Article

Mechanisms regulating phosphatase specificity and the removal of individual phosphorylation sites during mitotic exit

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract and Figures

Entry into mitosis is driven by the activity of kinases, which phosphorylate over 7000 proteins on multiple sites. For cells to exit mitosis and segregate their genome correctly, these phosphorylations must be removed in a specific temporal order. This raises a critical and important question: how are specific phosphorylation sites on an individual protein removed? Traditionally, the temporal order of dephosphorylation was attributed to decreasing kinase activity. However, recent evidence in human cells has identified unique patterns of dephosphorylation during mammalian mitotic exit that cannot be fully explained by the loss of kinase activity. This suggests that specificity is determined in part by phosphatases. In this review, we explore how the physicochemical properties of an individual phosphosite and its surrounding amino acids can affect interactions with a phosphatase. These positive and negative interactions in turn help determine the specific pattern of dephosphorylation required for correct mitotic exit.
Content may be subject to copyright.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Protein phosphatase PP2A is the most abundant phosphatase in eukaryotes. The typical PP2A holoenzyme is composed of a catalytic C subunit, a scaffolding A subunit and a regulatory B subunit from a families of four regulatory B-type subunits (B, B', B", B"') [1,2]. Eleven years ago, an affinity purification/mass spectrometry approach using human cells identified a novel large multiprotein assembly centered on PP2A and was called the "striatin-interacting phosphatase and kinase" (STRIPAK) multi-subunit complex. ...
... In total, we identified 4,349 proteins in all strains and 2,465 phosphoproteins. The intersection of the Venn diagram gives the number of proteins found in both, the protein and the phosphoprotein analyses (1,180). Moreover, the number of regulated phosphoproteins from all strains are given that were identified with similar abundances in the global proteome. ...
Article
Full-text available
The striatin-interacting phosphatase and kinase (STRIPAK) multi-subunit signaling complex is highly conserved within eukaryotes. In fungi, STRIPAK controls multicellular development , morphogenesis, pathogenicity, and cell-cell recognition, while in humans, certain diseases are related to this signaling complex. To date, phosphorylation and dephosphory-lation targets of STRIPAK are still widely unknown in microbial as well as animal systems. Here, we provide an extended global proteome and phosphoproteome study using the wild type as well as STRIPAK single and double deletion mutants (Δpro11, Δpro11Δpro22, Δpp2Ac1Δpro22) from the filamentous fungus Sordaria macrospora. Notably, in the deletion mutants, we identified the differential phosphorylation of 129 proteins, of which 70 phos-phorylation sites were previously unknown. Included in the list of STRIPAK targets are eight proteins with RNA recognition motifs (RRMs) including GUL1. Knockout mutants and complemented transformants clearly show that GUL1 affects hyphal growth and sexual development. To assess the role of GUL1 phosphorylation on fungal development, we constructed phospho-mimetic and-deficient mutants of GUL1 residues. While S180 was dephosphory-lated in a STRIPAK-dependent manner, S216, and S1343 served as non-regulated phos-phorylation sites. While the S1343 mutants were indistinguishable from wild type, phospho-deficiency of S180 and S216 resulted in a drastic reduction in hyphal growth, and phospho-deficiency of S216 also affects sexual fertility. These results thus suggest that differential phosphorylation of GUL1 regulates developmental processes such as fruiting body matura-tion and hyphal morphogenesis. Moreover, genetic interaction studies provide strong evidence that GUL1 is not an integral subunit of STRIPAK. Finally, fluorescence microscopy revealed that GUL1 co-localizes with endosomal marker proteins and shuttles on endo-somes. Here, we provide a new mechanistic model that explains how STRIPAK-dependent and-independent phosphorylation of GUL1 regulates sexual development and asexual growth.
... As cells exit mitosis, CDK1 is inhibited and most of its substrate proteins are dephosphorylated by protein phosphatases [26]. Since phosphorylation of T592 depends on CDK2/1 activity, persists in mitosis and is absent in G1 (Figure2(a,b)), we asked whether SAMHD1 was dephosphorylated before the cell divides. ...
... In yeasts Cdc14 is the primary phosphatase counteracting CDK1 activity. In human cells Cdc14 does not appear to play a central role, but protein phosphatases of the PP1 and PP2A superfamilies are the major enzymes that reverse CDK1 action [26]. We wondered whether Cdc14 or members of the PP1-2 superfamilies were involved in SAMHD1 dephosphorylation during mitotic exit. ...
Article
Full-text available
SAMHD1 is the major catabolic enzyme regulating the intracellular concentrations of DNA precursors (dNTPs). The S-phase kinase CDK2-cyclinA phosphorylates SAMHD1 at Thr-592. How this modification affects SAMHD1 function is highly debated. We investigated the role of endogenous SAMHD1 phosphorylation during the cell cycle. Thr-592 phosphorylation occurs first at the G1/S border and is removed during mitotic exit parallel with Thr-phosphorylations of most CDK1 targets. Differential sensitivity to the phosphatase inhibitor okadaic acid suggested different involvement of the PP1 and PP2 families dependent upon the time of the cell cycle. SAMHD1 turn-over indicates that Thr-592 phosphorylation does not cause rapid protein degradation. Furthermore, SAMHD1 influenced the size of the four dNTP pools independently of its phosphorylation. Our findings reveal that SAMHD1 is active during the entire cell cycle and performs an important regulatory role during S-phase by contributing with ribonucleotide reductase to maintain dNTP pool balance for proper DNA replication.
... The mitotic kinases are counteracted by the phosphatases PP1 and PP2. Spatial and temporal regulation of phosphatase activity is dictated by a large number of phosphatasebinding and regulatory proteins Rogers et al, 2016;Gelens et al, 2018;Moura & Conde, 2019). Although in principle interfering with phosphatase function could be just as viable a therapeutic antimitotic approach as inhibiting the mitotic kinases, targeting the nonspecific catalytic subunit of phosphatases would have a broad and toxic effect. ...
Article
Full-text available
GCN2/eIF2αK4 is exclusively seen as an eIF2α kinase, which regulates reprogramming of protein translation in response to stress. Here, we show that GCN2 has an unexpected role in unstressed cells as a regulator of mitosis. This function is not through its canonical role in translation reprogramming, but through the regulation of two previously unidentified substrates, PP1α and γ. In the absence of GCN2 function, timing and levels of phosphorylation of key mitotic players are altered, leading to aberrant chromosome alignment, missegregating chromosomes, elevated number of tripolar spindles, and a delay in progression through mitosis. Pharmacological inhibition of GCN2 results in similar effects and is synergistic with Aurora A inhibition in causing more severe mitotic errors and cell death. We suggest that GCN2-dependent phosphorylation of PP1α and γ restrains their activity and this is important to ensure the timely regulation of phosphorylation of several PP1 substrates during early mitosis. These findings highlight a druggable PP1 inhibitor and open new avenues of research on the therapeutic potential of GCN2 inhibitors.
... In agreement with previous observations 22,[24][25][26][27]54,55 , we show that PP1c and PP2Ac dephosphorylate pThr and pSer, but indeed globally prefer the less abundant pThr. Of note, by analyzing >10,000 different sequences we demonstrate in a comprehensive, unbiased manner that the contribution for this preference is introduced by the catalytic subunits, not by regulatory subunits. ...
Article
Full-text available
The phosphatases PP1 and PP2A are responsible for the majority of dephosphorylation reactions on phosphoserine (pSer) and phosphothreonine (pThr), and are involved in virtually all cellular processes and numerous diseases. The catalytic subunits exist in cells in form of holoenzymes, which impart substrate specificity. The contribution of the catalytic subunits to the recognition of substrates is unclear. By developing a phosphopeptide library approach and a phosphoproteomic assay, we demonstrate that the specificity of PP1 and PP2A holoenzymes towards pThr and of PP1 for basic motifs adjacent to the phosphorylation site are due to intrinsic properties of the catalytic subunits. Thus, we dissect this amino acid specificity of the catalytic subunits from the contribution of regulatory proteins. Furthermore, our approach enables discovering a role for PP1 as regulator of the GRB-associated-binding protein 2 (GAB2)/14-3-3 complex. Beyond this, we expect that this approach is broadly applicable to detect enzyme-substrate recognition preferences.
... One major distinction between PP1 and PP2A is their ability to be regulated differently. This can occur directly on the holoenzymes; for example, via catalytic subunit phosphorylation or the binding of catalytic inhibitors (Verbinnen et al., 2017;Rogers et al., 2016;Grallert et al., 2015). A well-studied example of this is the inhibition of PP2A-B55 during mitosis by the ARPP19/ENSA phospho-proteins (Gharbi-Ayachi et al., 2010;Mochida et al., 2010). ...
