ArticlePDF Available

Abstract and Figures

Objectives: To investigate DKK-1 and SOST serum levels among patients with recent inflammatory back pain (IBP) fulfilling ASAS criteria for SpA and associated factors. Methods: The DESIR cohort is a prospective, multicenter French cohort of 708 patients with early IBP (duration >3 months and <3 years) suggestive of AxSpA. DKK-1 and SOST serum levels were assessed at baseline and were compared between the subgroup of patients fulfilling ASAS criteria for SpA (n = 486; 68.6%) and 80 healthy controls. Results: Mean SOST serum levels were lower in ASAS+ patients than healthy controls (49.21 ± 25.9 vs. 87.8 ± 26 pmol/L; p<0.0001). In multivariate analysis, age (p = 5.4 10-9), CRP level (p<0.0001) and serum DKK-1 level (p = 0.001) were associated with SOST level. Mean DKK-1 serum levels were higher in axial SpA patients than controls (30.03 ± 15.5 vs. 11.6 ± 4.2 pmol/L; p<0.0001). In multivariate analysis, DKK-1 serum levels were associated with male gender (p = 0.03), CRP level (p = 0.006), SOST serum level (p = 0.002) and presence of sacroiliitis on radiography (p = 0.05). Genetic association testing of 10 SNPs encompassing the DKK-1 locus failed to demonstrate a significant contribution of genetics to control of DKK-1 serum levels. Conclusions: DKK-1 serum levels were increased and SOST levels were decreased among a large cohort of patients with early axial SpA compared to healthy controls. DKK-1 serum levels were mostly associated with biological inflammation and SOST serum levels.
Content may be subject to copyright.
RESEARCH ARTICLE
Increase in Dickkopf-1 Serum Level in Recent
Spondyloarthritis. Data from the DESIR
Cohort
Gaetane Nocturne
1
, Stephan Pavy
2
, Saida Boudaoud
1
, Raphaèle Seror
2
,
Philippe Goupille
3
, Philippe Chanson
4
, Désirée van der Heijde
5
, Floris van Gaalen
6
,
Francis Berenbaum
7
, Xavier Mariette
1,2
, Karine Briot
8
, Antoine Feydy
9
,
Pascal Claudepierre
10
, Philippe Dieudé
11
, Joanne Nithitham
12
, Kimberly E. Taylor
12
,
Lindsey A. Criswell
12
, Maxime Dougados
8
, Christian Roux
8
, Corinne Miceli-Richard
1,2
*
1Institut Pour la Santé et la Recherche Médicale (INSERM) U1184, Université Paris-Sud 11, Le kremlin
Bicêtre, France, 2Service de rhumatologie, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital
Bicêtre, Le Kremlin Bicêtre, France, 3Service de rhumatologie, CHU, Tours, France; UMR CNRS 7292,
Université François Rabelais, Tours, France; CIC-INSERM 1415, Tours, France, 4Service dendocrinologie,
Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, Le Kremlin Bicêtre, France, 5Leiden
University Medical Center, Leiden, The Netherlands, 6Department of Rheumatology and Internal Medicine,
LUMC, Leiden, The Netherlands, 7Sorbonne Universités, UPMC University Paris 6, AP-HP, Hôpital Saint-
Antoine, Rheumatology Department, Paris, France, 8Service de Rhumatologie B, Assistance Publique-
Hôpitaux de Paris (AP-HP); Université Paris-Descartes, Paris, France, 9Service de radiologie, Hôpital
Cochin, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France, 10 Service de Rhumatologie, Hôpital
Henri-Mondor, Assistance Publique-Hôpitaux de Paris (APHP), Créteil, France, 11 Service de
Rhumatologie, Hôpital Bichat, AP-HP, Paris, France, 12 Rosalind Russell / Ephraim P Engleman
Rheumatology Research Center, Department of Medicine, University of California San Francisco, San
Francisco, United States of America
*corinne.miceli@bct.aphp.fr
Abstract
Objectives
To investigate DKK-1 and SOST serum levels among patients with recent inflammatory
back pain (IBP) fulfilling ASAS criteria for SpA and associated factors.
Methods
The DESIR cohort is a prospective, multicenter French cohort of 708 patients with early IBP
(duration >3 months and <3 years) suggestive of AxSpA. DKK-1 and SOST serum levels
were assessed at baseline and were compared between the subgroup of patients fulfilling
ASAS criteria for SpA (n = 486; 68.6%) and 80 healthy controls.
Results
Mean SOST serum levels were lower in ASAS+ patients than healthy controls (49.21 ±25.9
vs. 87.8 ±26 pmol/L; p<0.0001). In multivariate analysis, age (p = 5.4 10
9
), CRP level
(p<0.0001) and serum DKK-1 level (p = 0.001) were associated with SOST level. Mean
DKK-1 serum levels were higher in axial SpA patients than controls (30.03 ±15.5 vs. 11.6 ±
4.2 pmol/L; p<0.0001). In multivariate analysis, DKK-1 serum levels were associated with
PLOS ONE | DOI:10.1371/journal.pone.0134974 August 27, 2015 1/16
OPEN ACCESS
Citation: Nocturne G, Pavy S, Boudaoud S, Seror R,
Goupille P, Chanson P, et al. (2015) Increase in
Dickkopf-1 Serum Level in Recent Spondyloarthritis.
Data from the DESIR Cohort. PLoS ONE 10(8):
e0134974. doi:10.1371/journal.pone.0134974
Editor: Shervin Assassi, University of Texas Health
Science Center at Houston, UNITED STATES
Received: February 18, 2015
Accepted: July 15, 2015
Published: August 27, 2015
Copyright: © 2015 Nocturne et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.
Data Availability Statement: All relevant data are
within the paper and its Supporting Information file.
Funding: An unrestricted grant from Wyeth
Pharmaceuticals was allocated for the first 5 years of
the follow-up of the recruited patients. The DESIR-
cohort is financially supported by unrestricted grants
from both the French Society of Rheumatology, and
Pfizer Ltd, France. A research grant from Pfizer
Passerellewas obtained for DKK-1 and SOST
quantification for the entire cohort and for genetic
analysis of the DKK-1 locus. The Variété cohort was
supported by a grant from the Programme Hospitalier
de Recherche Clinique, French Ministry of Health (no.
male gender (p = 0.03), CRP level (p = 0.006), SOST serum level (p = 0.002) and presence
of sacroiliitis on radiography (p = 0.05). Genetic association testing of 10 SNPs encompass-
ing the DKK-1 locus failed to demonstrate a significant contribution of genetics to control of
DKK-1 serum levels.
Conclusions
DKK-1 serum levels were increased and SOST levels were decreased among a large
cohort of patients with early axial SpA compared to healthy controls. DKK-1 serum levels
were mostly associated with biological inflammation and SOST serum levels.
Introduction
Spondyloarthritis (SpA) is one of the most common inflammatory rheumatic diseases. The
prevalence is estimated to be 0.5% to 3.4% [1,2]. In addition to the disabling rheumatic mani-
festations, some SpA patients develop severe extra-articular manifestations such as inflamma-
tory bowel disease, uveitis or psoriasis. SpA is also characterized by the formation of
syndesmophytes in the severe form of the disease. Treatment options are still limited to non-
steroidal anti-inflammatory drugs (NSAIDs) as first-line therapy and biological treatment
strategies that block specific immune mediators (e.g., tumor necrosis factor (TNF) blockers,
and probably soon antibodies targeting interleukin 17A (IL-17A) or IL-23). Anti-TNF agents
are commonly used in the refractory forms of the disease and have considerably improved the
quality of life in patients by reducing clinical and biological disease activity. They also have sig-
nificant efficacy in reducing subchondral-bone inflammatory lesions observed on axial MRI.
Nevertheless, most previous studies have failed to demonstrate a structural benefit of TNF
blockers in radiolographic disease progression as evaluated by the modified Stoke Ankylosing
Spondylitis Spine Score after 2-year follow-up [36]. Conversely, Haroon et al. suggested that
TNF blockers may reduce radiographic progression [7]. NSAIDs have been associated with
reduced radiographic disease progression [8,9]. A better understanding of the pathogenic
mechanisms involved in syndesmophyte formation is needed to develop targeted therapies for
structural benefit and subsequent functional improvement in patients.
Secreted Wnt glycoproteins are among the major families of cell signaling molecules. Ini-
tially, they were shown to be involved in embryogenesis and tumorigenesis [10]. In recent
years, several studies have implicated the Wnt canonical pathway in osteo-immunology and
notably the bone formation process [11]. Wnt binding to its receptor complex, which includes
low-density lipoprotein receptor-related protein 5/6 (LRP5/6) and Frizzled, initiates a number
of intracellular signaling cascades leading to the accumulation of β-catenin in the cytoplasm
and then to its translocation into the nucleus, where it enhances target gene expression. These
genes are involved in osteoblastogenesis and the control of osteoclastogenesis.
Dickkopf-1 (DKK-1) and sclerostin (SOST) are two inhibitory proteins of the Wnt signal-
ling pathway leading to osteoblastogenesis blockade. Both bind to LRP5/6 and block the Wnt/
β-catenin canonical signalling pathway. Several murine models support their involvement in
bone homeostasis. Osteopenia develops in mice transgenic for Dkk-1 [12] or SOST [13]. Con-
versely, mice with an inactivating mutation of DKK-1 show increased bone mass [14]. In
humans, mutation of SOST leads to van Buchem disease, characterized by hyperosteosis [15].
In SpA, syndesmophyte development is secondary to endochondral formation (i.e., initial
cartilage formation further replaced by bone) [16]. Therefore, DKK-1 and SOST may be
DKK-1 and SOST in Spondyloarthritis
PLOS ONE | DOI:10.1371/journal.pone.0134974 August 27, 2015 2/16
P081216 / IDRCB 2009-A00892-55). No funding
bodies had any role in study design, data collection
and analysis, decision to publish, or preparation of
the manuscript.
Competing Interests: The authors have the
following interests: This study was partly supported
by an unrestricted grant from Wyeth Pharmaceuticals
which was allocated for the first 5 years of the follow-
up of the recruited patients. The DESIR-cohort is
partly financially supported by an unrestricted grant
from Pfizer Ltd, France. A research grant from Pfizer
Passerellewas obtained for DKK-1 and SOST
quantification for the entire cohort and for genetic
analysis of the DKK-1 locus. There are no patents,
products in development or marketed products to
declare. This does not alter the authors' adherence to
all the PLOS ONE policies on sharing data and
materials, as detailed online in the guide for authors.
involved in osteoblastogenesis dysregulation associated with syndesmophyte formation. The
role of DKK-1 in the fusion of sacroiliac joints was revealed in human TNF transgenic mice
[17]; DKK-1 blockade inhibited bone erosion of the sacroiliac joints and enhanced sacroiliac
ankylosis, which strongly supports the potential role of Wnt signaling in the fusion of sacroiliac
joints, the hallmark of SpA.
