ArticlePDF Available

Abstract

This study aims to create insight in how Integrated Assessment Models (IAMs) perform in describing the climate forcing by non-CO2 gases and aerosols. The simple climate models (SCMs) included in IAMs have been run with the same prescribed anthropogenic emission pathways and compared to analyses with complex earth system models (ESMs) in terms of concentration and radiative forcing levels. In our comparison, particular attention was given to the short-lived forcers' climate effects. In general, SCMs show forcing levels within the expert model ranges. However, the more simple SCMs seem to underestimate forcing differences between baseline and mitigation scenarios because of omission of ozone, black carbon and/or indirect methane forcing effects. Above all, results also show that among IAMs there is a significant spread (0.74 W/m2 in 2100) in non-CO2 forcing projections for a 2.6 W/m2 mitigation scenario, mainly due to uncertainties in the indirect effects of aerosols. This has large implications for determining optimal mitigation strategies among IAMs with regard to required CO2 forcing targets and policy costs.
A preview of the PDF is not available
... Before AR5, IAMs self-reported climate outcomes of scenarios. However, climate system representations vary in complexity, sophistication, and accuracy between IAMs (Harmsen et al., 2015;van Vuuren et al., 2011), so comparing self-reported climate outcomes from different IAMs can be complex and inaccurate. To eliminate the unnecessary noise that results from the use of an unwieldy set of poorly calibrated climate models, the WG3 Contribution to AR5 initiated a harmonized approach to the climate assessment of IAM scenarios (Clarke et al., 2014). ...
Article
Full-text available
Plain Language Summary The IPCC's latest physical science report, the Working Group 1 Contribution to the Sixth Assessment Report (AR6), was released in August 2021. That report includes an update to the tools used to project the climate outcome of emission scenarios. Here we apply these newly calibrated tools, called earth system model emulators, to the set of scenarios assessed in the IPCC's Special Report on warming of 1.5°C (SR1.5). We find that two compensating changes lead to a remarkable consistency (peak warming projections within 0.1°C) between the projections made by the emulators used in SR1.5 and their descendants used in AR6. First, updates to the historical warming assessment since the SR1.5 (which was based on the IPCC's 2013 physical science report (AR5)) increase future warming projections. However, improved consistency between the emulators and the assessment of the underlying physics, particularly the short‐term warming response to emissions, lowers warming projections by an approximately equivalent amount. Our work reinforces the key messages from the IPCC: limiting warming to around 1.5°C is a great and urgent challenge, and it is up to us to decide whether we pull out all the stops to hold temperatures around 1.5°C or whether we sail on by.
... We extend previous probabilistic evaluation work and build on the progress made in the first phase of RCMIP (Z. R. J. Nicholls et al., 2020) and other RCM intercomparison studies (Harmsen et al., 2015;Schwarber et al., 2019;van Vuuren et al., 2011). We widen the first phase's scope both in terms of number of climate dimensions considered and the number of models evaluated. ...
Article
Full-text available
Over the last decades, climate science has evolved rapidly across multiple expert domains. Our best tools to capture state‐of‐the‐art knowledge in an internally self‐consistent modeling framework are the increasingly complex fully coupled Earth System Models (ESMs). However, computational limitations and the structural rigidity of ESMs mean that the full range of uncertainties across multiple domains are difficult to capture with ESMs alone. The tools of choice are instead more computationally efficient reduced complexity models (RCMs), which are structurally flexible and can span the response dynamics across a range of domain‐specific models and ESM experiments. Here we present Phase 2 of the Reduced Complexity Model Intercomparison Project (RCMIP Phase 2), the first comprehensive intercomparison of RCMs that are probabilistically calibrated with key benchmark ranges from specialized research communities. Unsurprisingly, but crucially, we find that models which have been constrained to reflect the key benchmarks better reflect the key benchmarks. Under the low‐emissions SSP1‐1.9 scenario, across the RCMs, median peak warming projections range from 1.3 to 1.7°C (relative to 1850–1900, using an observationally based historical warming estimate of 0.8°C between 1850–1900 and 1995–2014). Further developing methodologies to constrain these projection uncertainties seems paramount given the international community's goal to contain warming to below 1.5°C above preindustrial in the long‐term. Our findings suggest that users of RCMs should carefully evaluate their RCM, specifically its skill against key benchmarks and consider the need to include projections benchmarks either from ESM results or other assessments to reduce divergence in future projections.
