ArticlePDF Available

Effect of Fine Particle Peening on Atmospheric Oxidation Behavior of Ti-6Al-4V Alloy

Authors:

Abstract and Figures

The effect of a fine particle peening (FPP) on atmospheric oxidation behavior and tribological properties of Ti-6Al-4V alloy was evaluated. Surface microstructures of oxidized specimens pre-treated with FPP were characterized using scanning electron microscope (SEM), energy dispersive spectrometry (EDS), glow discharge optical emission spectrometry (GDOES) and X-ray diffraction (XRD). The oxide layer formed on the oxidized specimen pre-treated with FPP was thicker than that on the oxidized-only specimen, because the microstructure induced by FPP facilitated the diffusion of oxygen and aluminum elements during the oxidation process. As results of reciprocating sliding wear tests, width of wear track on the oxidized specimen pre-treated with FPP was shallower compared to the oxidized-only specimen. Moreover, the oxide layer formed at the oxidized-only surface was delaminated during tests, otherwise there was no delamination at the oxidized surface pre-treated with FPP. This was because the surface oxide layer exhibited good interface adherence due to the existence of a thick oxygen solid solution layer. These results indicate that the modified layer created by the combination process of FPP and atmospheric oxidation is effective to improve the wear resistance of titanium alloys.
Content may be subject to copyright.
Corresponding author, E
mail: kikuchi
mech.kobe
u.ac.jp
J-STAGE Advance Publication date : November 27, 2015
日本金属学会誌
80
巻第
2
号(
2016
)
114
120
Ti
6Al
4V
合金の大気酸化挙動に及ぼす
微粒子ピーニングの影響
菊池将一
1,
小茂鳥
2
1
神戸大学大学院工学研究科機械工学専攻
2
慶應義塾大学理工学部機械工学科
J. Japan Inst. Met. Mater. Vol. 80, No. 2
(
2016
)
, pp. 114
120
2015 The Japan Institute of Metals and Materials
Effect of Fine Particle Peening on Atmospheric Oxidation Behavior of Ti
6Al
4V Alloy
Shoichi Kikuchi
1,
and Jun Komotori
2
1
Department of Mechanical Engineering, Graduate School of Engineering, Kobe University, Kobe 657
8501
2
Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, Yokohama 223
8522
The effect of a fine particle peening
(
FPP
)
on atmospheric oxidation behavior and tribological properties of Ti
6Al
4V alloy
was evaluated. Surface microstructures of oxidized specimens pre
treated with FPP were characterized using scanning electron
microscope
(
SEM
)
, energy dispersive spectrometry
(
EDS
)
, glow discharge optical emission spectrometry
(
GDOES
)
and X
ray
diffraction
(
XRD
)
. The oxide layer formed on the oxidized specimen pre
treated with FPP was thicker than that on the oxidized
only specimen, because the microstructure induced by FPP facilitated the diffusion of oxygen and aluminum elements during the
oxidation process. As results of reciprocating sliding wear tests, width of wear track on the oxidized specimen pre
treated with
FPP was shallower compared to the oxidized
only specimen. Moreover, the oxide layer formed at the oxidized
only surface was
delaminated during tests, otherwise there was no delamination at the oxidized surface pre
treatedwithFPP.Thiswasbecause
the surface oxide layer exhibited good interface adherence due to the existence of a thick oxygen solid solution layer. These
results indicate that the modified layer created by the combination process of FPP and atmospheric oxidation is effective to
improve the wear resistance of titanium alloys.
[
doi:10.2320
/
jinstmet.J2015036
]
(
Received June 4, 2015; Accepted October 1, 2015; Published November 27, 2015
)
Keywords
:
shot peening, fine particle peening, atmospheric oxidation, diffusion, titanium alloy, wear
1.
緒言
チタン合金は,高い比強度,良好な耐食性および耐熱性を
有するため,航空機分野や生体医療分野等において実用され
ている.しかしながら,チタン合金は耐摩耗性に乏しいた
め,摺動部品への適用は困難である.そのため工業分野で
は,チタン合金の適用範囲拡大を目的として,表面処理の導
入による耐摩耗性の改善が検討されている
1
9
)
なかでも,材料表面に金属酸化物や酸素固溶体を形成させ
る大気酸化処理は,耐摩耗性の改善
4
9
)
に加え,生体適合性
の向上
10
12
)
や水素遮断にも有効
13
)
であるため,盛んに研究
が行われている.例えば,
Boettcher
7
)
は,大気酸化によ
り形成させた酸化物を解離させ,発生した酸素原子をチタン
内部へ拡散させることにより厚い酸素固溶層を形成できるこ
とを報告している.
Guleryuz
8,9
)
は,高温加熱時の結晶粒
粗大化に伴うチタンの強度低下
1,14
)
を抑制するため,比較的
低温(
600
°
C
)での大気酸化を提案している.その結果,酸化
物層の密着性が改善し,チタン合金の耐摩耗性が向上するこ
とを明らかにしているものの,特性改善には長時間(
60
間)の大気酸化を施す必要があり,実用化には依然として課
題が残されている.
そこで本研究では,大気酸化処理の低温化および短時間化
を主たる目的として,前工程に微粒子ピーニング(
Fine par-
ticle peening: FPP
)を導入することとした.これまで著者
15
17
)
は,各種金属の大気酸化挙動に及ぼす
FPP
の影響に
ついて検討を加え,
FPP
を施すことにより元素の拡散が促
進することを明らかにしている.さらに,金属が合金元素を
含む場合には前処理
FPP
の導入によって酸化挙動が変化
し,通常の大気酸化処理材と異なる組成の表面層が形成され
ることを明らかにしている
16,17
)
.したがって,
FPP
と大気
酸化を組み合わせることにより,酸化層形成速度の上昇のみ
ならず表面酸化層の改質も期待できる.
本研究では,
Ti
6Al
4V
合金に対して
FPP
/大気酸化複合
表面処理を施し,形成される酸化層性状やその改質メカニズ
ムについて微視組織学的観点から検討を加えた.さらに,形
成された酸化層が
Ti
6Al
4V
合金の耐摩耗性に及ぼす影響
について検討・考察を加えた.
115
Table 1 Chemical composition of Ti
6Al
4V alloy.
(
mass
)
Al V Fe O C N H Ti
6.15 4.30 0.16 0.18 0.01
0.01 0.003 Bal.
Fig. 1 SEM micrographs of the
(
a
)
polished specimen
(
P
series
)
and
(
b
)
FPP treated specimen
(
Fseries
)
.
Fig. 2 Longitudinal SEM micrographs of the
(
a
)
polished
specimen
(
Pseries
)
and
(
b
)
FPP treated specimen
(
Fseries
)
.
115
2
Ti
6Al
4V
合金の大気酸化挙動に及ぼす微粒子ピーニングの影響
2.