In addition, in mice, DKK-1 was found to induce SOST expression, which suggests complex
cross-regulation between both proteins in bone homeostasis [18]. Moreover, both proteins
bind the same LRP5/6 receptor and should mutually act as competitors in inhibiting the Wnt
signaling pathway. Thus, additional investigation of both DKK-1 and SOST is needed to better
define their roles in SpA.
Studies assessing serum level of DKK-1 in SpA patients are scarce and have generated con-
flicting results [19,20]. Discrepancies between published studies could be explained by the
small number of patients studied, different methods of DKK-1 quantification, and lack of
knowledge of DKK-1 serum levels in healthy individuals (e.g., the impact of age and gender on
DKK-1 serum level). Robust data regarding DKK-1 serum levels among a large cohort of SpA
patients and healthy controls are still lacking, as is our understanding of DKK-1 function in
SpA.
We aimed to assess DKK-1 and SOST serum levels and associated factors in patients fulfill-
ing the ASAS criteria for axial SpA within a large prospective cohort of patients with recent
inflammatory back pain (IBP) (the cohort Devenir des Spondylarthropathies Indifferenciées
Récentes [DESIR] [Outcome of Recent Undifferentiated Spondylarthropathies]). We also
aimed to compare these levels with those in healthy controls to obtain more insight into the
role of both Wnt inhibitors in SpA.
Patients and Methods
Patients and controls
This cross-sectional study quantified DKK-1 and SOST serum levels among all patients
enrolled in the DESIR cohort and for whom data were available at baseline.
The DESIR cohort is a large national multicenter cohort developed to facilitate investiga-
tions of diagnostic and prognostic markers and etiologic, pathogenic and socio-economic fac-
tors among patients with early IBP suggestive of axial SpA. In fact, patients included in this
cohort have IBP classified by the criteria of Calin et al. [21] or the Berlin criteria [22] (consider-
ing 2 of 4 items) of recent onset (>3 months and <3 years), with symptoms suggestive of SpA
according to the local investigators assessment (score 5ona010 numerical rating scale,
with 0, not suggestive of SpA, and 10, very suggestive). Patients included in DESIR cohort are
planned to be followed up to 10 years. The main characteristics of the patients at baseline have
been reported previously [23]. This cohort included 708 patients (mean age 33.8 ± 8.6 years,
46.2% men, and 57.3% positive for human leukocyte antigen B27 (HLA-B27)). The baseline
characteristics included age, ethnicity, date at onset of IBP and peripheral arthritis, nature of
IBP, presence of SpA features, relevant family history, and medication, including the use of
NSAIDs and disease-modifying anti-rheumatic drugs (DMARDs). The duration of axial symp-
toms was defined as the time between the first axial symptom and the initial interview. As pre-
viously described [23], spinal mobility was measured by the Bath Ankylosing Spondylitis
Metrology Index. Patients were asked to complete the Bath Ankylosing Spondylitis Disease
Activity Index (BASDAI), Bath Ankylosing Spondylitis Functional Index (BASFI), Bath
Ankylosing Spondylitis Global Index, Health Assessment Questionnaire, Medical Outcomes
Survey Short Form 36, and Ankylosing Spondylitis Quality of Life questionnaire. Blood tests
performed in the regional rheumatology centers tested for C-reactive protein (CRP) level,
DKK-1 and SOST in Spondyloarthritis
PLOS ONE | DOI:10.1371/journal.pone.0134974 August 27, 2015 3/16
erythrocyte sedimentation rate (ESR), and HLAB27 antigen as well as usual biologic parame-
ters. High-sensitivity CRP (hs-CRP) was assessed as described [24]. The Ankylosing Spondyli-
tis Disease Activity Score (ASDAS) [25] was calculated with CRP level. Radiographs were
evaluated by 2 trained central readers blinded to any other data [26]. Radiographs of the sacro-
iliac joints were graded according to New York criteria. Lateral radiographs of the cervical and
lumbar spine were used to calculate the modified Stoke Ankylosing Spondylitis Spine Score
(mSASSS) [3]; an abnormal axial radiograph was defined with mSASSS 1. Data were
extracted from the M0 DESIR database locked on June 30, 2010.
DKK-1 serum level was additionally assessed in 69 SpA patients from the SpondyloArthitis
Caught Early (SPACE) cohort [27]. The SPACE cohort started in January 2009 and is an ongoing
project. Patients 16 years old with chronic (almost daily) back pain for at least 3 months but
<2 years, with onset before the age of 45 years, who were referred to the rheumatology outpatient
clinic of Leiden University Medical Center (LUMC) were included after signing informed con-
sent. The SPACE study protocol was approved by the LUMC medical ethics committee.
Controls were healthy subjects from the French Variété cohort. Variété is an open, prospec-
tive, French national, multicenter, non-randomized study of healthy volunteers established to
determine normative data for insulin-like growth factor 1 (IGF-I) and other hormones in the
general population (ClinicalTrials.gov Identifier: NCT01831648). The project aimed to estab-
lish normative data based on a large random selection from the general population, including
representation from all age groups (about 100 subjects for each decade age range). Subjects
with medical conditions and receiving medications that may affect IGF-I measurement were
excluded. A total of 974 healthy subjects were recruited in 10 centers in France. Each subject
underwent clinical examination. Personal medical history was recorded and gonadal status
evaluated. Patients underwent biological standard workup, and 80 ml blood was sampled;
serum and plasma was aliquoted and frozen and stored at -80°C before hormone measure-
ments. All patients gave their informed consent to participate in the study, which was approved
by the local ethics committee.
DKK-1 and SOST serum levels were assessed at baseline on the whole cohort, but casecon-
trol analyses and assessment of factors associated with increased DKK-1 serum level were
restricted to the subgroup of patients fulfilling the ASAS criteria. DKK-1 and SOST serum lev-
els at baseline were compared with those of 80 healthy controls from the Variété cohort.
Because of no data in the literature on the impact of gender and age on DKK-1 serum level
among the healthy population, 453 healthy controls from Variété cohort were further assessed
for DKK-1 serum level in a broader age range than those matched for the DESIR cohort (18
79 years old, 47.5% females).
Ethic statement
This study fulfills the current Good Clinical Practice Guidelines (French version) and received
approval from the appropriate ethics committee. All patients gave their written informed con-
sent. A website containing the detailed description of the centers, the organization of the cohort
and the full detailed protocol and Case Record Form is at http://www.lacohortedesir.fr.
DKK-1 locus genotyping
Single nucleotide polymorphisms (SNPs) encompassing the DKK-1 locus were genotyped to
determine whether genetic variants of DKK-1 are associated with DKK-1 serum levels. Ten
DKK-1 SNPs were chosen in order to cover the 74 Kb including DKK-1 locus with 5and
3UTR regions of the gene. Seven out these 10 SNPs were previously studied in rheumatoid
arthritis [28]. The 10 selected SNPs captured 66% of the DKK-1 locus when considering SNPs
DKK-1 and SOST in Spondyloarthritis
PLOS ONE | DOI:10.1371/journal.pone.0134974 August 27, 2015 4/16
with MAF higher than 0.10. SNPs were genotyped using a competitive allele-specific PCR sys-
tem (KASpar genotyping, http://www.lgcgenomics.com). All genotyped SNPs had minor allele
frequency (MAF) >0.01 and were assessed for deviation from Hardy-Weinberg equilibrium.
Of an initial 486 SpA patients fulfilling ASAS criteria, 58 patients were excluded from analysis
based on self-reported non-Caucasian ancestry, and 2 individuals were excluded due to geno-
typing calling rate <20%. Control individuals consisted by 1238 healthy individuals of Cauca-
sian ancestry. Forty four control individuals were dropped from analyses based on individual
genotyping calling rate <20%. Thus, case-control analyses were performed based on compari-
sons of 426 SpA patients to 1,194 controls of Caucasian ancestry.
Serum analyses
In the DESIR cohort, serum was prospectively collected from 2009 to 2010 at inclusion and
stored in aliquots at -80°C in the Biological Resources Center at Bichat Hospital (accreditation
AFNOR #34457). SOST and DKK-1 serum levels were assessed by sandwich ELISA (Biomedica
Medizinprodukte, Vienna, Austria). ELISA tests involved an EVOLIS System (Bio-Rad, Hercu-
les, CA, USA). DKK-1 serum samples were diluted 1:4 as recommended by the manufacturer
for quantification. DKK-1 serum level from the DESIR cohort, the SPACE cohort and 80 age-
and sex-matched healthy controls were assessed by the second-generation ELISA kit from Bio-
medica (Lot F112). DKK-1 serum level from 453 additional patients from the Variété cohort
was assessed with the third-generation ELISA kit from Biomedica (Lot F125).
SOST serum level from the DESIR cohort and 80 age- and sex-matched controls was
assessed with the first-generation ELISA kit from Biomedica (Lot Y113). SOST serum level was
not assessed in a larger sample of healthy controls because data were available in the literature
on impact of gender and age on levels [29,30].
For both DKK-1 and SOST, results are expressed in picomole per liter. For DKK-1, the con-
version to picogram per milliliter is as follows: 1 pmol/L = 28.68 pg/mL.
Various quality controls were performed throughout the study: 2 internal controls were
quantified on each ELISA plate for validation of each experiment. The first internal control
(C1) was provided by the manufacturer and was an expected 3.1 to 5.9 pmol/L. All experiments
were validated with a mean variation between all experiments of 4.38 (+/-0.42). The second
internal control was a serum aliquot from a patient (C2) re-quantified on each used ELISA
plate: C2 quantification varied from 24.06 to 33.06 pmol/L. Serum providing D.O. >3.5 (>50
pmol/L) was diluted 1:2 and re-quantified. We used 80 serum samples tested in duplicate,
which demonstrated no significant variation between both quantifications. Finally, we com-
pared the DDK-1 ELISA (second-generation) test from Biomedica with the ELISA kit from
R&D systems (human Dkk-1 DuoSet ELISA kit) and found a correlation between both tests
(Spearman's rho (r
s
) = 0.72; p<0.0001, S1 Fig).