... Standardisation of performance metrics and diagnostic indicators supports interpretability by 'fingerprinting' the distinctive behaviour of each model Wilkerson et al. 2015). As IAMs represent multiple systems and their interactions, a pragmatic approach for improving interpretability is to evaluate individual model components sequentially (Harmsen et al. 2015;van Vuuren et al. 2011). These connections from evaluation methods to the interpretability criterion are shown as purple arrows in Fig. 2. ...
Article
Full-text available
Process-based integrated assessment models (IAMs) project long-term transformation pathways in energy and land-use systems under what-if assumptions. IAM evaluation is necessary to improve the models’ usefulness as scientific tools applicable in the complex and contested domain of climate change mitigation. We contribute the first comprehensive synthesis of process-based IAM evaluation research, drawing on a wide range of examples across six different evaluation methods including historical simulations, stylised facts, and model diagnostics. For each evaluation method, we identify progress and milestones to date, and draw out lessons learnt as well as challenges remaining. We find that each evaluation method has distinctive strengths, as well as constraints on its application. We use these insights to propose a systematic evaluation framework combining multiple methods to establish the appropriateness, interpretability, credibility, and relevance of process-based IAMs as useful scientific tools for informing climate policy. We also set out a programme of evaluation research to be mainstreamed both within and outside the IAM community.
... Producing sound SC-CH 4 estimates also requires climate models that enable a careful sampling of the parameter space and that are sophisticated enough to replicate key behaviours simulated Nature | Vol 592 | 22 April 2021 | 565 in comprehensive Earth system models. The climate models found in the cost-benefit IAMs that have been used previously for estimating the SC-CH 4 do not meet this standard, contain well-known flaws 13,14 and have not been rigorously calibrated to observations. They may therefore produce biased SC-CH 4 estimates that are inconsistent with the climate record. ...
Article
Full-text available
The social cost of methane (SC-CH4) measures the economic loss of welfare caused by emitting one tonne of methane into the atmosphere. This valuation may in turn be used in cost–benefit analyses or to inform climate policies1–3. However, current SC-CH4 estimates have not included key scientific findings and observational constraints. Here we estimate the SC-CH4 by incorporating the recent upward revision of 25 per cent to calculations of the radiative forcing of methane⁴, combined with calibrated reduced-form global climate models and an ensemble of integrated assessment models (IAMs). Our multi-model mean estimate for the SC-CH4 is US$933 per tonne of CH4 (5–95 per cent range, US$471–1,570 per tonne of CH4) under a high-emissions scenario (Representative Concentration Pathway (RCP) 8.5), a 22 per cent decrease compared to estimates based on the climate uncertainty framework used by the US federal government⁵. Our ninety-fifth percentile estimate is 51 per cent lower than the corresponding figure from the US framework. Under a low-emissions scenario (RCP 2.6), our multi-model mean decreases to US$710 per tonne of CH4. Tightened equilibrium climate sensitivity estimates paired with the effect of previously neglected relationships between uncertain parameters of the climate model lower these estimates. We also show that our SC-CH4 estimates are sensitive to model combinations; for example, within one IAM, different methane cycle sub-models can induce variations of approximately 20 per cent in the estimated SC-CH4. But switching IAMs can more than double the estimated SC-CH4. Extending our results to account for societal concerns about equity produces SC-CH4 estimates that differ by more than an order of magnitude between low- and high-income regions. Our central equity-weighted estimate for the USA increases to US$8,290 per tonne of CH4 whereas our estimate for sub-Saharan Africa decreases to US$134 per tonne of CH4.
... We extend previous probabilistic evaluation work and build on the progress made in the first phase of RCMIP (Z. R. J. Nicholls et al., 2020) and other RCM intercomparison studies (Harmsen et al., 2015;Schwarber et al., 2019;van Vuuren et al., 2011). We widen the first phase's scope both in terms of number of climate dimensions considered and the number of models evaluated. ...