実験方法
2.1
供試材および試験片
供試材には,
Table 1
に示す化学成分を有するチタン合金
(
Ti
6Al
4V
)の丸棒を用いた.同材を,
q
15 mm
,厚さ
4
mm
の円盤型試験片に機械加工した後,一方の端面を耐水研
磨紙(#
320
1200
)およびコロイダルシリカを用いて鏡面状
に仕上げた(以下,
P
材).
P
材に対して
FPP
を施した後に
大気酸化を施した複合表面処理材(
F
O
材)を作製した.ま
た,比較材として,
FPP
および大気酸化をそれぞれ単独で
施した試験片(
F
材および
O
材)も準備した.なお,シリー
ズ名の
P, F, O
は,それぞれ研磨(
Polishing
),微粒子ピーニ
ング(
FPP
),大気酸化(
Oxidation
)を表している.
FPP
は,投射圧力
0.6 MPa
,投射時間
30 s
,投射間距離
100 mm
,粒子供給速度
2g
/
s
の条件で,吸引式投射装置を
用いて行った.その際,投射粒子には平均粒径
63
m
m
,ビ
ッカース硬さ
876 HV
の高速度工具鋼(
SKH59
)を用いた.
大気酸化は,窒素
80
,酸素
20
雰囲気において,温度
600, 700, 800
°
C
,保持時間
1, 4, 12 h
の条件で行った.酸化
処理後は,試験片の温度が室温になるまで炉冷した.
2.2
酸化層の分析
作製した試験片に対して,走査型電子顕微鏡(
Scanning
electron microscope: SEM
)による表面観察を行った.断面
観察時には,クロール液(フッ酸
5mL
,濃硝酸
20 mL
,超
純水
75 mL
)によりエッチングを行った.また,エネルギー
分散型
X
線分析装置(
Energy dispersive spectroscopy:
EDS
)および
X
線回折装置(
X
ray diffraction: XRD
)を用い
て酸化層の微視構造分析を行った.
XRD
分析を行う際に
は,中央に
q
15.4 mm
の座繰り穴を有する純アルミニウム製
の円盤型ホルダを用いて,ホルダと試験片の表面が平坦とな
るように試験片を固定した.また,深さ方向の元素分析は,
グロー放電発光分光分析装置(
Glow discharge optical emis-
sion spectrometry: GDOES
)を用いて直径
4mm
の領域をス
パッタリングしながら行った.なお本研究では,酸化物層と
酸素固溶層から構成される領域を酸化層と定義した.
2.3
摩擦摩耗試験
摩擦摩耗試験は,室温・大気中・無潤滑下において,ボー
ルオンディスク往復摺動形式にて行った.相手材には
q
3.175 mm
のアルミナボールを用い,試験力は
0.49 N
,摺
動距離は片道
8mm
,摺動速度は
5mm
/
s
とした.試験後,
SEM
および触針式粗さ測定器を用いて摩耗痕性状の観察・
測定を行った.
3.
実験結果および考察
3.1 FPP
を施した
Ti
6Al
4V
合金の微視組織
本節では,大気酸化により形成された表面層の分析に先立
ち,
FPP
によるチタン合金の微視組織変化について検討を
加えた.
Fig. 1
に,試験片表面を
SEM
により観察した結果
を示す.同図(
b
)から,
FPP
を施した
F
材の表面には凹凸が
形成され,
P
材とは異なる様相を呈していることがわかる.
これは,
FPP
投射粒子の衝突により被処理材が塑性変形し
たためと考えられる.
Fig. 2
に,縦断面組織を
SEM
により
観察した結果を示す.同図から,両材は
a
b
二相組織を有
していることがわかる.また,
F
材の表面近傍には特異な形
態を有する組織が観察され(
Fig. 2
(
b
)両端矢印部),その厚
さは観察位置によって異なり,不均一に形成されていること
がわかる.このような特異組織は,
FPP
を施した
SCM435H
鋼にも認められ,特異組織内には微細な結晶粒が
存在することが報告されている
18
)
この特異組織について検討を加えるため,
XRD
による結
晶構造分析(
X
線源
CuK
a
)を行った.
Fig. 3
に,
F
材の回
折プロファイルを
P
材の結果と合わせて示す.同図から,
P
材には
a
Ti
および
b
Ti
の回折ピークが検出され,組織観
察結果(
Fig. 2
)と対応していることがわかる.次に,
F
材の
回折プロファイルに注目すると,
P
材と比較して
Ti
の回折
強度は低く,半価幅は大きいことがわかる.一般に半価幅と
結晶粒径には相関があることから,
FPP
を施したチタン合
金の表面には微細な結晶粒が形成されているものと考えられ
る.
3.2 FPP
/大気酸化複合表面処理により形成された表面酸
化層の分析
Fig. 4
に,各温度で
4h
の大気酸化を施した試験片(
O, F
116
Fig. 3 XRD patterns of the polished specimen
(
Pseries
)
and
FPP treated specimen
(
Fseries
)
.
Fig. 4 SEM micrographs of top surfaces of the
(
a
)~(
c
)
oxi-
dized specimens
(
Oseries
)
and
(
d
)~(
f
)
oxidized specimens
pre
treatedwithFPP
(
F
Oseries
)
.
(
Oxidation time: 4 h
)
Fig. 5 Longitudinal SEM micrographs of the
(
a
)~(
c
)
oxi-
dized specimens
(
Oseries
)
and
(
d
)~(
f
)
oxidized specimens
pre
treated with FPP
(
F
Oseries
)
.
(
Oxidation time: 1 h
)
116
日本金属学会誌(
2016
)
80
O
材)の表面を
SEM
により観察した結果を示す.同図(
a
)
より,
600
°
C
処理を施した
O
材の表面は,他のシリーズと
比較して平坦であることがわかる.しかし,表面には組織が
局所的に現出しており,その様相はエッチング後に観察した
組織(
Fig. 2
(
a
))と類似していることから,
600
°
C
酸化処理工
程では
b
相の選択的酸化が生じたものと考えられる.一方,
600
°
C
で大気酸化を施した
F
O
材の表面は,
FPP
工程で形
成された凹凸の存在により
O
材とは異なる様相を呈してい
た(
Fig. 4
(
d
)).
次に,
700
°
C
および
800
°
C
で大気酸化を施した
O
材の表
面には,微細な凹凸が形成されていることがわかる(
Fig. 4
(
b
),(
c
)).これは,処理温度の上昇に伴い酸化物が顕著に
成長したためと考えられる.
F
O
材にも同様の傾向が認め
られたが,
O
材とは異なり柱状の物質も析出していることが
わかる(
Fig. 4
(
e
),(
f
)).
EDS
による元素分析を行った結果,
FPP
衝突痕の中心部に鉄元素が検出されたことから,
FPP
処理時に投射粒子(
SKH59
鋼)の一部が母材の表面に移着
19
)
,その主成分の鉄が大気酸化工程において鉄酸化物に
成長したものと推測される.
