ArticlePDF Available

Freshwater lichens on submerged stones and alder roots in the Polish lowland

Authors:

Abstract and Figures

The article presents the results of the studies of lichens in streams and spring areas of the escarpment zone of Wzniesienia Łódzkie Heights in Central Poland. The boulders, stones and roots of Alnus glutinosa, situated in 3 inundated zones in the streams: submerged zone, fluvial mesic zone and fluvial xeric zone, were examined in the streams. The studies have shown 23 species connected with these streams. Six species of freshwater lichens: Verrucaria aquatilis, V. hydrela, Hydropunctaria rheitrophila, V. margacea, V. praetermissa and V. madida, occupied stones in 3 different zones. Verrucaria aquatilis and Hydropunctaria rheitrophila colonized also secondary substrates – the bark of alder roots incrusted with sand grains and silt.
Content may be subject to copyright.
Freshwater lichens on submerged stones and alder roots
in the Polish lowland
MARIUSZ HACHUŁKA
Department of Mycology, Laboratory of Lichenology
University of Łódź, Banacha 12/16, PL-90-237 Łódź, m.hachulka@poczta.fm
Hachułka M.: Freshwater lichens on submerged stones and alder roots in the Polish lowland.
Acta Mycol. 46 (2): 233–244, 2011.
The article presents the results of the studies of lichens in streams and spring areas of the
escarpment zone of Wzniesienia Łódzkie Heights in Central Poland. The boulders, stones and
roots of Alnus glutinosa, situated in 3 inundated zones in the streams: submerged zone, uvial
mesic zone and uvial xeric zone, were examined in the streams. The studies have shown 23
species connected with these streams. Six species of freshwater lichens: Verrucaria aquatilis,
V. hydrela, Hydropunctaria rheitrophila, V. margacea, V. praetermissa and V. madida, occupied
stones in 3 different zones. Verrucaria aquatilis and Hydropunctaria rheitrophila colonized also
secondary substrates – the bark of alder roots incrusted with sand grains and silt.
Key words: aquatic lichens, freshwater habitats, stone and tree root substrates, Central Poland
INTRODUCTION
In Europe studies of epilithic freshwater lichens and their ecology have been carried
out for over a hundred years. A pioneering paper indicative of the zonal distribution
of lichens by Santesson was published in 1939. The author was the rst to notice that
not only a substrate has an effect on the structure of aquatic lichen groups, but also
the time of thallus ooding (Coste 2010, after Santesson 1939).
The best so far examined water habitats in England have shown that on all of the
localities the lichen species are found in the form of series of overlapping streaks con-
nected with the duration and altitude of ooding, which Gilbert (1996) called zones
and distinguished 4 of them: 1 submerged zone, 2 uvial mesic zone, 3 uvial
xeric zone and 4 – uvial terrestrial zone. At rst, these zones were distinguished on
the basis of studies of rivers owing on cretaceous formations and limestones and
later they were conrmed in rivers owing on acid rocks (Gilbert, Giavarini 1997;
Hawksworth 2000).
ACTA MYCOLOGICA
Vol. 46 (2): 233–244
2011
Polish Botanical Society
Elektronicznie podpisany przez Polish Botanical Society
DN: c=IE, st=Warszawa, o=ditorPolish Bot, ou=Standard Certificate, ou=anical SocietySupport, serialNumber=PT2110520970.1, title=Managing E, sn=Otreba, givenName=org.plPiotr, email=p.otreba@pbsociety., cn=Polish
Botanical Society
Data: 2014.01.01 23:51:18 +01'00'
234 M. Hachułka
Coste (2010), while he was examining freshwater lichens in France distinguished
3 zones: hyper-hydrophilic lichens, meso-hydrophilic lichens and sub-hydrophilic
lichens. In Poland, mainly, montane and submontane streams and rivers were ex-
amined, however zonal distribution of lichens was rarely distinguished, e.g., the sub-
merged zone and the splash zone (Krzewicka, Galas 2006; Krzewicka 2009). Kiszka
(1998) while he was examining lichens in the Czarna Wisełka and Biała Wisełka
catchments distinguished 2 zones: the zone of stream bed and the zone of stream
banks. In these habitats he noted 73 epilithic taxa, including lichens directly con-
nected with water habitat of streams and spring areas.
In relation to the species composition and the distribution of freshwater lichens
growing on stones and boulders, the areas of the Western and Eastern Carpathians
are the best known. In the montane streams of the Polish part of the Carpathians
the studies of freshwater lichens were carried out by Kiszka (1995, 1998), Krzewicka
(2006, 2009), Krzewicka and Galas (2006). Occasional data can be found in the pa-
pers by e.g., Nowak (1965, 1998), Kiszka (1967, 1985, 1996, 1997, 2000), Nowak and
Tobolewski (1975), Kozik (1977), Czarnota (2000), Kiszka and Kościelniak (2001),
Bielczyk (2003), Kościelniak and Kiszka (2003), Kościelniak (2004), Flakus (2007),
Śliwa (2010). The records of Verrucaria dolosa and V. hydrela from the Sudety Moun-
tains (Masyw Śnieżnik Massive and Góry Bialskie Mts) were given by Szczepańska
(2008). All of the authors paid attention mostly to epilithic species of the genus Ver -
rucaria (Hydroverrucaria).
The freshwater lichens in the Polish lowlands are very poorly known. A few data
originate mainly from northern Poland (Fałtynowicz et al. 2000; Kukwa 2000; Lip-
nicki 2002; Fałtynowicz 2003; Fałtynowicz, Kukwa 2006; Szymczyk 2007; Szymczyk,
Zalewska 2008), north-eastern Poland (Czyżewska et al. 2001, 2002) and Central Po-
land – Wyżyna Wieluńska Upland (Nowak 1967) and Wzniesienia Łódzkie Heights
(Hachułka 2007; Krzewicka, Hachułka 2008).
Rivers and streams in the lowland differ from montane streams in substrate of
their bottom, built mainly of sand and gravel and their banks are most often over-
grown by black alder (Alnus glutinosa) and willows (Salix spp.), which are the com-
ponents of the streamside alder-ash forest. The alder roots growing directly over the
river banks are washed by the owing water, which deposits grains of sand mixed
with silt on these tree roots. The bark of alder roots incrusted with grains of sand
glued together with silt makes them similar to the rock substrate and, beside the
granite stones, it also constitutes the substrate settled by epilithic freshwater lichens.
The paper presents freshwater lichens poorly known or overlooked in the Polish
lowlands growing on the rock substrate and on the roots of trees immersed in water.
It is an attempt by show their zonal distribution in freshwater habitats exemplied by
the streamsides situated in the area of the escarpment zone of Wzniesienia Łódzkie
Heights in Central Poland, which is as a whole under legal protection as Wzniesienia
Łódzkie Landscape Park.
Freshwater lichens 235
STUDY AREA
The habitats where freshwater lichens are found are present at the Wzniesienia
Łódzkie Landscape Park. The objects of research were spring areas and rivers be-
longing to the Vistula’s catchment area (Kondracki 2000). The studies were carried
out in the spring part of the Bzura river and its tributaries: Mrożyca, Grzmiąca and
Kamienna, and Moszczenica with a tributary Młynówka (Fig. 1). These streams are
similar in character to upland rivers. The maximum height difference reaches 100
metres in the upper catchment of Moszczenica stream (Moniewski 2004).
The substrate has an inuence on these rivers water chemistry. The boulder clay,
gravels and moraine sands make a large contribution to building the river beds.
The river bed is often stony with numerous boulders. In relation to chemistry the
waters were best examined in Młynówka stream (Ziułkiewicz 1999; Walisch 2007;
Ziułkiewicz, Żelazna-Wieczorek 2007a, b). In relation to physicochemical properties
they correspond to the values of hydrochemical setting of groundwaters. They are
freshwaters, of middling hardness ranging from weakly acidic to slightly alkaline (pH
6.46 to 7.47); a reaction based on the contribution of diatoms indicates the alkalinity
of water. The hydrochemical values of water are little unstable, they are mineralized
to slight degree (0.1-0.5 g/dm
3
). A certain changeability of the hydrochemical values
results from seasonality and surroundings (forest and eld springs). The large con-
tribution of the diatoms demanding high saturation of oxygen in water was noted.