Statistical analysis
Qualitative data are described as number (%) and quantitative data as mean (±SD) or median
(interquartile range (IQR)) as appropriate. The Mann-Whitney test was used to compare inde-
pendent samples. The correlation between serum levels and biochemical variables was evalu-
ated by Spearmans correlation coefficient (r
s
). Variables included in univariate analysis were
weight, body mass index (BMI; kg/m
2
), disease duration, erythrocyte sedimentation rate (ESR;
mm/h), C-reactive protein level (CRP; mg/L), BASFI, BASDAI, serum calcium or phosphate
level, and lumbar-spine and total-femur bone mineral density. Variables identified as signifi-
cantly associated with DKK-1 or SOST levels on univariate analysis (at p = 0.10) were entered
into non-parametric linear regression models. DKK-1 serum levels are normally distributed
DKK-1 and SOST in Spondyloarthritis
PLOS ONE | DOI:10.1371/journal.pone.0134974 August 27, 2015 5/16
and were studied as a continuous or a dichotomous variable (patients with high levels of DKK-
1[3
rd
and 4
th
quartiles] (DKK-1>36 pmol/L) compared to patients with low levels [1
st
and 2
nd
quartiles]) (DKK-1 36 pmol/L)) in multivariate analyses (linear regression and logistic
regression, respectively) to account for covariates associated with DKK-1 serum levels such as
CRP, SOST serum level and presence of sacroiliitis on radiography. P<0.05 was considered sta-
tistically significant. Statistical analyses involved use of R 3.1.0 (R Core Team [2014], R Foun-
dation for Statistical Computing, Vienna, Austria. http://www.R-project.org/).
Genetic association analyses were performed to determine whether individual SNPs were
associated with disease/phenotype/DKK-1 serum levels using the STATA program (v.12; Col-
lege station, Texas). The contribution of the 10 SNPs was assessed according to a recessive,
dominant or additive model of transmission in uni- and multivariate analyses. For SNPs that
were in linkage disequilibrium (D>0.95 and r
2
>0.65), haplotypes were estimated using
PLINK and haplotype association analyses (bivariate) were performed using Haploview.
Results
Patients with early SpA and controls
In total, 708 patients have been included in the DESIR cohort (46.2% male). The mean age was
33.8 ±8.6 years and the mean duration from the onset of symptoms to referral to the rheuma-
tologist was 18.8±11.6 months, corresponding to patients with early IBP suggestive of SpA.
Overall, 486 patients fulfilled the ASAS criteria for axial SpA (mean age 32.5 ± 8.6 years, 50.2%
men, and 83.7% HLAB27 positive). Among these patients, 80% were exposed to NSAIDs at
baseline. Characteristics of disease activity and disease severity are in Table 1. The 80 healthy
controls (51% men, mean age 32 ±9.1 years) were age- and gender-matched with axial SpA
Table 1. Baseline demographics and disease characteristics of Assessment of Spondyloarthritis
International Society (ASAS+) patients from the DESIR cohort.
No. with available data ASAS+ patients (n = 486)
Gender (male %) 486 50.2
Age (years) 486 32.5±8.6
Disease duration (months) 479 18.8±11.6
HLA-B27+ (%) 485 83.7
CRP level (mg/dl) 469 9.3±13.9
hs-CRP level (mg/dl) 470 8.1±14.2
ESR (mm) 468 14.8±16.8
BASDAI 475 43±20.4
BASFI 475 29.7±22.4
BASMI 465 2.2±0.9
Radiological sacroiliitis (%) 476 27.3
mSASSS 1 unit (%) 460 13.2
Current use of oral NSAIDs (%) 396 80
DKK-1 level (pmol/L) 479 30.3±15.5
SOST level (pmol/L) 478 49.2±26.1
Data are mean±SD unless indicated
HLA-B27, human leukocyte antigen B27; CRP, C-reactive protein; hs-CRP, high-sensitivity CRP; ESR,
erythrocyte sedimentation rate; BASDI, Bath Ankylosing Spondylitis Disease Activity Index; BASFI, Bath
Ankylosing Spondylitis Functional Index; BASMI, Bath Ankylosing Spondylitis Metrology Index; mSASSS,
modied Stoke Ankylosing Spondylitis Spine Score; NSAIDs, nonsteroidal anti-inammatory drugs; DKK-1,
Dickkopf-1; SOST, sclerostin
doi:10.1371/journal.pone.0134974.t001
DKK-1 and SOST in Spondyloarthritis
PLOS ONE | DOI:10.1371/journal.pone.0134974 August 27, 2015 6/16
patients from the DESIR cohort. The age range of the 453 healthy controls from the Variété
cohort (238 males) was 18 to 79 years.
Decreased SOST serum level among patients with early SpA
SOST serum level was significantly lower in axial SpA patients than in controls from the Variété
cohort (mean 49.21 ± 25.9 vs. 87.8 ± 26 pmol/L; p<0.0001) (Fig 1). SOST serum level was signifi-
cantly correlated with age (r
s
= 0.36; p = 2.2 10
16
), CRP level (r
s
=-0.18;p=0.0001),hs-CRP
level (r
s
=-0.22;p=10
6
), and ESR (r
s
=-0.12,p=0.007)(Fig 2A2D)(Table 2). SOST serum
level in axial SpA patients was lower for those with than without sacroiliitis on radiography
(n = 130 vs. n = 346; mean 42.95 ± 18.4 vs 49.25 ± 28.91 pmol/L; p = 0.023). SOST serum level
did not differ between patients with than without axial structural lesions (mSASSS 1unitvs0).
A correlation between SOST and DKK-1 serum levels was observed (r
s
= 0.15, p = 0.0008)
(Fig 2E) as previously described [31]. Nevertheless, such correlation was weak when assessed
on the whole population of SpA patients. This correlation was higher in the subgroup of
patients with increased levels of DKK-1 (DKK-1/SOST ratio >1) corresponding to a third of
ASAS positive patients (rs = 0.83; p<0.0001).
On multivariate analysis, age (p = 5.4 10
9
), CRP level (p<0.0001) and DKK-1 serum level
(p = 0.001) were associated with SOST level (Table 2).
Increased serum DKK-1 level in SpA patients
DKK-1 serum level was significantly higher in axial SpA patients than controls (mean
30.03 ± 15.5 vs. 11.6 ± 4.2 pmol/L; p<0.0001) (Fig 3A), with almost no overlap between
Fig 1. Serum sclerotin (SOST) level among patients with axial spondyloarthritis (SpA) and controls at baseline. Each point represents 1 patient. Data
are mean ±SD. ***p<0.0001.
doi:10.1371/journal.pone.0134974.g001
DKK-1 and SOST in Spondyloarthritis
PLOS ONE | DOI:10.1371/journal.pone.0134974 August 27, 2015 7/16
patients and controls (Fig 3B). This finding was confirmed in an independent SpA cohort
(SPACE; Fig 3A). DKK-1 serum level was weakly significantly correlated with systemic inflam-
mation assessed by ESR (r
s
= 0.1, p = 0.03), CRP level (r
s
= 0.17; p = 0.0001), hs-CRP level (r
s
=
0.14; p = 0.003), ASDAS-ESR (r
s
= 0.11; p = 0.02) and ASDAS-CRP level (r
s
= 0.13; p = 0.004).
(Fig 4A4E)(Table 3) but not disease activity assessed by the BASDAI (r
s
= 0.052; p = 0.26).
Fig 2. Correlation of SOST serum level with age. (A) (r
s
= 0.36; p<0.0001), C-reactive protein (CRP) level (B) (r
s
= -0.18; p = 0.0001), high-sensitivity CRP
(hs-CRP) level (C) (r
s
= -0.22; p<0.0001), erythrocyte sedimentation rate (ESR) (D) (r
s
= -0.12, p = 0.007) and Dickkopf-1 (DKK-1) serum levels (E) (r
s
= 0.15,
p = 0.0008); r
s
: Spearman correlation coefficient.
doi:10.1371/journal.pone.0134974.g002
DKK-1 and SOST in Spondyloarthritis
PLOS ONE | DOI:10.1371/journal.pone.0134974 August 27, 2015 8/16
The association of DKK-1 serum level and ASDAS-ESR may be related to systemic inflamma-
tion rather than patient-reported disease activity.
DKK-1 serum level was significantly higher in HLA-B27-negative than-positive patients
(n = 79 vs n = 406; mean 33.97 ± 19.39 vs 29.99 ± 14.56 pmol/L; p = 0.04). DKK-1 serum level
was associated but not significantly with sacroiliitis on radiography (mean 33.02 ± 16.47 vs
29.93 ± 15.28, p = 0.056). None of the other studied variables (age, gender, weight, BASDAI,
NSAIDs, corticosteroids or DMARDs intake) were significantly correlated with DKK-1 serum
level.
DKK-1 serum level was increased but not significantly in patients with compared to without
axial involvement (mSASSS 1 unit vs 0; n = 61 vs. n = 399; mean 33.42 ± 17.11 vs
30.66 ± 15.53 pmol/L; p = 0.21).
Multivariate analysis revealed a significant positive association of DKK-1 serum level and
female gender (p = 0.03), CRP level (p = 0.006), SOST serum level (p = 0.002) and the presence
of sacroiliitis on radiography (p = 0.05) (Table 3).
Study of DKK-1 polymorphisms in relation to structural damage at
baseline and DKK-1 serum levels
Univariate analyses revealed a borderline significant association between rs7083441 and
rs11001445 with the presence of syndesmophytes at baseline (P
trend
= 0.08 and P
trend
= 0.07,
Table 2. Correlation between SOST serum level and characteristics of ASAS+ patients of the DESIR cohort.
Characteristic N Spearman r
s
p-value
a
β-coefcient p-value
b
DKK-1 level 479 0.15 0.0008 0.25 0.001
hs-CRP level 477 -0.22 10
6
CRP level 462 -0.18 0.0001 -0.29 0.0008
ESR 461 -0.12 0.007
Age 479 0.36 <2.2 10
16
0.83 <.0001
a
: Univariate analysis
b
: Multivariate analysis with hs-CRP and ESR excluded
doi:10.1371/journal.pone.0134974.t002
Fig 3. (A) Serum DKK-1 level among axial SpA patients and controls at baseline. Each point represents 1 patient. Data are mean ±SD. *** p<0.0001. (B)
Distribution of DKK-1 levels in controls and axial SpA patients.
doi:10.1371/journal.pone.0134974.g003
DKK-1 and SOST in Spondyloarthritis
PLOS ONE | DOI:10.1371/journal.pone.0134974 August 27, 2015 9/16
Fig 4. Correlation of DKK-1 serum level with systemic inflammation assessed by ESR. (A) (r
s
= 0.1, p = 0.03), CRP level (B) (r
s
= 0.17; p = 0.0001),
hs-CRP level (C) (r
s
= 0.14; p = 0.003), Ankylosing Spondylitis Disease ActivityScore (ASDAS)-ESR (D) (r
s
= 0.11; p = 0.02) and ASDAS-CRP level (E)
(r
s
= 0.13; p = 0.004); r
s
: Spearman correlation coefficient.
doi:10.1371/journal.pone.0134974.g004
DKK-1 and SOST in Spondyloarthritis
PLOS ONE | DOI:10.1371/journal.pone.0134974 August 27, 2015 10 / 16
respectively). However, multivariate analyses including variables previously associated with
structural damage at baseline (CRP, gender, smoking) failed to demonstrate an association of
these SNPs (or any of the 8 other genotyped SNPs) with structural damage at baseline (data
not shown). None of the studied polymorphisms contributed significantly to DKK-1 serum
levels, regardless of the genetic model assumed (recessive, dominant, additive), in either uni-
variate or multivariate analyses (data not shown). Haplotype analyses also did not reveal evi-
dence of association with DKK-1 serum levels.