Fig. 5
に,
1h
の大気酸化を施した試験片の縦断面組織を
SEM
により観察した結果を示す.同図より,大気酸化を施
した表面には酸化物層が形成され,その厚さは処理温度の上
昇に伴い増加する傾向が認められる.また,
O
材の酸化物層
はポーラスな様相を呈し,その一部は研磨工程で脱落してい
た.これに対して,
F
O
材の酸化物層は
FPP
衝突痕に沿
って滑らかに形成していることがわかる.とくに,
600
°
C
理材の表面には
FPP
により形成された特異組織が残存して
いることから(
Fig. 5
(
d
)),前処理
FPP
が酸化層の様相に何
らかの影響を及ぼしたものと考えられる.
形成された酸化層の結晶構造を調べるため,
XRD
分析を
行った.
Fig. 6
に,各温度で
4h
の大気酸化を施した試験片
X
線回折プロファイルを,未酸化材(
P, F
材)の結果とと
もに示す.まず同図(
b
)より,
F
O
材には
Fe
2
O
3
のピーク
が検出されていることがわかる.これは,
FPP
工程で被処
理面に移着した鉄製の微粒子が酸化されたためと考えられ
る.次に,酸化処理材の回折プロファイルには,チタン酸化
TiO
2
(
Rutile
)や
Al
2
O
3
のピークが認められ,その回折強
度は処理温度の増加に伴い増加していることがわかる.さら
に,大気酸化を施すことにより
a
Ti
回折ピークは低角側に
117
Fig. 6 XRD patterns of the
(
a
)
polished specimen
(
Pseries
)
and oxidized specimens
(
Oseries
)
,and
(
b
)
FPP treated speci-
men
(
Fseries
)
and oxidized specimens pre
treatedwithFPP
(
F
Oseries
)
.
(
Oxidation time: 4 h
)
Fig. 7 Relationship between thickness of oxide layer and
square root of oxidation time.
(
Oxidation temperature: 600
°
C
)
117
2
Ti
6Al
4V
合金の大気酸化挙動に及ぼす微粒子ピーニングの影響
シフトしていることがわかる.この結果は
a
Ti
の格子定数
が増加したことを意味しており,本研究の場合には酸素固溶
体が形成されているものと考えられる.なお,処理温度が
800
°
C
まで上昇すると
a
Ti
の回折ピークは消失している
が,これは表面に厚い酸化物層が形成されているためと考え
られる.以上から,
FPP
を施した試験片においても,酸化
処理温度に依存して表面層の結晶構造が変化する傾向を確認
できた.
さらに,
F
O
材には
Ti
3
Al
のピークが検出されているこ
とがわかる.
Borgioli
20
)
は,高温で大気酸化を施した
Ti
6Al
4V
合金において,高濃度の酸素により安定化した
Ti
3
Al
が形成されることを報告している.
O
材には
Ti
3
Al
ピークが認められなかったことから,
FPP
の導入により大
気酸化工程における元素の拡散挙動が変化し,その結果,
O
材と異なる結晶構造を有する表面層が形成されたものと考え
られる.そこで次節にて,深さ方向の酸化挙動に及ぼす
FPP
の影響について検討を加えることとした.
3.3
深さ方向の酸化挙動に及ぼす前処理
FPP
の影響
Fig. 7
に,
600
°
C
処理材の酸化物層厚さと処理時間の関係
を示す.なお,
F
O
材の酸化物層については,厚さの不均
一性を考慮して,観察像における酸化物層の面積を観察範囲
の幅で除すことにより厚さを算出した.まず同図より,
O
の酸化物層厚さ(◇印)は,処理時間の平方根に比例して増加
していることがわかる.この結果は,通常の大気酸化による
酸化物層の形成が,その層中の原子の拡散により律速されて
いることを裏付けるものである.次に,
F
O
材(●印)に注
目すると,酸化物層の厚さは処理時間
4h
までは線形に増加
していることがわかる.原点を含む
F
O
材の
1h,4h
プロ
ットに対して近似直線を描画した結果,その傾きは
0.59
m
m
/
h
1
/
2
となり,
O
材のそれ(
0.32
m
m
/
h
1
/
2
)と比較して大き
い値を示した.このことから,
FPP
を施すことにより酸化
物層の形成速度が上昇することが明らかとなった.しかし,
処理時間が
4h
以上の領域では,
F
O
材と
O
材の酸化物層
厚さはほぼ同程度の値を示していることがわかる.これは,
F
材の結晶粒径が深さ方向に進むにしたがい増加すること,
また大気酸化工程の熱影響によって微細結晶粒が再結晶
15
)
することに起因しているものと考えられる.なお,
FPP
施した純鉄においても処理時間の増加に伴う改質層形成速度
の低下が認められ,やがて未処理材と同程度の値に収束する
ことが明らかとなっている
21
)
Fig. 8
に,酸化物層形成速度から算出した放物線速度定数
k
p
と処理温度の逆数の関係を表すアレニウスプロットを示
す.本研究では酸化増量を測定していないため,酸化による
質量変化が
TiO
2
中の
O
2
の増量分に相当するという仮定の
もと,
TiO
2
(
Rutile
)の密度(
4.27 g
/
cm
3
)を用いて放物線速度
定数を算出した.なお,
F
O
材の放物線速度定数について
は,処理時間
4h
までのデータを用いて算出し,対数で表示
している.同図より,処理温度の増加に伴い,両材の放物線
速度定数は線形に増加する傾向が認められる.また,処理温
600, 700
°
C
において
F
O
材は
O
材と比較して上方に位
置しているものの,
800
°
C
における両者の値はほぼ同程度で
あることがわかる.さらに同図には,これまで
Ti
Al
合金
118
Fig. 8 Arrhenius plot of parabolic rate constant
k
p
at different
oxidation temperature.
Table 2 Activation energy evaluated for the oxidation of titani-
um alloys.
Alloy Temperature,
T
/
K
Activation energy,
E
/
kJ
mol
1
Reference
Ti
6Al
4V
(
Oseries
)
873
1073 225 Present study
Ti
6Al
4V
(
F
Oseries
)
873
1073 172 Present study
Ti
6Al
4V 973
1073 189 22
)
Ti
6Al
4V 973
1073 252 22
)
Ti
1.65Al 973
1073 297 22
)
Ti
3Al 973
1073 278 22
)
Ti
5Al 973
1073 275 22
)
Ti
6Al 998
1073 229 23
)
Fig. 9 GDOES analyses of titanium, aluminum and oxygen
elements for the
(
a
)
oxidized specimen
(
Oseries
)
and
(
b
)
oxidized specimen pre
treatedwithFPP
(
F
Oseries
)
.
(
Oxidation temperature: 700
°
C, oxidation time: 4 h
)
118
日本金属学会誌(
2016
)
80
について計算されたプロット
22,23
)
も示している.
