004345 436-442.
28 Herzschuh U. Palaeo-moisture evolution in monsoonal Central Asia
during the last 50000 yearsJ Quaternary Science Reviews2006
251 / 2 163-178.
29 Chen F HYu Z CYang M Let al. Holocene moisture evolution in
arid central Asia and its out-of-phase relationship with Asian monsoon
historyJ Quaternary Science Reviews2008273 / 4 351-364.
30 唐领余
沈才明Liu Kanbin. 长江上游地区 18Ka 以来的植被与气
J世界科技研究与发展200022增刊 1-4.Tang Lingyu
Shen CaimingLiu Kanbin. Vegetation and climatic changes during
the last 18kabp in the upper reaches of the Yangtze River
J World
Research and Development of Science and Technology200022
Suppl. 1-4.
31 Chen JDai F CYao X Holocene debris-flow deposits and their im-
plications on the climate in the upper Jinsha River valleyChinaJ
Geomorphology2008933 / 4 493-500.
32 伍先国
蔡长星金沙江断裂带新活动和巴塘 6.5 级地震震中的
确定J 199215 4 401-410.Wu XianguoCai
Changxing. The neotectonic activity along the central segment of Jin-
shajiang fault zone and the epicentral determination of Batang M 6. 5
earthquake
J Journal of Seismological Research 199215 4
401-410.
33 Wang P FChen JDai F Cet al. Chronology of relict lake deposits
around the Suwalong paleolandslide in the upper Jinsha RiverSE Ti-
betan Plateauimplications to Holocene tectonic perturbationsJ
Geomorphology2014217193-203.
34 冯焱
夏毓常
陈愈炯雅砻江天然坝的溃坝洪水和溃坝过程J
水利发 199447 4 61-69.Feng YanXia Yuchang
Chen Yujiong. Dam-break flood and its process of the natural dam in
the Yalong RiverJ Journal of Hydroelectric Engineering199447
4 61-69.
35 王兰生
杨立铮
王小群
岷江叠溪古堰塞湖的发现J成都
理工大学学报自然科学2005321 1-11.Wang Lansheng
Yang LizhengWang Xiaoqunet al. Discovery of huge ancient
dammed lake on upstream of Minjiang River in SichuanChinaJ
Journal of Chengdu University of TechnologyScience Technology
Edition2005321 1-11.
36 聂高众
高建国
邓砚震诱的堰塞湖步研J四纪
研究200424 3 293-301.Nie GaozhongGao JianguoDeng
Yan. Preliminary study on earthquake-induced dammed lakeJ
Quaternary Sciences2004243 293-301.
37 Evans S G The maximum discharge of outburst floods caused by the
breaching of man-made and natural damsJ Canadian Geotechnical
Journal1986233 385-387.
38 Costa J ESchuster L. The formation and failure of natural dams
J Geological Society of America Bulletin19881007 1054-
1068.
382
2 剑等金沙江上游雪隆囊古滑坡堰塞湖溃坝堆积体的发现及其环境与灾害意义
39 Walder J SOConnor J E. Methods for predicting peak discharge of
floods caused by failure of natural and constructed earthen damsJ
Water Resources Research19973310 2337-2348.
40 Cenderelli D A. Floods from natural and artificial dam failuresM/ /
Wohl E E. Inland Flood HazardsHumanRiparianand Aquatic
Communities. New YorkCambridge University Press200073-
103.
41 Dai F CLee C FDeng J Het al The 1786 earthquake triggered
landslide dam and subsequent dam-break flood on the Dadu River
southwestern ChinaJ Geomorphology2005653 / 4 205-221.
42 吴庆龙
张培震
张会平
黄河上游积石峡古地震堰塞溃决事
件与喇家遗址异常古洪水灾害J中国科学D 球科
200939 8 1148-1159.Wu QinglongZhang PeizhenZhang
Huipinget al. A palaeo-earthquake induced damming and bursting
of Yellow River and the abnormal flood that destroyed Lajia relicJ
Science China Seri D Earth Sciences200939 8 1148-
1159.