Discussion
On investigating the serum levels of DKK-1 and SOST in a large cohort of patients with recent
axial SpA, we have demonstrated increased total DKK-1 level and decreased SOST level among
patients as compared with controls. Of importance, quantifications were not biased by
DMARDs and or anti-TNF treatments because all patients included in the cohort were naïve of
these drugs at baseline. Decreased SOST level in SpA patients was previously described [32]
and is expected in a disease associated with new bone formation. Conversely, results for DKK-
1 are new.
We found a significant association of low SOST serum level and sacroiliitis seen on radiog-
raphy (structural damage) among SpA patients from the DESIR cohort. Appel et al. also
reported low serum level of SOST in SpA patients significantly associated with the formation
of new syndesmophytes [32], and SOST inhibition (associated with TNF inhibition) led to a
significant regression of cortical bone erosions in TNF transgenic mice [33]. Subchondral
inflammation, bone erosion and exuberant bone formation being a continuous process in SpA,
low level of SOST at baseline could be associated with new bone formation resulting from over-
whelming healing occurring after inflammation and bone erosion.
Controls were age- and sex-matched with patients. To our knowledge, our work provides
new data based on a large cohort concerning the variation in DKK-1 level by age and gender in
healthy controls. DKK-1 serum level was not severely affected by these demographic character-
istics. Conversely, age was a significant predictor of SOST serum level in SpA patients. The cor-
relation between age and SOST level has not been reported in SpA but has been reported
among healthy women [30].
DKK-1 serum level was greatly elevated in SpA patients, without almost no overlap between
data for patients and controls. We previously demonstrated increased DKK-1 level in the
Table 3. Correlation between DKK-1 serum level and characteristics of ASAS+ patients of the DESIR cohort.
Characteristic N Spearman r
s
p-value
a
β-coefcient p-value
b
SOST level 475 0.15 0.0008 0.088 0.002
ASDAS-ESR 456 0.11 0.02
ASDAS-CRP 394 0.13 0.004 1.54 0.03
hs-CRP level 477 0.14 0.003
CRP level 462 0.17 0.0001 0.15 0.006
ESR 461 0.1 0.03
Gender (male) 486 NA 0.08 -3.18 0.03
Sacro-iliitis 476 NA 0.05 3.37 0.05
HLA-B27 485 NA 0.04 2.42 0.2
ASDAS, Ankylosing Spondylitis Disease Activity Score
a
: Univariate analysis
b
: Multivariate analysis with hs-CRP, ESR, and ASDAS-ESR excluded
doi:10.1371/journal.pone.0134974.t003
DKK-1 and SOST in Spondyloarthritis
PLOS ONE | DOI:10.1371/journal.pone.0134974 August 27, 2015 11 / 16
French cohort ESPOIR of rheumatoid arthritis and associated with increased risk of radio-
graphic progression [34]. Reconciling both results is difficult. In fact, as a marker of local bone
resorption, increased DKK-1 level is somewhat expected in RA but is unexpected in SpA, with
bone formation the hallmark of the disease. This increase may be linked to erosive lesions.
Unfortunately, we cannot answer this question because patients exclusively presenting erosive
lesions are underrepresented in the DESIR cohort. Prospective follow-up will help differentiate
erosive from sclerosing lesions. Nevertheless, the distribution of DKK-1 serum level among
SpA patients poorly supports this hypothesis because increased DKK-1 level largely repre-
sented SpA patients, more so than patients with exclusive erosive lesions.
Diarra et al. previously reported decreased serum DKK-1 level in SpA patients [20], but
Daoussis et al. reported higher serum DKK-1 level among SpA patients than controls [19].
These results are not contradictory because the ELISA test used in each study differed: in the
study from Diarra et al., DKK-1 serum level was assessed with human LRP6-coated plates (also
named functional quantification of DKK-1), whereas Daoussis et al. quantified circulating
DKK-1 level with a classical sandwich ELISA. Therefore, these latter results agree with our
study assessing free DKK-1 serum level. Nevertheless, the study by Daoussis et al. relied on a
small sample of patients (n = 45) and assessed DKK-1 serum level among patients with overt
ankylosing spondylitis fulfilling the New York diagnostic criteria. The results obtained in
DESIR cohort involving SpA patients with a short disease duration (18.8 ±11.6 months) are
thus complementary, showing that increased serum level of free DKK-1 is not restricted to the
overt severe structural forms of the disease but should be a more long-standing process. Daous-
sis et al. also studied the functional consequence of increased circulating DKK-1 level in SpA
patients. The authors assessed the effect of sera from SpA patients and controls on Wnt path-
way activation. Jurkat T cells were treated with LICL, a known activator of the Wnt signalling
pathway, then incubated with sera from SpA patients or controls and Wnt pathway activation
was assessed by measuring the level of dephosphorylated β-catenin (the active form). Serum
from SpA patients was unable to inhibit Wnt signalling pathway as compared with control
serum, despite increased level of circulating DKK-1.
Therefore, in SpA patients, free DKK-1 level is increased, but functional DKK-1 seems to be
decreased. The missing link between these observations could be abnormal binding of DKK-1
to its receptor among SpA patients. The origin of this dysfunction is unclear. DKK-1 and not
its receptor LRP6 may be dysfunctional because results observed for SOST, which shares the
same receptor, were opposite in our study. Second, based on our results genetic variation
appears to be unlikely to explain the increased DKK-1 serum levels. Further, neither linkage
nor genome-wide association studies have demonstrated a linkage or an association between
the DKK-1 locus on chromosome 10 and SpA [35]. Cortes et al previously assessed the role of
several polymorphisms of DKK-1 on SpA structural severity but failed to demonstrate evidence
of association, although only 3 DKK-1 SNPs were studied [36]. Our study, which assessed 10
SNPs encompassing DKK-1 locus failed to provide evidence of genetic association with DKK-1
serum levels and/or with structural damage at baseline. However, it is possible that rare coding
variants might interfere with DKK-1 function for a small subset of SpA patients. Alternatively,
post-translational modifications such as glycosylation or phosphorylation might lead to abnor-
mal binding of DKK-1 on LRP5/6.
The variables most significantly associated with DKK-1 serum level were SOST serum level
and those linked to biological inflammation, which agrees with the induction of DKK-1 by
TNF [18]. Moreover, TNF induces SOST in mature osteoblasts and is primarily mediated by
DKK-1 [18]. However, unlike RA, SpA is not characterized by high systemic inflammation.
Thus, inflammation should not explain alone the increased serum level of DKK-1.
DKK-1 and SOST in Spondyloarthritis
PLOS ONE | DOI:10.1371/journal.pone.0134974 August 27, 2015 12 / 16
Univariate analyses revealed high DKK-1 level (P
trend
= 0.056) and low SOST level
(P = 0.02) among patients with sacroiliitis on radiography. As well, DKK-1 serum level was sig-
nificantly reduced among HLA-B27positive patients. In fact, these patients are expected to
have fewer structural or inflammatory lesions on radiography, thus fulfilling the clinical arm
of the ASAS criteria. Thus, DKK-1 level is increased when SOST level is decreased among
patients with structural lesions seen on radiography. DKK-1 might be unable to bind LRP5/6
correctly among some SpA patients, as discussed previously. DKK-1 and SOST may compete
for binding at LRP5/6, assuming that a higher affinity of SOST for its receptor would lead to
increased levels of free DKK-1. Nevertheless, the positive and significant correlation between
DKK-1 and SOST does not support this latter hypothesis, at least among one third of the SpA
patients corresponding to those with a DKK-1/SOST ratio >1.
In conclusion, we demonstrate higher total serum DKK-1 levels but lower serum levels of
SOST in SpA patients compared to controls. We also demonstrate an association between
DKK-1 and SOST levels and systemic inflammation and between SOST levels and age among
SpA patients. Our results suggest that increased DKK-1 serum levels among SpA patients is
unlikely to be explained by genetic variation at that locus. Prospective follow-up will help
improve our knowledge of the role of Wnt/DKK-1/SOST pathways in SpA. First it will help
clarify the interaction between treatment (NSAIDs, TNF-blockers) and DKK-1 or SOST levels;
Second, it will help better delineate the role of DKK-1 and SOST in structural disease progres-
sion (i.e., syndesmophyte formation) and/or in systemic bone loss in SpA. Finally, these results
raise the question of a potential dysfunction of DKK-1 linked with post-transcriptional modifi-
cations. Further studies are needed to unravel this puzzle to open up new therapeutic
perspectives.
Supporting Information
S1 Fig. Correlation of DKK-1 serum level assessment between 2 different ELISA kits (R&D
and Biomedica).
(TIF)
Acknowledgments
The DESIR cohort is conducted under the control of Assistance Publique-Hopitaux de Paris
via the Clinical Research Unit Paris-Centre and under the umbrella of the French Society of
Rheumatology and INSERM (Institut National de la Santé et de la Recherche Médicale). The
database management is performed within the department of epidemiology and biostatistics
(Professor Jean-Pierre Daurès, D.I.M., Nîmes, France). We also wish to thank the different
regional participating centres: Pr Maxime Dougados (ParisCochin B), Pr André Kahan
(ParisCochin A), Pr Olivier Meyer (ParisBichat), Pr Pierre Bourgeois (ParisLa Pitié-Sal-
petrière), Pr Francis Berenbaum (ParisSaint Antoine), Pr Pascal Claudepierre (Créteil), Pr
Maxime Breban (Boulogne Billancourt), Dr Bernadette Saint-Marcoux (Aulnay-sous-Bois), Pr
Philippe Goupille (Tours), Pr Jean-Francis Maillefert (Dijon), Dr Xavier Puéchal (Le Mans), Pr
Daniel Wendling (Besançon), Pr Bernard Combe (Montpellier), Pr Liana Euller-Ziegler (Nice),
Pr Philippe Orcel (ParisLariboisière), Pr Pierre Lafforgue (Marseille), Dr Patrick Boumier
(Amiens), Pr Jean-Michel Ristori (Clermont-Ferrand),
Dr Nadia Mehsen (Bordeaux), Pr Damien Loeuille (Nancy), Pr René-Marc Flipo (Lille),
Pr Alain Saraux (Brest), Pr Corinne Miceli (Le Kremlin Bicêtre), Pr Alain Cantagrel
(Toulouse), Pr Olivier Vittecoq (Rouen). Furthermore, we want to thank all radiology
departments involved in the DESIR cohort.
