Article

High -throughput screen identifies small molecule inhibitors targeting acetyltransferase activity of Mycobacterium tuberculosis GlmU

Authors:
To read the full-text of this research, you can request a copy directly from the author.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the author.

ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
We estimated the impact of hypothetical new diagnostic tests for tuberculosis (TB) in patients with persistent cough in developing countries. We found that a variety of new tests could help better identify TB cases and target treatment, thereby reducing the burden of disease.
Article
Full-text available
Here, a medicinal chemistry effort on N-alkylphenyl-3,5-dinitrobenzamide (DNB) scaffold as potent anti-TB agent is presented. A series of chemical modifications were performed and forty-three new molecules were synthesized to study of structure-activity relationship (SAR) by evaluating against sensitive strain (H37Rv) of Mycobacterium tuberculosis (MTB). Potent DNB analogs 4b, 7a, 7c, 7d, 7j, 7r and 9a were further tested against resistant strains of MTB. Their intracellular as well as bactericidal potential were also evaluated. The cytotoxicity and in vivo pharmacokinetic studies suggested that DNB analogs have acceptable safety index, in vivo stability and bio-availability. From the present work, two compounds 7a and 7d have shown nanomolar to sub micro-molar MIC in extracellular and intracellular assay.
Article
Full-text available
GlmU is a bifunctional enzyme that is essential for bacterial growth, converting D-glucosamine-1-phosphate into UDP-GlcNAc via acetylation and subsequent uridyl transfer. A biochemical screen of AstraZeneca's compound library using GlmU of Escherichia coli identified novel sulfonamide inhibitors of the acetyl transferase reaction. Steady state kinetics, ligand-observe NMR, isothermal titration calorimetry and X-ray crystallography showed that the inhibitors were competitive with acetyl-CoA substrate. Iterative chemistry efforts improved biochemical potency against Gram-negative isozymes 300-fold and afforded antimicrobial activity against a strain of Haemophilus influenzae lacking its major efflux pump. Inhibition of precursor incorporation into bacterial macromolecules was consistent with the antimicrobial activity being caused by disruption of peptidoglycan and fatty acid biosyntheses. Isolation and characterization of two different resistant mutant strains identified the GlmU acetyl transferase domain as the molecular target. These data, along with X-ray co-crystal structures, confirmed the binding mode of the inhibitors and explained their relative lack of potency against Gram-positive GlmU isozymes. This is the first example of antimicrobial compounds mediating their growth inhibitory effects specifically via GlmU.
Article
Full-text available
Drug resistance in Mycobacterium tuberculosis has become a serious global health threat, which is now complicated by the emergence of extensively drug-resistant strains. New drugs that are active against drug-resistant tuberculosis (TB) are needed. We chose to search for new inhibitors of the enoyl-acyl carrier protein (ACP) reductase InhA, the target of the first-line TB drug isoniazid (also known as isonicotinoic acid hydrazide [INH]). A subset of a chemical library, composed of 300 compounds inhibiting Plasmodium falciparum enoyl reductase, was tested against M. tuberculosis. Four compounds were found to inhibit M. tuberculosis growth with MICs ranging from 1 μM to 10 μM. Testing of these compounds against M. tuberculosis in vitro revealed that only two compounds (CD39 and CD117) were bactericidal against drug-susceptible and drug-resistant M. tuberculosis. These two compounds were also bactericidal against M. tuberculosis incubated under anaerobic conditions. Furthermore, CD39 and CD117 exhibited increased bactericidal activity when used in combination with INH or rifampin, but CD39 was shown to be toxic to eukaryotic cells. The compounds inhibit InhA as well the fatty acid synthase type I, and CD117 was found to also inhibit tuberculostearic acid synthesis. This study provides the TB drug development community with two chemical scaffolds that are suitable for structure-activity relationship study to improve on their cytotoxicities and bactericidal activities in vitro and in vivo.