F
O
材は
既報の結果
22,23
)
と比較して僅かに上方に位置しているものの,
O
材は
Ti
6Al
4V
のプロット
22
)
とほぼ一致していることが
わかる.
次に,近似直線の勾配から算出したみかけの活性化エネル
ギの値を,
Table 2
にまとめて示す.同表より,
F
O
材の
活性化エネルギは
O
材や過去に報告されている値
22,23
)
と比
較して低いことがわかる.この結果は,前処理として
FPP
を施すことにより,
Ti
6Al
4V
合金の酸化物成長における
拡散機構が変化することを示唆するものである.以上の結果
から,
FPP
は酸化物形成速度を上昇させるものの,その効
果は比較的低温・短時間条件で大気酸化を施す場合に顕著に
認められるものと考えられる.
次に,酸化物層の直下に形成された酸素固溶層を調査する
ため,
GDOES
による深さ方向の元素分析を行った.
Fig. 9
に,大気酸化(
700
°
C
4h
)を施した試験片の元素分析結果を
示す.まず,
O
材の分析結果(
Fig. 9
(
a
))に注目すると,酸
素元素の検出強度は表面近傍において高いことがわかる.こ
れは,表面に酸化物層が形成されているためと考えられる.
また,酸化物直下では,深さ方向に向かうにしたがい,酸素
の検出強度が減少していることがわかる.
Fig. 6
に示した
XRD
プロファイルを考慮すると,傾斜的に酸素量が減少し
ている領域は酸素固溶層に対応していると考えられる.なお,
F
O
材にも酸素固溶層は形成されているが(
Fig. 9
(
b
)),
O
材と同条件で大気酸化を施しているにもかかわらず,
O
材と
比較して
2
倍程度厚いことがわかる.
ここで,
Ti
6Al
4V
合金の酸化挙動に影響を及ぼすアル
ミニウムの分布に注目すると,表面から
1
m
m
の位置におい
O
材の検出強度は著しく低いことがわかる(
Fig. 9
(
a
)).
アルミニウムは化学量論的組成を有する酸化物を形成するた
め,酸化物内の金属原子および酸素原子の拡散速度はきわめ
て低い
24
)
.このことから,アルミニウム原子の外方拡散に
より酸化物の形成が進行し,
O
材の表面直下においてアルミ
ニウムの欠乏層が形成されたものと考えられる.これに対し
て,
F
O
材の表面近傍ではアルミニウム元素の欠乏が緩和
されていることから,前処理
FPP
によりアルミニウムの外
方拡散が促進されたものと考えられる(
Fig. 9
(
b
)).チタン
合金における酸化物イオンの拡散メカニズムは,添加元素で
あるアルミニウムと関連していることが報告されてい
25,26
)
.本研究では,
Fig. 6
に示した
XRD
回折パターンに
おいて
Al
2
O
3
のピークが認められたことから,
Al
TiO
2
に固溶しているものと考えられる.そのため,チタン酸化物
TiO
2
およびアルミニウムの酸化物
Al
2
O
3
が混在する系にお
いて
Al
3
Ti
4
を置換した場合,電気的中性条件を満足
するために式(
1
)に示す反応が生じる.
Al
2
O
3
2Al
Ti
V
äo
3O
o
(
1
)
Al
Ti
TiO
2
中の
Ti
4
を置換した
Al
3
V
äo
TiO
2
の酸
素空孔,
O
o
TiO
2
O
2
である.式(
1
)は,
TiO
2
中への
Al
3
の固溶が酸化物内の酸素空孔数を増加させることを示
119
Fig. 10 SEM micrographs of top surfaces of the
(
a
)
polished
specimen
(
Pseries
)
,
(
b
)
FPP treated specimen
(
Fseries
)
,
(
c
)
oxidized specimen
(
Oseries
)
and
(
d
)
oxidized specimen pre
treated with FPP
(
F
Oseries
)
after reciprocating wear tests.
(
Oxidation temperature: 700
°
C, oxidation time: 4 h
)
Fig. 11 SEM micrographs of top surfaces of the
(
a
)
oxidized
specimen
(
Oseries
)
and
(
b
)
oxidized specimen pre
treated
with FPP
(
F
Oseries
)
after reciprocating wear tests observed
at high magnification.
(
Oxidation temperature: 700
°
C, oxida-
tion time: 4 h
)
Fig. 12 Profiles of wear track of the
(
a
)
oxidized specimen
(
O
series
)
and
(
b
)
oxidized specimen pre
treatedwithFPP
(
F
O
series
)
.
(
Oxidation temperature: 700
°
C, oxidation time: 4 h
)
119
2
Ti
6Al
4V
合金の大気酸化挙動に及ぼす微粒子ピーニングの影響
している
25
)
.酸素空孔数の増加は酸化物イオンの拡散速度
を上昇させることから,
FPP
はアルミニウムの外方拡散を
促進させることにより酸素の内方拡散を促進させ,その結
果,厚い酸素固溶層を形成できたものと考えられる.
以上から,予め
FPP
を施すことにより大気酸化工程にお
いて元素の拡散が促進され,単独酸化処理材と比較して厚い
酸化層を形成できることが明らかとなった.
3.4 FPP
/大気酸化複合表面処理を施した
Ti
6Al
4V
合金
の耐摩耗性評価
前節では,
FPP
後に大気酸化を施すことにより,
Ti
6Al
4V
合金の表面に厚い酸化層が形成されることを明らかとし
た.本節では,複合表面処理により形成された酸化層が,チ
タン合金の耐摩耗性に及ぼす影響について検討を加えた.
Fig. 10
に,大気酸化(
700
°
C
4h
)を施した
O, F
O
材の摩
耗痕を
SEM
により観察した結果を示す.なお同図には,未
酸化材(
P, F
材)の結果も示している.同図より,大気酸化
を施した
O, F
O
材の摩耗痕幅は,未酸化材と比較して狭
いことがわかる.この結果は,大気酸化を施すことによりチ
タン合金の摩耗量が減少することを示すものである.
次に,酸化処理材(
O, F
O
材)の観察結果を比較する
と,複合表面処理を施した
F
O
材の摩耗痕幅は
O
材と比
較して狭いことがわかる.また,
O
材は摺動部全域にわたり
摩耗しているのに対して,
F
O
材の摩耗は局所的であるこ
とがわかる.
Fig. 11
に,酸化処理材の摩耗痕端部を
SEM
により高倍率で観察した結果を示す.同図(
a
)より,
O
材に
は酸化物層と母材の界面が明瞭に認められるのに対して,
F
O
材の場合には局所的に平坦領域が形成されており,酸化
物層と母材の界面は観察されないことがわかる(
Fig. 11
(
b
)).