43 四川省巴塘县志编纂委员会巴塘县志M成都四川民族出版
19911-555.Sichuan County Annals Compilation Commission.
Batang County AnnalsM ChengduSichuan National Publishing
House19911-555.
Discovery of Outburst Deposits Induced by the Xuelongnang
Paleolandslide-Dammed Lake in the Upper Jinsha River
China and Its Environmental and Hazard Significance
CHEN Jian1CUI ZhiJiu2
1 School of Engineering and TechnologyChina University of GeosciencesBeijing Beijing 100083
2 College of Urban and Environmental SciencesBeijing UniversityBeijing 100871
AbstractA distinct damming incident occurred at the prehistoric periodLate Holocenein the upper Jinsha River
in the Mangkang CountyXizang provinceChina. The volume of the dammed lake is about 3.1×108m3 The dammed
lake breached and caused a big outburst flood at about 1 117 A.D We can infer that the paleoseismics induced major
landslide may be the direct cause triggering the river damming. In the range between the downstream side of the
ancient dam body to its downstream 3.5 kmabundance of diamicton consisting of gravelssands and minor silts and
clays was discovered. The sedimental structure of the dam break-outburst sediments includes gravel support-stacked
structuregravel imbricate structure and matrix structureand so on. Besidesit has a special sedimental structure
rhythmites interbedded structure composed of coarser gravel layer and finer sand and gravel layerno sand lens are
formed in the layers. This special structure can be an important origin criteria of the dam break-outburst sediments.
Based on back analysis using the hydraulic modelthe average flow rate velocity of the outburst flood is 7.48 m / s and
the maximum peak discharge is 10 786 m3/s. The research on the sedimentary features and its environment of the dam
break-outburst sediments can not only be served to help revealing the process and mechanism of ancient flood inci-
dentsbut also be significant of knowing the environmetal evolution in the upper Jinsha River area.
Key wordslandslide-dammed lakedam break-outburst sedimentssedimentary featuresancient floodthe upper
Jinsha River
482 33
... (3) Formation Mechanism Dammed lake deposits are from lakes formed by dammed or regional subsidence (fault depression or depression) due to the river flowing through the area. For example, the Xuelongnang and Temi dammed paleolakes in the upper reaches of the Jinsha River were probably formed by large landslides triggered by seismic activity in the area (Chen and Cui, 2015;Chen J. et al., 2021). The dammed paleolakes in the Benzilan-Qiaojia section of the Jinsha River are mostly formed by landslides or glacial deposits blocking the Jinsha River (Zhang et al., 2020). ...
... For example, the Xuenongnang dammed paleolake on the upper reaches of the Jinsha River was formed by an earthquake-induced landslide. After the dam broke, the depositions were distributed within a range of 3.5 km from the downstream side (Chen and Cui, 2015). Additionally, disaster deposits exist in the form of accumulation predominantly along riverbanks as a result of the deep river cutting. ...
... The strong tectonic activity of the Dadu River Basin resulted in frequent large-scale landslides, consequently a large volume of paleo-landslide deposits remains in the Dadu River basin today . The Xuelongnang and Temi dammed paleolakes in the upper reaches of the Jinsha River were probably formed by largescale landslides triggered and blocked by paleo-seismic activity in this area (Chen and Cui, 2015;Chen Y. et al., 2021). The age of the existing geological disaster deposits is mainly in the 20-30 Ka range, which is in the glacial peak of the last glacial period. ...