Selected physicochemical features of Kamienna and Grzmiąca streams were ex-
amined (Tab. 1). The studies showed the similarity of some features of streams: their
Fig. 1. Distribution of some lichen species growing in streams: 1 – Bacidina inundata,
2 Hydropunctaria rheitrophila, 3 – Thelidium aquaticum, 4 Verrucaria aquatilis, 5 – V. dolosa,
6 V. funckii, 7 – V. hydrela, 8 V. madida, 9 – V. margacea, 10 V. praetermissa; 11 – forest area;
12 – roads; 13 – borders of the Wzniesienia Łódzkie Landscape Park.
236 M. Hachułka
average depth, temperature, similar reaction. A higher content of oxygen in the wa-
ter was found in the Kamienna stream.
The waters of high quality (Ib class) predominate in the majority of the springs,
although individual cases of II and III class can also be found (Moniewski 2004).
MATERIAL AND METHODS
The studied material was the lichens growing in freshwater habitats on siliceous boul-
ders and stones lying in the river and stream beds and on the alder roots and bottoms
of trunks growing on the streamsides. The studies were carried out from 2004 to 2008
and in 2011 using the point-based method taking 3 submersion zones into considera-
tion (cf. Gilbert, Giavarini 1997; Hawksworth 2000): 1 submerged zone (zone with
stones and tree roots always submerged in water); 2 uvial mesic zone (zone often
inundated, with stones and tree roots submerged during the rainfall season); 3 u-
vial xeric zone (zone sporadically inundated, with stones and tree roots submerged
or splashed water sporadically, for example during long-lasting rainfall season) see
Figure 2.
Physicochemical measurements of Kamienna and Grzmiąca streams were made
by Dr. Zbigniew Kaczkowski and the author in September 2011 (Tab. 1). The studies
were carried out using the oat method (Bujakiewicz-Grabowska, Magnuszewski
2002) in the site of the collection of lichens samples. Temperature of water, pH,
saturation and oxygen in water were also measured.
The lichen materials were identied by routine lichenological methods, imploy-
ing a Nikon SMZ 645 and a Nikon Eclipse 80i light microscope, and spot reactions.
Lichen nomenclature follows mainly Smith et al. (2009), Diederich et al. (2011),
for species Hydropunctaria, Verrucaria and Thelidium Gueidan et al. (2009), Thüs
and Schultz (2009), for Bacidina sulphurella Hauck and Wirth (2010), bryophyte
Table 1
Physicochemical features of the streams Kamienna and Grzmiąca at the sites
of the lichens collection
Feature Streams
Kamienna Grzmiąca
spring part
Grzmiąca
in Tadzin*
Cross-section surface [m
2
] 0.10 0.11 0.17
Hydrometric prole width [m] 1.05 1.55 2.78
Average depht [m] 0.05 0.07 0.07
Maximal depht [m] 0.09 0.12 0.09
Average water velocity [m/s] 0.22 0.16 0.31
Maximal water velocity [m/s] 0.80 0.11 0.19
Flow value [m
3
/s] 0.02 0.01 0.05
Water temp. [°C] 10.2 11.0 11.6
pH 7.41 7.70 7.70
Oxygen [µm/cm] 9.44 9.01 9.01
Saturation [%] 85.8 83.3 85.1
*2,3 kilometers down the river
Freshwater lichens 237
nomenclature Nyholm (1979), Szafran (1961) and Smith (2004). Voucher specimens
are available at the Herbarium Universitatis Lodziensis (LOD-L). Photos are made
by author.
RESULTS AND DISCUSSION
The lichen biota in freshwater habitats is formed of 23 species; they are often accom-
panied by bryophytes and, sporadically, by red alga Hildenbrandia rivularis growing
together with Hydropunctaria rheitrophila. The majority of lichens are epilithic spe-
cies, but there is a signicantly smaller participation of epiphytic lichens. The species
of Verrucaria genus are particularly numerous in this habitat (Tab. 2).
Freshwater lichens are mainly noted in the initial parts of rivers and streams
(Fig. 1), which is probably a result of the increase in water pollution in further parts
of the river. These waters are weakly-acidic to slightly alkaline (pH 6.46-7.7) and
are well saturated with oxygen. (Tab. 1; see also Ziułkiewicz, Żelazna-Wieczorek
2007a, b).
Similar conditions exist in the waters of streams in the Polish Tatra Mountains,
e.g., pH 6.5-8.3 (Krzewicka, Galas 2006).
Freshwater lichens are very sensitive to changes in their habitats and therefore
are considered to be the good biological indicators of water purity (cf. Gilbert, Gia-
varini 1997; Gilbert 2001; Krzewicka 2006).
In examined streams, rivers and spring areas aquatic and semiaquatic crustose
lichens grow on 2 types of substrates – on siliceous granite boulders, stones and peb-
bles, and on the roots of Alnus glutinosa, often covered with sand grains or gravel
and silt in the submerged zone, and on bark at the base of trees.
Verrucaria aquatilis, V. hydrela and Hydropunctaria rheitrophila (Fig. 3), 3 typical
freshwater lichens colonize siliceous boulders and stones in submerged, uvial mesic
and uvial xeric zones (Tab. 2). This is frequently observed in the examined streams
(Fig. 1).
Fig. 2. Distinguished zones for the studies of
the lichens in streams: 1 submerged zone;
2 – uvial mesic zone; 3 – uvial xeric zone.
238 M. Hachułka
Among the freshwater lichens Verrucaria aquatilis and V. hydrela are treated as
pioneer species, which are rst to colonize new substrates; later they are accom-
panied by Hydropunctaria rheitrophila on the vertical surface of rocks (Keller 2005;
Krzewicka, Galas 2006; Krzewicka, Hachułka 2008; Thüs, Schultz 2009). These spe-
cies are tolerant to a wide range of exposure and moderate eutrophic conditions, and
silting in fast running streams. Hydropunctaria rheitrophila is sensitive to silting. This
one grows associated with red alga Hildenbrandia rivularis in Kamienna stream. In
the investigated streams this red alga was earlier noted also by Żelazna-Wieczorek
and Ziułkiewicz (2008).
Verrucaria margacea amphibious on siliceous boulders grows in submerged
and uvial xeric zones (Tab. 2).
Amphibious Verrucaria madida occurs in submerged zones only, on inundated
granite stones in shaded situation of springs area of the Młynówka stream. V. ma-
dida from this locality (Fig. 1) was presented as a new species for Polish biota (Krze-
wicka, Hachułka 2008).
As for Verrucaria praetermissa (Fig. 5) – it grows on small boulders in periodically
inundated zone 2., associated with V. funckii and on stones in sporadically inundated
(rather by splash water) zone 3. together with Verrucaria aquatilis and Thelidium
aquaticum. This species is sensitive to atmospheric conditions as well as to water
acidication and restricted to watercourses with pH>5. It is tolerant to silting and
eutrophication (Thüs, Schultz 2009).
Furthermore, Verrucaria funckii and V. dolosa (a terrestrial species but also am-
phibious of small streams) occur only in zone 2. Verrucaria funckii is a characteristic
element of permanently submerged communities in clean springs and headwaters,
and is sensitive to silting and acidication (Thüs, Schultz 2009).
Only in uvial xeric zone, on stones and boulders were following the crustose epi-
lithic lichens were observed: Bacidina inundata, Porina chlorotica, Thelidium aquati-
cum, Verrucaria subdolosa, V. muralis and V. murina (Tab. 2).
Bacidina inundata amphibious by the splash water in shaded places. The spe-
cies is tolerant to moderate eutrophication but also sensitive to atmospheric acidi-
cation (Thüs, Schultz 2009). Porina chlorotica a terrestrial species on siliceous
stone of bridges in shaded and humid places by splash water. Thelidium aquaticum
and Verrucaria sublobulata amphibious in a streams on granite of bridge. Accord-
ing to Thüs and Schultz (2009) V. sublobulata can also rarely grow on roots of alders.