DKK-1 and SOST in Spondyloarthritis
PLOS ONE | DOI:10.1371/journal.pone.0134974 August 27, 2015 13 / 16
We thank Dr Yassine Taoufik, Dr Pascale Chrétien, Bruno Oualid and Emilie Rouyer for
technical assistance and unrestricted access to the microplate system (Department of Immu-
nology, Hôpitaux Universitaires Paris Sud, France). We thank Annie Chou and Kevin Chen
for their assistance in genetic data analyses on STATA software.
Variété cohort was supported by the Programme Hospitalier de Recherche Clinique, French
Ministry of Health (no. P081216 / IDRCB 2009-A00892-55).
Author Contributions
Conceived and designed the experiments: CMR. Performed the experiments: GN SB PG P.
Chanson DvDH FvG FB XM KB AF P. Claudepierre MD CR CMR. Analyzed the data: GN SP
SB RS PG P. Chanson DvDH FvG FB XM KB AF P. Claudepierre PD JN KET LAC MD CR
CMR. Contributed reagents/materials/analysis tools: GN SP SB RS PG P. Chanson DvDH FvG
FB XM KB AF P. Claudepierre PD KET JN LAC MD CR CMR. Wrote the paper: GN SP SB RS
PG P. Chanson DvDH FvG FB XM KB AF P. Claudepierre PD KET JN LAC MD CR CMR.
Had full access to all of the data in the study and takes responsibility for the integrity of the
data and the accuracy of the data analyses: CMR.
References
1. Costantino F, Talpin A, Said-Nahal R, Goldberg M, Henny J, Chiocchia G, et al. (2015) Prevalence of
spondyloarthritis in reference to HLA-B27 in the French population: results of the GAZEL cohort. Ann
Rheum Dis. 74:68993. doi: 10.1136/annrheumdis-2013-204436 PMID: 24351517
2. Hamilton L, Macgregor A, Warmington V, Pinch E, Gaffney K (2014) The prevalence of inflammatory
back pain in a UK primary care population. Rheumatology (Oxford) 53: 161164.
3. Creemers MC, Franssen MJ, van't Hof MA, Gribnau FW, van de Putte LB, van Riel PL, et al. (2005)
Assessment of outcome in ankylosing spondylitis: an extended radiographic scoring system. Ann
Rheum Dis 64: 127129. PMID: 15051621
4. van der Heijde D, Landewe R, Baraliakos X, Houben H, van Tubergen A, Williamson P, et al. (2008)
Radiographic findings following two years of infliximab therapy in patients with ankylosing spondylitis.
Arthritis Rheum 58: 30633070. doi: 10.1002/art.23901 PMID: 18821688
5. van der Heijde D, Landewe R, Einstein S, Ory P, Vosse D, Ni L, et al. (2008) Radiographic progression
of ankylosing spondylitis after up to two years of treatment with etanercept. Arthritis Rheum 58: 1324
1331. doi: 10.1002/art.23471 PMID: 18438853
6. van der Heijde D, Salonen D, Weissman BN, Landewe R, Maksymowych WP, Kupper H, et al. (2009)
Assessment of radiographic progression in the spines of patients with ankylosing spondylitis treated
with adalimumab for up to 2 years. Arthritis Res Ther 11: R127. doi: 10.1186/ar2794 PMID: 19703304
7. Haroon N, Inman RD, Learch TJ, Weisman MH, Lee M, Rahbar MH, et al. (2013) The impact of tumor
necrosis factor alpha inhibitors on radiographic progression in ankylosing spondylitis. Arthritis Rheum
65: 26452654. doi: 10.1002/art.38070 PMID: 23818109
8. Poddubnyy D, Rudwaleit M, Haibel H, Listing J, Marker-Hermann E, Zeidler H, et al. (2012) Effect of
non-steroidal anti-inflammatory drugs on radiographic spinal progression in patients with axial spondy-
loarthritis: results from the German Spondyloarthritis Inception Cohort. Ann Rheum Dis 71: 1616
1622. doi: 10.1136/annrheumdis-2011-201252 PMID: 22459541
9. Wanders A, Heijde D, Landewe R, Behier JM, Calin A, Olivieri I, et al. (2005) Nonsteroidal antiinflam-
matory drugs reduce radiographic progression in patients with ankylosing spondylitis: a randomized
clinical trial. Arthritis Rheum 52: 17561765. PMID: 15934081
10. Taipale J, Beachy PA (2001) The Hedgehog and Wnt signalling pathways in cancer. Nature 411: 349
354. PMID: 11357142
11. Pinzone JJ, Hall BM, Thudi NK, Vonau M, Qiang YW, Rosol TJ, et al. (2009) The role of Dickkopf-1 in
bone development, homeostasis, and disease. Blood 113: 517525. doi: 10.1182/blood-2008-03-
145169 PMID: 18687985
12. Li J, Sarosi I, Cattley RC, Pretorius J, Asuncion F, Grisanti M, et al. (2006) Dkk1-mediated inhibition of
Wnt signaling in bone results in osteopenia. Bone 39: 754766. PMID: 16730481
13. Winkler DG, Sutherland MK, Geoghegan JC, Yu C, Hayes T, Skonier JE, et al. (2003) Osteocyte con-
trol of bone formation via sclerostin, a novel BMP antagonist. EMBO J 22: 62676276. PMID:
14633986
DKK-1 and SOST in Spondyloarthritis
PLOS ONE | DOI:10.1371/journal.pone.0134974 August 27, 2015 14 / 16
14. Morvan F, Boulukos K, Clement-Lacroix P, Roman Roman S, Suc-Royer I, Vayssière B, et al. (2006)
Deletion of a single allele of the Dkk1 gene leads to an increase in bone formation and bone mass. J
Bone Miner Res 21: 934945. PMID: 16753024
15. Brunkow ME, Gardner JC, Van Ness J, Paeper BW, Kovacevich BR, Proll S, et al. (2001) Bone dyspla-
sia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein.
Am J Hum Genet 68: 577589. PMID: 11179006
16. Appel H, Maier R, Loddenkemper C, Kayser R, Meier O, Hempfing A, et al. (2010) Immunohistochemi-
cal analysis of osteoblasts in zygapophyseal joints of patients with ankylosing spondylitis reveal repair
mechanisms similar to osteoarthritis. J Rheumatol 37: 823828. doi: 10.3899/jrheum.090986 PMID:
20156950
17. Uderhardt S, Diarra D, Katzenbeisser J, David JP, Zwerina J, Richards W, et al. (2010) Blockade of
Dickkopf (DKK)-1 induces fusion of sacroiliac joints. Ann Rheum Dis 69: 592597. doi: 10.1136/ard.
2008.102046 PMID: 19304568
18. Heiland GR, Zwerina K, Baum W, Kireva T, Distler JH, Grisanti M, et al. (2010) Neutralisation of Dkk-1
protects from systemic bone loss during inflammation and reduces sclerostin expression. Ann Rheum
Dis.
19. Daoussis D, Liossis SN, Solomou EE, Tsanaktsi A, Bounia K, Karampetsou M, et al. (2010) Evidence
that Dkk-1 is dysfunctional in ankylosing spondylitis. Arthritis Rheum 62: 150158. doi: 10.1002/art.
27231 PMID: 20039407
20. Diarra D, Stolina M, Polzer K, Zwerina J, Ominsky MS, Dwyer D, et al. (2007) Dickkopf-1 is a master
regulator of joint remodeling. Nat Med 13: 156163. PMID: 17237793
21. Calin A, Porta J, Fries JF, Schurman DJ (1977) Clinical history as a screening test for ankylosingspon-
dylitis. Jama 237: 26132614. PMID: 140252
22. Rudwaleit M, Metter A, Listing J, Sieper J, Braun J (2006) Inflammatory back pain in ankylosing spondy-
litis: a reassessment of the clinical history for application as classification and diagnostic criteria. Arthri-
tis Rheum 54: 569578. PMID: 16447233
23. Dougados M, d'Agostino MA, Benessiano J, Berenbaum F, Breban M, Claudepierre P, et al. (2011)
The DESIR cohort: a 10-year follow-up of early inflammatory back pain in France: study design and
baseline characteristics of the 708 recruited patients. Joint Bone Spine 78: 598603. doi: 10.1016/j.
jbspin.2011.01.013 PMID: 21458351
24. Navarro-Compan V, van der Heijde D, Combe B, Cosson C, van Gaalen FA (2013) Value of high-sensi-
tivity C-reactive protein for classification of early axial spondyloarthritis: results from the DESIR cohort.
Ann Rheum Dis 72: 785786. doi: 10.1136/annrheumdis-2012-202504 PMID: 23300116
25. van der Heijde D, Lie E, Kvien TK, Sieper J, Van den Bosch F, Listing J, et al. (2009) ASDAS, a highly
discriminatory ASAS-endorsed disease activity score in patients with ankylosing spondylitis. Ann
Rheum Dis 68: 18111818. doi: 10.1136/ard.2008.100826 PMID: 19060001
26. van den Berg R, Lenczner G, Feydy A, van der Heijde D, Reijnierse M, Saraux A, et al. (2014) Reading
of sacroiliac joints on plain pelvic radiographs: Agreement between clinical practice and trained central
reading. Results of the DESIR-cohort. Arthritis Rheumatol
27. van den Berg R, de Hooge M, Rudwaleit M, Sieper J, van Gaalen F, Reijnierse M, et al. (2013) ASAS
modification of the Berlin algorithm for diagnosing axial spondyloarthritis: results from the SPondyloAr-
thritis Caught Early (SPACE)-cohort and from the Assessment of SpondyloArthritis international Soci-
ety (ASAS)-cohort. Ann Rheum Dis 72: 16461653. doi: 10.1136/annrheumdis-2012-201884 PMID:
23139266
28. de Rooy DP, Yeremenko NG, Wilson AG, Knevel R, Lindqvist E, Saxne T, et al. (2013). Genetic studies
on components of the Wnt signalling pathway and the severity of joint destruction in rheumatoid arthri-
tis. Ann Rheum Dis. 72:76975. doi: 10.1136/annrheumdis-2012-202184 PMID: 23041840
29. Ardawi MS, Al-Kadi HA, Rouzi AA, Qari MH (2011) Determinants of serum sclerostin in healthy pre-
and postmenopausal women. J Bone Miner Res 26: 28122822. doi: 10.1002/jbmr.479 PMID:
21812027
30. Modder UI, Hoey KA, Amin S, McCready LK, Achenbach SJ, Riqqs BL, et al. (2011) Relation of age,
gender, and bone mass to circulating sclerostin levels in women and men. J Bone Miner Res 26: 373
379. doi: 10.1002/jbmr.217 PMID: 20721932
31. Heiland GR, Appel H, Poddubnyy D, Zwerina J, Hueber A, Haibel H, et al. (2012) High level of func-
tional dickkopf-1 predicts protection from syndesmophyte formation in patients with ankylosing spondy-
litis. Ann Rheum Dis 71: 572574. doi: 10.1136/annrheumdis-2011-200216 PMID: 22186710
32. Appel H, Ruiz-Heiland G, Listing J, Zwerina J, Herrmann M, Mueller R, et al. (2009) Altered skeletal
expression of sclerostin and its link to radiographic progression in ankylosing spondylitis. Arthritis
Rheum 60: 32573262. doi: 10.1002/art.24888 PMID: 19877044
DKK-1 and SOST in Spondyloarthritis
PLOS ONE | DOI:10.1371/journal.pone.0134974 August 27, 2015 15 / 16
33. Chen XX, Baum W, Dwyer D, Stock M, Schwabe K, Ke HZ, et al. (2013) Sclerostin inhibition reverses
systemic, periarticular and local bone loss in arthritis. Ann Rheum Dis 72: 17321736. doi: 10.1136/
annrheumdis-2013-203345 PMID: 23666928
34. Seror R, Boudaoud S, Pavy S, Nocturne G, Schaeverbeke T, Saraux A, et al. (2014) Dickkopf-1 Is
Increased in Rheumatoid Arthritis of Recent Onset and is a New Biomarker of Structural Progression.