Article
Full-text available
The distribution, scale, and engineering geological characteristics of riverbed overburden have become one of the key issues in the construction of water conservancy and hydropower engineering projects in southwest China. In this study, we summarize and discuss the (variation of thickness) distribution and the geogenic (formation) mechanisms of riverbed overburden in the associated rivers. This was done by compiling thickness data from constructed and planned dams. The results show that the overburden thickness is generally shallower in the upper Tibetan Plateau region, it is thickest in the marginal mountain region in the middle reaches, and shallower in the lower reaches of the mountain regions that are in contact with the Yunnan-Guizhou Plateau or Sichuan Basin. This holds true with the shallow-thick-shallow Distribution Law. Additionally, the river overburden has the characteristic of thickening gradually from the basin edge to the plateau slope. Through the genesis, source, and distribution of the aggradation deposits in the riverbed, the geogenic (formation) mechanisms of the river overburden layer is explored, and the coupling effect of tectonic-climatic-fluvial sedimentation processes on the variation of overburden thickness and spatial distribution is proposed. Finally, the geological problems encountered when engineering dams in thick overburden are analyzed, and common engineering measures are put forward. The results provide basic data support for water resources exploitation and further development of river engineering in Southwest China.
... In this basin, AMFs are usually caused by seasonal, monsoonal precipitation, which normally falls between June and October (Wu et al., 2020). However, the Jinsha River has been frequently blocked by landslide or debris flow during the Holocene, due to the active surface processes and tectonic movements that have occurred in the Hengduan Mountains area (Table S1, Chen et al., 2008Chen et al., , 2013Chen et al., , 2018Wang et al., 2014Wang et al., , 2021Chen and Cui, 2015;Hu et al., 2021;Li et al., 2022;Yan et al., 2022;Zhang et al., 2022). The probability of geological hazards occurring in alpine mountain regions will only grow with global warming Pei et al., 2023). ...
... As shown in Fig. 1a, several Holocene landslide or debris flow dammed lakes are present in the middle-upper Jinsha River region. The ages of Holocene lacustrine sediments located in this area are compiled in Table S1 and illustrated in Fig. S11 (Chen et al., 2008(Chen et al., , 2013Wang et al., 2014Wang et al., , 2021Chen and Cui, 2015;Hu et al., 2021;Li et al., 2022;Yan et al., 2022;Zhang et al., 2022). The majority of these ages cluster around 0-3 ka, exhibiting multiple peaks, indicative of frequent river blockages during the late Holocene. ...
... Barrier dam, upstream lacustrine sediments and downstream outburst deposits constitute a trinity of sedimentary assemblages, which is the most direct evidence for identifying paleo-dammed lakes (Chen and Cui, 2015). In Yinduba and its upstream and downstream, relict paleolandslide dam, lacustrine sediments and outburst deposits were found ( Figure 2). ...
... Outburst deposits B is 7 m thick and 80 m long, and is composed of cyclical superposition of coarser gravel layer and finer gravel and sand layer ( Figure 5C). This special rhythmite-interbedded structure also appears in the outburst deposits of other PDLs (e.g., Chen and Cui, 2015;Chen et al., 2018;Ma et al., 2018). ...
Article
Full-text available
Based on field investigation, optically stimulated luminescence (OSL) dating and sedimentary analyses, this research shows that the Yinduba paleolandslide-dammed lake (PDL) was formed by a catastrophic rock avalanche damming Jinsha River before 74 ka ago. According to the blocked ancient riverbed, the lake depth was determined about 110 m and the corresponding lake length was about 22 km when the lake level reached the peak. Geomorphologic features of lacustrine terraces at Yinduba and river terraces on the residual dam body and OSL dating results indicate that Yinduba PDL is a dammed lake with multi-stage outbursts. Following the peak, due to the multi-stage breaching of the dam body, the lake level experienced two major drops until the dam breached entirely after 36 ka. The large dam size, special sedimentary structure, and semi-arid climate contribute to the long life of Yinduba PDL, which existed for approximately 38,000 years from its formation to its extinction. This study supports the possibility of a large landslide-dammed lake having the life span of up to tens of millennia, and provides new evidence regarding the evolutionary history of a dammed lake.
... For an ancient river blocking event, there are many pertinent research methods. A method called the "trinity" combination of residual landslide dams, upstream lacustrine sediments and downstream break-outburst sediments has been proposed [2,22]. In short, the fact that the river is blocked has basically reached a consensus and the method is reliably suitable for landslide dams as classified by Costa and Schuster [23]. ...