The results of the studies show that the obligatory freshwater crustose lichens
reveal in the streams a tendency to move and colonize the secondary substrate, the
roots of A. glutinosa growing on the stream banks, in the submerged and seasonally
submerged zones. In both zones, the alder roots are occupied by Hydropunctaria
rheitrophila (Fig. 4). In 2
nd
zone the alder roots are also colonized by V. aquatilis (cf.
Tab. 2).
In lowland Poland, freshwater epilithic lichens growing on the roots of trees are
known only from the Białowieża National Park (NE Poland) Verrucaria hydrela, on
submerged roots of A. glutinosa in the Orłówka stream (Czyżewska et al. 2001) and
from the Wzniesienia Łódzkie Landscape Park (Central Poland) − V. aquatilis in the
Młynówka stream (Krzewicka, Hachułka 2008).
Such links are also known in the rivers of Lithuania (Motiejūnaitè 2003, 2009;
Motiejūnaitė, Czyżewska 2008). On the roots of Alnus glutinosa and sporadically
Fig. 3. Hydropunctaria rheitrophila colonizes submerged stones or stones splashed by water
(LOD-L 15260).
Fig. 4. Hydropunctaria rheitrophila on the bark of Alnus glutinosa roots in uvial mesic zone
(LOD-L 14228).
Fig. 5. Verrucaria praetermissa colonizes the stones (LOD-L 14348).
Fig. 6. Bacidina sulphurella with characteristic pycnidia, colonizes the base of the trunk bark
of Alnus glutinosa, growing in uvial xeric zone (LOD-L 14445).
Freshwater lichens 239
on Ulmus sp. and Fraxinus excelsior in submerged zone Verrucaria hydrela, V. praeter-
missa and Bacidina inundata are growing; in uvial mesic zone – Thelidium zwackhii,
V. hydrela, V. praetermissa, Bacidina inundata and Porina chlorotica, and in uvial
xeric zone 15 species of epiphytic lichens are growing, including Bacidina arnoldiana
(Körb.) V. Wirth & Vĕzda, which probably belongs to Bacidina sulphurella (Samp.)
M. Hauck & V. Wirth, and Lecania prasinoides Elenkin.
According to Thüs and Schultz (2009) vascular plants do not usually compete
with lichens for space. Alder (Alnus glutinosa) and willows (Salix spp.) are occa-
sionally colonized by crustose freshwater lichens. In areas where larger boulders
Table 2
Lichen and bryophyte species growing in streams on stones and boulders (A) and on alder
roots and at the base of alder trunks (B) and numbers of their localities
Lichen and bryophyte species
Zones of submerged stones and alder roots
Submerged
zone
Fluvial mesic
zone
Fluvial
xeric zone
A B A B A B
Lichens
Hydropunctaria rheitrophila (Zschacke) Keller,
Gueidan & Thüs
2 1 2 3 1 .
Verrucaria aquatilis Mudd 1 . 1 1 3 .
Verrucaria hydrela Ach. 2 . 3 . 3 .
Verrucaria margacea (Wahlenb.) Wahlenb. 1 . 1 . . .
Verrucaria praetermissa (Trevis.) Anzi . . 1 . 1 .
Verrucaria madida Orange 1 . . . . .
Verrucaria funckii (Spreng.) Zahlbr. . . 1 . . .
Verrucaria dolosa Hepp . . 1 . . .
Verrucaria sublobulata Eitner ex Servit . . . . 1 .
Thelidium aquaticum Serv. . . . . 2 .
Bacidina inundata (Fr.) Vězda . . . . 1 .
Candelariella vitellina (Hoffm.) Müll. Arg. . . . . 1 .
Physcia caesia (Hoffm.) Fürnr. . . . . 1 .
Porina chlorotica (Ach.) Müll. Arg. . . . . 1 .
Verrucaria muralis Ach. . . . .
1 .
Verrucaria murina Leight. . . . . 1 .
Arthonia spadicea Leight. 3 4
Bacidina sulphurella (Samp.) M. Hauck & V. Wirth . . . 1 . 3
Coenogonium pineti (Schrad. ex Ach.) Lücking
& Lumbsch
. . . 4 . 8
Absconditella lignicola Vězda & Pišút . . . 2 . .
Lecanora conizaeoides Cromb. . . . 2 . .
Physcia stellaris L. Nyl. . . . . . 1
Trapeliopsis granulosa (Hoffm.) Lumbsch . . . . . 1
Sum of lichens 5 1 7 7 12 5
Bryophytes
Brachythecium rivulare Schimp. in Bruch, Schimp.
& W.Gümbel
1 . . . 1 1
Amblystegium juratzkanum Schimp. . . 1 . 1 1
Crotoneuron licinum (Hedw.) Spruce 2 . . . . .
Brachythecium salebrosum (Hoffm. ex F.Weber
& D. Mohr) Schimp. in Bruch, Schimp. & W.Gümbel
. . 1 . . .
Hygroamblystegium tenax (Hedw.) Jem. . . . . 1 .
Brachythecium rutabulum (Hedw.) Schimp. in Bruch,
Schimp. & W.Gümbel
. . . . 2 .
Brachytheciastrum velutinum (Hedw.) Ignatov
& Huttunen
. . . . . 1
Sum of bryophytes 2 0 2 0 4 3
240 M. Hachułka
are rare, this substrate can be the most important habitat for amphibious lichens
(Motiejūnaitė 2003).
Epiphytic growth of freshwater lichens on the roots of vascular plants is more
often observed in the Alps (Thüs, Schultz 2009) and in North-Eastern and Eastern
Europe (Motiejūnaitė 2003, 2009; Pykälä 2006; Motiejūnaitė, Czyżewska 2008) but
is a rare phenomenon in most areas of Central Europe (Thüs, Schultz 2009).
On alders in 2. and 3. inundated zones (Fig. 2) 6 species of epiphytic lichens and
1 epixylic lichen Absconditella lignicola are growing (Tab. 2). An interesting spe-
cies in this group is Bacidina sulphurella [= Bacidia arnoldiana var. corticola Arnold,
Woessia fusarioides D. Hawksw., Poelt & Tscherm.-Woess] (Fig. 6). In the study area
this species is characterized by pycnidia numerous, white, 0.1−0.25 mm diam., co-
nidia liform (24−)25.6−33.0 × 1.6 μm, 0− to 3−septate, slightly curved, always
with at least one extremity strongly hooked (like a walking stick), apothecia not seen
(Brand et al. 2009; Coppins, Aptroot 2009).
Bacidina sulphurella growing on bark at the base of A. glutinosa is associated with
Absconditella lignicola (only in 2
nd
zone), Arthonia spadicea and Coenogonium pineti
(Tab. 2). According to Coppins and Aptroot (2009) this taxon is tolerant of urban
conditions.
So far B. sulphurella was reported from a few scattered localities in Poland: the
Góry Sowie Mts and Puszcza Knyszyńska Forest (Brand et al. 2009), Warszawa, „Las
Bielański” forest reserve (Kubiak et al. 2010) and the Carpathians – the Gorce Mts
(Czarnota 2010), and the Pogórze Wiśnickie foothills (Śliwa 2010).
CONCLUSIONS
In springs and in initial parts of streams and rivers of the escarpment zone of
Wzniesienia Łódzkie Heights 23 species of lichens were noted (cf. Tab. 2), 6 of them,
closely connected with water, epilithic species are on the red list of threatened li-
chens of Poland (Cieśliński et al. 2006): VU category Hydropunctaria rheitrophila,
Verrucaria aquatilis and V. hydrela, NT category V. praetermissa, and DD category
Thelidium aquaticum and V. sublobulata (Figs 1, 3, 4, 5, 6), which indicate the very
poor extent of study of these habitats in lowland Poland.