Fig. 12
に,摩耗痕近傍の断面プロファイルを示す.なお
同図には,表面観察により測定した摩耗痕幅を両端矢印で示
している.同図(
a
)から,
O
材の摩耗痕は明瞭に認められ,
その深さ(約
3
m
m
)は酸化物層厚さ(
2.3
m
m
)と比較して大き
いことがわかる.このことは,
O
材において酸化物層直下の
母材が摩耗されたことを示すものである.これに対して,
F
O
材の摩耗痕深さは表面凹凸の存在により正確に測定する
ことはできないが,
O
材と比較して摩耗痕形状は不明瞭であ
ることがわかる.
F
O
材の表面では局所的に摩耗が生じて
いたことを考慮すると(
Fig. 11
(
b
)),
F
O
材の酸化物層は
はく離することなく凸部のみが摩耗され,その結果,
O
材と
比較して良好な摩耗特性を呈したものと考えられる.実際
に,母材と酸化物層の界面近傍にビッカース圧子を押し込
み,酸化物層の密着性を定性評価した結果,
O
材では界面近
傍に割れが生じたが
F
O
材にはそのような割れは認められ
なかった.前節の表面分析結果と合わせて考えると,複合表
面処理により形成された厚い酸素固溶層が,酸化物層と母材
の界面に生じる内部応力を緩和したものと推察される.
120
Fig. 13 Schematic illustration showing the surface morphology and tribological mechanisms of the oxidized Ti
6Al
4V alloy pre
treatedwithFPP.
120
日本金属学会誌(
2016
)
80
以上から,
FPP
/大気酸化複合表面処理は,単独の大気酸
化と比較して優れた摩耗特性を有する表面改質層を形成でき
ることが明らかとなった.
3.5 FPP
/大気酸化複合表面処理による
Ti
6Al
4V
合金の
耐摩耗性改善メカニズム
これまで得られた実験結果を基礎として,
FPP
/大気酸化
複合表面処理による
Ti
6Al
4V
合金の改質メカニズムを,
Fig. 13
に模式的に示す.チタン合金(
a
)に対して
FPP
を施
すことにより,表面の結晶粒が微細化する(
b
).この微細結
晶粒の存在により,大気酸化工程においてアルミニウムの外
方拡散および酸素の内方拡散が促進されるため,複合表面処
理材には単独酸化処理材(
c
1
)と比較して厚い酸化層が形成
される(
d
1
).なお,単独で大気酸化を施した場合,摩擦摩
耗試験中に酸化物層のはく離が生じるが(
c
2
c
3
),複合
表面処理材には厚い酸素固溶層の形成により酸化物層ははく
離せず,表面の凸部が局所的に摩耗する(
d
2
d
3
).その
ため,複合表面処理材の母材は露出することなく,単独処理
材と比較して良好な耐摩耗性を示すこととなる.
4.
結論
本研究では,微粒子ピーニング(
FPP
)と大気酸化を組み合
わせた複合表面処理をチタン合金(
Ti
6Al
4V
)に施し,形成
される酸化層の微視構造について検討を加えた.さらに,形
成された酸化層が
Ti
6Al
4V
合金の耐摩耗性に及ぼす影響
について検討を加えた.以下に得られた知見を示す.
FPP
を施すことにより,大気酸化工程においてアル
ミニウムの外方拡散と酸素の内方拡散が促進されるため,通
常の大気酸化処理材と比較して厚い酸化層が形成される.
FPP
による酸化物形成速度の上昇は,比較的低温・
短時間の条件で大気酸化を施した場合に認められる.
FPP
/大気酸化複合表面処理は,チタン合金の耐摩耗
性を改善することができる.これは,酸化層の厚さが増加す
ることに加え,酸化物層のはく離が抑制されるためである.
文献
1
)
T. Morita, H. Takahashi, M. Shimizu and K. Kawasaki: Fatigue
Fract. Eng. Mater. Struct.
20
(
1997
)
85
92.
2
)
M. Mizutani, J. Komotori, K. Katahira and H. Ohmori: J. Mater.
Test.Res.Assoc.Jpn.
53
(
2008
)
254
260.
(
in Japanese
)
3
)
M.Nakatani,S.Shimizu,Y.HaradaandH.Uchida:Trans.
JSME.
81
(
2015
)
14
00590.
(
in Japanese
)
4
)
H. Dong and T. Bell: Wear
238
(
2000
)
131
137.
5
)
F. Borgioli, E. Galvanetto, F. Iozzelli and G. Pradelli. Mater.
Lett.
59
(
2005
)
2159
2162.
6
)
T. Ohno and T. Suzuki: J. Jpn Soc. Heat Treat.
46
(
2006
)
131
136.
(
in Japanese
)
7
)
C. Boettcher: Surf. Eng.
16
(
2000
)
148
152.
8
)
H. Guleryuz and H. Cimenoglu: Biomaterials
25
(
2004
)
3325
3333.
9
)
H. Guleryuz and H. Cimenoglu: Surf. Coat. Technol.
192
(
2005
)
164
170.
10
)
A.Sugino,C.Ohtsuki,K.Tsuru,S.Hayakawa,T.Nakano,Y.
Okazaki and A. Osaka: Acta Biomaterialia
5
(
2009
)
298
304.
11
)
H.Sugawara,H.GotoandJ.Komotori:J.Soc.Mater.Sci.
55
(
2006
)
965
970.
(
in Japanese
)
12
)
M. Mizutani, Y. Matsumura, J. Komotori and H. Tamauchi:
Trans. Jpn. Soc. Mech. Eng.
77
(
2011
)
2144
2152.
(
in
Japanese
)
13
)
Y.Yagi,Y.Moriguchi,A.TabeandK.Narita:KobeSteel
Engineering Reports
32
(
1982
)
20
23.
(
in Japanese
)
14
)
S. Kikuchi, Y. Nakamura, A. Ueno and K. Ameyama: Adv.
Mater. Res.
891
892
(
2014
)
656
661.
15
)
Y.Hirota,S.KikuchiandJ.Komotori:J.SolidMech.Mater.
Eng.
2
(
2008
)
1330
1337.
16
)
S. Kikuchi, Y. Yasutake and J. Komotori: J. Solid Mech. Mater.
Eng.
6
(
2012
)
431
439.
17
)
S. Kikuchi, Y. Kameyama, M. Mizutani and J. Komotori: Mater.
Trans.
55
(
2014
)
176
181.
18
)
S. Kikuchi and J. Komotori: Mater. Trans.
56
(
2015
)
556
562.
19
)
S. Kikuchi, Y. Nakahara, K. Dobashi and J. Komotori: Jpn. Soc.
Mater. Sci.
61
(
2012
)
680
685.
(
in Japanese
)
20
)
F. Borgioli, E. Galvanetto, A. Fossati and G. Pradelli: Surf.
Coat. Technol.
184
(
2004
)
255
262.
21
)
S. Kikuchi, T. Fukuoka and J. Komotori: Trans. Jpn. Soc.
Mech. Eng.
77
(
2011
)
1367
1377.