... The dam break-outburst sediment is also one record of a landslide dammed lake, and it is also an important way to understand the dam-break process, which is usually difficult to find in an old river blocking event. According to the particle size of dam break-outburst sediments, the flood parameters at that time can be obtained by back analysis [22,24]. Furthermore, reasonable analysis of dam break-outburst sediments can also be made to determine the sequence of river blocking events. ...
Article
Full-text available
The temporary or permanent river blocking event caused by mass movement usually occurs on steep terrain. With the increase of mountain population and land use pressure and the construction of water conservancy and hydropower projects, river blocking events have gradually attracted people’s attention and understanding. The area in this study is affected by strong tectonic activity in the Jinsha River suture zone and the rapid uplift of the Tibetan Plateau. In the past 6000 years, there have been at least five obvious river blocking events in the reach. The number and density are very rare. Combining field investigation, indoor interpretation, laboratory tests, optically stimulated luminescence (OSL) dating, SBAS-InSAR and previous studies, multidisciplinary approaches are used to systematically summarize the analysis methods and further the understanding of one river blocking event and multiple river blocking events from different perspectives. Especially in multiple river blocking events, we can get the wrong results if interaction is not considered. Through this study, the general method of analyzing the river blocking event and the problems that should be paid attention to in sampling are given, and relatively reliable historical results of river blocking events are obtained. This method has applicability to the identification and analysis of river blocking events and age determination of dams with multiple river blockages.
... Earthquakes, glacier surging and narrow, deep valleys have provided favorable conditions for large-scale river damming events (Restrepo et al., 2009;Korup et al., 2010). Recent studies have shown that there have been many river blocking events related to glaciers, landslides and debris flows in this area since the Late Pleistocene, with profound effects on the development of the Yarlung Tsangpo River and its major tributaries, the Yigong and Parlung Tsangpo rivers (Shang et al., 2003;Montgomery et al., 2004;Cheng et al., 2005a;Korup and Montgomery, 2008;Larsen and Montgomery, 2012;Chen and Cui, 2015;Delaney and Evans, 2015). Huge, stable deposits of lacustrine-fluvial sediments from dammed paleolakes record glacial advances and tectonic uplift in the NBS region, and the duration of any blockages (Wang et al., 2014;Liu et al., 2015). ...
... (Chen and Cui, 2015;Ma et al., 2018). ...
Article
Late Quaternary river blockage events in the mountainous regions of the southeastern Tibetan Plateau, characterized by steep topographies and deeply-incised valleys, have commonly been triggered by tectonic and glacial activity. In this study, we described the geomorphological and sedimentological characteristics of a fluvial-lacustrine sedimentary sequence belonging to a dammed paleolake that formed along the Dongjiu River at the terminus of the Lulang Fault, on the western boundary of the Namche Barwa Syntaxis. Eight main lithofacies associations are proposed that represent four main paleoenvironments: a distal lacustrine environment, i.e. representing a lake distal environment; a lake margin environment; an ice-contact lacustrine environment; and a fluvial environment. ¹⁴C and OSL dating results indicate that the paleolake formed at least between ~7.1–3.6 ka. The paleolake covered ~2.27 km² and contained a water volume of ~0.09 km³, with the water surface lying at an altitude of 2590 m above sea level (asl). The soft-sediment deformations induced by a paleoseismic event in the environs of the Lulang River nearby during the early Holocene, synchronous with the rock avalanche which dammed the Dongjiu River. We would therefore suggest that such a damming event might have been triggered by a paleoearthquake. Steepness index analysis of longitudinal profiles indicates that the paleodam caused by a landslide across the Dongjiu River was unable to preserve the stability of knickpoint, a migration that can potentially be related to a high river erosion rate.
... A better knowledge of sediment storage may significantly improve process modeling and the understanding of glacierrelated hazards (Otto et al., 2008;Sattler et al., 2011;Chang et al., 2011;Chen and cui, 2015;Jiang et al., 2021). More detailed information concerning the volumes of potentially mobilized sediments is required, especially in densely populated mountainous regions that are vulnerable to natural hazards , Chen et al., 2018Li et al., 2021;Cui et al. 2021;Guo et al., 2022). ...