Article
Full-text available
Nonreplicating or dormant cells of Mycobacterium tuberculosis constitute a challenge to tuberculosis (TB) therapy because of their tolerance or phenotypic resistance to most drugs. Here, we propose a simple model for testing drugs against nongrowing cells that exploits the 18b strain of M. tuberculosis, a streptomycin (STR)-dependent mutant. Optimal conditions were established that allowed 18b cells to replicate in the presence of STR and to survive, but not multiply, following withdrawal of STR. In the presence of the antibiotic, M. tuberculosis 18b was susceptible to the currently approved TB drugs, isoniazid (INH) and rifampin (RIF), and to the experimental drugs TMC207, PA-824, meropenem (MER), benzothiazinone (BTZ), and moxifloxacin (MOXI). After STR depletion, the strain displayed greatly reduced susceptibility to the cell wall inhibitors INH and BTZ but showed increased susceptibility to RIF and PA-824, while MOXI and MER appeared equipotent under both conditions. The same potency ranking was found against nonreplicating M. tuberculosis 18b after in vivo treatment of chronically infected mice with five of these drugs. Despite the growth arrest, strain 18b retains significant metabolic activity in vitro, remaining positive in the resazurin reduction assay. Upon adaption to a 96-well format, this assay was shown to be suitable for high-throughput screening with strain 18b to find new inhibitors of dormant M. tuberculosis.
Article
Full-text available
To evaluate the role of piperine as an inhibitor of Rv1258c of Mycobacterium tuberculosis. Rifampicin, in combination with piperine, was tested against M. tuberculosis H37Rv and rifampicin-resistant (rif(r)) M. tuberculosis. A laboratory-generated rifampicin-resistant mutant (rif(r)) of M. tuberculosis was tested for drug susceptibility and the expression level of the putative efflux protein (Rv1258c) by real-time PCR. The three-dimensional (3D) structure of Rv1258c was also predicted using an in silico approach. In the present study, rifampicin in combination with piperine, a trans-trans isomer of 1-piperoyl-piperidine, reduced the MIC and mutation prevention concentration (MPC) of rifampicin for M. tuberculosis H37Rv, including multidrug-resistant (MDR) M. tuberculosis and clinical isolates. Moreover, piperine effectively enhanced the bactericidal activity of rifampicin in time-kill studies and also significantly extended its post-antibiotic effect (PAE). In the presence of rifampicin, M. tuberculosis rif(r) showed a 3.6-fold overexpression of Rv1258c. The 3D structure of Rv1258c, using in silico modelling, was analysed to elucidate the binding of piperine to the active site. The results of this study are suggestive of piperine's involvement in the inhibition of clinically overexpressed mycobacterial putative efflux protein (Rv1258c). Piperine may be useful in augmenting the antimycobacterial activity of rifampicin in a clinical setting.
Article
Full-text available
The in vitro interactions of two new antitubercular drugs, SQ109 and TMC207, with each other and with rifampin (RIF) were evaluated. The combination of SQ109 with TMC207 (i) improved an already excellent TMC207 MIC for M. tuberculosis H37Rv by 4- to 8-fold, (ii) improved the rate of killing of bacteria over the rate of killing by each single drug, and (iii) enhanced the drug postantibiotic effect by 4 h. In no instance did we observe antagonistic activities with the combination of SQ109 and TMC207. Rifampin activates cytochrome P450 genes to reduce the area under the curve (AUC) for TMC207 in humans. The presence of RIF in three-drug combinations did not affect the synergistic activities of SQ109 and TMC207, and SQ109 also dramatically decreased the MIC of RIF. SQ109 was active by itself, and both its activity was improved by and it improved the in vitro activities of both RIF and TMC207.
Article
Full-text available
The bifunctional GlmU protein catalyzes the formation of UDP-N-acetylglucosamine in a two-step reaction using the substrates glucosamine-1-phosphate, acetyl coenzyme A, and UTP. This metabolite is a common precursor to the synthesis of bacterial cell surface carbohydrate polymers, such as peptidoglycan, lipopolysaccharide, and wall teichoic acid that are involved in the maintenance of cell shape, permeability, and virulence. The C-terminal acetyltransferase domain of GlmU exhibits structural and mechanistic features unique to bacterial UDP-N-acetylglucosamine synthases, making it an excellent target for antibacterial design. In the work described here, we have developed an absorbance-based assay to screen diverse chemical libraries in high throughput for inhibitors to the acetyltransferase reaction of Escherichia coli GlmU. The primary screen of 50,000 drug-like small molecules identified 63 hits, 37 of which were specific to acetyltransferase activity of GlmU. Secondary screening and mode-of-inhibition studies identified potent inhibitors where compound binding within the acetyltransferase active site was requisite on the presence of glucosamine-1-phosphate and were competitive with the substrate acetyl coenzyme A. These molecules may represent novel chemical scaffolds for future antimicrobial drug discovery. In addition, this work outlines the utility of catalytic variants in targeting specific activities of bifunctional enzymes in high-throughput screens.