Article
Full-text available
PP1 and PP2A-B56 are major serine/threonine phosphatase families that achieve specificity by colocalizing with substrates. At the kinetochore, however, both phosphatases localize to an almost identical molecular space and yet they still manage to regulate unique pathways and processes. By switching or modulating the positions of PP1/PP2A-B56 at kinetochores, we show that their unique downstream effects are not due to either the identity of the phosphatase or its precise location. Instead, these phosphatases signal differently because their kinetochore recruitment can be either inhibited (PP1) or enhanced (PP2A) by phosphorylation inputs. Mathematical modeling explains how these inverse phospho-dependencies elicit unique forms of cross-regulation and feedback, which allows otherwise indistinguishable phosphatases to produce distinct network behaviors and control different mitotic processes. Furthermore, our genome-wide analysis suggests that these major phosphatase families may have evolved to respond to phosphorylation inputs in opposite ways because many other PP1 and PP2A-B56-binding motifs are also phospho-regulated.
... How PP2A enzymes select a p-Thr is unknown. It has been suggested that a small hydrophobic cleft close to the metal ion binding sites at the catalytic core could make additional contacts with the extra methyl group that differentiates a threonine from a serine [215]. This could translate into p-Thr residues exhibiting a lower K m , a higher k cat or both, instigating faster turnover. ...
Article
Full-text available
Accurate division of cells into two daughters is a process that is vital to propagation of life. Protein phosphorylation and selective degradation have emerged as two important mechanisms safeguarding the delicate choreography of mitosis. Protein phosphatases catalyze dephosphorylation of thousands of sites on proteins, steering the cells through establishment of the mitotic phase and exit from it. A large E3 ubiquitin ligase, the anaphase-promoting complex/cyclosome (APC/C) becomes active during latter stages of mitosis through G1 and marks hundreds of proteins for destruction. Recent studies have revealed the complex interregulation between these two classes of enzymes. In this review, we highlight the direct and indirect mechanisms by which phosphatases and the APC/C mutually influence each other to ensure accurate spatiotemporal and orderly progression through mitosis, with a particular focus on recent insights and conceptual advances.
... One major distinction between PP1 and PP2A is their ability to be regulated differently. This can occur directly on the holoenzymes, for example, via catalytic subunit phosphorylation or the binding of catalytic inhibitors (Grallert et al., 2015;Rogers et al., 2016;Verbinnen et al., 2017). A well-studied example of this is the inhibition of PP2A-B55 during mitosis by the ARPP19/ENSA phosphoproteins (Gharbi-Ayachi et al., 2010;Mochida et al., 2010). ...
Preprint
Full-text available
PP1 and PP2A are the two main serine/threonine phosphatase families in eukaryotic cells and yet there is no unifying theory to explain how they integrate phosphorylation signals differently. We show here that removal of either PP1 or PP2A-B56 from the kinetochore produces dramatically different phenotypes, but surprisingly, artificial recruitment strategies demonstrate that they can fully rescue each other's functions and their precise positions are not critical. Instead, the defining feature that distinguishes PP1 and PP2A-B56 at kinetochores is the fact that their binding motifs can be inhibited or activated by phosphorylation inputs. We demonstrate that these inverse phospho-dependencies elicit unique forms of cross-regulation and feedback, which allow otherwise indistinguishable phosphatases to produce distinct network behaviours and control different mitotic processes. Therefore, this study demonstrates how the phenotypic output of a network is defined by the type of kinase-phosphatase integration and it highlights how related phosphatases may have diverged during evolution to allow opposite modes of phospho-regulation.
... Inactivation of cdk1 will give rise to dephosphorylation of cdk1 substrates at anaphase. We yet know little about what those cdk1 substrates are and what the effects of their dephosphorylation might be (22). The release of sister chromatid cohesion and subsequent separation of sister chromatids must occur coordinately to ensure fail-safe chromosome segregation (12). ...
Article
Separation of sister chromatids is a drastic and irreversible step in the cell cycle. The key biochemistry behind this event is the proteolysis mediated by the ubiquitin ligase called the anaphase promoting complex, or APC/C. Securin and cyclin B1 are the two established substrates for APC/C whose degradation releases separase and inactivates cyclin B1-dependent kinase 1 (cdk1), respectively, at the metaphase-to-anaphase transition. In this study, we have combined biochemical quantifications with mathematical simulations to characterize the kinetic regulation of securin and cyclin B1, in the cytoplasmic and chromosomal compartments, and found that they are differentially distributed and degraded with different rates. Modeling their interaction with separase predicted that activation timing of separase well coincides with the decline of securin-separase concentration in the cytoplasm. Notably, it also coincides with the peak of cyclin B1-separase level on chromosomes, which appeared crucial to coordinate the timing for separase activation and cdk1 inhibition. We have also conducted phosphoproteomic analysis and identified Ki67 as a chromosomal cdk1 substrate whose dephosphorylation is facilitated by cyclin B1-separase interaction in anaphase.
Article
Phosphoprotein phosphatase 1 (PP1) associates with specific regulatory subunits to achieve, among other functions, substrate selectivity. Among the eight PP1 isotypes in Leishmania, PP1-8e associates with the regulatory protein PNUTS along with the structural factors JBP3 and Wdr82 in the PJW/PP1 complex that modulates RNA polymerase II (pol II) phosphorylation and transcription termination. Little is known regarding interactions involved in PJW/PP1 complex formation, including how PP1-8e is the selective isotype associated with PNUTS. Here, we show that PNUTS uses an established RVxF–ΦΦ–F motif to bind the PP1 catalytic domain with similar interfacial interactions as mammalian PP1–PNUTS and noncanonical motifs. These atypical interactions involve residues within the PP1-8e catalytic domain and N and C terminus for isoform-specific regulator binding. This work advances our understanding of PP1 isoform selectivity and reveals key roles of PP1 residues in regulator binding. We also explore the role of PNUTS as a scaffold protein for the complex by identifying the C-terminal region involved in binding JBP3 and Wdr82 and impact of PNUTS on the stability of complex components and function in pol II transcription in vivo. Taken together, these studies provide a potential mechanism where multiple motifs within PNUTS are used combinatorially to tune binding affinity to PP1, and the C terminus for JBP3 and Wdr82 association, in the Leishmania PJW/PP1 complex. Overall, our data provide insights in the formation of the PJW/PP1 complex involved in regulating pol II transcription in divergent protozoans where little is understood.
Article
Full-text available
Meiosis is required to reduce to haploid the diploid genome content of a cell, generating gametes—oocytes and sperm—with the correct number of chromosomes. To achieve this goal, two specialized cell divisions without intermediate S-phase are executed in a time-controlled manner. In mammalian female meiosis, these divisions are error-prone. Human oocytes have an exceptionally high error rate that further increases with age, with significant consequences for human fertility. To understand why errors in chromosome segregation occur at such high rates in oocytes, it is essential to understand the molecular players at work controlling these divisions. In this review, we look at the interplay of kinase and phosphatase activities at the transition from metaphase-to-anaphase for correct segregation of chromosomes. We focus on the activity of PP2A-B56, a key phosphatase for anaphase onset in both mitosis and meiosis. We start by introducing multiple roles PP2A-B56 occupies for progression through mitosis, before laying out whether or not the same principles may apply to the first meiotic division in oocytes, and describing the known meiosis-specific roles of PP2A-B56 and discrepancies with mitotic cell cycle regulation.
Conference Paper
Accurate progress through the cell cycle necessitates robust order and timing of events, the molecular basis for which is incompletely understood. During exit from mitosis, it is vital for cells to execute events in a precise sequence. Completion of chromosome segregation must precede chromatin decondensation, or indeed, cytokinesis. In budding yeast, the ordering of mitotic exit events is imposed by the changing balance between Cdk kinase activity, which begins to decline upon anaphase entry, and increasing activity of the major Cdk-counteracting phosphatase, Cdc14. In early anaphase, Cdk activity is still high and little Cdc14 is active. Nonetheless, certain substrates, such as the spindle stabilizer Fin1, are dephosphorylated to facilitate early anaphase events, e.g. spindle elongation. It has been shown that Cdc14 has a high catalytic efficiency towards its early substrates, when compared to later substrates. In this study, we seek a molecular understanding of mitotic exit by probing the biochemical characteristics of early Cdc14 substrate recognition. Through complementary in vitro and in vivo approaches, we find that Cdc14 is a dimer and the non-conserved C-terminal domain is not important for dimerization or substrate dephosphorylation. Cdc14 prefers phosphoserines over phosphothreonines, as well as a basic residue in the +3 position, even when presented in the context of Fin1, a highly efficient substrate. Further, it engages with this substrate via its non-catalytic Nterminal domain. We also find that Fin1 possesses a higher affinity towards Cdc14 compared to other substrates, which is independent of its phosphorylation sites. Truncation analysis revealed that Fin1’s C-terminus is important for this binding, and has a small impact on catalysis. Further, we have also established that early S-phase cyclin degradation is partly responsible for ensuring early dephosphorylation of this protein. In summary, multiple mechanisms collaborate to ensure efficient early substrate dephosphorylation.