Article
Full-text available
The Sichuan–Tibet Railway crosses through the largest maritime glacier region in China. A large number of moraines formed after the rapid glacial retreat caused by climate warming. Moraines could induce frequent geological hazards that seriously threatened the safe construction and operation of the railway. Accordingly, moraines in this maritime glacier region have become a new challenging research topic with respect to the formation of geological hazards. Using remote-sensing image interpretations, field investigations, and dating tests, moraines and their topographic information were systematically obtained. After analyzing the geometrical distribution characteristics of the moraine accumulations, the geometrical characteristics of three typical moraine accumulation forms were generalized into corresponding mathematical models. Consequently, a method to quickly and quantitatively estimate the moraine reserves is proposed. The moraine distribution is primarily affected by the elevation, slope, river–valley morphology, and climate conditions. Old moraines that formed in the Pleistocene epoch (the Guxiang and Baiyu glacial periods) are primarily distributed below 3,500 m above sea level, while most of the new moraines that formed in the Holocene epoch (Neoglaciation and Little Ice Age) are primarily distributed above 4,000 m above sea level. Both the new and old moraines are primarily distributed within a slope range of 10–30°. Furthermore, the main river–valley morphology has a significant impact on the distribution of the old moraines, which are primarily distributed in the Zhongba–Guxiang section of the river valley where the longitudinal slope is relatively gentle. The difference in glaciation is the main reason why the new moraines distributed on the south banks in the study area are different from those on the north banks and why those distributed upstream are different from those distributed downstream. In addition, moraines are the main source of glacial debris flows. According to the presented method, the loose moraine reserves can be accurately calculated by analyzing the position, consolidation, and supply capability of the new and old moraines in each debris flow gully. It is anticipated that the presented results can be used to better understand the formation mechanisms of glacier-related hazards and improve risk assessments.
... As a type of layered rock slope, the counter-bedding slope is considered relatively stable in traditional engineering geology research. However, with the increase in engineering activities, a mass of counter-bedding-slope-instability failure cases have appeared at home and abroad [6], such as the Xuelongnang landslide [7] and the Daguangbao giant landslide [8]. Therefore, the construction of the Sichuan-Tibet Railway is a significant opportunity to study the typical counter-bedding slope in the Three Rivers Basin of the Qinghai-Tibet Plateau. ...
Article
Full-text available
There are massive landslides and potential landslides along the Three Rivers Basin in the Qinghai–Tibet Plateau, which pose a serious threat to the Sichuan–Tibet Railway. A normal shaking table model test was conducted to study the dynamic characteristics and dynamic response of a symmetrical counter-bedding rock slope based on the Zongrong Village landslide. The influences of the dynamic parameters, seismic wave type, and a weak intercalated layer on the slope’s dynamic response were considered. The results showed symmetry between the growth trend of the acceleration amplification factor and other research results. When the input wave amplitude was constant, the acceleration amplification factor increased at first and then decreased as the frequency increased. When the input frequency was near the slope’s natural frequency, the acceleration amplification factor increased at first and then decreased with an increase in the input amplitude and reached the maximum value at 0.3 g. The acceleration amplification factor increased linearly with height in the vertical direction inside the slope but increased slowly at first and then sharply along the slope surface, reaching the maximum value at the slope’s top and exhibiting an obvious “elevation effect”. When sinusoidal waves, Wolong waves, and Maoxian waves with the same amplitude were input, the slope’s amplification effect on the bedrock wave was more obvious. The weak intercalated layer showed the phenomenon of “thin layer amplification” and “thick layer attenuation” in response to the input seismic wave. The slope’s failure process can be roughly divided into three stages: (1) the formation of tensile cracks at the top and shear cracks at the toe; (2) the extension of cracks and the sliding of the slope-surface block; (3) the formation of the main sliding surface.