... All radiative forcing and temperature calculations presented below and in the EMF-30 crosscut papers use a common version of the simple climate model MAGICC6 (Meinshausen et al. 2011). The MAGICC6 model incorporates representations of the relevant gas cycles and radiative forcing for each relevant species and produces radiative forcing estimates similar to those from more complex models (Harmsen et al. 2015). Critically, MAGICC6 includes a multi-region representation of forcing and climate responses which results in a more rapid response to aerosol forcing as compared to well-mixed greenhouse gases such as sulfate and black carbon that are preferentially felt over land and in the northern hemisphere (Meinshausen et al. 2011;Smith et al. 2014). ...
Article
Full-text available
The Energy Modeling Forum inter-comparison study on short-lived climate forcers (EMF-30) focuses on black carbon (BC) and methane (CH4), two of the most important warming SLCFs. The study is aimed at quantifying the potential impact of methane and BC-focused reductions on climate change and at comparing the impact of idealized SLCF reductions as compared to idealized GHG reduction policies of the type long-analyzed by the modeling community. The EMF-30 study takes a multi-model approach that includes nine integrated assessment models. Analysis of the interaction between dedicated SLCF and GHG reduction policies and the systematic implementation of stylized scenarios allows an assessment of the role of forcers individually and as they interact with different policy options. The multi-model analysis allows an assessment of how robust results are across different models and background scenario assumptions. The special issue consists of this overview, three cross-cutting papers that focus on different aspects of the multi-model analysis results (Harmsen et al. 2019a, b, Smith et al. 2020), and four papers expanding on this topic largely using individual models (Chantret et al. 2020; Harmsen et al. 2020; Rauner et al. 2020; Vandyck et al. 2020). The next section provides an overview of the EMF-30 study, followed by a summary of study results, and ending with a conclusion section.
... They focused on five CO 2 -only experiments to quantify the differences in the behaviour of the RCMs used by each IAM. Harmsen et al. (2015) extended the work of van Vuuren et al. (2011b) to consider the impact of non-CO 2 climate drivers in the Representative Concentration Pathway (RCPs). Recently, Schwarber et al. (2019) proposed a series of impulse tests for simple climate models in order to isolate differences in model behaviour under idealised conditions. ...
Article
Full-text available
Reduced-complexity climate models (RCMs) are critical in the policy and decision making space, and are directly used within multiple Intergovernmental Panel on Climate Change (IPCC) reports to complement the results of more comprehensive Earth system models. To date, evaluation of RCMs has been limited to a few independent studies. Here we introduce a systematic evaluation of RCMs in the form of the Reduced Complexity Model Intercomparison Project (RCMIP). We expect RCMIP will extend over multiple phases, with Phase 1 being the first. In Phase 1, we focus on the RCMs' global-mean temperature responses, comparing them to observations, exploring the extent to which they emulate more complex models and considering how the relationship between temperature and cumulative emissions of CO2 varies across the RCMs. Our work uses experiments which mirror those found in the Coupled Model Intercomparison Project (CMIP), which focuses on complex Earth system and atmosphere–ocean general circulation models. Using both scenario-based and idealised experiments, we examine RCMs' global-mean temperature response under a range of forcings. We find that the RCMs can all reproduce the approximately 1 ∘C of warming since pre-industrial times, with varying representations of natural variability, volcanic eruptions and aerosols. We also find that RCMs can emulate the global-mean temperature response of CMIP models to within a root-mean-square error of 0.2 ∘C over a range of experiments. Furthermore, we find that, for the Representative Concentration Pathway (RCP) and Shared Socioeconomic Pathway (SSP)-based scenario pairs that share the same IPCC Fifth Assessment Report (AR5)-consistent stratospheric-adjusted radiative forcing, the RCMs indicate higher effective radiative forcings for the SSP-based scenarios and correspondingly higher temperatures when run with the same climate settings. In our idealised setup of RCMs with a climate sensitivity of 3 ∘C, the difference for the ssp585–rcp85 pair by 2100 is around 0.23∘C(±0.12 ∘C) due to a difference in effective radiative forcings between the two scenarios. Phase 1 demonstrates the utility of RCMIP's open-source infrastructure, paving the way for further phases of RCMIP to build on the research presented here and deepen our understanding of RCMs.