Article
Full-text available
Antibiotic resistance is a major issue in the treatment of infectious diseases such as tuberculosis. Existing antibiotics target only a few cellular pathways and there is an urgent need for antibiotics that have novel molecular mechanisms. The glmU gene is essential in Mycobacterium tuberculosis, being required for optimal bacterial growth, and has been selected as a possible drug target for structural and functional investigation. GlmU is a bifunctional acetyltransferase/uridyltransferase that catalyses the formation of UDP-GlcNAc from GlcN-1-P. UDP-GlcNAc is a substrate for two important biosynthetic pathways: lipopolysaccharide and peptidoglycan synthesis. The crystal structure of M. tuberculosis GlmU has been determined in an unliganded form and in complex with GlcNAc-1-P or UDP-GlcNAc. The structures reveal the residues that are responsible for substrate binding. Enzyme activities were characterized by (1)H NMR and suggest that the presence of acetyl-coenzyme A has an inhibitory effect on uridyltransferase activity.
Article
Full-text available
Friulimicin B is a naturally occurring cyclic lipopeptide, produced by the actinomycete Actinoplanes friuliensis, with excellent activity against gram-positive pathogens, including multidrug-resistant strains. It consists of a macrocyclic decapeptide core and a lipid tail, interlinked by an exocyclic amino acid. Friulimicin is water soluble and amphiphilic, with an overall negative charge. Amphiphilicity is enhanced in the presence of Ca2+, which is also indispensable for antimicrobial activity. Friulimicin shares these physicochemical properties with daptomycin, which is suggested to kill gram-positive bacteria through the formation of pores in the cytoplasmic membrane. In spite of the fact that friulimicin shares features of structure and potency with daptomycin, we found that friulimicin has a unique mode of action and severely affects the cell envelope of gram-positive bacteria, acting via a defined target. We found friulimicin to interrupt the cell wall precursor cycle through the formation of a Ca2+-dependent complex with the bactoprenol phosphate carrier C55-P, which is not targeted by any other antibiotic in use. Since C55-P also serves as a carrier in teichoic acid biosynthesis and capsule formation, it is likely that friulimicin blocks multiple pathways that are essential for a functional gram-positive cell envelope.
Article
Full-text available
Isoniazid (isonicotinic acid hydrazide, INH) is one of the most widely used antituberculosis drugs, yet its precise target of action on Mycobacterium tuberculosis is unknown. A missense mutation within the mycobacterial inhA gene was shown to confer resistance to both INH and ethionamide (ETH) in M. smegmatis and in M. bovis. The wild-type inhA gene also conferred INH and ETH resistance when transferred on a multicopy plasmid vector to M. smegmatis and M. bovis BCG. The InhA protein shows significant sequence conservation with the Escherichia coli enzyme EnvM, and cell-free assays indicate that it may be involved in mycolic acid biosynthesis. These results suggest that InhA is likely a primary target of action for INH and ETH.
Article
Full-text available
N-acetylglucosamine 1-phosphate uridyltransferase (GlmU) is a cytoplasmic bifunctional enzyme involved in the biosynthesis of the nucleotide-activated UDP-GlcNAc, which is an essential precursor for the biosynthetic pathways of peptidoglycan and other components in bacteria. The crystal structure of a truncated form of GlmU has been solved at 2.25 A resolution using the multiwavelength anomalous dispersion technique and its function tested with mutagenesis studies. The molecule is composed of two distinct domains connected by a long alpha-helical arm: (i) an N-terminal domain which resembles the dinucleotide-binding Rossmann fold; and (ii) a C-terminal domain which adopts a left-handed parallel beta-helix structure (LbetaH) as found in homologous bacterial acetyltransferases. Three GlmU molecules assemble into a trimeric arrangement with tightly packed parallel LbetaH domains, the long alpha-helical linkers being seated on top of the arrangement and the N-terminal domains projected away from the 3-fold axis. In addition, the 2.3 A resolution structure of the GlmU-UDP-GlcNAc complex reveals the structural bases required for the uridyltransferase activity. These structures exemplify a three-dimensional template for the development of new antibacterial agents and for studying other members of the large family of XDP-sugar bacterial pyrophosphorylases.