Article
MASTL, a Ser/Thr kinase that inhibits PP2A-B55 complexes during mitosis, is mutated in autosomal dominant thrombocytopenia. However, the connections between the cell cycle machinery and this human disease remain unexplored. We report here that, whereas Mastl ablation in megakaryocytes prevented proper maturation of these cells, mice carrying the thrombocytopenia-associated mutation developed thrombocytopenia as a consequence of aberrant activation and survival of platelets. Activation of mutant platelets was characterized by hyper-stabilized pseudopods mimicking the effect of PP2A inhibition and actin polymerization defects. These aberrations were accompanied by abnormal hyper-phosphorylation of multiple components of the actin cytoskeleton and were rescued both in vitro and in vivo by inhibiting upstream kinases such as PKA, PKC, or AMPK. These data reveal an unexpected role of Mastl in actin cytoskeleton dynamics in postmitotic cells, and suggest that the thrombocytopenia-associated mutation in MASTL is a pathogenic dominant mutation that mimics decreased PP2A activity resulting in altered phosphorylation of cytoskeletal regulatory pathways.
Article
Full-text available
The fidelity of chromosome segregation in mitosis is safeguarded by the precise regulation of kinetochore microtubule (k-MT) attachment stability. Previously, we demonstrated that Cyclin A/Cdk1 destabilizes k-MT attachments to promote faithful chromosome segregation. Here, we use quantitative phosphoproteomics to identify 156 Cyclin A/Cdk1 substrates in prometaphase. One Cyclin A/Cdk1 substrate is myosin phosphatase targeting subunit 1 (MYPT1), and we show that MYPT1 localization to kinetochores depends on Cyclin A/Cdk1 activity and that MYPT1 destabilizes k-MT attachments by negatively regulating Plk1 at kinetochores. Thus, Cyclin A/Cdk1 phosphorylation primes MYPT1 for Plk1 binding. Interestingly, priming of PBIP1 by Plk1 itself (self-priming) increased in MYPT1-depleted cells showing that MYPT1 provides a molecular link between the processes of Cdk1-dependent priming and self-priming of Plk1 substrates. These data demonstrate cross-regulation between Cyclin A/Cdk1-dependent and Plk1-dependent phosphorylation of substrates during mitosis to ensure efficient correction of k-MT attachment errors necessary for high mitotic fidelity.
Article
Full-text available
During M phase, Endosulfine (Endos) family proteins are phosphorylated by Greatwall kinase (Gwl), and the resultant pEndos inhibits the phosphatase PP2A-B55, which would otherwise prematurely reverse many CDK-driven phosphorylations. We show here that PP2A-B55 is the enzyme responsible for dephosphorylating pEndos during M phase exit. The kinetic parameters for PP2A-B55's action on pEndos are orders of magnitude lower than those for CDK-phosphorylated substrates, suggesting a simple model for PP2A-B55 regulation that we call inhibition by unfair competition. As the name suggests, during M phase PP2A-B55's attention is diverted to pEndos, which binds much more avidly and is dephosphorylated more slowly than other substrates. When Gwl is inactivated during the M phase-to-interphase transition, the dynamic balance changes: pEndos dephosphorylated by PP2A-B55 cannot be replaced, so the phosphatase can refocus its attention on CDK-phosphorylated substrates. This mechanism explains simultaneously how PP2A-B55 and Gwl together regulate pEndos, and how pEndos controls PP2A-B55.
Article
Full-text available
When vertebrate cells exit mitosis various cellular structures are re-organized to build functional interphase cells. This depends on Cdk1 (cyclin dependent kinase 1) inactivation and subsequent dephosphorylation of its substrates. Members of the protein phosphatase 1 and 2A (PP1 and PP2A) families can dephosphorylate Cdk1 substrates in biochemical extracts during mitotic exit, but how this relates to postmitotic reassembly of interphase structures in intact cells is not known. Here, we use a live-cell imaging assay and RNAi knockdown to screen a genome-wide library of protein phosphatases for mitotic exit functions in human cells. We identify a trimeric PP2A-B55alpha complex as a key factor in mitotic spindle breakdown and postmitotic reassembly of the nuclear envelope, Golgi apparatus and decondensed chromatin. Using a chemically induced mitotic exit assay, we find that PP2A-B55alpha functions downstream of Cdk1 inactivation. PP2A-B55alpha isolated from mitotic cells had reduced phosphatase activity towards the Cdk1 substrate, histone H1, and was hyper-phosphorylated on all subunits. Mitotic PP2A complexes co-purified with the nuclear transport factor importin-beta1, and RNAi depletion of importin-beta1 delayed mitotic exit synergistically with PP2A-B55alpha. This demonstrates that PP2A-B55alpha and importin-beta1 cooperate in the regulation of postmitotic assembly mechanisms in human cells.
Article
Full-text available
Cell division requires the precise coordination of chromosome segregation and cytokinesis. This coordination is achieved by the recruitment of an actomyosin regulator, Ect2, to overlapping microtubules at the centre of the elongating anaphase spindle. Ect2 then signals to the overlying cortex to promote the assembly and constriction of an actomyosin ring between segregating chromosomes. Here, by studying division in proliferating Drosophila and human cells, we demonstrate the existence of a second, parallel signalling pathway, which triggers the relaxation of the polar cell cortex at mid anaphase. This is independent of furrow formation, centrosomes and microtubules and, instead, depends on PP1 phosphatase and its regulatory subunit Sds22 (refs 2, 3). As separating chromosomes move towards the polar cortex at mid anaphase, kinetochore-localized PP1-Sds22 helps to break cortical symmetry by inducing the dephosphorylation and inactivation of ezrin/radixin/moesin proteins at cell poles. This promotes local softening of the cortex, facilitating anaphase elongation and orderly cell division. In summary, this identifies a conserved kinetochore-based phosphatase signal and substrate, which function together to link anaphase chromosome movements to cortical polarization, thereby coupling chromosome segregation to cell division.
Article
Full-text available
The mitotic kinase Aurora B is concentrated at the anaphase central spindle by the kinesin MKlp2 during mitotic exit and cytokinesis. This pool of Aurora B phosphorylates substrates including the kinesin KIF4A to regulate central spindle length. In this paper, we identify a counteracting system in which PP2A-B56γ and -ε, but not PP2A-B56α, -β, and -δ, are maintained at the central spindle by KIF4A. Biochemical assays show that PP2A-B56γ can dephosphorylate the T799 Aurora B site on KIF4A and thereby counteract the Aurora B- and microtubule-stimulated ATPase activity of KIF4A. In agreement with these observations, combined silencing of PP2A-B56γ and -ε resulted in increased phosphorylation of KIF4A T799 and decreased central spindle growth in anaphase B. Furthermore, reduced turnover of regulatory phosphorylation on another Aurora B substrate MKlp1 was observed, suggesting that PP2A-B56γ and -ε play a general role opposing Aurora B at the central spindle. KIF4A and PP2A-B56γ and -ε therefore create a spatially restricted negative feedback loop counteracting Aurora B in anaphase. © 2014 Nunes Bastos et al.
Article
Full-text available
The widespread reorganization of cellular architecture in mitosis is achieved through extensive protein phosphorylation, driven by the coordinated activation of a mitotic kinase network and repression of counteracting phosphatases. Phosphatase activity must subsequently be restored to promote mitotic exit. Although Cdc14 phosphatase drives this reversal in budding yeast, protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A) activities have each been independently linked to mitotic exit control in other eukaryotes. Here we describe a mitotic phosphatase relay in which PP1 reactivation is required for the reactivation of both PP2A-B55 and PP2A-B56 to coordinate mitotic progression and exit in fission yeast. The staged recruitment of PP1 (the Dis2 isoform) to the regulatory subunits of the PP2A-B55 and PP2A-B56 (B55 also known as Pab1; B56 also known as Par1) holoenzymes sequentially activates each phosphatase. The pathway is blocked in early mitosis because the Cdk1-cyclin B kinase (Cdk1 also known as Cdc2) inhibits PP1 activity, but declining cyclin B levels later in mitosis permit PP1 to auto-reactivate. PP1 first reactivates PP2A-B55; this enables PP2A-B55 in turn to promote the reactivation of PP2A-B56 by dephosphorylating a PP1-docking site in PP2A-B56, thereby promoting the recruitment of PP1. PP1 recruitment to human, mitotic PP2A-B56 holoenzymes and the sequences of these conserved PP1-docking motifs suggest that PP1 regulates PP2A-B55 and PP2A-B56 activities in a variety of signalling contexts throughout eukaryotes.