... Note that the GMT reducing potential found here is much lower than the earlier estimate by Shindell et al. (2012) and UNEP/WMO (2011). The reason is that, in these studies, (1) BC emissions in the reference cases were assumed to be higher (both with and without climate policy, as the status of legislation was very different about a decade ago and so large part of the BC mitigation potential is now in the baseline) and that (2) the climate model used (GISS-PUCCINI) attributed high RF to BC indirect cloud forming and BC on snow (Harmsen et al. 2015), in line with the studies' GMT projections. In recent studies, as in this one, the effect of BC mitigation is found to be much lower for similar reasons (Rogelj et al. 2014;Smith and Mizrahi 2013;Stohl et al. 2015). ...
Article
Full-text available
Mitigation of black carbon (BC) aerosol emissions can potentially contribute to both reducing air pollution and climate change, although mixed results have been reported regarding the latter. A detailed quantification of the synergy between global air quality and climate policy is still lacking. This study contributes with an integrated assessment model-based scenario analysis of BC-focused mitigation strategies aimed at maximizing air quality and climate benefits. The impacts of these policy strategies have been examined under different socio-economic conditions, climate ambitions, and BC mitigation strategies. The study finds that measures targeting BC emissions (including reduction of co-emitted organic carbon, sulfur dioxide, and nitrogen dioxides) result in significant decline in premature mortality due to ambient air pollution, in the order of 4 to 12 million avoided deaths between 2015 and 2030. Under certain circumstances, BC mitigation can also reduce climate change, i.e., mainly by lowering BC emissions in the residential sector and in high BC emission scenarios. Still, the effect of BC mitigation on global mean temperature is found to be modest at best (with a maximum short-term GMT decrease of 0.02 °C in 2030) and could even lead to warming (with a maximum increase of 0.05 °C in case of a health-focused strategy, where all aerosols are strongly reduced). At the same time, strong climate policy would improve air quality (the opposite relation) through reduced fossil fuel use, leading to an estimated 2 to 5 million avoided deaths in the period up to2030. By combining both air quality and climate goals, net health benefits can be maximized.
Article
Full-text available
Black carbon aerosol plays a unique and important role in Earth's climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. This assessment provides an evaluation of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice. These effects are calculated with climate models, but when possible, they are evaluated with both microphysical measurements and field observations. Predominant sources are combustion related, namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom-up inventory methods are 7500 Gg yr−1 in the year 2000 with an uncertainty range of 2000 to 29000. However, global atmospheric absorption attributable to black carbon is too low in many models and should be increased by a factor of almost 3. After this scaling, the best estimate for the industrial-era (1750 to 2005) direct radiative forcing of atmospheric black carbon is +0.71 W m−2 with 90% uncertainty bounds of (+0.08, +1.27) W m−2. Total direct forcing by all black carbon sources, without subtracting the preindustrial background, is estimated as +0.88 (+0.17, +1.48) W m−2. Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings, including rapid adjustments. The best estimate of industrial-era climate forcing of black carbon through all forcing mechanisms, including clouds and cryosphere forcing, is +1.1 W m−2 with 90% uncertainty bounds of +0.17 to +2.1 W m−2. Thus, there is a very high probability that black carbon emissions, independent of co-emitted species, have a positive forcing and warm the climate. We estimate that black carbon, with a total climate forcing of +1.1 W m−2, is the second most important human emission in terms of its climate forcing in the present-day atmosphere; only carbon dioxide is estimated to have a greater forcing. Sources that emit black carbon also emit other short-lived species that may either cool or warm climate. Climate forcings from co-emitted species are estimated and used in the framework described herein. When the principal effects of short-lived co-emissions, including cooling agents such as sulfur dioxide, are included in net forcing, energy-related sources (fossil fuel and biofuel) have an industrial-era climate forcing of +0.22 (−0.50 to +1.08) W m−2 during the first year after emission. For a few of these sources, such as diesel engines and possibly residential biofuels, warming is strong enough that eliminating all short-lived emissions from these sources would reduce net climate forcing (i.e., produce cooling). When open burning emissions, which emit high levels of organic matter, are included in the total, the best estimate of net industrial-era climate forcing by all short-lived species from black-carbon-rich sources becomes slightly negative (−0.06 W m−2 with 90% uncertainty bounds of −1.45 to +1.29 W m−2). The uncertainties in net climate forcing from black-carbon-rich sources are substantial, largely due to lack of knowledge about cloud interactions with both black carbon and co-emitted organic carbon. In prioritizing potential black-carbon mitigation actions, non-science factors, such as technical feasibility, costs, policy design, and implementation feasibility play important roles. The major sources of black carbon are presently in different stages with regard to the feasibility for near-term mitigation. This assessment, by evaluating the large number and complexity of the associated physical and radiative processes in black-carbon climate forcing, sets a baseline from which to improve future climate forcing estimates.