Article
Full-text available
The ability to identify active compounds (³hits²) from large chemical libraries accurately and rapidly has been the ultimate goal in developing high-throughput screening (HTS) assays. The ability to identify hits from a particular HTS assay depends largely on the suitability or quality of the assay used in the screening. The criteria or parameters for evaluating the ³suitability² of an HTS assay for hit identification are not well defined and hence it still remains difficult to compare the quality of assays directly. In this report, a screening window coefficient, called ³Z-factor,² is defined. This coefficient is reflective of both the assay signal dynamic range and the data variation associated with the signal measurements, and therefore is suitable for assay quality assessment. The Z-factor is a dimensionless, simple statistical characteristic for each HTS assay. The Z-factor provides a useful tool for comparison and evaluation of the quality of assays, and can be utilized in assay optimization and validation.
Article
Full-text available
Interactions between quinupristin-dalfopristin and six other antimicrobials were examined by checkerboard arrays against 50 clinical isolates of vancomycin-resistant Enterococcus faecium selected to represent a range of susceptibilities to individual agents. Unequivocal synergistic or antagonistic interactions at clinically relevant concentrations were infrequently encountered when the streptogramin was combined with chloramphenicol, ampicillin, imipenem, vancomycin, or teicoplanin. Combinations with doxycycline resulted in synergistic inhibition in 36% of checkerboards. Against 10 strains of Enterococcus faecalis, synergistic interactions were found when quinupristin-dalfopristin was combined with doxycycline (four strains), either glycopeptide (three strains), or ampicillin (two strains). Combination with quinupristin-dalfopristin increased the ampicillin MIC from 1 to 4 μg/ml for one strain. For 10 strains of E. faecium, interactions were also assessed by time-kill methods using concentrations of the agents attainable in human serum. Most of these antimicrobials augmented killing by quinupristin-dalfopristin to a minor degree. Against 2 of the 12 strains in this collection that were not highly resistant to gentamicin, the combination of quinupristin-dalfopristin (2 μg/ml) plus gentamicin (5 μg/ml) resulted in killing approaching 3 log10 CFU/ml. With the exception of doxycycline, inhibitory interactions between quinupristin-dalfopristin and other agents tested against vancomycin-resistant strains of E. faecium were uncommon at clinically relevant concentrations.
Article
Full-text available
A method for detecting multidrug-resistant Mycobacterium tuberculosis by using a reduction of resazurin is described. Eighty clinical isolates were evaluated against isoniazid and rifampin; results at 7 days were compared with those of the proportion method. Specificity and sensitivity were excellent. The method is simple, inexpensive, and rapid and might be used with other antituberculosis drugs.
Article
Full-text available
The incidence of tuberculosis has been increasing substantially on a worldwide basis over the past decade, but no tuberculosis-specific drugs have been discovered in 40 years. We identified a diarylquinoline, R207910, that potently inhibits both drug-sensitive and drug-resistant Mycobacterium tuberculosis in vitro (minimum inhibitory concentration 0.06 μg/ml). In mice, R207910 exceeded the bactericidal activities of isoniazid and rifampin by at least 1 log unit. Substitution of drugs included in the World Health Organization's first-line tuberculosis treatment regimen (rifampin, isoniazid, and pyrazinamide) with R207910 accelerated bactericidal activity, leading to complete culture conversion after 2 months of treatment in some combinations. A single dose of R207910 inhibited mycobacterial growth for 1 week. Plasma levels associated with efficacy in mice were well tolerated in healthy human volunteers. Mutants selected in vitro suggest that the drug targets the proton pump of adenosine triphosphate (ATP) synthase.