(
in Japanese
)
22
)
S.Frangini,A.MignoneandF.DeRiccardis:J.Mater.Sci.
29
(
1994
)
714
720.
23
)
M. Inoue, M. Hara, T. Nakagawa and Y. Shinata: J. Japan Inst.
Metals
61
(
1997
)
511
518.
(
in Japanese
)
24
)
S. Taniguchi: Ferrum
12
(
2007
)
695
702.
(
in Japanese
)
25
)
M. Nakai, M. Niinomi, T. Akahori, N. Ohtsu, H. Nishimura, H.
Toda,H.FukuiandM.Ogawa:J.JapanInst.Metals
71
(
2007
)
415
422.
(
in Japanese
)
26
)
H. Jiang, M. Hirohashi, H. Imanari and Y. Lu: Scr. Mater.
45
(
2001
)
253
259.
... From Fig. 8, it is evident that the full width at half maximum (FWHM) of the peak associated with this phase increased as the FPP treatment proceeded, likely due to grain refinement. Prior work [47] has demonstrated that Ti-6Al-4V alloys form a fine grained stratified structure during FPP, since this process promotes the formation of fine crystal grains [44,48] to a greater extent than standard shot peening. This occurs because FPP imparts higher velocity particles [45,49]. ...
Article
Full-text available
A hydroxyapatite (HAp) surface layer was generated at room temperature on a beta-titanium alloy (Ti-29Nb-13Ta-4.6Zr, TNTZ) using fine particle peening (FPP), as a means of enhancing fatigue resistance. This material is commonly employed in bio-implants, but has a suboptimal Young's modulus. Treated specimens were assessed using scanning electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy and electron backscatter diffraction, as well as by measuring the Vickers hardness. Performing FPP using shot particles made of HAp was found to transfer the particles to the TNTZ surface to rapidly produce a HAp layer that became thicker as the FPP process progressed. Room-temperature four-point bending fatigue tests in air showed that the HAp layer resulting from the FPP process increased the endurance limit of test specimens. This improved performance is ascribed to the appearance of a hardened surface layer having a significant degree of compressive residual stress. Keywords: Fine particle peening, Beta titanium alloy, Ti-29Nb-13Ta-4.6Zr, Fatigue, Hydroxyapatite, Biomaterial
... In contrast, the HAp layer remained on the FPP-treated CP titanium after fatigue testing without delamination on the fracture surface [20]. Furthermore, FPP can improve the fatigue properties of the titanium substrate by increasing the surface hardness and forming fine grains [28][29][30]. ...
Article
Full-text available
Fine particle peening (FPP) using hydroxyapatite (HAp) shot particles can form a HAp layer on room-temperature substrates by the transfer and microstructural modification of the shot particles. In this study, FPP with HAp shot particles was applied to form a HAp surface layer and improve the fatigue properties of Ti–6Al–4V extra-low interstitial (ELI) for use in bio-implants. The surface microstructures of the FPP-treated specimens were characterized by micro-Vickers hardness testing, scanning electron microscopy, energy-dispersive X-ray spectrometry, X-ray diffraction, and X-ray photoelectron spectroscopy. FPP with HAp shot particles successfully formed a HAp layer on the surface of Ti–6Al–4V ELI in a relatively short period by shot particle transfer at room temperature; however, the thickness and elemental composition of the HAp layer were independent of the FPP treatment time. The original HAp crystal structure remained in the surface-modified layer formed on Ti–6Al–4V ELI after FPP. Furthermore, FPP increased the surface hardness and generated compressive residual stresses at the treated surface of Ti–6Al–4V ELI. Four-point bending fatigue tests were performed at stress ratios of 0.1 and 0.5 to examine the effect of FPP with HAp shot particles on the fatigue properties of Ti–6Al–4V ELI. The fatigue life of the FPP-treated specimen was longer than that of the un-peened specimen because of the formation of a work-hardened layer with compressive residual stress. However, no clear improvement in the fatigue limit of Ti–6Al–4V ELI occurred after FPP with HAp shot particles because of subsurface failures from characteristic facets.
Article
The microstructure of commercially pure (CP) titanium having a bimodal nitrogen diffusion phase for biomedical applications, which was fabricated by sintering plasma-nitrided powders, was characterized, and its effect on the wear behaviors was examined. The maximum nitrogen concentration and hardness of CP titanium having a bimodal nitrogen diffusion phase depended on the powder plasma nitriding and sintering temperatures. The grain size of CP titanium made by sintering plasma-nitrided powders is smaller than that of the un-nitrided one. As results of ball-on-disk dry friction tests, CP titanium fabricated from powder plasma-nitrided at 873 K had lower wear resistance than compacts manufactured by sintering as-received CP titanium powder. In contrast, CP titanium fabricated from powder plasma-nitrided at 973 K having a continuous connected network nitrogen diffusion phase had high wear resistance due to the high hardness and differences in the wear mechanism. The wear resistance of CP titanium is dependent on the powder plasma nitriding and sintering temperatures. Fig. 2 Nitrogen maps for sintered compacts analyzed by EPMA. Fullsize Image
Article
The combined effects of low-temperature nitriding (LTN) and cold rolling on the microstructure of commercially pure titanium (CP titanium) were investigated. The grain size of the LTN-treated CP titanium decreased with increasing thickness reduction due to the cold rolling pre-treatment and with decreasing the nitriding temperature. The fatigue limit for the nitrided CP titanium depended on the grain size beneath the nitrided layer and increased with decreasing the nitriding temperature because of the suppression of grain-coarsening. Furthermore, the LTN at 873 K decreased the friction coefficient and reduced the wear loss of CP titanium during the ball-on-disk dry friction tests.
Article
Both tensile and shear adhesion strength tests were performed to evaluate interfacial strength between hydroxyapatite coatings on titanium alloy substrates subjected to anodization and heat treatment prior to deposition as well as post-deposition heat treatment. Results of the tensile adhesion strength tests were influenced by the size of the blasting media and the processing of pre- and post-heat treatments but not influenced by anodization. The finite element method (FEM) analysis of stress distribution during the shear adhesion strength test was also performed to evaluate the degree of stress singularity. The results show that the stress singularity parameters were dominant factors of stress distribution in the stress singularity fields, and they were also expected to influence the “essential” interfacial strength. In addition, the size of the blasting media had the same influence on the shear and tensile adhesion strength tests. This suggests the possibility of estimating tensile adhesion strength using the results of shear adhesion strength.
Article
Low temperature nitriding (LTN) was performed for titanium alloy (Ti-6Al-4V) to improve its fatigue properties. A nitrogen compound layer was formed on the surface nitrided at temperatures higher than 873 K, whereas nitrogen diffusion was observed on the surface nitrided at 823 K. Fatigue tests were performed by four-point bending in air under a stress ratio of 0.1. The fatigue limit for Ti-6Al-4V tended to increase with a decrease in the nitriding temperature. LTN at 823 K increased the fatigue limit of Ti-6Al-4V due to the formation of the surface with no nitrogen compound layer and suppression of grain-coarsening.