The distribution of freshwater lichens in examined streams shows patent zona-
lity. The least numerous, consisted of the epilithic, obligatory freshwater crustose
lichens is the submerged zone (see Tab. 2). The most abounding in species is uvial
xeric zone, consisted mostly of facultative, epilithic and epiphytic lichens noted not
only on the wet substrate. Similar links have also been observed in the rivers of
Lithuania (Motiejūnaitė 2003).
In the Wzniesienia Łódzkie Landscape Park only Verrucaria aquatilis and Hy-
dropunctaria rheitrophila colonize stones and boulders and submerged roots of Al-
nus glutinosa. In the Białowieża National Park in submerged alder roots Verrucaria
hydrela was noted (Czyżewska et al. 2001). In the rivers of Lithuania secondary
substrates are colonized by 5 epilithic species: Bacidina inundata, Porina chlorotica,
Thelidium zwackhii, Verrucaria hydrela and V. praetermissa (Motiejūnaitė 2003, 2009).
Freshwater lichens 241
The lichens growing in the investigated streams compete with bryophytes (moss-
es and liverworts) for substrate. Together on boulders in streams and on the stream
banks 7 species of bryophytes were noted, the most of them in sporadically inun-
dated zone 3 (see also Tab. 2). The zonal occupying of the substrates probably exists
also among the bryophytes.
The lichens, as well as the bryophytes, connected with water habitats in the Polish
lowlands need further wide-ranging studies.
Acknowledgements. The author would like to thank Prof. Krystyna Czyżewska (University of Łódź) for
entrusting the interesting subject of the study, for her assistance and support during the preparation of
the manuscript, Dr Beata Krzewicka (Polish Academy of Sciences, Kraków) – for identication and revi-
sion of freshwater lichens, especially critical species of the genus Verrucaria, Dr Monika Staniaszek-Kik
(University of Łódź) for identication of bryophyte species, Dr. Zbigniew Kaczkowski (University of
Łódź) − for carring out physicochemical studies of the waters of Kamienna and Grzmiąca streams. The
studies were partially supported by the Ministry of Science and Higher Education – grant No. N 305 043
32 and grants of University of Łódź Nos 505/396 and 505/413/W.
REFERENCES
Bielczyk U. 2003. The lichens and allied fungi of the Polish Carpathians an annotated checklist. W.
Szafer Institute of Botany, Polish Academy of Sciences, Kraków, 342 pp.
Brand M., Coppins B., van den Boom P. P. G., Sérusiaux E. 2009. Further data on the lichen genus Bacidia
s.l. in the Canary Island and Western Europe, with descriptions of two new species. Bibliotheca
Lichenologica 99: 81–92.
Bujakiewicz-Grabowska E., Magnuszewski A. 2002. Przewodnik do ćwiczeń z hydrologii ogólnej. War-
szawa, 195 pp.
Cieśliński S., Czyżewska K., Fabiszewski J. 2006. Red list of the lichens in Poland. (In:) Z. Mirek, K. Za-Za-
rzycki, W. Wojewoda, Z. Szeląg (eds). Red list of plants and fungi in Poland. W. Szafer Institute of
Botany, Polish Academy of Sciences, Kraków: 71–89.
Coppins B. J., Aptroot A. 2009. Bacidia De Not. (1846). (In:) C. W. Smith, A. Aptroot, B. J. Coppins,
A. Flechter, O. L. Gilbert, P. W. James and P. A. Wolseley (eds). The lichens of Great Britain and
Ireland. The British Lichen Society: 189–207.
Coste C. 2010. New ecology and new classication for phytosociology of hydrophilic lichens in acid wa-
tercourses in France. Acte du colloquedes 3
émes
recontres Naturalistes de Midi-Pyrénées: 157-168.
Czarnota P. 2000. Porosty Gorczańskiego Parku Narodowego. Część I. Wykaz i rozmieszczenie gatunków.
Parki nar. Rez. Przyr. 19 (1): 3–73.
Czarnota P. 2010. Critical list of lichens and lichenicolous fungi of the Gorce Mts. Ochrona Beskidów
Zachodnich 3: 55–78.
Czyżewska K., Cieśliński S., Motiejūnaitė J., Kolanko K. 2002. The Budzisk nature reserve as a biocentre
of lichen diversity in the Knyszyńska Large Forest (NE Poland). Acta Mycol. 37 (1/2): 77–92.
Czyżewska K., Motiejūnaitė J., Cieśliński S. 2001. Species of lichenized and allied fungi new to Białowieża
Large Forest (NE Poland). Acta Mycol. 36 (1): 13–19.
Diederich P., Ertz D., Stapper N., Sérusiaux E., Van den Broeck D., van den Boom P., Ries C. 2011.
The lichens and lichenicolous fungi of Belgium, Luxembourg and northern France. URL: http://
www.lichenology.info [date of exploration 21 Sept. 2011].
Fałtynowicz W. 2003. The lichens, lichenicolous and allied fungi of Poland an annotated checklist.
W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, 435 pp.
Fałtynowicz W., Kukwa M. 2006. Lista porostów i grzybów naporostowych Pomorza Gdańskiego. Acta
Bot. Cassubica. Monographiae 2: 1–98.
Fałtynowicz W., Marcinkiewicz E., Rutkowski P. 2000. Porosty rezerwatu „Dolina Zagórskiej Strugi” koło
Rumii na Pojezierzu Kaszubskim. Acta Botanica Cassubica 1: 119–126.
Flakus A. 2007. Lichenized and lichenicolous fungi from mylonitized areas of the subnival belt in the
Tatra Mounains (Western Carpathians). Ann. Bot, Fennici 44: 427–449.
Gilbert O. L. 1996. The lichen vegetation of chalk and limestone streams in Britain. Lichenologist 28 (2):
145–159.
242 M. Hachułka
Gilbert O. L. 2001. Freshwater habitats. (In:) A. Fletcher (ed.). Lichen habitat management, p. 08-1– 08-3.
Gilbert O. L. Giavarini V. J. 1997. The lichen vegetation of acid watercourses in England. Lichenologist
29 (4): 347–367.
Gueidan C., Savič S., Thüs H., Roux C., Keller C., Tibell L., Prieto M., Heiðmarsson S., Breuss O., Or-
ange A., Fröberg L., Wynns A. A., Navarro-Rosinés P., Krzewicka B., Pykälä J., Grube M., Lutzoni
F. 2009. Generic classication of the Verrucariaceae (Ascomycota) based on molecular and morpho-
logical evidence: recent progress and remaining challanges. Taxon 58 (1): 184–208.
Hachułka M. 2007. Porosty naskalne w środowisku przyrodniczym Parku Krajobrazowego Wzniesień
Łódzkich. (In:) E. Kępczyńska, J. Kępczyński (eds). Botanika w Polsce sukcesy, problemy, pers-
pektywy. Streszczenia referatów i plakatów 54. Zjazdu Polskiego Towarzystwa Botanicznego. Szcze-Szcze-
cin: 132.
Hauck M., Wirth V. 2010. New combinations in Bacidina. Herzogia 23 (1): 15–17.
Hawksworth D. L. 2000. Freshwater and marine lichen-forming fungi. (In:) K. D. Hyde, W. H. Ho, S. B.
Pointing (eds). Aquatic Mycology across the Millenium. Fungal Diversity 5: 1–7.
Keller Ch. 2005. Articial substrate colonized by fresh water lichens. Lichenologist 37 (4): 357–362.
Kiszka J. 1967. Porosty Beskidu Śląskiego. Roczniki Nauk Dydaktycznych, WSP w Krakowie 28: 5–91.
Kiszka J. 1985. Porosty Pogórza Spiskiego. Studia Ośrodka Dokumentacji Fizjogr. PAN 7: 349–377.
Kiszka J. 1995. Porosty brzegów i koryt potoków w zlewni Czarnej Wisełki i Białej Wisełki. (In:) S. Wróbel
(ed.). Zakwaszenie Czarnej Wisełki i eutrozacja zbiornika zaporowego. Instytut Biologii, Wyższa
Szkoła Pedagogiczna: 81–85.