Article
Full-text available
Pentachlorophenol (PCP), an organochlorine fungicide, is extensively used in the United States for the protection of wood products. Moreover, widespread agricultural, domestic, and industrial applications have caused PCP-contaminants to enter the food chain from the environment. There is accumulating evidence indicating that PCP is highly toxic to humans, and causes injury to major organs including the lung, liver, kidneys, heart, and brain. While PCP has been shown to induce systemic toxicity and carcinogenesis in several experimental studies, the literature is scarce regarding its toxic mechanisms of action. Recent investigations in our laboratory have shown that PCP exerts both cytotoxic and mitogenic effects in human liver carcinoma (HepG2) cells [1], and in primary culture of catfish hepatocytes [2]. In the present study, we hypothesized that PCP exposure will trigger similar cytotoxic and mitogenic responses in AML 12 Mouse hepatocytes. To test this hypothesis, we performed the MTT assay for cell viability in PCP-treated and control cells. Data obtained from this experiment indicated a biphasic response with respect to PCP toxicity; showing a hormosis effect characterized by mitogenicity at lower levels of exposure, and cytotoxicity at higher doses. Upon 48 hrs of exposure, PCP chemical doses required to cause 50% reduction in the viability (LC50) of AML 12 mouse hepatocytes was computed to be 16.0 + 2.0 microg/mL. These results indicate that, although the sensitivity to PCP toxicity varies from one cell line to another, its toxic mechanisms are similar across cell lines.
Article
Full-text available
Antibacterial discovery research has been driven, medically, commercially and intellectually, by the need for new therapeutics that are not subject to the resistance mechanisms that have evolved to combat previous generations of antibacterial agents. This need has often been equated with the identification and exploitation of novel targets. But efforts towards discovery and development of inhibitors of novel targets have proved frustrating. It might be that the 'good old targets' are qualitatively different from the crop of all possible novel targets. What has been learned from existing targets that can be applied to the quest for new antibacterials?
Article
Mycobacterium tuberculosis (Mtb) infections are causing serious health concerns worldwide. Anti-tuberculosis drug resistance threatens the current therapies and causes further need to develop effective anti-tuberculosis therapy. GlmU represents an interesting target for developing novel Mtb drug candidates. It is a bifunctional acetyltransferase/uridyltransferase enzyme that catalyzes the biosynthesis of UDP- N-acetyl-glucosamine (UDP-GlcNAc) from glucosamine-1-phosphate (GlcN-1-P). UDP-GlcNAc is a substrate for the biosynthesis of lipopolysaccharide and peptidoglycan that are constituents of the bacterial cell wall. In the current study, structure and ligand based computational models were developed and rationally applied to screen a drug-like compound repository of 20,000 compounds procured from ChemBridge DIVERSetTM database for the identification of probable inhibitors of Mtb GlmU. The in vitro evaluation of the in silico identified inhibitor candidates resulted in the identification of 15 inhibitory leads of this target. Literature search of these leads through SciFinder and their similarity analysis with the PubChem training dataset (AID 1376) revealed the structural novelty of these hits with respect to Mtb GlmU. IC50 of the most potent identified inhibitory lead (5810599) was found to be 9.018±0.04µM. Molecular dynamics (MD) simulation of this inhibitory lead (5810599) in complex with protein affirms the stability of the lead within the binding pocket and also emphasizes on the key interactive residues for further designing. Binding site analysis of the acetyltransferase pocket with respect to the identified structural moieties provides a thorough analysis for carrying out the lead optimization studies.
Article
N-acetylglucosamine-1-phosphate uridyltransferase (GlmU) is a pivotal bifunctional enzyme, its N and C terminal domains catalyzes uridyltransferase and acetyltransferase activities, respectively. Final product of GlmU catalyzed reaction, uridine-diphospho-N-acetylglucosamine (UDP-GlcNAc), acts as sugar donor providing GlcNAc residues in the synthesis of peptidoglycan and a disaccharide linker (D-N-GlcNAc-1-rhamnose), the key structural components of Mycobacterium tuberculosis (M. tuberculosis) cell wall. In the present study, we have searched new inhibitors against acetyltransferase activity of M. tuberculosis GlmU. A subset of 1607 synthetic compounds, selected through dual approach i.e., in-silico and whole cell screen against 20,000 compounds from ChemBridge library, was further screened using an in-vitro high throughput bioassay to identify inhibitors of acetyltransferase domain of M. tuberculosis GlmU. Four compounds were found to inhibit GlmU enzyme specific to acetyltransferase activity, with IC50 values ranging from 9 to 70 μM. Two compounds (6624116, 5655606) also exhibited whole cell activity against drug susceptible as well as drug resistant M. tuberculosis. These two compounds also exhibited increased anti-TB activity when tested in combination with rifampicin, isoniazid and ethambutol, however 5655606 was cytotoxic to eukaryotic cell line. These results demonstrate that identified chemical scaffolds can be used as inhibitors of M. tuberculosis cell wall enzyme after optimizations for future anti-TB drug development program. Copyright © 2015 Elsevier Ltd. All rights reserved.