Data from the ESPOIR Cohort Submitted.
35. Reveille JD (2012) Genetics of spondyloarthritisbeyond the MHC. Nat Rev Rheumatol 8: 296304.
doi: 10.1038/nrrheum.2012.41 PMID: 22487796
36. Cortes A, Maksymowych WP, Wordsworth BP, Inman RD, Danoy P, Rahman P, et al. (2015) Associa-
tion study of genes related to bone formation and resorption and the extent of radiographic change in
ankylosing spondylitis. Ann Rheum Dis 74: 138793. doi: 10.1136/annrheumdis-2013-204835 PMID:
24651623
DKK-1 and SOST in Spondyloarthritis
PLOS ONE | DOI:10.1371/journal.pone.0134974 August 27, 2015 16 / 16
... Of 16 studies where DKK1 was measured in AS patients 5 showed higher levels and 3 lower levels of DKK1 in AS patients than in controls (Fig. 2c). Most studies did not find DKK1 to correlate with disease activity evaluated by BASMI, BASFI, BASMI, or BASDAI [81][82][83], but two studies reported an inverse relationship between DKK1 and BASDAI scores [84,85]. One study, examining patients with low disease activity, found positive correlations between DKK1 and both BASDAI, BASMI, BASFI, and mSASSS and the degree of vertebral fractures [86]. ...
... One study, examining patients with low disease activity, found positive correlations between DKK1 and both BASDAI, BASMI, BASFI, and mSASSS and the degree of vertebral fractures [86]. In addition, DKK1 correlated negatively with CRP particularly in the high disease activity group [81,83,84], indicating that DKK1 was inversely associated with the degree of inflammation. Moreover, it is unclear whether DKK1 differs between patients with and without syndesmophytes [82,87]. ...
... Most studies on sclerostin find either no difference between AS patients and controls or a reduced concentration in AS patients (Fig. 2c). Several studies have reported higher levels of sclerostin in men and higher levels associated with older age [81,83,91,92] and increased disease activity [84]. The risk ratios for developing new syndesmophytes increased with 0.23 (95% CI 0.05-1.10) ...
Article
Full-text available
Spondyloarthropathies (SpA) are common systemic inflammatory rheumatic diseases, in which, as in other rheumatic diseases, levels of markers of bone resorption are elevated, leading to bone loss and elevated risk of vertebral fractures. However, the diseases are also associated with new bone formation in the spine, the so-called syndesmophytes. We tried to unravel the pathogenesis of formation and growth of syndesmophytes and evaluated new diagnostic and treatment options. After a successful meeting of the Working Group on Rheumatic Diseases at the ECTS 2020, we (WL and CR) were excited about the quality of the speakers (CM, JH, AG, and GL) and their complimentary lectures. Given the relative lack of reviews on spondyloarthropathies and bone, we decided to work together on a comprehensive review that might be interesting for basic scientists and clinically relevant for clinicians. Radiographic progression in axSpA is linked to several risk factors, like male sex, smoking, HLA-B-27, increased levels of CRP, presence of syndesmophytes, and marked inflammation on MRI. The potential role of mechanical stress in the context of physically demanding jobs has been also suggested to promote structural damages. Different treatment options from NSAIDs to biologic agents like TNF inhibitors (TNFi) or IL-17inhibitors (IL-17i) result in a reduction of inflammation and symptoms. However, all these different treatment options failed to show clear and reproducible results on inhibition on syndesmophyte formation. The majority of data are available on TNFi, and some studies suggested an effect in subgroups of patients with ankylosing spondylitis. Less information is available on NSAIDs and IL-17i. Since IL-17i have been introduced quite recently, more studies are expected. IL-17 inhibitors (Il-17i) potently reduce signs and symptoms, but serum level of IL-17 is not elevated, therefore, IL-17 probably has mainly a local effect. The failure of anti-IL-23 in axSpA suggests that IL-17A production could be independent from IL-23. It may be upregulated by TNFα, resulting in lower expression of DKK1 and RANKL and an increase in osteogenesis. In active AS markers of bone resorption are increased, while bone formation markers can be increased or decreased. Bone Turnover markers and additional markers related to Wnt such as DKK1, sclerostin, and RANKL are valuable for elucidating bone metabolism on a group level and they are not (yet) able to predict individual patient outcomes. The gold standard for detection of structural lesions in clinical practice is the use of conventional radiographics. However, the resolution is low compared to the change over time and the interval for detecting changes are 2 years or more. Modern techniques offer substantial advantages such as the early detection of bone marrow edema with MRI, the fivefold increased detection rate of new or growing syndesmophytes with low-dose CT, and the decrease in 18F-fluoride uptake during treatment with TNFα-inhibitors (TNFi) in a pilot study in 12 AS patients. Detection of bone involvement by new techniques, such as low-dose CT, MRI and 18-Fluoride PET-scans, and bone turnover markers, in combination with focusing on high-risk groups such as patients with early disease, elevated CRP, syndesmophytes at baseline, male patients and patients with HLA-B27 + are promising options for the near future. However, for optimal prevention of formation of syndesmophytes we need more detailed insight in the pathogenesis of bone formation in axSpA and probably more targeted therapies.
... The characteristics of the patients with axial SpA and healthy controls are shown in Table 1. The mean ± SD age of the patients was 33.0 ± 8.0 years, the median symptom duration was 12 years (interquartile range [8][9][10][11][12][13][14], and 60.98% were men. Of the 41 patients with axial SpA, 78.05% fulfilled the modified New York Criteria for AS (7). ...
... Further studies are needed to determine whether Dkk-1 derived from platelets could play a role as a checkpoint/critical molecule for new bone formation in axial SpA and how it might be released from platelets. Large studies examining serum levels of Dkk-1 in patients with SpA are limited and have generated conflicting results as to the possible relevance of Dkk-1 in new bone formation (13)(14)(15)(16). The significance of Dkk-1 expression in patients with AS is associated with the observation that elevated serum concentrations of functional Dkk-1 protect against new bone formation (17). ...
... The significance of Dkk-1 expression in patients with AS is associated with the observation that elevated serum concentrations of functional Dkk-1 protect against new bone formation (17). In a study by Nocturne et al, total serum Dkk-1 levels were shown to be higher in a large cohort of patients with early inflammatory back pain suggestive of axial SpA compared to controls (14). In comparison to our study cohort, the patients in their significantly larger cohort were of similar age, but with much shorter disease duration (mean ± SD 18.8 ± 11.6 months), and elevated Dkk-1 levels were assumed to be attributable to substantial systemic inflammation and to be the consequence of Dkk-1 induction by TNF. ...
Article
Full-text available
Objective Axial spondyloarthritis (SpA) is a chronic autoinflammatory disease with new bone formation, which is controlled by Wnt/β‐catenin signaling. Dkk‐1 is an inhibitor of the Wnt pathway, and in humans, platelets represent a major source of Dkk‐1. This study was undertaken to investigate whether levels of Dkk‐1 in serum and platelet expression of DKK1 messenger RNA (mRNA) and Dkk‐1 protein are affected in patients with axial SpA compared to healthy controls. Methods Forty‐one patients with axial SpA and 35 healthy controls were enrolled in the study. Total serum Dkk‐1 levels in all patients and healthy controls were measured by quantitative enzyme‐linked immunosorbent assay. Platelet DKK1 mRNA was analyzed by quantitative reverse transcriptase–polymerase chain reaction in 20 patients with axial SpA and 20 controls, and Dkk‐1 protein levels were measured by immunoblotting in 20 patients with axial SpA and 18 controls. Results We found a lower concentration of Dkk‐1 in the serum from patients with axial SpA compared to the serum from healthy controls (P < 0.0001). Furthermore, the expression of Dkk‐1 was significantly reduced both at the transcriptional level (P < 0.04) and at the protein level (P < 0.007) in platelets isolated from the blood of patients with axial SpA. Conclusion Our preliminary observations suggest that dysfunction of the megakaryocyte/platelet axis might be responsible for reduced serum Dkk‐1 levels in patients with axial SpA. Dkk‐1 is down‐regulated in the platelets of patients with axial SpA, a mechanism that might play a role in new bone formation.
... Some reports indicate lower serum DKK1 levels in axSpA or AS subjects compared to healthy controls and RA patients [46][47][48][49]. On the contrary, there are some data suggesting no difference or higher serum levels of DKK1 in axSpA/AS [50][51][52][53]. Two meta-analyses on this matter were performed, one indicating elevated DKK1 serum levels in AS patients in comparison to healthy controls [54], with the other showing no significant differences between AS and healthy controls [55]. ...
... Moreover, the differences were observed when functional serum levels of DKK1 were measured (detected as the capacity to bind LRP-5/6). The dysfunction of DKK1 was also postulated in AS [51], which may explain its higher total serum concentration in some studies [50,52,54], while lower levels would be expected based on its function of inhibiting osteogenesis. Such phenomenon might also account for the observations made by Jadon et al., showing that higher DKK1 serum levels correlate with axial disease in the spectrum of SpA [58]. ...