Article
CP titanium with a bimodal microstructure consisting of a substrate surrounded by a network structure of nitrogen diffusion phase was fabricated by sintering nitrided powders, as a means of improving the mechanical and tribological properties. A nitrogen diffusion layer can be formed on CP titanium powder at temperatures above 873 K. The areal fraction of the nitrogen diffusion phase increased along with the sintering temperature. As results of ball-on-disk dry friction tests, CP titanium fabricated from powder nitrided at 873 K had a lower friction coefficient than compacts fabricated from as-received CP titanium powder. In contrast, adhesion of the counter material was observed over the worn surface of sintered compact fabricated from the powder nitrided at 973 K, which indicates a higher friction coefficient.
Article
Small fatigue crack propagation in bimodal harmonic structured titanium alloy (Ti-6Al-4V) with high strength and ductility was examined under four-point bending at a stress ratio of 0.1 in the ambient laboratory atmosphere. The crack profiles were observed using optical microscopy and scanning electron microscopy, and analyzed using an electron backscattered diffraction to examine the mechanism of small fatigue crack propagation. Fatigue crack paths were not influenced by the bimodal harmonic structure, and the crack growth rates, da/dN, in the harmonic structured Ti-6Al-4V were almost the same as those in a material with coarse acicular microstructure for comparable values of stress intensity range, ΔK. In contrast, the harmonic structured Ti-6Al-4V had a higher resistance of fatigue crack initiation due to the grain refinement induced by mechanical milling, which resulted in an increase of the fatigue life and fatigue limit. Furthermore, the statistical fatigue properties of Ti-6Al-4V alloy were analyzed using the stress dependence of Weibull parameters to quantitatively examine the effects of the bimodal harmonic structure on its fatigue life.
Article
First, in this paper, a new atmospheric-controlled induction heating and fine particle peening treatment system (vacuum AIH-FPP system) which reduces the oxygen concentration in the chamber to the order of ppm, much less than a conventional processing apparatus was presented. Next, in order to examine the effect on the formation of the surface modified layer of (i) mixing hard particles, (ii) the processing temperature, and (iii) the particle velocity, carbon steel AISI 1045 was treated with this system in conjunction with high-frequency induction heating, by peening Cr particles and mixed particles of Cr and high-speed tool steel. From the observation results by a scanning electron microscope and an energy dispersive X-ray spectrometer, it is clear that for the formation of a Cr diffused layer, using a mixture of Cr particles and high-speed tool steel particles is important. The treatment must be conducted at a higher temperature of approximately 1273 K to form a Cr diffused layer. Furthermore, by increasing the particle velocity, a thicker Cr transfer layer is formed at the surface under process. Therefore, an increased particle velocity accelerates the transfer of Cr. This Paper was Originally Published In Japanese in J. Japan Inst. Met. Mater. 79 (2015) 491–496. In order to establish an effective method of the surface treatment proposed in this paper, some parts of the contents were revised and Figure 10 was added. The sentences of abstract, conclusions, and references were slightly modified. Two contributed authors were also added.
Article
Full-text available
The effect of fine particle peening (FPP) on the gas nitriding of AISI 4135 chromium-molybdenum steel was investigated. Surface microstructures of nitrided specimens pre-treated with FPP were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD) and glow discharge optical emission spectroscopy (GDOES). The nitrided layer formed on the fine grained specimen treated with FPP was thicker than that on the nitrided-only specimen, because the fine grains created by FPP accelerate the formation of iron nitride during the nitriding process. Furthermore, FPP reduces the concentration of chromium near the nitrided surface, which suppresses the formation of cracks and pores in the compound layer. Therefore, a nitrided specimen pre-treated with FPP has higher hardness than a nitrided-only specimen. Reciprocating ball-on-disk friction tests were performed at room temperature to investigate the tribological properties of the nitrided AISI 4135 steel. The nitrided specimen pre-treated with FPP had a lower friction coefficient and exhibited less wear loss due to the presence of a thick compound layer without cracks and pores. Therefore, a hybrid surface modification that employs FPP as a processing step prior to gas nitriding is effective for improving the tribological properties of AISI 4135 steel.
Article
Full-text available
In this study, in order to accelerate the diffusion of nitrogen into austenitic stainless steel, fine particle peening (FPP) was introduced prior to gas nitriding. The effects of the FPP treatment on gas nitriding behavior, and consequent corrosion and fatigue properties of austenitic stainless steel (SUS316) were evaluated. Gas nitriding was performed at 400°C, 475°C and 550°C. The microstructural characteristics of the treated specimens were examined using a micro-Vickers hardness tester, optical microscope, scanning electron microscope (SEM), Glow discharge optical emission spectrometry (GD-OES), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). It was revealed that nitrided layer was formed on the FPP-treated surface although passive film existed at the surface. This was because nitrogen diffused into the material through the transferred particles on the surface during the subsequent gas nitriding process. In order to evaluate the corrosion resistance, electrochemical corrosion tests were performed. The specimen nitrided at 400°C showed highest corrosion resistance due to the existence of an S-phase. Fatigue tests were also performed at room temperature using a rotational bending fatigue testing machine. The nitrided specimens pre-treated with FPP showed the higher fatigue strength compared with single surface treated specimens.
Article
Full-text available
The effects of fine particle peening (FPP) on oxidation behavior of nickeltitanium shape memory alloy (NiTi alloy) were evaluated. After FPP treatment, oxidation process was performed at 300, 400 and 500°C for 30 min in N220 vol%O2 atmosphere. Surface microstructures of oxidized specimens pre-treated with FPP were characterized using scanning electron microscope (SEM), glow discharge optical emission spectroscopy (GD-OES), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction analysis (XRD). Oxide layers formed on the specimens pre-treated with FPP were thinner than those on the un-peened ones. Amorphous titanium oxides (TiO and TiO2) were formed on the un-peened specimens by oxidation process, whereas a nickel oxide (NiO) was created on the FPP-treated surface oxidized at temperature greater than 400°C as well as titanium oxides. This was because an amorphous structure created by FPP accelerated the outward growth of nickel oxide during the subsequent oxidation process. Moreover, the effects of surface oxide layers on the biocompatibility of NiTi alloy were investigated. Due to the formation of a thin oxide layer which contains nickel element, the oxidized specimen pre-treated with FPP showed higher amount of nickel ion elution than that of the oxidized one during the cell culture tests. These results suggest that microstructural feature of surface oxide layer strongly affects the biocompatibility of NiTi alloy.