Article
In considering the approval of bedaquiline, the FDA weighed the benefits of treatment for patients with smear-positive, multidrug-resistant pulmonary tuberculosis, for whom there are insufficient treatment options, against the risks, including an observed mortality imbalance.
Article
Peptidoglycan is an essential component of the cell wall of bacteria, including Mycobacterium tuberculosis, that provides structural strength and rigidity to enable internal osmotic pressure to be withstood. The first committed step in the biosynthesis of peptidoglycan involves the formation of uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) from uridine triphosphate (UTP) and GlcNAc-1-phosphate. This reaction is catalysed by N-acetylglucosamine-1-phosphate uridyltransferase (GlmU), a bifunctional enzyme with two independent active sites that possess acetyltransferase and uridyltransferase activities. Herein, we report the first inhibition study targeted against the uridyltransferase activity of M. tuberculosis GlmU. A number of potential inhibitors were initially prepared leading to the discovery of active aminoquinazoline-based compounds. The most potent inhibitor in this series exhibited an IC50 of 74 μM against GlmU uridyltransferase activity and serves as a promising starting point for the discovery of more potent inhibitors.
Article
The bacterium that causes tuberculosis, Mycobacterium tuberculosis, possesses a rather unique outer membrane composed largely of lipids that possess long-chain and branched fatty acids, called mycolic acids. These lipids form a permeability barrier that prevents entry of many environmental solutes, thereby making these bacteria acid-fast and able to survive extremely hostile surroundings. Antitubercular drugs must penetrate this layer to reach their target. This review highlights drug development efforts that have added to the slowly growing tuberculosis drug pipeline, identified new enzyme activities to target with drugs and increased the understanding of important biosynthetic pathways for mycobacterial outer membrane and cell wall core assembly. In addition, a portion of this review looks at discovery efforts aimed at weakening this barrier to decrease mycobacterial virulence, decrease fitness in the host or enhance the efficacy of the current drug repertoire by disrupting the permeability barrier.
Article
GlmM and GlmU are key enzymes in the biosynthesis of UDP-N-acetyl-d-glucosamine (UDP-GlcNAc), an essential precursor of peptidoglycan and the rhamnose-GlcNAc linker region in the mycobacterial cell wall. These enzymes are involved in the conversion of two important precursors of UDP-GlcNAc, glucosamine-6-phosphate (GlcN-6-P) and glucosamine-1-phosphate (GlcN-1-P). GlmM converts GlcN-6-P to GlcN-1-P, GlmU is a bifunctional enzyme, whereby GlmU converts GlcN-1-P to GlcNAc-1-P and then catalyzes the formation of UDP-GlcNAc from GlcNAc-1-P and uridine triphosphate. In the present study, methyl 2-amino-2-deoxyl-α-d-glucopyranoside 6-phosphate (1α), methyl 2-amino-2-deoxyl-β-d-glucopyranoside 6-phosphate (1β), two analogs of GlcN-6-P, were synthesized as GlmM inhibitors; 2-azido-2-deoxy-α-d-glucopyranosyl phosphate (2) and 2-amino-2,3-dideoxy-3-fluoro-α-d-glucopyranosyl phosphate (3), analogs of GlcN-1-P, were synthesized firstly as GlmU inhibitors. Compounds 1α, 1β, 2, and 3 as possible inhibitors of mycobacterial GlmM and GlmU are reported herein. Compound 3 showed promising inhibitory activities against GlmU, whereas 1α, 1β and 2 were inactive against GlmM and GlmU even at high concentrations.