Article
Full-text available
The final event of the eukaryotic cell cycle is cytokinesis, when two new daughter cells are born. How the timing and execution of cytokinesis is controlled is poorly understood. Here, we show that downregulation of cyclin-dependent kinase (Cdk) activity, together with upregulation of its counteracting phosphatase Cdc14, controls each of the sequential steps of cytokinesis, including furrow ingression, membrane resolution and cell separation in budding yeast. We use phosphoproteome analysis of mitotic exit to identify Cdk targets that are dephosphorylated at the time of cytokinesis. We then apply a new and widely applicable tool to generate conditionally phosphorylated proteins to identify those whose dephosphorylation is required for cytokinesis. This approach identifies Aip1, Ede1 and Inn1 as cytokinetic regulators. Our results suggest that cytokinesis is coordinately controlled by the master cell cycle regulator Cdk together with its counteracting phosphatase and that it is executed by concerted dephosphorylation of Cdk targets involved in several cell biological processes.
Article
Full-text available
The spindle assembly checkpoint (SAC) monitors correct attachment of chromosomes to microtubules, an important safeguard mechanism ensuring faithful chromosome segregation in eukaryotic cells. How the SAC signal is turned off once all the chromosomes have successfully attached to the spindle remains an unresolved question. Mps1 phosphorylation of Knl1 results in recruitment of the SAC proteins Bub1, Bub3, and BubR1 to the kinetochore and production of the wait-anaphase signal. SAC silencing is therefore expected to involve a phosphatase opposing Mps1. Here we demonstrate in vivo and in vitro that BubR1-associated PP2A-B56 is a key phosphatase for the removal of the Mps1-mediated Knl1 phosphorylations necessary for Bub1/BubR1 recruitment in mammalian cells. SAC silencing is thus promoted by a negative feedback loop involving the Mps1-dependent recruitment of a phosphatase opposing Mps1. Our findings extend the previously reported role for BubR1-associated PP2A-B56 in opposing Aurora B and suggest that BubR1-bound PP2A-B56 integrates kinetochore surveillance and silencing of the SAC.
Article
Full-text available
Regulatory protein phosphorylation controls normal and pathophysiological signaling in eukaryotic cells. Despite great advances in mass-spectrometry-based proteomics, the extent, localization, and site-specific stoichiometry of this posttranslational modification (PTM) are unknown. Here, we develop a stringent experimental and computational workflow, capable of mapping more than 50,000 distinct phosphorylated peptides in a single human cancer cell line. We detected more than three-quarters of cellular proteins as phosphoproteins and determined very high stoichiometries in mitosis or growth factor signaling by label-free quantitation. The proportion of phospho-Tyr drastically decreases as coverage of the phosphoproteome increases, whereas Ser/Thr sites saturate only for technical reasons. Tyrosine phosphorylation is maintained at especially low stoichiometric levels in the absence of specific signaling events. Unexpectedly, it is enriched on higher-abundance proteins, and this correlates with the substrate KM values of tyrosine kinases. Our data suggest that P-Tyr should be considered a functionally separate PTM of eukaryotic proteomes.
Article
Full-text available
Upon congression at the spindle equator, vertebrate chromosomes display oscillatory movements which typically decline as cells progress towards anaphase. Kinesin-8 Kif18A has been identified as a suppressor of chromosome movements, but how its activity is temporally regulated to dampen chromosome oscillations before anaphase onset remained mysterious. Here, we identify a regulatory network composed of cyclin-dependent kinase-1 (Cdk1) and protein phosphatase-1 (PP1) that antagonistically regulate Kif18A. Cdk1-mediated inhibitory phosphorylation of Kif18A promotes chromosome oscillations in early metaphase. PP1 induces metaphase plate thinning by directly dephosphorylating Kif18A. Chromosome attachment induces Cdk1 inactivation and kinetochore recruitment of PP1α/γ. Thus, we propose that chromosome biorientation mediates the alignment of chromosomes at the metaphase plate by tipping the balance in favour of dephosphorylated Kif18A capable of suppressing the oscillatory movements of chromosomes. Notably, interfering with chromosome oscillations severely impairs the fidelity of sister chromatid segregation demonstrating the importance of timely controlled chromosome dynamics for the maintenance of genome integrity.
Article
Full-text available
Mitotic division requires highly regulated morphological and biochemical changes to the cell. Upon commitment to exit mitosis, cells begin to remove mitotic regulators in a temporally and spatially controlled manner to bring about the changes that re-establish interphase. Ubiquitin-dependent pathways target these regulators to generate polyubiquitin-tagged substrates for degradation by the 26S proteasome. However, the lack of cell-based assays to investigate in vivo ubiquitination limits our knowledge of the identity of substrates of ubiquitin-mediated regulation in mitosis. Here we report an in vivo ubiquitin tagging system in human cells that allows efficient purification of ubiquitin conjugates from synchronised cell populations. Coupling purification with mass spectrometry, we identify a series of mitotic regulators that are targeted for polyubiquitination in mitotic exit. We show that some are new substrates of the Anaphase Promoting Complex/Cyclosome (APC/C), and validate KIFC1 and RacGAP1/Cyk4 as two such targets involved respectively in timely mitotic spindle disassembly and cell spreading. We conclude that in vivo biotin-tagging of ubiquitin can provide valuable information about the role of ubiquitin-mediated regulation in processes required for rebuilding interphase cells.
Article
Full-text available
Protein phosphorylation catalysed by kinases plays crucial regulatory roles in intracellular signal transduction. With the increasing number of kinase-specific phosphorylation sites and disease-related phosphorylation substrates that have been identified, the desire to explore the regulatory relationship between protein kinases and disease-related phosphorylation substrates is motivated. In this work, we analysed the kinases' characteristic of all disease-related phosphorylation substrates by using our developed Phosphorylation Set Enrichment Analysis (PSEA) method. We evaluated the efficiency of our method with independent test and concluded that our approach is reliable for identifying kinases responsible for phosphorylated substrates. In addition, we found that Mitogen-activated protein kinase (MAPK) and Glycogen synthase kinase (GSK) families are more associated with abnormal phosphorylation. It can be anticipated that our method might be helpful to identify the mechanism of phosphorylation and the relationship between kinase and phosphorylation related diseases. A user-friendly web interface is now freely available at http://bioinfo.ncu.edu.cn/PKPred_Home.aspx.
Article
Full-text available
Entry into M phase is governed by cyclin B-Cdk1, which undergoes both an initial activation and subsequent autoregulatory activation. A key part of the autoregulatory activation is the cyclin B-Cdk1-dependent inhibition of the protein phosphatase 2A (PP2A)-B55, which antagonizes cyclin B-Cdk1. Greatwall kinase (Gwl) is believed to be essential for the autoregulatory activation because Gwl is activated downstream of cyclin B-Cdk1 to phosphorylate and activate α-endosulfine (Ensa)/Arpp19, an inhibitor of PP2A-B55. However, cyclin B-Cdk1 becomes fully activated in some conditions lacking Gwl, yet how this is accomplished remains unclear. We show here that cyclin B-Cdk1 can directly phosphorylate Arpp19 on a different conserved site, resulting in inhibition of PP2A-B55. Importantly, this novel bypass is sufficient for cyclin B-Cdk1 autoregulatory activation. Gwl-dependent phosphorylation of Arpp19 is nonetheless necessary for downstream mitotic progression because chromosomes fail to segregate properly in the absence of Gwl. Such a biphasic regulation of Arpp19 results in different levels of PP2A-B55 inhibition and hence might govern its different cellular roles.
Article
Full-text available
Activation of anaphase-promoting complex/cyclosome (APC/C(Cdc20)) by Cdc20 is delayed by the spindle assembly checkpoint (SAC). When all kinetochores come under tension, the SAC is turned off and APC/C(Cdc20) degrades cyclin B and securin, which activates separase [1]. The latter then cleaves cohesin holding sister chromatids together [2]. Because cohesin cleavage also destroys the tension responsible for turning off the SAC, cells must possess a mechanism to prevent SAC reactivation during anaphase, which could be conferred by a dependence of the SAC on Cdk1 [3-5]. To test this, we analyzed mouse oocytes and embryos expressing nondegradable cyclin B together with a Cdk1-resistant form of separase. After biorientation and SAC inactivation, APC/C(Cdc20) activates separase but the resulting loss of (some) cohesion is accompanied by SAC reactivation and APC/C(Cdc20) inhibition, which aborts the process of further securin degradation. Cyclin B is therefore the only APC/C(Cdc20) substrate whose degradation at the onset of anaphase is necessary to prevent SAC reactivation. The mutual activation of tension sensitive SAC and Cdk1 creates a bistable system that ensures complete activation of separase and total downregulation of Cdk1 when all chromosomes have bioriented.