... Plateau (Ouimet et al., 2007;Xu et al., 2013;Chen and Cui, 2015;Liu et al., 2015;Liu et al., 2018). Using remote sensing interpretation and field survey, Korup et al. (2010b) identified over 900 glacier and landslide dams along the Yarlung Tsangpo and Indus rivers that were consistent with the distribution of river knickpoints; the study concluded that the damming effect played an important role in maintaining the integrity of the Qinghai-Tibetan Plateau. ...
Article
Full-text available
Mass movements in mountainous areas are capable of damming rivers and can have a lasting effect on the river longitudinal profile. The long profile is commonly used to retrieve regional tectonic information, but how much dams may compromise geomorphometry-based tectonic analysis has not been systematically researched. In this study, we investigate the relationship between river dams and the longitudinal profile of the upper Indus River basin, based on interpretation and analysis of remote sensing imagery and digital elevation models (DEMs) and local field work. We identified 178 landslide, glacier and debris flow dams. Using TopoToolbox, we automatically extracted the river longitudinal profile from the 30 m SRTM DEM, determined the location of convex knickpoints and calculated the channel steepness index. One hundred and two knickpoints were detected with heights above 148 m, of which 55 were related to dams. There is good spatial correspondence between dams, convexities in the river longitudinal profile and relatively high steepness index. Different dam types have different impacts on the river profile; on the upper Indus, debris flow dams have a greater impact than landslide and glacier dams and can form knickpoints of up to 900 m. Therefore, dams may have a significant influence on the river longitudinal profile, knickpoints and steepness index, and should be considered when extracting information on regional tectonics using these indices.
Article
Several ancient landslides triggered by earthquakes have occurred on the eastern margin of the Tibetan Plateau. Certain evidence of these landslides blocking rivers is preserved, which provides a good geological carrier for studying historical tectonic activities and valley evolution processes. The Huang-Cao-Ping (HCP) landslide is an ancient river-damming landslide that occurred in Batang County, Sichuan Province, located in the Batang fault zone. This study combined remote sensing interpretation, field investigation, geological dating, and engineering geological analysis to examine the development characteristics, landslide formation mechanism, and the evolution process of the landslide dam. The study results showed that the HCP landslide was a large-scale Holocene rock landslide with a volume of 143 × 104 ~ 238 × 104 m3 triggered by a strong earthquake. The landslide blocked the Baqu River, and the dam underwent two breaching stages. The landslide-dammed lake occurred at least 5930 years ago, and a complete dam breach occurred later than 950 a B.P. Further, the initial volume of the upstream inundation area of the dammed lake extended for 2.17 km, and the volume was approximately 124.2 × 104 m3. Following the first burst of the landslide dam, the area of the dammed lake was approximately 5.2 × 104 m2, and the volume of the upstream inundation area was approximately 47.3 × 104 m3. These results are expected to provide a reference for studying similar rockslides and exhibit great significance for reconstructing the regional tectonic activity history.
Preprint
Full-text available
The temporary or permanent river blocking event caused by mass movement usually occurs on steep terrain. With the increase of mountain population and land use pressure and the construction of water conservancy and hydropower projects, river blocking event has gradually attracted people’s attention and understanding. The study area (Wangdalong-Gangda reach) is located in the upper reaches of the Jinsha River and the southeast edge of the Qinghai-Tibet Plateau. Affected by strong tectonic activity in the Jinsha River suture zone and the rapid uplift of the Tibetan Plateau, in the past 6000 years, there have been at least five obvious river blocking events in the reach of about 30 km in the study area. The number and density are very rare. Combined with the field investigation, indoor interpretation, laboratory tests, optically stimulated luminescence (OSL) dating, SBAS-InSAR and previous studies, multidisciplinary approaches are used to systematically summarize the analysis methods and further the understanding of one river blocking event and multiple river blocking events from difference perspectives. Especially in multiple river blocking events, we could get the wrong results, even the opposite conclusion if interaction is not considered. Through this study, the general method of analyzing the river blocking event and the problems that should be paid attention to in sampling are given, and relatively reliable historical results of river blocking events are obtained. This method has extensive applicability to the identification and analysis of river blocking events in other areas.
ResearchGate has not been able to resolve any references for this publication.