Article
Full-text available
Carbonaceous and sulfur aerosols have a substantial global and regional influence on climate, resulting in a net cooling to date, in addition to their impact on health and ecosystems. The magnitude of this influence has changed substantially over the past and is expected to continue to change into the future. An integrated picture of the changing climatic influence of black carbon, organic carbon and sulfate over the period 1850 through 2100, focusing on uncertainty, is presented using updated historical inventories and a coordinated set of emission projections. We describe, in detail, the aerosol emissions from the RCP4.5 scenario and its associated reference scenario. While aerosols have had a substantial impact on climate over the past century, we show that, by the end of the 21st century, aerosols will likely be only a minor contributor to radiative forcing due to increases in greenhouse gas forcing and a net global decrease in pollutant emissions. This outcome is even more certain under a successful implementation of a policy to limit greenhouse gas emissions as low-carbon energy technologies that do not emit appreciable aerosol or SO2 are deployed.
Article
Full-text available
Accurate prediction of future methane abundances following a climate scenario requires understanding the lifetime changes driven by anthropogenic emissions, meteorological factors, and chemistry-climate feedbacks. Uncertainty in any of these influences or the underlying processes implies uncertainty in future abundance and radiative forcing. We simulate methane lifetime in three chemical transport models (CTMs) – UCI CTM, GEOS-Chem, and Oslo CTM3 – over the period 1997–2009 and compare the models' year-to-year variability against constraints from global methyl chloroform observations. Using sensitivity tests, we find that temperature, water vapor, stratospheric ozone column, biomass burning and lightning NO<sub>x</sub> are the dominant sources of interannual changes in methane lifetime in all three models. We also evaluate each model's response to forcings that have impacts on decadal time scales, such as methane feedback, and anthropogenic emissions. In general, these different CTMs show similar sensitivities to the driving variables. We construct a parametric model that reproduces most of the interannual variability of each CTM and use it to predict methane lifetime from 1980 through 2100 following a specified emissions and climate scenario (RCP 8.5). The parametric model propagates uncertainties through all steps and provides a foundation for predicting methane abundances in any climate scenario. Our sensitivity tests also enable a new estimate of the methane global warming potential (GWP), accounting for stratospheric ozone effects, including those mediated by water vapor. We estimate the 100-yr GWP to be 32, which is 25% larger than past assessments.
Article
Full-text available
This paper uses the MERGE integrated assessment model to identify the least-cost mitigation strategy for achieving a range of climate policies. Mitigation is measured in terms of GDP foregone. This is not a benefit-cost analysis. No attempt is made to calculate the reduction in damages brought about by a particular policy. Assumptions are varied regarding the availability of energy-producing and energy-using technologies. We find pathways with substantial reductions in temperature change, with the cost of reductions varying significantly, depending on policy and technology assumptions. The set of scenarios elucidates the potential energy system transformation demands that could be placed on society. We find that policy that allows for “overshoot” of a radiative forcing target during the century results in lower costs, but also a higher temperature at the end of the century. We explore the implications of the costs and availability of key mitigation technologies, including carbon capture and storage (CCS), bioenergy, and their combination, known as BECS, as well as nuclear and energy efficiency. The role of “negative emissions” via BECS in particular is examined. Finally, we demonstrate the implications of nationally adopted emissions timetables based on articulated goals as a counterpoint to a global stabilization approach.