Article
Full-text available
Entry into mitosis is triggered by activation of Cdk1 and inactivation of its counteracting phosphatase PP2A/B55. Greatwall kinase inactivates PP2A/B55 via its substrates Ensa and ARPP19. Both Greatwall and Ensa/ARPP19 are regulated by phosphorylation, but the dynamic regulation of Greatwall activity and the phosphatases that control Greatwall kinase and its substrates are poorly understood. To address these questions we applied a combination of mathematical modelling and experiments using phospho-specific antibodies to monitor Greatwall, Ensa/ARPP19 and Cdk substrate phosphorylation during mitotic entry and exit. We demonstrate that PP2A/B55 is required for Gwl dephosphorylation at the essential Cdk site Thr194. Ensa/ARPP19 dephosphorylation is mediated by the RNA Polymerase II carboxy terminal domain phosphatase Fcp1. Surprisingly, inhibition or depletion of neither Fcp1 nor PP2A appears to block dephosphorylation of the bulk of mitotic Cdk1 substrates during mitotic exit. Taken together our results suggest a hierarchy of phosphatases coordinating Greatwall, Ensa/ARPP19 and Cdk substrate dephosphorylation during mitotic exit.
Article
Full-text available
Mitotic entry and progression require the activation of several mitotic kinases and the proper regulation and localization of several phosphatases. The activity and localization of each of these enzymes is tightly controlled through a series of specific activators, inhibitors and regulatory subunits. Two proteins, Ensa and Arpp-19, were recently identified as specific inhibitors of PP2A-B55 and are critical for allowing full activity of Cdk1/cyclin B and entry into mitosis. Here we show that Bod1, a protein required for proper chromosome alignment at mitosis, shares sequence similarity with Ensa and Arpp-19 and specifically inhibits the kinetochore-associated PP2A-B56 holoenzyme. PP2A-B56 regulates the stability of kinetochore-microtubule attachments by dephosphorylating several kinetochore proteins. Loss of Bod1 changes the balance of phosphorylation at kinetochores, causing defects in kinetochore function. Bod1, Ensa and Arpp-19 define a family of specific PP2A inhibitors that regulate specific PP2A holoenzymes at distinct locations and points in the cell cycle.
Article
Full-text available
Cytokinesis follows separase activation and chromosome segregation. This order is ensured in budding yeast by the mitotic exit network (MEN), where Cdc14p dephosphorylates key conserved Cdk1-substrates exemplified by the anaphase spindle-elongation protein Ase1p. However, in metazoans, MEN and Cdc14 function is not conserved. Instead, the PP2A-B55α/ENSA/Greatwall (BEG) pathway controls the human Ase1p ortholog PRC1. In this pathway, PP2A-B55 inhibition is coupled to Cdk1-cyclin B activity, whereas separase inhibition is maintained by cyclin B concentration. This creates two cyclin B thresholds during mitotic exit. Simulation and experiments using PRC1 as a model substrate show that the first threshold permits separase activation and chromosome segregation, and the second permits PP2A-B55 activation and initiation of cytokinesis. Removal of the ENSA/Greatwall (EG) timer module eliminates this second threshold, as well as associated delay in PRC1 dephosphorylation and initiation of cytokinesis, by uncoupling PP2A-B55 from Cdk1-cyclin B activity. Therefore, temporal order during mitotic exit is promoted by the metazoan BEG pathway.
Article
Full-text available
Significance Nuclear envelope breakdown (NEB) leads to the exposure of nuclear structures to cytoplasmic activities. Greatwall is a kinase able to inhibit PP2A phosphatases that counteract Cdk-dependent phosphorylation required for mitosis. Here we show that Greatwall, an essential protein in mammals, is exported to the cytoplasm in a Cdk-dependent manner before NEB, thus protecting mitotic phosphates from phosphatase activity.
Article
Full-text available
The catalytic subunit of PP-1 (PP-1C) is potently inhibited (IC50, ≈ 1 nM) by DARPP-32 (\underline{d}opamine- and c\underline{A}MP-\underline{r}egulated \underline{p}hospho\underline{p}rotein, Mr \underline{32},000), inhibitor-1, and inhibitor-2. The NH2-terminal 50 amino acid residues of DARPP-32 and inhibitor-1 are similar, and phosphorylation of a common threonine residue (Thr-34/Thr-35) is necessary for inhibition of PP-1C. We have characterized further the interaction between DARPP-32 and PP-1C. Using synthetic peptides derived from the NH2-terminal region of DARPP-32, residues 6-11, RKKIQF, have been shown to be required for inhibition of PP-1C. Peptides containing this motif were able to antagonize the inhibition of PP-1C by phospho-DARRP-32 and phosphoinhibitor-1. The inhibition of PP-1C by inhibitor-2, but not by okadaic acid, microcystin, or calyculin A, was also attentuated by these antagonist peptides. These results together with results from other studies support a model in which two subdomains of phospho-DARPP-32 interact with PP-1C. The region encompassing phospho-Thr-34 appears to interact with the active site of the enzyme blocking enzyme activity. The region encompassing the RKKIQF motif binds to a domain of PP-1C removed from the active site. Amino acid sequence analysis indicates that basic and hydrophobic features of the RKKIQF motif are conserved in the binding domains of certain PP-1C targeting proteins, suggesting that interaction of inhibitor proteins and targeting proteins may be mutually exclusive.
Article
Full-text available
BubR1 is a central component of the spindle assembly checkpoint (SAC) that inhibits progression into anaphase in response to improper kinetochore-microtubule interactions. In addition BubR1 also helps stabilize kinetochore-microtubule interactions by counteracting the Aurora B kinase but the mechanism behind this is not clear. Here we show that BubR1 directly binds to the B56 family of PP2A regulatory subunits through a conserved motif that is phosphorylated by Cdk1 and Plk1. Two highly conserved hydrophobic residues surrounding the S670 Cdk1 phosphorylation site are required for B56 binding and mutation of these residues prevents the establishment of a proper metaphase plate and delays cells in mitosis. Furthermore, we show that phosphorylation of S670 and S676 stimulates the binding of B56 to BubR1 and that BubR1 targets a pool of B56 to kinetochores. Our data suggests that BubR1 counteracts Aurora B kinase activity at improperly attached kinetochores by recruiting B56-PP2A phosphatase complexes.
Article
Full-text available
Phosphorylation at specific residues can activate a protein, lead to its localization to particular compartments, be a trigger for protein degradation and fulfill many other biological functions. Protein phosphorylation is increasingly being studied at a large scale and in a quantitative manner that includes a temporal dimension. By contrast, structural properties of identified phosphorylation sites have so far been investigated in a static, non-quantitative way. Here we combine for the first time dynamic properties of the phosphoproteome with protein structural features. At six time points of the cell division cycle we investigate how the variation of the amount of phosphorylation correlates with the protein structure in the vicinity of the modified site. We find two distinct phosphorylation site groups: intrinsically disordered regions tend to contain sites with dynamically varying levels, whereas regions with predominantly regular secondary structures retain more constant phosphorylation levels. The two groups show preferences for different amino acids in their kinase recognition motifs - proline and other disorder-associated residues are enriched in the former group and charged residues in the latter. Furthermore, these preferences scale with the degree of disorderedness, from regular to irregular and to disordered structures. Our results suggest that the structural organization of the region in which a phosphorylation site resides may serve as an additional control mechanism. They also imply that phosphorylation sites are associated with different time scales that serve different functional needs.
Article
Full-text available
Loss of cell division cycle 2 (Cdc2, also known as Cdk1) activity after cyclin B degradation is necessary, but not sufficient, for mitotic exit. Proteins phosphorylated by Cdc2 and downstream mitotic kinases must be dephosphorylated. We report here that protein phosphatase-1 (PP1) is the main catalyst of mitotic phosphoprotein dephosphorylation. Suppression of PP1 during early mitosis is maintained through dual inhibition by Cdc2 phosphorylation and the binding of inhibitor-1. Protein kinase A (PKA) phosphorylates inhibitor-1, mediating binding to PP1. As Cdc2 levels drop after cyclin B degradation, auto-dephosphorylation of PP1 at its Cdc2 phosphorylation site (Thr 320) allows partial PP1 activation. This promotes PP1-regulated dephosphorylation at the activating site of inhibitor-1 (Thr 35) followed by dissociation of the inhibitor-1–PP1 complex and then full PP1 activation to promote mitotic exit. Thus, Cdc2 both phosphorylates multiple mitotic substrates and inhibits their PP1-mediated dephosphorylation.