Article
Full-text available
Psoriatic arthritis (PsA) is a chronic inflammatory disease, characterised by the pathological occurrence of two opposite phenomena—osteoresorption and osteogenesis. Dickkopf-related protein 1 (DKK1) which inhibits the Wingless protein (Wnt) signalling pathway has been shown to be a master regulator of bone remodeling in inflammatory rheumatic diseases. However, the exact relationship between DKK1 serum level and bone remodelling is not clear. The goal of this study is to review state-of-the-art knowledge on the association of serum DKK1 with a bone remodelling in PsA. The MEDLINE-PubMed, EMBASE, Scopus, Web of Science and DOAJ databases were searched for appropriate papers. The English terms: ‘DKK1’, ‘Dickkopf-1’ ‘Dickkopf related protein 1’, ‘psoriatic arthritis’ and ‘PsA’ were used for search purposes. Eight original articles and two reviews were identified up to August 2023. In four out of 8 discussed studies DKK1 serum level was higher in PsA patients than in healthy controls [Dalbeth, p < 0.01; Diani, p < 0.001; Chung, p < 0.01; Abd el Hamid, p < 0.001)], it was comparable in another (Daousiss, p = 0.430) and was lower in two (Fassio2017, p < 0.05; Fassio2019, p < 0.05). In one study, the comparative groups included patients with axial spondyloarthritis, where DKK1 serum levels were lower in PsA groups [Jadon, peripheral PsA, p = 0.01]. The true relative serum concentration of DKK1 in PsA, as well as its influence on osteogenesis and osteoresorption, is still equivocal. Further studies on this matter with consistent and stringent methodology are warranted.
... The high circulating Dkk-1 levels in early axSpA has been verified in the large DESIR cohort. 28 Disease duration was shown to be of importance for circulating Dkk-1 levels with significantly higher levels in naïve patients with early ax-SpA compared with patients with established axSpA. 29 Finally, a meta-analysis of seven studies including 300 AS patients confirmed that circulating Dkk-1 levels are higher in AS compared to healthy subjects. ...
... In a French cohort of patients with early axSpA (DESΙR), no association between DKK1 SNPs (single nucleotide polymorphisms), Dkk-1 circulating levels and structural damage was found, suggesting that in axS-pA Dkk-1 circulating levels may not be genetically determined. 28 Another study exploring the presence of genetic associations with radiographic severity in AS did not detect association with DKK1 gene SNPs. 32 The two latter studies point to the direction that Dkk1 dysfunction in AS is not genetically determined but possibly caused by posttranscriptional changes. ...
Article
Full-text available
Axial spondyloarthritis (axSpA) is a disease characterised by new bone formation. Biologic agents targeting TNFα or IL-17 are used widely and are very effective in controlling symptoms and improving quality of life in these patients. However, the effect of biologics on radiographic progression is still not entirely known. The most crucial question to be addressed is whether new bone formation in the context of axSpA is linked to the inflammatory process. If new bone formation and inflammation are interconnected, then long-term suppression of inflammation with biologic agents may eventually lead to inhibition of ankylosis. On the other hand, if these processes are totally uncoupled then biologics may not have an obvious effect on radiographic progression. In this case, targeting pathways that control new bone formation may be a more feasible approach to retard radiographic progression in axSpA. The molecular mechanisms involved in new bone formation in axSpA have been extensively investigated throughout the last years. In this narrative review we summarise the data regarding the mechanisms of new bone formation in axSpA.
... Further studies of TNF transgenic mice showed that Dkk-1 blockade led to Wnt pathway activation in sacroiliac joints and, subsequently, to ankylosis, providing strong experimental evidence that the Wnt pathway and specifically Dkk-1 are tightly linked to sacroiliac fusion/ankylosis [12]. In humans with AS, levels of Dkk-1 circulating in peripheral blood appear to be increased compared to controls [13]. Nevertheless, experimental evidence indicates that Dkk-1 may be dysfunctional in AS, as it fails to downregulate Wnt pathway activation in ex vivo experimental models [14]. ...
... Another limitation of our study is that it does not address the question of why DKK-1 is downregulated in MSCs from patients with AS compared to controls. However, we hypothesize that post-transcriptional mechanisms may apply, as so far, no DKK1 gene single-nucleotide polymorphisms have been associated with either radiographic progression or Dkk-1 circulating levels [13,34]. Finally, a significant limitation is the fact that we were unable to complement our gene expression data with data regarding the expression of relevant proteins; moreover, detailed, functional experiments using RNA interference would provide more data. ...
Article
Full-text available
Dickkopf-1 (Dkk-1) is a key regulator of bone remodeling in spondyloarthropathies. Nevertheless, data regarding its expression in cells of pathophysiologic relevance, such as mesenchymal stem cells (MSCs), are lacking. Herein, we aimed to address DKK1 gene expression and Wnt pathway activation in MSCs from patients with ankylosing spondylitis (AS) and explore the effect of IL-17 on MSCs with respect to DKK-1 expression and Wnt pathway activation. Primary MSCs were isolated from the bone marrow of the femoral head of two patients with AS and two healthy controls undergoing orthopedic surgery. MSCs were cultured for 7 days in expansion medium and for 21 days in osteogenic medium in the presence or absence of IL-17A. Gene expression of DKK-1 and osteoblastic markers was determined by RT-PCR. Alkaline phosphatase activity, alizarin red and Van Kossa staining were used to assess osteoblastic function and mineralization capacity. DKK-1 was significantly downregulated in MSCs and osteoblasts from patients with AS compared to controls. Moreover, MSCs and osteoblasts from AS patients displayed increased Wnt pathway activation and enhanced osteoblastic activity, as indicated by increased expression of osteoblast marker genes and alkaline phosphatase activity. IL-17 downregulated DKK-1 expression and increased osteoblastic activity and mineralization capacity. DKK-1 is underexpressed in MSCs from AS patients compared to controls, whereas IL-17 has an inhibitory effect on DKK-1 expression and stimulates osteoblastic function. These data may have pathogenetic and clinical implications in AS.
Article
Full-text available
Simple Summary Chronic inflammatory arthritis, such as rheumatoid arthritis (RA) and spondyloarthritis (SpA), often have a significant impact on bone tissue, where bone is not just a passive target but actively contributes to the disease progression. This review explores the pathogenic mechanisms involving bone, highlighting the complex molecular interactions between bone cells and the immune system, a field known as osteoimmunology. It discusses the unique processes of bone erosion and systemic bone loss in RA and SpA, as well as abnormal bone formation in SpA. Abstract Several rheumatologic diseases are primarily distinguished by their involvement of bone tissue, which not only serves as a mere target of the condition but often plays a pivotal role in its pathogenesis. This scenario is particularly prominent in chronic inflammatory arthritis such as rheumatoid arthritis (RA) and spondyloarthritis (SpA). Given the immunological and systemic nature of these diseases, in this review, we report an overview of the pathogenic mechanisms underlying specific bone involvement, focusing on the complex interactions that occur between bone tissue’s own cells and the molecular and cellular actors of the immune system, a recent and fascinating field of interest defined as osteoimmunology. Specifically, we comprehensively elaborate on the distinct pathogenic mechanisms of bone erosion seen in both rheumatoid arthritis and spondyloarthritis, as well as the characteristic process of aberrant bone formation observed in spondyloarthritis. Lastly, chronic inflammatory arthritis leads to systemic bone involvement, resulting in systemic bone loss and consequent osteoporosis, along with increased skeletal fragility.
Thesis
BACKGROUND: Objective assessments of disease activity and response to treatment in axial spondyloarthritis (axSpA) remain an area of unmet clinical need. Quantitative magnetic resonance imaging (qMRI) offers potential for more accurate measures of disease activity and therapeutic response. PURPOSE: To critically appraise current methods of disease activity in axSpA and determine the responsiveness and validity of quantitative imaging biomarkers (QIBs) in patients with axSpA undergoing biologic therapy. METHODS: An observational cohort study was carried out to assess the specificity of our current disease activity measure on patients with axSpA. A systematic literature review was performed to assess the use of MRI in the assessment of axSpA. A prospective cohort study was carried out on 30 patients with axSpA undergoing biologic therapy or switching biologic therapy. Conventional and qMRI scans, including diffusion-weighted imaging (DWI) and chemical shift-encoded imaging (CSI) were carried out at baseline and after 12-16 weeks of treatment. Apparent diffusion coefficient (ADC) and proton density fat fraction (PDFF) maps were analysed using the partially-automated Bone Edema and Adiposity Characterisation with Histograms (BEACH) tool, which derives a series of quantitative imaging biomarkers (QIBs) for both ADC and PDFF. Conventional MR images were assessed using established visual scoring methods. QIBs were assessed in terms of change after treatment and correlation with clinical and conventional MRI measures of disease activity. RESULTS: Current disease activity measures are not specific to axSpA and can be increased in a number of other spinal pathologies. ADC biomarkers are sensitive to changes in inflammation and show significant reductions following biologic therapy, while PDFF-based QIBs showed nonsignificant reductions. Responsiveness to therapy was moderate for ADC based biomarkers and small for conventional scoring systems. ADC and PDFF correlated well with conventional MRI scoring methods. CONCLUSION: Quantitative MRI offers promise for a more accurate assessment of disease activity in axSpA.
Article
In ankylosing spondylitis, the pathological metabolism of the bone tissue is regulated by various proteins; of these, Dkk-1 protein, an antagonist of the Wnt-signaling pathway, is of particular interest. We compared the methods of Dkk-1 detection in the blood serum of patients with ankylosing spondylitis (conventional ELISA and aptamer/antibody assay) and analyzed the relationship between Dkk-1 level and structural progression of ankylosing spondylitis and secondary osteoporosis. Dkk-1 levels in patients were significantly increased and depended on the stage of the disease, but not on the presence/absence of osteoporosis. Thus, Dkk-1 is a potential serum marker of progression of ankylosing spondylitis reflecting a tendency to structural progression of the disease before the appearance of radiographic changes. The results obtained by both methods practically coincided, which suggests good prospects for applying DNA aptamer-based test system.
Article
The spectrum of axial spondyloarthritis (AxSpA) (including both non-radiographic and radiographic AxSpA), also known as ankylosing spondylitis AS, has achieved growing recognition. With the development of treatments not only effective in controlling disease activity but also in slowing radiographic progression, and given the cost and risk profiles of these novel treatments and the limitations of current clinical criteria, imaging and peripheral blood biomarkers (C-reactive protein, HLA-B27 testing), the need for better biomarkers has never been greater. The purpose of this review is to present up-to-date information on the biomarkers for the diagnosis for assessing disease diagnosis, activity, treatment response, and radiographic progression of AxSpA, and entails multiple search strings used to identify articles of interest published in PubMed and the Cochrane database up to May 1, 2021. We present the current status of research in serologic biomarkers such as cytokines, adipokines, matrix metalloproteinases, calprotectin, CD74, antibodies, bone turnover markers, and circulating protein fragments of cartilage and connective tissue degradation and other biomarkers. Despite a great deal of work, most serologic results have been disappointing and to date none perform better than CRP. Recent promising preliminary data for some has been published, but require further confirmation. Transcriptomic biomarkers such as micro-RNAs and genetic biomarkers also show promise to assist in diagnosis and possibly for radiographic severity, including a recently developed panel of genetic risk markers used in a polygenic risk score instrument in AS diagnosis. These need further confirmation and application in AS as well as in nr-AxSpA.