Kiszka J. 1996. Nowe i rzadkie gatunki porostów (Lichenes) w Bieszczadzkim Parku Narodowym.
1. Roczniki Bieszczadzkie 5: 43–48.
Kiszka J. 1997. Porosty (Lichenes) dna i otoczenia zbiorników retencyjnych w dolinie Dunajca w Pienin-
ach. Fragm. Flor. Geobot. Polonica 4: 253–323.
Kiszka J. 1998. The Lichens of stream banks and beds in the Czarna Wisełka and Biała Wisełka catch-
ments. Studia Naturae 44: 113–123.
Kiszka J. 2000. Nowe dla Pienin gatunki porostów. 2. Fragm. Flor. Geobot. Polonica 7: 277–279.
Kiszka J., Kościelniak R. 2001. Nowe i rzadkie gatunki porostów (Lichenes) w Bieszczadzkim Parku
Narodowym i jego otulinie. 3. Roczniki Bieszczadzkie 9 (2000): 27–32.
Kondracki J. 2000. Geograa regionalna Polski. PWN, Warszawa, 440 pp.
Kościelniak R. 2004. Porosty (Lichenes) Bieszczadów Niskich. Fragm. Flor. Geobot. Polonica, Supple-
mentum 5: 1–164.
Kościelniak R., Kiszka J. 2003. The lichens and allied fungi of the Polish Eastern Carpathians. (In:)
U. Bielczyk (ed.). The lichens and allied fungi of the Polish Carpathians an annotated checklist.
W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków: 233–294.
Kozik R. 1977. Porosty (Lichenes) Pogórza Rożnowsko-Ciężkowickiego. Fragm. Flor. Geobot. 23 (2):
215-252.
Krzewicka B. 2006. Wodne gatunki porostów z rodzaju Verrucaria w potoku Chochołowskim w Tatrach.
(In:) Z. Mirek, B. Godzik (eds). Tatrzański Park Narodowy na tle innych górskich terenów chronio-
nych. Nauki biologiczne 2, Zakopane: 51–56.
Krzewicka B. 2009. Some new records of Verrucaria from Beskid Niski Mts. Acta Mycol. 44 (2): 265–273.
Krzewicka B., Galas J. 2006. Ecological notes on Verrucaria aquatilis and V. hydrela in the Polish Tatry
Mauntains. (In:) A Lackovičovà, A. Guttovà, E. Lisickà, P. Lizoň (eds). Central European lichens –
diversity and threat, p.193-204, Mycotaxon Ltd., Ithaca.
Krzewicka B., Hachułka M. 2008. New and interesting records of freshwater Verrucaria from Central
Poland. Acta Mycol. 43 (1): 91–98.
Kubiak D., Wrzosek M., Zaniewski P. 2010. Materiały do bioty porostów i grzybów naporostowych rezer-
watu „Las Bielański” w Warszawie. Parki nar. i Rez. Przyr. 29 (3): 3–15.
Kukwa M. 2000. Porosty i grzyby naporostowe zachodniej części Pojezierza Iławskiego (Polska północna).
Fragm. Flor. Geobot. Polonica 7: 281–297.
Lipnicki L. 2002. Porosty rezerwatu „Dolina Rzeki Brdy” w Tucholskim Parku Krajobrazowym. (In:)
M. Ławrynowicz, B. Rózga (eds). Tucholski Park Krajobrazowy 1985-2000 stan poznania. Wyd.
Uniwersytetu Łódzkiego, Łódź: 368-384.
Moniewski P. 2004. Źródła okolic Łodzi. Acta Geogr. Lodz. 87: 1–140.
Motiejūnaitė J. 2003. Aquatic lichens in Lithuania. Lichens on submerged alder roots. Herzogia 16:
113–121.
Freshwater lichens 243
Motiejūnaitė J. 2009. Lichens and allied fungi of two Regional Parks in Vilnius area (Lithuania). Acta
Mycol. 44 (2): 185–199.
Motiejūnaitė J., Czyżewska K. 2008. Additions to the biota of lichens and lichenicolous fungi of Poland,
with a note on Lecania prasinoides in Eastern and Central Europe. Polish Bot. J. 53 (2): 155–162.
Nowak J. 1965. Porosty Beskidu Małego. Fragm. Flor. Geobot. 11 (3): 209–242.
Nowak J. 1967. Porosty Wyżyny Wieluńskiej. Acta Mycol. 3: 209–242.
Nowak J. 1998. Porosty Beskidów Wyspowego i Żywieckiego, Pasma Jałowca i Masywu Babiej Góry.
Monogr. Bot. 83: 1–131.
Nowak J. Tobolewski Z. 1975. Porosty Polskie. PWN, Kraków, 1177 pp.
Nyholm E. 1979. Illustrated moss ora of Fennoscandia. II. Musci. Fasc. 5. 2
nd
edition. Swedish Natural
Science Research Council, Sweden: 405–647.
Pykälä J. 2006. Additions to the lichen ora of Finland. Graphis Scripta 18: 41–48.
Smith A. J. E. 2004. The Moss Flora of Britain and Ireland. 2
nd
ed. Cambridge University Press, United
Kingdom, 1012 pp.
Smith C. W., Aptroot A., Coppins B. J, Flechter A., Gilbert O. L., James P. W., Wolseley P. A. 2009. The li-
chens of Great Britain and Ireland. The British Lichen Society, 1046 pp.
Szafran B. 1961. Mchy (Musci). Flora Polska. Rośliny zarodnikowe Polski i ziem ościennych. 2. Państwowe
Wydawnictwo Naukowe, Warszawa, 405 pp.
Szczepańska K. 2008. Antropogeniczne przemiany bioty porostów Masywu Śnieżnika i Gór Bialskich.
Acta Bot. Silesiaca, Monographiae 4: 1–291.
Szymczyk R. 2007. Rzadkie i interesujące gatunki porostów i grzybów naporostowych na Wysoczyźnie
Elbląskiej (Północna Polska). Fragm. Flor. Geobot. Polonica 14 (1): 167–173.
Szymczyk R., Zalewska A. 2008. Lichenbiota of the Grabianka river valley in the Elbląg Upland
(Wysoczyzna Elbląska). Pol. J. Natur. Sci. 23 (2): 398–414.
Śliwa L. 2010. Contribution to the lichen biota of the Pogórze Wiśnickie foothills (Carpathians). Acta
Mycol. 45 (2): 219–230.
Thüs H., Schultz M. 2009. Fungi. 1. 1
st
Part: Lichens. (In:) B. Büdel, G. Gärtner, L. Krienitz, H.-R. Preisig,
M. Schagerl (eds). Freshwater Flora of Central Europe. Spectrum Akademischer Verlag, Heidel-
berg, 223 pp.
Walisch M. 2007. Zasilanie źródłowe małych zlewni regionu łódzkiego na tle przepuszczalności utworów
powierzchniowych. (In:) P. Jokiel, P. Moniewski, M. Ziułkiewicz. Żródła Polski. Wybrane problemy
krenologiczne. Wydz. Nauk Geogr. UŁ, Łódź: 153–162.
Ziułkiewicz M. 1999. Chemizm wód źródlanych Parku Krajobrazowego Wzniesień Łódzkich. (In:) E.
Biesiadki, S. Czachorowski (eds). Żródła Polski − stan badań, monitoring i ochrona. Wyższa Szkoła
Pedagogiczna, Olsztyn: 249–252.
Ziułkiewicz M., Żelazna-Wieczorek J. 2007a. Różnorodność okrzemek w wodach źródlanych o różnym
stopniu przekształcenia hydrochemicznego. (In:) Z. Michalczyk (ed.). Badania hydrograczne
w poznawaniu środowiska. Obieg wody w środowisku naturalnym i przekształconym. Wyd. Uniw.
Marii Curie-Skłodowskiej, Lublin: 592–599.
Ziułkiewicz M., Żelazna-Wieczorek J. 2007b. Okrzemki bentosowe żródła Dobieszków na tle warunków
siedliskowych. (In:) P. Jokiel, P. Moniewski, M. Ziułkiewicz (eds). Źródła Polski. Wybrane problemy
krenologiczne. Wydz. Nauk Geogr. UŁ, Łódź: 265–279.