Article
Full-text available
Black carbon aerosol plays a unique and important role in Earth's climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. This assessment provides an evaluation of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice. These effects are calculated with climate models, but when possible, they are evaluated with both microphysical measurements and field observations. Predominant sources are combustion related, namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom-up inventory methods are 7500 Gg yr(-1) in the year 2000 with an uncertainty range of 2000 to 29000. However, global atmospheric absorption attributable to black carbon is too low in many models and should be increased by a factor of almost 3. After this scaling, the best estimate for the industrial-era (1750 to 2005) direct radiative forcing of atmospheric black carbon is +0.71 W m(-2) with 90% uncertainty bounds of (+0.08, +1.27) W m(-2). Total direct forcing by all black carbon sources, without subtracting the preindustrial background, is estimated as +0.88 (+0.17, +1.48) W m(-2). Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings, including rapid adjustments. The best estimate of industrial-era climate forcing of black carbon through all forcing mechanisms, including clouds and cryosphere forcing, is +1.1 W m(-2) with 90% uncertainty bounds of +0.17 to +2.1 W m(-2). Thus, there is a very high probability that black carbon emissions, independent of co-emitted species, have a positive forcing and warm the climate. We estimate that black carbon, with a total climate forcing of +1.1 W m(-2), is the second most important human emission in terms of its climate forcing in the present-day atmosphere; only carbon dioxide is estimated to have a greater forcing. Sources that emit black carbon also emit other short-lived species that may either cool or warm climate. Climate forcings from co-emitted species are estimated and used in the framework described herein. When the principal effects of short-lived co-emissions, including cooling agents such as sulfur dioxide, are included in net forcing, energy-related sources (fossil fuel and biofuel) have an industrial-era climate forcing of +0.22 (-0.50 to +1.08) W m(-2) during the first year after emission. For a few of these sources, such as diesel engines and possibly residential biofuels, warming is strong enough that eliminating all short-lived emissions from these sources would reduce net climate forcing (i.e., produce cooling). When open burning emissions, which emit high levels of organic matter, are included in the total, the best estimate of net industrial-era climate forcing by all short-lived species from black-carbon-rich sources becomes slightly negative (-0.06 W m(-2) with 90% uncertainty bounds of -1.45 to +1.29 W m(-2)). The uncertainties in net climate forcing from black-carbon-rich sources are substantial, largely due to lack of knowledge about cloud interactions with both black carbon and co-emitted organic carbon. In prioritizing potential black-carbon mitigation actions, non-science factors, such as technical feasibility, costs, policy design, and implementation feasibility play important roles. The major sources of black carbon are presently in different stages with regard to the feasibility for near-term mitigation. This assessment, by evaluating the large number and complexity of the associated physical and radiative processes in black-carbon climate forcing, sets a baseline from which to improve future climate forcing estimates.
Article
Full-text available
Carbonaceous and sulfur aerosols have a substantial global and regional influence on climate, resulting in a net cooling to date, in addition to their impact on health and ecosystems. The magnitude of this influence has changed substantially over the past and is expected to continue to change into the future. An integrated picture of the changing climatic influence of black carbon, organic carbon and sulfate over the period 1850 through 2100, focusing on uncertainty, is presented using updated historical inventories and a coordinated set of emission projections. We describe, in detail, the aerosol emissions from the Representative Concentration Pathway (RCP) 4.5 scenario and its associated reference scenario. While aerosols have had a substantial impact on climate over the past century, we show that, by the end of the 21st century aerosols will likely be only a minor contributor to radiative forcing due to increases in greenhouse gas forcing and a net global decrease in pollutant emissions. This outcome is even more certain under a successful implementation of a policy to limit greenhouse gas emissions as low-carbon energy technologies that do not emit appreciable aerosol or SO2 are deployed.