Article
Full-text available
Correct execution of mitosis in eukaryotes relies on timely activation and inactivation of cyclin B-dependent kinase 1 (cdk1), the M-phase-promoting factor (MPF). Once activated, MPF is sustained until mitotic spindle assembly by phosphorylation-dependent feedback loops that prevent inhibitory phosphorylation of cdk1 and ubiquitin-dependent degradation of cyclin B. Whether subsequent MPF inactivation and anaphase onset require a specific phosphatase(s) to reverse these feedback loops is not known. Here we show through biochemical and genetic evidence that timely MPF inactivation requires activity of the essential RNA polymerase II-carboxy-terminal domain phosphatase Fcp1, in a transcription-independent manner. We identify Cdc20, a coactivator of the ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C) required for cyclin degradation and anaphase onset, USP44, a deubiquitinating peptidase that opposes APC/C action, and Wee1, a cdk1 inhibitory kinase, as relevant Fcp1 targets. We propose that Fcp1 has a crucial role in the liaison between dephosphorylation and ubiquitination that drives mitosis exit.
Article
Full-text available
Animal cells undergo dramatic actin-dependent changes in shape as they progress through mitosis; they round up upon mitotic entry and elongate during chromosome segregation before dividing into two [1-3]. Moesin, the sole Drosophila ERM-family protein [4], plays a critical role in this process, through the construction of a stiff, rounded metaphase cortex [5-7]. At mitotic exit, this rigid cortex must be dismantled to allow for anaphase elongation and cytokinesis through the loss of the active pool of phospho-Thr559moesin from cell poles. Here, in an RNA interference (RNAi) screen for phosphatases involved in the temporal and spatial control of moesin, we identify PP1-87B RNAi as having elevated p-moesin levels and reduced cortical compliance. In mitosis, RNAi-induced depletion of PP1-87B or depletion of a conserved noncatalytic PP1 phosphatase subunit Sds22 leads to defects in p-moesin clearance from cell poles at anaphase, a delay in anaphase elongation, together with defects in bipolar anaphase relaxation and cytokinesis. Importantly, similar cortical defects are seen at anaphase following the expression of a constitutively active, phosphomimetic version of moesin. These data reveal a new role for the PP1-87B/Sds22 phosphatase, an important regulator of the metaphase-anaphase transition, in coupling moesin-dependent cell shape changes to mitotic exit.
Article
The presence or absence of a phosphorylation on a substrate at any particular point in time is a functional readout of the balance in activity between the regulatory kinase and the counteracting phosphatase. Understanding how stable or short-lived a phos- phorylation site is required for fully appreciating the biological consequences of the phosphorylation. Our current understanding of kinases and their substrates is well established; however, the role phosphatases play is less understood. Therefore, we utilized a phosphatase dependent model of mitotic exit to identify potential substrates that are preferentially dephosphorylated. Using this method, we identified 416,000 phosphosites on 43300 unique proteins, and quantified the temporal phosphorylation changes that occur during early mitotic exit (McCloy et al., 2015 [1]). Furthermore, we annotated the majority of these phosphorylation sites with a high confidence upstream kinase using published, motif and prediction based methods. The results from this study have been deposited into the ProteomeXchange repository with identifier PXD001559. Here we provide additional analysis of this dataset; for each of the major mitotic kinases we identified motifs that correlated strongly with phosphorylation status. These motifs could be used to predict the stability of phosphorylated residues in proteins of interest, and help infer potential functional roles for uncharacterized phosphorylations. In addition, we provide valida- tion at the single cell level that serine residues phosphorylated by Cdk are stable during phosphatase dependent mitotic exit. In summary, this unique dataset contains information on the temporal mitotic stability of thousands of phosphorylation sites regulated by dozens of kinases, and information on the potential preference that phosphatases have at both the protein and individual phosphosite level. The compellation of this data provides an invaluable resource for the wider research community.
Article
Entry into mitosis is driven by the coordinated phosphorylation of thousands of proteins. For the cell to complete mitosis and divide into two identical daughter cells it must regulate dephosphorylation of these proteins in a highly ordered, temporal manner. There is currently a lack of a complete understanding of the phosphorylation changes that occur during the initial stages of mitotic exit in human cells. Therefore, we performed a large unbiased, global analysis to map the very first dephosphorylation events that occur as cells exit mitosis. We identified and quantified the modification of >16,000 phosphosites on >3,300 unique proteins during early mitotic exit, providing up to 8-fold greater resolution than previous studies. The data have been deposited to the ProteomeXchange with identifier PXD001559. Only a small fraction (~10%) of phosphorylation sites were dephosphorylated during early mitotic exit and these occurred on proteins involved in critical early exit events, including organization of the mitotic spindle, the spindle assembly checkpoint, and reformation of the nuclear envelope. Surprisingly this enrichment was observed across all kinase consensus motifs, indicating that it is independent of the upstream phosphorylating kinase. Therefore, dephosphorylation of these sites is likely determined by the specificity of phosphatase/s rather than the activity of kinase/s. Dephosphorylation was significantly affected by the amino acids at and surrounding the phosphorylation site, with several unique evolutionarily conserved amino acids correlating strongly with phosphorylation status. These data provide a potential mechanism for the specificity of phosphatases, and how they co-ordinate the ordered events of mitotic exit. In summary, our results provide a global overview of the phosphorylation changes that occur during the very first stages of mitotic exit, providing novel mechanistic insight into how phosphatase/s specifically regulate this critical transition. Copyright © 2015, The American Society for Biochemistry and Molecular Biology.
Article
Ring-shaped cohesin keeps sister chromatids paired until cleavage of its Scc1/Rad21 subunit by separase triggers chromosome segregation in anaphase. Vertebrate separase is held inactive by mutually exclusive binding to securin or Cdk1-cyclin B1 and becomes unleashed only upon ubiquitin-dependent degradation of these regulators. Although most separase is usually found in association with securin, this anaphase inhibitor is dispensable for murine life while Cdk1-cyclin B1-dependent control of separase is essential. Here, we show that securin-independent inhibition of separase by Cdk1-cyclin B1 in early mitosis requires the phosphorylation-specific peptidyl-prolyl cis/trans isomerase Pin1. Furthermore, isomerization of previously securin-bound separase at the metaphase-to-anaphase transition renders it resistant to re-inhibition by residual securin. At the same time, isomerization also limits the half-life of separase's proteolytic activity, explaining how cohesin can be reloaded onto telophase chromatin in the absence of securin and cyclin B1 without being cleaved. Copyright © 2015 Elsevier Inc. All rights reserved.
Article
Protein phosphatase-1 (PP1) is a major protein Ser/Thr phosphatase in eukaryotic cells. Its activity depends on two metal ions in the catalytic site, which were identified as manganese in the bacterially expressed phosphatase. However, the identity of the metal ions in native PP1 is unknown. In this study, total reflection X-ray fluorescence (TXRF) was used to detect iron and zinc in PP1 that was purified from rabbit skeletal muscle. Metal exchange experiments confirmed that the distinct substrate specificity of recombinant and native PP1 is determined by the nature of their associated metals. We also found that the iron level associated with native PP1 is decreased by incubation with inhibitor-2, consistent with a function of inhibitor-2 as a PP1 chaperone. Copyright © 2015 Elsevier Inc. All rights reserved.
Article
Proper alignment of duplicated chromosomes at the metaphase plate involves both motor-driven chromosome movement, and the functional and physical end-on connection (K-fiber formation) between the kinetochore and the plus-end of microtubules. The B56 family of Protein Phosphatase 2A (PP2A) regulatory subunits, through their interaction with the mitotic checkpoint protein BUBR1, are required for proper chromosome alignment, but the underlying mechanism(s) has remained elusive. Here we show that B56-PP2A promotes chromosome alignment primarily by balancing chromosome movement towards the metaphase plate, rather than by directly establishing stable K-fibers. Notably, the poleward movement of chromosomes in cells depleted of the B56 family can be rescued by depletion of HSET/kinesin-14, a major minus end-directed motor protein. Strikingly, K-fiber formation can be restored if chromosome movement to the metaphase plate is rescued in B56-depleted cells. Furthermore, the B56:BUBR1 interaction is required for promoting motor-driven chromosome movement towards the metaphase plate. Thus, we propose that B56-PP2A functions in mitotic chromosome alignment by balancing chromosome movement towards the metaphase plate, which is essential for subsequent establishment of stable and functional kinetochore-microtubule attachment, and mitotic exit.