Żelazna-Wieczorek J., Ziułkiewicz M. 2008. Hildenbrandia rivularis (Rhodophyta) in Central Poland.
Acta Soc. Bot. Pol. 77 (1): 41–47.
244 M. Hachułka
Słodkowodne porosty na zanurzonych kamieniach i korzeniach olsz
na Niżu Polskim
Streszczenie
W rzekach i strumieniach Parku Krajobrazowego Wzniesień Łódzkich, w Polsce Środkowej,
odnotowano 23 gatunki porostów wodnych (Tab. 2), z którymi konkuruje o podłoże 7 gatun-
ków mszaków. Sześć ściśle wodnych gatunków naskalnych znajduje się na czerwonej liście
porostów zagrożonych Polski (Cieśliński et al. 2006). Większość porostów wodnych rośnie
w odcinkach początkowych rzek i strumieni, co prawdopodobnie wynika z korzystnych wa-
runków zykochemicznych wód (Tab. 1) i wzrostu zanieczyszczenia w dalszym biegu rzek.
Badania porostów wodnych wykazały ich rozmieszczenie w trzech strefach: 1 całkowicie za-
topionej, 2 − często zatapianej i 3 − sporadycznie zatapianej lub spryskiwanej wodą (Fig. 2).
W drugiej i trzeciej stree zanurzenia, w towarzystwie Coenogonium pineti, Arthonia spadicea
i Absconditella lignicola (Tab. 2) rośnie Bacidina sulphurella (Fig. 5), rzadki porost w Polsce.
W badanych rzekach obligatoryjne epility wodne rosną na głazach i kamieniach, jedynie
Hydropunctaria rheitrophila (Figs 3 A, B) i Verrucaria aquatilis zasiedlają także korę korzeni
olsz często pokrytych ziarnami piasku i mułem. Kolonizowanie podłoży zastępczych przez
epility wodne obserwowano w Alpach (Thüs and Schultz 2009), w północno-wschodniej
i wschodniej Europie (Motiejūnaitė 2003, 2009; Pykälä 2006; Motiejūnaitė, Czyżewska 2008),
również w Polsce Północno-Wschodniej (Czyżewska et al. 2001).
... References. Krawiec (1955), Dziabaszewski (1962), Glanc (1969), Czyżewska ( , 1976aCzyżewska ( , 1980Czyżewska ( , 1981Czyżewska ( , 1988Czyżewska ( [1989, Kośmider (1998), Kozik (1998), Ogrodowczyk (2002), Sochocka--Osińska (2003), Spadło (2003), Kubiak & Szczepkowski (2006, Olszewska (2006), Hachułka (2010Hachułka ( , 2011 Habitat. On sandstone debris. ...
... References. Łubek (2012b), Zduńczyk & Kukwa (2014 , , Dziabaszewski (1962), Nowak (1967), Glanc (1969), Czyżewska ( , 1976aCzyżewska ( , 1980Czyżewska ( , 1981, , Kośmider (1998), Kozik (1998), Toborowicz (1998), Ogrodowczyk (2002), Sochocka-Osińska (2003), Spadło (2003), Wójcik (2003), Kubiak & Szczepkowski (2006, Olszewska (2006), Hachułka (2010Hachułka ( , 2011Hachułka ( ), Łubek (2012a References. Nowak (1967), , Kośmider (1998) Note. ...
... References. Błoński (1890 -vicinity of Końskie town), Krawiec (1955), , Dziabaszewski (1962), Nowak (1967), Glanc (1969), Rydzak & Krysiak (1970), Czyżewska (1981, Kubiak & Szczepkowski (2006), Olszewska (2006), Hachułka (2010Hachułka ( , 2011 , Glanc (1969), Czyżewska ( , 1981, , Kozik (1998) References. Błoński (1890), Tyszkiewiczowa (1935), Krawiec (1955), Halicz & Kuziel (1958 -sub Ph. aipolia, LOD L 16422), Halicz (1959a), Dziabaszewski (1962), Nowak (1967), Rydzak & Krysiak (1970), Czyżewska ( , 1981, Kozik (1998), Hachułka (2010Hachułka ( , 2011 References. ...
... Z kolei Krzewicka i Galas (2006) prowadziły badania nad wymaganiami siedliskowymi dwóch gatunków z rodzaju Verrucaria w Tatrach, uwzględniając wielkość kamieni i głazów preferowanych do zasiedlania przez te taksony, jak i głębokość zanurzenia plech w wodzie. Cieki wodne w ostatnich latach stały się przedmiotem zainteresowań lichenologów (Kiszka 1998a, b;Krzewicka & Hachułka 2008;Hachułka 2011;Matura & Krzewicka 2015;Matura 2016;Krzewicka i in. 2017). ...
... 2017). W trakcie gromadzenia danych ekologicznych dotyczących porostów siedlisk wodnych uwzględniano takie czynniki jak stopień nasłonecznienia, stabilność podłoża, prędkość nurtu, głębokość zanurzenia, a także właściwości fizykochemiczne wody (Krzewicka & Galas 2006;Krzewicka & Hachułka 2008;Hachułka 2011;Galas & Krzewicka 2012a, b;Krzewicka i in. 2017Krzewicka i in. ...
... Badania dotyczące bioty cieków zaczęto również prowadzić poza Karpatami, np. w Polsce Centralnej w Parku Krajobrazowym Wzniesienia Łódzkie (Krzewicka & Hachułka 2008;Hachułka 2011). ...
Book
Full-text available
The study presents the results of lichenological research conducted in 2012–2016, based on my fieldwork carried out in mountain streams in the Polish Western Carpathians, revision of herbarium materials, and published data on lichen species in freshwater habitats in the study area. Field work was performed on 98 research plots divided into three zones related to duration of immersion (294 sampling sites in total). As the result of the work, 94 freshwater lichen species were found (91 based on my field work and/or revision of herbarium material), including 56 aquatic species. For all species, detailed descriptions of morphological and anatomical characters, information on their habitat, occurrence in the study area, worldwide and country distribution, and brief taxonomic notes are given. A key for species identification is also provided. From the present lichenological study, Verrucaria acrotella is reported as new for the Polish Western Carpathians. In total, 30 new species were recorded in particular mountain ranges in the study area. New records of Sarcogyne privigna and Thelidium fontigenum, very rare species in Poland, are given. The streams of the Polish Western Carpathians are characterized by high species diversity in various mountain ranges. The richest lichen biota was observed in streams of the Tatra Mts, where 76 species were found, representing more than 80% of the total number of freshwater lichens known from the Western Carpathians. In the Beskidy Mountains, species diversity in the streams remains within the range of 38–46 species. Two mountain ranges are distinguished by the presence of more species: the Beskid Sądecki Mts (60) and Beskid Żywiecki Mts (57). Thirtysix taxa were noted in the Carpathian foothills. A frequency analysis of lichens shows that very rare species (38 taxa; 40%) and rare species (32; 35%) dominate in the study area. Frequent lichens are the poorest group in the Polish Western Carpathians, accounting for only 4 species (slightly over 4%). Of all the lichens noted in the study area, 34 (~36%) are on the red list of the lichens in Poland. In the case of Carpathian streams, the substrate and the duration of inundation seem to be the most important factors for the occurrence of freshwater lichens. The duration of immersion also affects the species distribution. The submerged zone was the least diverse, in the terms of both number of species and represented families. The only species found there exclusively in the submerged zone were Ionaspis lacustris, Sporodictyon cruentum, Staurothele fissa, Thelidium submethorium, Verrucaria devensis and V. pachyderma. The splash zone provides a habitat transitional between the submerged and riparian zones. Lichens in this zone are constantly exposed to frequent changes between periods of inundation and desiccation. In the splash zone, both species found in the submerged zone as well as those occurring in the riparian zone were found. Species typical for the splash zone included Bacidina inundata, Gyalidea rivularis, Thelidium fontigenum, T. pluvium, Verrucaria humida and V. sublobulata. The most diverse group of lichens was associated with the riparian zone. Many lichens found in this zone are terrestrial lichens commonly found in non-freshwater habitats. They are considered to be rare in aquatic and semi-aquatic habitats but frequent in terrestrial habitats. Key words: aquatic lichens, biodiversity, Carpathians, freshwater lichenized fungi, Poland.