Article
Full-text available
Rheumatoid arthritis (RA) is the most common chronic inflammatory rheumatic condition over the world. RA is potentially disabling because chronic inflammation of the joints leads to joint destruction. To date, the best predictor of radiographic progression for patients with early RA is the presence of radiographic erosions at baseline, but a limited number of predictive biomarkers of structural progression are currently used in daily practice. Here, we investigated Dickkopf-1 (DKK-1) and sclerostin (SOST) serum levels in patients with recent inflammatory arthritis from the ESPOIR cohort. This cohort is a prospective, multicenter French cohort of 813 patients with early arthritis. We observed that mean baseline DKK-1 level was higher among RA patients with than without radiological progression within the first 2 years of evolution. DKK-1 level was still associated with radiographic progression in a model including other main predictors of severity (erosions at baseline, and anti-CCP antibody positivity). This study demonstrates that increased DKK-1 level at baseline predicted structural progression after 2-year follow-up and suggests that DKK-1 might be a new structural biomarker for early RA.
Article
Full-text available
Objective: Inflammatory back pain (IBP) is the earliest and most common symptom of axial SpA. However, there is very little information about the prevalence of IBP in the UK. In this cross-sectional cohort study we examined the prevalence of IBP in a UK primary care population using three published IBP criteria. Methods: Potential participants aged 18-80 years were identified from the records of a large general practice in Norfolk, UK, with 17 177 patients. Read codes were used to identify those who had consulted their general practitioner on at least one occasion with back pain. A self-completed screening questionnaire was sent to a sample of 978 patients, enquiring about symptoms of IBP and extra-spinal manifestations of SpA. Questionnaire responses were used to determine whether patients met the Assessment of SpondyloArthritis international Society (ASAS), Calin and Berlin IBP criteria. Results: Five hundred and five completed questionnaires were returned (response rate 51.6%). The median age of respondents was 60 years [interquartile range (IQR) 48-67] and 44.8% were male. The minimum prevalence of IBP among patients with at least one previous consultation for back pain was 7.7% (95% CI 6.2, 9.5) using the ASAS criteria, 13.5% (11.5, 15.8) using the Calin criteria and 15.4% (13.3, 17.8) using the Berlin criteria. There was no significant difference in prevalence between men and women, and between different age groups. Extrapolated to the practice population as a whole, the minimum prevalence of IBP in a UK primary care population is 1.7-3.4%. Conclusion: The prevalence of IBP varies significantly depending on the criteria used for classification.
Article
Full-text available
Objective To test whether inhibition of sclerostin by a targeted monoclonal antibody (Scl-Ab) protects from bone and cartilage damage in inflammatory arthritis. Sclerostin is a potent inhibitor of bone formation and may be responsible for the low level of bone repair in patients with rheumatoid arthritis. Methods Human tumour necrosis factor transgenic mice (hTNFtg mice) developing inflammatory arthritis and local and bone loss were administered either vehicle, anti-TNF antibody, Scl-Ab, or a combination of both agents. Inflammation, systemic and periarticular bone loss, bone erosion and cartilage damage were evaluated at baseline (week 8) and after 3 weeks of treatment by clinical assessment, micro-CT and histology. Results Scl-Ab did not affect joint swelling or synovitis. Systemic bone loss in the spine and periarticular bone loss in the proximal tibia were completely blocked and partially reversed by inhibition of sclerostin but not by inhibition of TNF. Moreover, Scl-Ab completely arrested the progression of bone erosion in hTNFtg mice and in combination with TNF inhibition even led to significant regression of cortical bone erosions. Protective effects of Scl-Ab were also observed for the articular cartilage. Conclusions These data suggest that sclerostin inhibition is a powerful tool to enhance bone repair in inflammatory arthritis.
Article
A controlled study of 138 subjects demonstrated that the clinical history may be sensitive (95%) and specific (85%) in the differential diagnosis of ankylosing spondylitis when reliance on five specific historic features is made. Back pain that is insidious in onset, in a patient younger than 40 years, persisting for at least three months, associated with morning stiffness and improving with exercise is characteristic of inflammatory spinal disease. (JAMA 237:2613-2614, 1977)
Article
Objective: To investigate the degree of agreement between local rheumatologists/radiologists and central trained readers (external standard) on the presence/absence of sacroiliitis on radiographs of the sacroiliac (SI) joints. Methods: Patients with inflammatory back pain (duration ≥3 months but <3 years) suggestive of axial spondyloarthritis (SpA) were included in the Devenir des Spondylarthropathies Indifferérenciées Récentes (DESIR) cohort. Baseline radiographs of the SI joints were interpreted by 2 central readers (modified New York criteria); cases of disagreement were adjudicated by a third reader, yielding a positive or a negative result (central reading). The same radiographs were also interpreted by local radiologists/rheumatologists and were rated as "normal," "doubtful sacroiliitis," "obvious sacroiliitis," or "SI joint fusion" (local reading); positive findings were defined as "at least unilateral obvious sacroiliitis," "bilateral obvious sacroiliitis," or "at least unilateral fusion." Agreement and misclassifications between central readers and between central reading versus local reading were calculated (kappa values). Results: Interreader agreement between the central readers was moderate (κ = 0.54); 108 of 688 radiographs (15.7%) were adjudicated. According to local reading ("at least unilateral obvious sacroiliitis"), 183 of the 688 patients (26.6%) had sacroiliitis, whereas according to central reading, 145 of 688 patients (21.1%) had sacroiliitis. Agreement between local reading and central reading was also moderate (κ = 0.55); 76 of 183 patients (41.5%) with "at least unilateral obvious sacroiliitis" (positive by local reading) and 32 of 109 patients (29.4%) with "bilateral obvious sacroiliitis" or "at least unilateral fusion" (positive by local reading) were rated as "negative" by central reading, and 38 of 505 patients (7.5%) and 68 of 579 patients (11.7%), respectively, without sacroiliitis (negative by local reading) were interpreted as "positive" by central reading. Conclusion: In patients with recent-onset inflammatory back pain, both trained readers and local rheumatologists/radiologists agreed only moderately on the recognition of radiographic sacroiliitis. A significant proportion of locally recognized ankylosing spondylitis (AS) patients were not confirmed as having AS by central reading (false positive), while a small minority of patients were false negative, indicating the necessity of reevaluating the role of radiographic sacroiliitis as diagnostic criterion for axial SpA.
Article
To identify genetic associations with severity of radiographic damage in ankylosing spondylitis (AS). We studied 1537 AS cases of European descent; all fulfilled the modified New York Criteria. Radiographic severity was assessed from digitised lateral radiographs of the cervical and lumbar spine using the modified Stoke Ankylosing Spondylitis Spinal Score (mSASSS). A two-phase genotyping design was used. In phase 1, 498 single nucleotide polymorphisms (SNPs) were genotyped in 688 cases; these were selected to capture >90% of the common haplotypic variation in the exons, exon-intron boundaries, and 5 kb flanking DNA in the 5' and 3' UTR of 74 genes involved in anabolic or catabolic bone pathways. In phase 2, 15 SNPs exhibiting p<0.05 were genotyped in a further cohort of 830 AS cases; results were analysed both separately and in combination with the discovery phase data. Association was tested by contingency tables after separating the samples into 'mild' and 'severe' groups, defined as the bottom and top 40% by mSASSS, adjusted for gender and disease duration. Experiment-wise association was observed with the SNP rs8092336 (combined OR 0.32, p=1.2×10(-5)), which lies within RANK (receptor activator of NFκB), a gene involved in osteoclastogenesis, and in the interaction between T cells and dendritic cells. Association was also found with the SNP rs1236913 in PTGS1 (prostaglandin-endoperoxide synthase 1, cyclooxygenase 1), giving an OR of 0.53 (p=2.6×10(-3)). There was no observed association between radiographic severity and HLA-B*27. These findings support roles for bone resorption and prostaglandins pathways in the osteoproliferative changes in AS.
Article
To estimate the prevalence of spondyloarthritis (SpA) in reference to HLA-B27 in the French population. In 1989, 20 625 employees of the French national gas and electricity company aged 35-50 years were enrolled in the GAZEL cohort. In 2010, 18 757 still active participants were screened by a questionnaire validated for the detection of SpA. Responders with available DNA were retained for further studies. Pelvic radiograph and HLA-B27 typing were performed in all the self-reported cases of SpA or psoriatic arthritis. Self-reported diagnosis was verified by a qualified rheumatologist. HLA-B27 determination was also performed in subjects without any SpA feature. The target population consisted of 6556 responders with available DNA. Their male:female ratio was 3.6 and their mean age was 65.5±3.3 years. A diagnosis of SpA was confirmed in 32 of the 72 self-reported cases, 75% of them being HLA-B27 positive. Estimated SpA prevalence adjusted for sex was 0.43% (95% CI 0.26% to 0.70%). HLA-B27 positivity rate in 2466 healthy controls was 6.9% (95% CI 5.9% to 7.9%). The relative risk of SpA in HLA-B27 positive individuals was 39 (95% CI 17 to 86). We estimated the prevalence of SpA in the French population in 2010 to 0.43%. With an estimated prevalence of 75.0% in SpA and 6.9% in healthy controls, HLA-B27 increased the disease risk 39-fold, as compared with HLA-B27 negative subjects.
Article
We studied the effect of Tumor Necrosis Factor-Alpha (TNF)-inhibitors on progressive spine damage in Ankylosing Spondylitis (AS) patients. All AS patients (satisfying the modified New York criteria) prospectively followed and with at least two sets of spinal radiographs at a minimum gap of 1.5 years were included (n=334). Patients received clinical standard of care, which included non-steroidal anti-inflammatory drugs and TNF-inhibitors. Radiographic severity was assessed by the modified Stokes Ankylosing Spondylitis Spine Score (mSASSS). Patients with a rate of progression more than 1 mSASSS unit/year were considered progressors. Univariable and multivariable regression analyses were done. Propensity score matching (PSM) and sensitivity analysis were performed. A zero-inflated negative binomial (ZINB) model was used to analyze the effect of TNF-inhibitor on change in mSASSS with varying follow-up periods. Potential confounders like Bath AS Disease Activity Index (BASDAI), ESR, CRP, HLA-B27, gender, age of onset, smoking and baseline damage were included in the model. TNF-inhibitor treatment was associated with a 50% reduction in the odds of progression (OR: 0.52; CI: 0.30-0.88; p=0.02). Patients with a delay in starting therapy of more than 10 years were more likely to progress compared to those who started earlier (OR=2.4; 95% CI: 1.09-5.3; p=0.03). In the ZINB model TNF-inhibitor use significantly reduced progression when the gap between x-rays was more than 3.9 years. The protective effect of TNF-inhibitors was stronger after propensity score matching. TNF-inhibitors appear to reduce radiographic progression in AS, especially with early initiation and longer duration of follow up. © 2013 American College of Rheumatology.