Article
Full-text available
Fine particle peening (FPP) treatment was introduced to improve the oxidation resistance of austenitic stainless steel. After FPP treatment, oxidation tests were performed at 700 and 800 °C for 1, 4 and 12 h in an atmospheric environment. The surface microstructures of the oxidized specimens were observed using optical microscopy, scanning electron microscopy (SEM), glow discharge optical emission spectroscopy (GD-OES), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The amount of oxygen diffused into the FPP-treated specimens was significantly less than that into un-peened specimens. Iron oxides were formed in the un-peened specimens as a result of the oxidation tests. In contrast, a protective chromium oxide layer was created on the FPP-treated surface, because the fine grains and dislocations induced by FPP treatment accelerated the diffusion of chromium during the subsequent oxidation tests. These results indicate that FPP treatment is a very efficient process to improve the atmospheric oxidation resistance of austenitic stainless steel.
Article
Full-text available
Investigation of microstructural changes in pure commercial-grade iron caused by fine particle peening (FPP) treatment was undertaken by detailed observation using field emission-scanning electron microscopy (FE-SEM) and measurement of the X-ray diffraction peak full width at half maximum (FWHM). The effect of pre-FPP treatment on the oxygen diffusion process within iron is also discussed. FPP treatment produced stratification patterns with many dislocations and grain boundaries on the treated surface. This unique microstructure strongly affected the diffusion capacity, so that thicker oxygen-concentrated layers were observed on pre-FPP/oxygen diffusion-treated surfaces.
Article
In this study, a mechanically polished Ni-Ti alloy was subjected to isothermal oxidation (TO) in N2-20vol.%O2 at temperatures ranging from 300 to 800°C. TO-treated surfaces were then characterized by field emission type scanning electron microscopy (FE-SEM), energy dispersive X-ray spectrometer (EDX), X-ray electron spectroscopy (XPS) and X-ray diffraction (XRD). Electrochemical corrosion tests were also carried out using a three electrochemical cell connected to a computer driven potentiostat. Results showed that Ni-Ti alloy exhibited different oxidation behavior depending on the treatment temperatures. A Ni free layer was observed in the oxide layer for the specimens TO-treated at temperatures 500°C and above. Specimens TO-treated at temperatures ranging from 300 to 500°C showed higher corrosion resistance compared to that of the surface finished by polishing. This was because the TO-treatment created a thick oxide layer with an amorphous structure. Specimens TO-treated at above 600°C showed very low passive current densities, but lower pitting potential. This was because these samples were covered with crystalline oxide. Consequently, the TO-treatment at 500°C produced a smooth protective nickel free oxide layer, which contributes to good biocompatibility of Ni-Ti implants.
Article
Formation of the reaction product layer on the surface of biomedical titanium alloys, Ti-29Nb-13Ta-4.6Zr (TNTZ) and Ti6A1-4V ELI (Ti64), during gas nitriding was investigated. These alloys were exposed to nitrogen atmosphere at 1023, 1073, 1123 and 1223 K. After the gas nitriding, a reaction product layer was observed on the surface of both alloys, and was analyzed using an X-ray diffraction (XRD), Auger electron spectroscopy (AES) and X-ray Photoelectron spectroscopy (XPS). The layer was comprised of two phases, which were outer oxide layer (mainly TiO2) and inner nitride layer (mainly TiN or Ti2N). In these layers, the thickness of the oxide layer particularly depended on the kinds of alloys. According to the thermodynamics and point defect theory, the growth rate of oxide layer is expected to be increased by the presence of Al in TiO2. Namely, the dissolution of Al into TiO2 may increase the number of oxygen vacancies, resulting in acceleration of oxygen diffusion inward. On the other hand, the elements that accelerate the growth of the oxide layer are not contained in TNTZ. Thus, the oxide layer formed on Ti64 was thicker than that of TNTZ. In a similar way, the elements that accelerate the growth of the nitride layer are not contained in both TNTZ and Ti64. Thus, the nitride layers with similar thicknesses may be formed on TNTZ and Ti64 during gas nitriding.
Article
The relationship between the oxidation kinetics and the morphology of the scale at elevated temperatures in Ti-Al alloys was studied. Results show that the scales formed on the alloys of the Ti-Al system oxidized at 1073 and 1173 K in ambient air for 24 hours can be classified into four types of morphology according to the distribution of Al2O3 and TiO2. The parabolic oxidation rate constant Kp of alloys decreases exponentially with CAl, and the variation rate of Kp is controlled by the morphology of the scales.
Article
The poor tribological properties of titanium and titanium alloys can be improved by using diffusion treatments, which take advantage of the high reactivity of titanium with respect of carbon, nitrogen or oxygen to produce high hardness surface layers well bonded to the tough matrix. The present paper reports a comparison of the effects of glow-discharge and furnace processes, performed using air as treatment atmosphere, on the microstructure and mechanical properties of Ti-6Al-4V alloy samples. Both treatment types, performed at 973 and 1173 K for 0.5, 2 and 4 h, produce modified surface layers, consisting of an outer compound layer and an inner diffusion layer. The compound layer consists mainly of TiO2, small amounts of TiNxOy and, in the 1173-K treated samples, small amounts of Al2O3 concentrated at the outer part of the scale. In the diffusion layer, a solid solution of interstitial atoms in α-Ti is present; moreover, at the compound layer–diffusion layer interface a peculiar microstructure, consisting of oxygen-rich Ti3Al phase and α-Ti solid solution, is observed on samples treated at 1173 K. A higher efficiency in surface hardening is shown by the glow-discharge treatment in respect of the furnace process: by using the same treatment temperature and time, glow-discharge treated samples have thicker hardened layers with higher hardness values than the furnace treated ones, and this effect is more marked for 973-K treated samples, while it is reduced for 1173-K treated samples. Moreover, the a, c lattice parameters of the α-Ti solid solution, evaluated by means of the Rietveld method from X-ray diffraction patterns, are also influenced by the treatment type.
Article
In order for such engineering components as bearings and gears to withstand the high Hertzian contact stresses encountered in service, deep case hardening is necessary. Oxygen diffusion (OD) and thermal oxidation (TO) techniques have been successfully applied to the low strength Ti–6Al–4V alloy to develop a deep hardened case and a thin, hard, wear resistant surface layer. These techniques have been used to produce homogeneous, composition controlled, and highly reproducible alloyed surface layers in the Ti–6Al–4V alloy. It was the objective of the present investigation to develop and apply the novel duplex OD–TO surface treatment to the high strength titanium alloy Timet550. The higher strength of Timet550, compared with Ti–6Al–4V, would have the advantage of increasing the bending strength of a component under load. Various oxidation and diffusion treatments were carried out to optimise the OD–TO process and consequently a post-diffusion heat treatment was developed to maximise the depth and hardness of the OD case for Timet550. The surface layers were characterised using XRD, GDS, and SEM, which revealed a rutile surface with an oxygen rich case. The loadbearing capacities of duplex treated Timet550 specimens were evaluated using friction monitored scratch tests and a wheel on block Amsler wear tester. It was found that the OD, heat treated, and TO processed Timet550 specimens had the greatest loadbearing capacity.