... For instance, noticed only six species in perennially inundated habitats, and thirteen species in periodically inundated habitats of 36 springs examined in the Alps. In general, in European watercourses, species richness in the submerged zone rarely exceeds five to ten species at a given site (Gilbert, 1996;Gilbert and Giavarini, 1997;Hachułka, 2011;Keller, 2005;Krzewicka and Hachułka, 2008;Motiejūnaitė, 2003;Motyka, 1926) and 15-20 species at unpolluted sites in temporarily but regularly inundated and splash zones. ...
... In his pioneering work Santesson (1939) recognized the zonation patterns of lichen assemblages, which seemed to be driven primarily by the length of inundation, and this view was broadly supported by other workers. Many later papers also focused on patterns and drivers of the zonation of lichen assemblages in watercourse beds or along lake margins (Coste, 2005;Gilbert, 1996;Gilbert andGiavarini, 1997, 2000;Hachułka, 2011;Motiejūnaitė, 2003;Keller and Scheidegger, 1994;Ried, 1960a,b;Rosentreter, 1984). The majority of these studies, however, provided at best only detailed floristic descriptions (with the exception of phytosociological treatment by Coste in 2005) and did not attempt statistical analyses of the patterns observed. ...
... Of the 13 species found in this zone all except one (Bacidina inundata) belonged to Verrucariaceae (Table 3). Submerged habitats are generally characterized by a low number of lichen species and their assemblages show some similarities in species composition even in widely geographically separated watercourses (Aptroot and Seaward, 2003;Coste, 2005;Gilbert, 1996;Gilbert andGiavarini, 1997, 2000;Hachułka, 2011;Motiejūnaitė, 2003;Nascimbene and Nimis, 2006;. The most pronounced differences are associated with bedrock chemistry, with siliceous rock hosting a larger and markedly different lichen flora than limestone or chalk (Gilbert, 1996;Gilbert and Giavarini, 1997). ...
Article
Freshwater lichens of selected Carpathian streams were investigated to identify their diversity and distribution patterns. Lichens were investigated along six transects, each running across three different habitats (hydrological zones: submerged, splash and riparian), established in upper, middle and lower reaches of the streams and the data were a subject to statistical analyses. The studied mountain streams provided suitable habitats for a number of aquatic and semi-aquatic lichens and species richness in both streams was very similar. Overall, 52 species of lichens were identified from all sampling plots (γ diversity). Species number for a single plot (α diversity) ranged from 1 to 14 species and differences in species composition between the plots (β diversity) were high. Differences were mainly noted for typical terrestrial lichens occurring in riparian zones. The location along the stream reaches did not have a significant effect on species diversity and distribution. The hydrological zone appeared to be the most important predictor explaining the small-scale occurrence and diversity of lichens with species assembled into distinct, low-diversity communities in the transition from submerged to riparian habitats. The distinction among hydrological zones and their lichen biota were corroborated by nMDS analyses. The method of defined plots provides a way of recording baseline data for a particular river, which can be repeated (monitor) in the future.
... La mayoría de los líquenes de agua dulce viven sumergidos solo durante una parte del año (líquenes anfibios o semiacuáticos) (Aptroot y Seaward 2003;Thüs et al. 2014), por lo que se tienen que adaptar a los ciclos de humectación y secado que experimentan durante las fluctuaciones diurnas y estacionales en la disponibilidad de agua (Coste et al. 2016). Así, en función del tiempo de inmersión al que van a estar sometidos los talos en los cursos de agua, se han considerado varias zonas o bandas (Pereira et al. 1987;Gilbert 1996;Valcárcel y Carballal 2002;Coste 2010;Hachulka 2011;Thüs et al. 2014;Krzewicka et al. 2017): (A) zona regularmente sumergida, donde los líquenes viven sumergidos una gran parte del año (algunos autores indican que más de 6-9 meses), (B) zona sumergida en las crecidas, donde los líquenes están sumergidos regularmente después de las lluvias, y cuando no están sumergidos, están humedecidos por aerosol del agua (zona de salpicadura); (C) zona terrestre, sujeta a inundaciones episódicas después de fuertes lluvias y agua de escorrentía. Los líquenes que colonizan estas zonas se corresponden con un número escaso de grupos taxonómicos que, además, suele ser bastante homogéneos a lo largo del mundo (Aptroot y Seaward 2003). ...
... Para la consecución del objetivo planteado, se obtuvo un listado preliminar de las especies de líquenes asociadas a hábitats de agua dulce en la Península Ibérica, donde además se recogían sus preferencias en cuanto al tiempo de inundación en una distribución zonal (Pereira et al. 1987;Gilbert 1996;Valcárcel y Carballal 2002;Coste 2010;Hachulka 2011;Thüs et al. 2014;Krzewicka et al. 2017) (ver introducción). Para cada una de las especies recogidas en el listado preliminar, se obtuvo su distribución peninsular utilizando el nodo GBIF España (https://www.gbif.es/), ...
Article
Full-text available
Ríos intermitentes y arroyos efímeros constituyen corrientes de agua que dejan de fluir y/o se secan completamente en algún punto del tiempo y espacio, de forma que los organismos han de adaptarse a la temporalidad de estos hábitats con ciclos de inmersión y secado variables en el tiempo e intensidad. Uno de los organismos adaptados a vivir en estos ambientes son los líquenes anfibios o semiacuáticos que colonizan rocas estables en aguas no eutrofizadas. Partiendo de la existencia de adaptaciones morfológicas y anatómicas que han desarrollado los líquenes para vivir en estos ambientes, nos preguntamos sobre la especificidad que tienen por los ambientes acuáticos, y si podrían desarrollarse también en ambientes terrestres. Se han seleccionado 50 especies de líquenes con afinidad por el agua dulce, se ha extraído la información de todas las citas del nodo GBIF España, y se ha completado la información del hábitat usando referencias bibliográficas en el caso de que faltaran. Los resultados muestran una fuerte especificidad por el medio acuático de las 36 especies que viven regularmente sumergidas o en zonas inundadas después de las lluvias. Algunas de ellas como Pseudosagedia guentheri, Polyblastia quartzina o Pyrenocollema saxicola solo han sido citadas en una o dos ocasiones. Además, gran parte de las citas están relacionadas con sistemas acuáticos en zonas de montaña (>1300 m de altitud). Los cursos de agua de zonas de montaña constituyen hábitats idóneos para el desarrollo de los líquenes anfibios, especialmente los tramos asociados a gargantas y rápidos, con aguas oligotróficas y gran extensión de roca expuesta.
... Obecnie znany jest z rozproszonych stanowisk w całym kraju (por. Bielczyk et al., 2016;Czarnota, 2010;Hachułka, 2011;Kubiak, 2013;Kubiak et al., 2017;Kubiak, Wrzosek, & Zaniewski, 2010;Fałtynowicz et al., 2018;Śliwa, 2010). Odnalezione stanowisko w pobliżu przylegającej do Wrocławia wsi Wysoka jest pierwszym w niżowej części Dolnego Śląska. ...
... Głównym zagrożeniem dla tego gatunku są niekorzystne zmiany zachodzące w zbiorowiskach leśnych powodowane pozyskaniem drewna. Uwagi: plecha listkowata, drobna, żółta (K-), z błyszczącą dolną stroną plechy (kora dolna wykształcona), sorediowana (Westberg & Arup, 2010, 2011. ...
Article
Full-text available
The paper presents new localities of 44 lichen species and four lichenicolous fungi, which are considered to be rare or threatened in Poland. In addition to the list of localities, brief comments on their characteristic features and general distribution in Poland are provided.