Article
The unrelated protein Sup35p acts as a release factor during translation termination, and its activity is lost upon amyloid formation. Once Sup35p aggregates, RNA polymerase reads through stop codons, which results in greater protein diversity and the generation of new protein activities that are beneficial for survival. Aggregation of Ure2p and Sup35p are mediated by their disordered, asparagine- and glutamine-rich N-termini. Research into disordered proteins produced significant findings and established important new concepts. On the structural side, novel experimental and computational approaches identified and described disordered protein ensembles and led to terms such as secondary structure propensities, residual structural features, and transient longrange contacts.
Article
Chromosome segregation requires the ordered separation of the newly replicated chromosomes between the two daughter cells. In most cells, this requires nuclear envelope (NE) disassembly during mitotic entry and its reformation at mitotic exit. Nuclear envelope breakdown (NEB) results in the mixture of two cellular compartments. This process is controlled through phosphorylation of multiple targets by cyclin-dependent kinase 1 (Cdk1)-cyclin B complexes as well as other mitotic enzymes. Experimental evidence also suggests that nucleo-cytoplasmic transport of critical cell cycle regulators such as Cdk1-cyclin B complexes or Greatwall, a kinase responsible for the inactivation of PP2A phosphatases, plays a major role in maintaining the boost of mitotic phosphorylation thus preventing the potential mitotic collapse derived from NEB. These data suggest the relevance of nucleo-cytoplasmic transport not only to communicate cytoplasmic and nuclear compartments during interphase, but also to prepare cells for the mixture of these two compartments during mitosis.
Article
The universal triggering event of eukaryotic chromosome segregation is cleavage of centromeric cohesin by separase. Prior to anaphase, most separase is kept inactive by association with securin. Protein phosphatase 2A (PP2A) constitutes another binding partner of human separase, but the functional relevance of this interaction has remained enigmatic. We demonstrate that PP2A stabilizes separase-associated securin by dephosphorylation, while phosphorylation of free securin enhances its polyubiquitylation by the ubiquitin ligase APC/C and proteasomal degradation. Changing PP2A substrate phosphorylation sites to alanines slows degradation of free securin, delays separase activation, lengthens early anaphase, and results in anaphase bridges and DNA damage. In contrast, separase-associated securin is destabilized by introduction of phosphorylation-mimetic aspartates or extinction of separase-associated PP2A activity. G2- or prometaphase-arrested cells suffer from unscheduled activation of separase when endogenous securin is replaced by aspartate-mutant securin. Thus, PP2A-dependent stabilization of separase-associated securin prevents precocious activation of separase during checkpoint-mediated arrests with basal APC/C activity and increases the abruptness and fidelity of sister chromatid separation in anaphase.
Article
Entry and progression through mitosis has traditionally been linked directly to the activity of cyclin-dependent kinase 1 (Cdk1). In this study we utilized low doses of the Cdk1-specific inhibitor, RO3306 from early G 2 phase onwards. Addition of low doses of RO3306 in G 2 phase induced minor chromosome congression and segregation defects. In contrast, mild doses of RO3306 during G 2 phase resulted in cells entering an aberrant mitosis, with cells fragmenting centrosomes and failing to fully disassemble the nuclear envelope. Cells often underwent cytokinesis and metaphase simultaneously, despite the presence of an active spindle assembly checkpoint, which prevented degradation of cyclin B1 and securin, resulting in the random partitioning of whole chromosomes. This highly aberrant mitosis produced a significant increase in the proportion of viable polyploid cells present up to 3 days post-treatment. Furthermore, cells treated with medium doses of RO3306 were only able to reach the threshold of Cdk1 substrate phosphorylation required to initiate nuclear envelope breakdown, but failed to reach the levels of phosphorylation required to correctly complete pro-metaphase. Treatment with low doses of Okadaic acid, which primarily inhibits PP2A, rescued the mitotic defects and increased the number of cells that completed a normal mitosis. This supports the current model that PP2A is the primary phosphatase that counterbalances the activity of Cdk1 during mitosis. Taken together these results show that continuous and subtle disruption of Cdk1 activity from G 2 phase onwards has deleterious consequences on mitotic progression by disrupting the balance between Cdk1 and PP2A.
Article
Cell division requires the wholesale reorganisation of cell architecture. At the same time as the microtubule network is remodeled to generate a bipolar spindle, animal cells entering mitosis replace their interphase actin cytoskeleton with a contractile mitotic actomyosin cortex that is tightly coupled to the plasma membrane - driving mitotic cell rounding. Here, we consider how these two processes are coordinated to couple chromosome segregation and cell division. In doing so we explore the relative roles of cell shape and the actin cortex in spindle morphogenesis, orientation and positioning.
Article
Progression into M phase requires inhibition of heterotrimeric PP2A containing the regulatory B55 subunit (PP2A-B55) as well as the activation of cyclin-dependent kinase 1 (Cdk1). Alpha-Endosulfine (ENSA)/ARPP-19 family proteins phosphorylated at S67 by Greatwall kinase bind and inhibit PP2A-B55. This study reports that endogenous kinases phosphorylate not only S67 but also two additional sites in ENSA (T28 and S109) with different kinetics at different cell cycle stages in Xenopus laevis intact cells and in cell-free egg extracts. When assayed in vitro, these three phosphorylations displayed qualitatively and/or quantitatively different effects on ENSA's inhibition of PP2A-B55. Structural analyses revealed that the most-conserved middle region of ENSA containing S67 physically interacts with PP2A-B55 at the interface of the B55 and C subunits, where the catalytic center of PP2A is located. Considering that non-phosphorylated ENSA has an intrinsic potential for PP2A-B55 inhibition, these three phosphorylations would differentially affect the physical interaction of the middle region of ENSA with PP2A-B55. These results suggest that the two additional phosphorylation sites together with S67 serve to make ENSA a "stepwise tuner" for PP2A-B55, which can be regulated by multiple cellular signals, rather than a simple "ON/OFF switch". This article is protected by copyright. All rights reserved.
Article
Correct transmission of genetic information from mother to daughter cells is necessary for development and survival. Accurate segregation is achieved by bipolar attachment of sister kinetochores in each chromatid pair to spindle microtubules emanating from opposite spindle poles, a process known as chromosome bi-orientation. Achieving this requires dynamic interplay between kinetochore proteins, kinesin motor proteins and cell cycle regulators. Chromosome bi-orientation is monitored by a surveillance mechanism known as the SAC (spindle assembly checkpoint). The Aurora B kinase, which is bound to the inner centromere during early mitosis, plays a central role in both chromosome bi-orientation and the spindle checkpoint. The application of tension across centromeres establishes a spatial gradient of high phosphorylation activity at the inner centromere and low phosphorylation activity at the outer kinetochore. This gradient is further refined by the association of PP1 (protein phosphatase 1) to the outer kinetochore, which stabilizes kinetochore-microtubule interactions and silences the spindle checkpoint by dephosphorylating Aurora B kinase targets when chromosome bi-orientation is achieved. In the present review, I discuss emerging evidence that bidirectional cross-talk between mitotic kinesins and the Aurora kinase-PP1 axis is crucial for co-ordinating chromosome bi-orientation and spindle checkpoint signalling in eukaryotes.
Article
Coordinated progression through the cell cycle is a complex challenge for eukaryotic cells. Following genotoxic stress, diverse molecular signals must be integrated to establish checkpoints specific for each cell cycle stage, allowing time for various types of DNA repair. Phospho-Ser/Thr-binding domains have emerged as crucial regulators of cell cycle progression and DNA damage signalling. Such domains include 14-3-3 proteins, WW domains, Polo-box domains (in PLK1), WD40 repeats (including those in the E3 ligase SCF(βTrCP)), BRCT domains (including those in BRCA1) and FHA domains (such as in CHK2 and MDC1). Progress has been made in our understanding of the motif (or motifs) that these phospho-Ser/Thr-binding domains connect with on their targets and how these interactions influence the cell cycle and DNA damage response.
Article
Nat. Cell Biol. 13, 223–233 (2011); published online 20 February 2011; corrected after print 31 March 2011 In the version of this article initially published online and in print, Table 1 was incorrect, as figures for the time from NEBD to the start of Cyclin B1 destruction were incorrect by a factorof three.