... Based on this variable exposure and the expected differential responses of lichens to water, our hypothesis was that lichen taxa exhibit vertical distribution resulting from the relative duration of submersion, e.g. on an annual basis. Pereira and Llimona (1987) in Spain, Gilbert (1996) in United Kingdom, and Hachulka (2011) in Central Poland defined three zones along riverbanks characterized by increasing durations of immersion, naming them based on either their physical characteristics (i.e., submerged, mesic, and xeric river zones) or the most significant genera present (such as "Verrucaria", "Staurothele" or "Aspicilia" zones, respectively). Accordingly, Roux et al. (2006) distinguished three types of lichens: (i) those on rocks obligatorily subjected to periods of flooding by river water, (ii) those on rocks obligatorily subjected to periods of submersion by runoff water, and (iii) those not obligatorily subjected to periods of submersion by river or runoff waters. ...
Article
We collected 252 samples in 53 French streams at 3 different heights (low-flow channel, upper limit of streambed, and intermediate zone) across a 190-2200 m altitudinal range, from which we identified and determined the abundance of freshwater lichens to test hypotheses of assemblage zonation. A total of 149 lichenic taxa, including 42 hydrophilic species together with 6 environmental parameters (relative height to stream water, altitude, general and specific orientation, slope, and substratum) were recorded. Hydrophilic species richness was relatively homogenous across height categories and altitudinal classes. Using Canonical Correspondence Analyses, we showed that lichen species, particularly hydrophilic ones, were strongly discriminated along gradients of both exposure to stream water and altitude. Consequently, we proposed a new denomination of freshwater lichens based on their affinity with exposure to stream water: (i) hyperhydrophilic (submersion >9 mo/yr; 14 sp.), (ii) mesohydrophilic (15 sp.), and (iii) subhydrophilic (submersion <3 mo/yr; 15 sp.). We also introduced a 2D typology of freshwater lichens relying on both crossed environmental parameters and showing continuous shifts in species assemblage along gradients.
... Because of their slow rates of colonization and growth, stable, undisturbed shore substrates that are periodically inundated, scoured, or silted will lack lichen or be very small. Distinct lichen lines can form on bedrock and boulder shorelines (Rosentreter 1984;Timoney and Marsh 2004) and on trunks of flood-tolerant trees (Beckelhimer and Weaks 1984;Hale 1984); these lines are less distinct on less stable or more complex surfaces, like bank roots (Hachułka 2011). Because of differences in climate, species tolerance, water quality, substrates, shading, and siltation, the inundation duration needed to form a discernable lichen line varies greatly across studies (Table 4). ...
Technical Report
Full-text available
The Interim Draft National OHWM Manual provides draft technical guidance for identifying and delineating the OHWM using a scientifically supported, rapid framework. The OHWM defines the lateral extent of U.S. Army Corps of Engineers’ (USACE) jurisdiction of non-tidal aquatic resources such as streams, rivers, and lakes in the U.S., and provides USACE its authorities to regulate certain activities within these geographically jurisdictional aquatic resources under Section 404 of the Clean Water Act and Section 10 of the Rivers and Harbors Act. The National OHWM Manual provides technical guidance for identifying and delineating the OHWM by providing a scientifically based, rapid framework for consistent, robust, repeatable, and defensible decision-making. The National OHWM Manual will improve accuracy, consistency, and efficiency in OHWM identification by 1) providing consistent, science-based definitions of OHWM indicators; 2) outlining a clear process for identifying the OHWM using a Weight-of-Evidence approach; 3) providing the OHWM Data Sheet for rapid and consistent field data collection; 4) describing landscape-scale considerations for OHWM interpretation; and 5) providing examples and case studies of how to include additional evidence for difficult OHWM delineations. *Note the report number was updated on 21 December 2022 and republished as ERDC/CRREL TR-22-26 after originally being published as ERDC/CRREL TR-22-16. The only change to the report on 21 December 2022 is the updated report number.
... The substrate is particularly important for lichens and their occurrence in streams depends on the type of bedrock and size of the rocks (Keller 2005, Krzewicka & Galas 2006, Nascimbene & Nimis 2006, Nascimbene et al. 2009). Some aquatic lichens, although inherently saxicolous, are able to inhabit submerged roots in places with little rocky substrate (Motiejűnaitë 2003, Hachułka 2011. The increase in geomorphological diversity of the structure of stream beds by the presence of large boulders, rocky thresholds, gravel, rocky banks or logs, backwaters (abandoned channels and chutes) will increase the diversity of the space that could be colonized by lichens (Thüs & Schultz 2009). ...
... It was found in the Czaczowiec stream on inundated rocks in sunny places, at an altitude of 430 m. In Poland, it is known from scattered localities in the Carpathian Mts [13] and from a few sites in central Poland [14]. This species is poorly known in Europe and outside Poland it has so far been reported only from the type locality [4]. ...
Article
Full-text available
Ten freshwater lichen species from the Beskid Sądecki Mts are presented. Seven of them: Hydropunctaria rheitrophila, Thelidium aquaticum, T. minutulum, T. zwackhii, Verrucaria dolosa, V. elaeomelaena and V. submersella, are new to the region. Three species: Verrucaria elaeina, V. hydrophila and V. latebrosa, were previously known from single localities.
Article
Full-text available
Eight lichen species are presented. Four of them: Agonimia flabelliformis, A. opuntiella, A. tristicula and Micarea adnata are new to Central Poland. Caloplaca cerina var. chloroleuca, Micarea hedlundii and Porina leptalea are very rare in the Świętokrzyskie Mts and in Central Poland.
Chapter
Full-text available
The ecology of two aquatic lichens Verrucaria aquatilis and V. hydrela was examined in five streams in the Polish Tatry Mountains. The most important factors limiting their occurrence appear to be substratum properties, particularly surface pH; other important factors seem to be depth of submersion of substra-tum and speed of water-flow, but light and size of substratum (rocks, stones, bricks etc.) are less important factors.
Article
Full-text available
Abstract: The paper presents 12 new lichen species and 1 non-lichenized fungus from the Polish part of the “Eastern Carpathians” Biosphere Reserve. Summary The paper presents localities of 12 lichen species, as well as 1 fungus species connected with lichens, which are new to the Bieszczady National Park. Verruca- ria atroviridis is new to the Eastern Carpathians. Moreover, the authors enume- rate new localities of 3 rare in Poland species, which were recorded by Glanc and Tobolewski (1960) within the present-day Bieszczady National Park and which – so far – were considered extinct in this area: Alectoria ochroleuca, Bryoria bicolor and Icmadophila ericetorum.
Article
Full-text available
The paper presents 38 species of lichenized and allied fungi new to Białowieża Large Forest. 24 taxa of lichenized Ascomycota and 14 taxa of lichenicolous and saprobic fungi are the result of the analysis of collected materials as well as additional field studies.
Article
Lichen-forming fungi can occur on river and lake margins subjected to varying water levels, and on tidal coastal rocks where they can constitute major components of the biota. There are approximately 700 species known from coastal rocks and 200 from freshwater river and lake margins. Most cannot survive constant immersion although there are exceptions. Some species are only exposed at the lowest tides or when there are exceptional droughts. Vertical zonations of lichens are characteristic of freshwater and marine habitats. The heights of zones vary according to the degree of exposure and periods of inundation. Measurements of these zones can be of value in assessments of risks due to storms and of river channel capacity. Attention is also drawn to mycophycobioses in freshwater as well as maritime situations. Most work on coastal and freshwater lichens has been in temperate regions. In the tropics lichens are less well developed on coastal rocks, but tropical stream margins are yielding species new to science. The ecophysiology and biology of these fungi is scarcely explored, but some key features are highlighted. Many fundamental aspects of these fascinating fungi remain uncertain, for example where different species of the same genus occur in both habitats. The systematics, ecology and physiology of these fascinating fungi merit increased attention by mycologists.
Article
Hauck, M. & Wirth, V. 2010. New combinations in Bacidina. — Herzogia 23: 15–17. Bacidia adastra, B. brandii, B. etayana, B. saxenii, and B. sulphurella are transferred to the genus Bacidina.