Article
Aurora B is the catalytic subunit of the chromosomal passenger complex (CPC), which coordinates mitotic processes through phosphorylation of key regulatory proteins [1]. In prometaphase, the CPC is enriched at the centromeres to regulate the spindle checkpoint and kinetochore-microtubule interactions. Centromeric CPC binds to histone H3 that is phosphorylated at T3 (H3T3ph) by Aurora B-stimulated Haspin [2-5]. PP1/Repo-Man acts antagonistically to Haspin and dephosphorylates H3T3ph at the chromosome arms but is somehow prevented from causing a net dephosphorylation of centromeric H3T3ph during prometaphase [6, 7]. Here, we show that Aurora B phosphorylates Repo-Man at S893, preventing its recruitment by histones. We also identify PP2A as a mitotic interactor of Repo-Man that dephosphorylates S893 and thereby promotes the targeting of Repo-Man to chromosomes and the dephosphorylation of H3T3ph by PP1. Thus, Repo-Man-associated PP1 and PP2A collaborate to oppose the chromosomal targeting of Aurora B. We propose that the reciprocal feedback regulation of Haspin and Repo-Man by Aurora B generates a robust bistable response that culminates in the centromeric targeting of the CPC during prometaphase.
Article
The process of mitosis involves a comprehensive reorganization of the cell: chromosomes condense, the nuclear envelope breaks down, the mitotic spindle is assembled, cells round up and release their ties to the substrate and so on and so forth. This reorganization is triggered by the activation of the protein kinase, Cyclin-Dependent Kinase 1 (CDK1). The end of mitosis is marked by the proteolysis of the cyclin subunit of CDK1, which terminates kinase activity. At this point, the phosphate moieties that altered the properties of hundreds of proteins to bring about the cellular reorganization are removed by protein phosphatases. At least one protein phosphatase, PP2A-B55, is completely shut off in mitosis. Depletion of this particular form of PP2A accelerates entry into mitosis, and blocks exit from mitosis. Control of this phosphatase is achieved by an inhibitor protein (α-endosulfine or ARPP-19) that becomes inhibitory when phosphorylated by a protein kinase called Greatwall, which is itself a substrate of CDK1. Failure to inhibit PP2A-B55 causes arrest of the cell cycle in G2 phase. I will discuss the role of this control mechanism in the control of mitosis.
Article
Protein Phosphatase 2A (PP2A) is an important and ubiquitously expressed serine threonine phosphatase and regulates the function by dephosphorylating many critical cellular molecules like Akt, p53, c-Myc and β-catenin. It plays a critical role in cellular processes, such as cell proliferation, signal transduction and apoptosis. Structurally, it is multifarious as it is composed of catalytic, scaffold and regulatory subunits. The catalytic and scaffold subunits have two isoforms and the regulatory subunit has four different families containing different isoforms. The regulatory subunit is the most diverse with temporal and spatial specificity. PP2A undergoes post-translational modifications (i.e. phosphorylation and methylation), which in turn, regulates its enzymatic activity. Aberrant expression, mutations and somatic alterations of the PP2A scaffold and regulatory subunits have been observed in various human malignancies, including lung, breast, skin and colon cancer, highlighting its role as a 'tumor suppressor'. This review is focused on the structural complexity of serine/threonine phosphatase PP2A and summarizes its expression pattern in cancer. Additionally, the PP2A interacting and regulatory proteins and substrates are also discussed. Finally, the mouse models developed to understand the biological role of PP2A subunits in an in vivo model system are also reviewed in this article.
Article
Maintenance of chromosomal stability depends on error-free chromosome segregation. The pseudokinase BUBR1 is essential for this, because it is a core component of the mitotic checkpoint and is required for formation of stable kinetochore-microtubule attachments. We have identified a conserved and highly phosphorylated domain (KARD) in BUBR1 that is crucial for formation of kinetochore-microtubule attachments. Deletion of this domain or prevention of its phosphorylation abolishes formation of kinetochore microtubules, which can be reverted by inhibiting Aurora B activity. Phosphorylation of KARD by PLK1 promotes direct interaction of BUBR1 with the PP2A-B56α phosphatase that counters excessive Aurora B activity at kinetochores. As a result, removal of BUBR1 from mitotic cells or inhibition of PLK1 reduces PP2A-B56α kinetochore binding and elevates phosphorylation of Aurora B substrates on the outer kinetochore. We propose that PLK1 and BUBR1 cooperate to stabilize kinetochore-microtubule interactions by regulating PP2A-B56α-mediated dephosphorylation of Aurora B substrates at the kinetochore-microtubule interface.
Article
Kinase-substrate recognition depends on the chemical properties of the phosphorylatable residue as well as the surrounding linear sequence motif. Detailed knowledge of these characteristics increases the confidence of linking identified phosphorylation sites to kinases, predicting phosphorylation sites, and designing optimal peptide substrates. Here, we present a mass spectrometry-based approach for determining linear kinase substrate motifs by elaborating the positional and chemical preference of the kinase for a phosphorylatable residue using libraries of naturally-occurring peptides that are amenable to peptide identification by commonly used proteomics platforms. We applied this approach to a structurally and functionally diverse set of purified kinases, which recapitulated their previously described substrate motifs and discovered additional ones, including preferences of certain kinases for phosphorylatable residues adjacent to peptide termini. Furthermore, we identify specific and distinguishable motif elements for the four members of the polo-like kinase (Plk) family and verify members of these motif elements for Plk1 in vivo.
Article
Kinetochores are the macromolecular complexes that interact with microtubules to mediate chromosome segregation [1 • Przewloka M.R. • Glover D.M. The kinetochore and the centromere: a working long distance relationship.Annu. Rev. Genet. 2009; 43: 439-465 • Crossref • PubMed • Scopus (86) • Google Scholar ]. Accurate segregation requires that kinetochores make bioriented attachments to microtubules from opposite poles. Attachments between kinetochores and microtubules are monitored by the spindle checkpoint, a surveillance system that prevents anaphase until every pair of chromosomes makes proper bioriented attachments [2 • Musacchio A. Spindle assembly checkpoint: the third decade.Philos. Trans. R. Soc. Lond. B Biol. Sci. 2011; 366: 3595-3604 • Crossref • PubMed • Scopus (131) • Google Scholar ]. Checkpoint activity is correlated with the recruitment of checkpoint proteins to the kinetochore [1 • Przewloka M.R. • Glover D.M. The kinetochore and the centromere: a working long distance relationship.Annu. Rev. Genet. 2009; 43: 439-465 • Crossref • PubMed • Scopus (86) • Google Scholar ]. Mps1 is a conserved protein kinase that regulates segregation and the spindle checkpoint, but few of the targets that mediate its functions have been identified. Here, we show that Mps1 is the major kinase activity that copurifies with budding yeast kinetochore particles and identify the conserved Spc105/KNL-1/blinkin kinetochore protein as a substrate. Phosphorylation of conserved MELT motifs within Spc105 recruits the Bub1 protein to kinetochores, and this is reversed by protein phosphatase I (PP1). Spc105 mutants lacking Mps1 phosphorylation sites are defective in the spindle checkpoint and exhibit growth defects. Together, these data identify Spc105 as a key target of the Mps1 kinase and show that the opposing activities of Mps1 and PP1 regulate the kinetochore localization of the Bub1 protein.
Article
Ser/Thr protein phosphatase 1 (PP1) is a single-domain hub protein with nearly 200 validated interactors in vertebrates. PP1-interacting proteins (PIPs) are ubiquitously expressed but show an exceptional diversity in brain, testis and white blood cells. The binding of PIPs is mainly mediated by short motifs that dock to surface grooves of PP1. Although PIPs often contain variants of the same PP1 binding motifs, they differ in the number and combination of docking sites. This molecular-lego strategy for binding to PP1 creates holoenzymes with unique properties. The PP1 binding code can be described as specific, universal, degenerate, nonexclusive and dynamic. PIPs control associated PP1 by interference with substrate recruitment or access to the active site. In addition, some PIPs have a subcellular targeting domain that promotes dephosphorylation by increasing the local concentration of PP1. The diversity of the PP1 interactome and the properties of the PP1 binding code account for the exquisite specificity of PP1 in vivo.
Article
The ubiquitous serine/threonine protein phosphatase 1 (PP1) regulates diverse, essential cellular processes such as cell cycle progression, protein synthesis, muscle contraction, carbohydrate metabolism, transcription and neuronal signaling. However, the free catalytic subunit of PP1, while an effective enzyme, lacks substrate specificity. Instead, it depends on a diverse set of regulatory proteins (≥ 200) to confer specificity towards distinct substrates. Here, we discuss recent advances in structural studies of PP1 holoenzyme complexes and summarize the new insights these studies have provided into the molecular basis of PP1 regulation and specificity.