Article
The UDP-N-acetylglucosamine (UDP-GlcNAc) is present as one of the glycosyl donors for disaccharide linker (D-N-GlcNAc-L-rhamnose) and the precursor of peptidoglycan in mycobacteria. The bifunctional enzyme GlmU involves in the last two sequential steps of UDP-GlcNAc synthetic pathway. Glucosamine-1-phosphate acetyltransferase catalyzes the formation of N-acetylglucosamine-1-phosphate (GlcNAc-1-P) from glucosamine-1-phosphate (GlcN-1-P) and acetyl coenzyme A (Acetyl CoA), and N-acetylglucosamine-1-phosphate uridyltransferase catalyzes the synthesis of UDP-GlcNAc from GlcNAc-1-P and UTP. The previous studies demonstrating the essentiality of GlmU to mycobacterial survival supported GlmU as a novel and potential target for TB drugs. In this work, two accurate and simple colorimetric assays based on 96-well microtiter plate were developed to measure the kinetic properties of bifunctional GlmU including initial velocity, optimal temperature, optimal pH, the effect of Mg2+, and the kinetic parameters. Both of the colorimetric assays for bifunctional GlmU enzyme activities and the kinetic properties will facilitate high-throughput screening of GlmU inhibitors.
Article
Since its discovery in the early 1980s, O-linked-beta-N-acetylglucosamine (O-GlcNAc), a single sugar modification on the hydroxyl group of serine or threonine residues, has changed our views of protein glycosylation. While other forms of protein glycosylation modify proteins on the cell surface or within luminal compartments of the secretory machinery, O-GlcNAc modifies myriad nucleocytoplasmic proteins. GlcNAcylated proteins are involved in transcription, ubiquitination, cell cycle, and stress responses. GlcNAcylation is similar to protein phosphorylation in terms of stoichiometry, localization and cycling. To date, only two enzymes are known to regulate GlcNAcylation in mammals: O-GlcNAc transferase (OGT), which catalyzes the addition of O-GlcNAc, and beta-N-acetylglucosaminidase (O-GlcNAcase), a neutral hexosaminidase responsible for O-GlcNAc removal. OGT and O-GlcNAcase are regulated by RNA splicing, by nutrients, and by post-translational modifications. Their specificities are controlled by many transiently associated targeting subunits. As methods for detecting O-GlcNAc have improved our understanding of O-GlcNAc's functions has grown rapidly. In this review, the functions of GlcNAcylation in regulating cellular processes, its extensive crosstalk with protein phosphorylation, and regulation of OGT and O-GlcNAcase will be explored. GlcNAcylation rivals phosphorylation in terms of its abundance, protein distribution and its cycling on and off of proteins. GlcNAcylation has extensive crosstalk with phosphorylation to regulate signaling, transcription and the cytoskeleton in response to nutrients and stress. Abnormal crosstalk between GlcNAcylation and phosphorylation underlies dysregulation in diabetes, including glucose toxicity, and defective GlcNAcylation is involved in neurodegenerative disease and cancer and most recently in AIDS.
Article
N-Acetylglucosamine-1-phosphate uridyltransferase (GlmU) is an essential bacterial enzyme with both an acetyltransferase and a uridyltransferase activity which have been mapped to the C-terminal and N-terminal domains, respectively. GlmU performs the last two steps in the synthesis of UDP-N-acetylglucosamine (UDP-GlcNAc), which is an essential precursor in both the peptidoglycan and the lipopolysaccharide metabolic pathways. GlmU is therefore an attractive target for potential antibiotics. Knowledge of its three-dimensional structure would provide a basis for rational drug design. We have determined the crystal structures of Streptococcus pneumoniae GlmU (SpGlmU) in apo form at 2.33 A resolution, and in complex with UDP-N-acetyl glucosamine and the essential co-factor Mg(2+) at 1.96 A resolution. The protein structure consists of an N-terminal domain with an alpha/beta-fold, containing the uridyltransferase active site, and a C-terminal domain with a long left-handed beta-sheet helix (LbetaH) domain. An insertion loop containing the highly conserved sequence motif Asn-Tyr-Asp-Gly protrudes from the left-handed beta-sheet helix domain. In the crystal, S. pneumoniae GlmU forms exact trimers, mainly through contacts between left-handed beta-sheet helix domains. UDP-N-acetylglucosamine and Mg(2+) are bound at the uridyltransferase active site, which is in a closed form. We propose a uridyltransferase mechanism in which the activation energy of the double negatively charged phosphorane transition state is lowered by charge compensation of Mg(2+) and the side-chain of Lys22.
Article
Despite over a century of research, tuberculosis remains a leading cause of infectious death worldwide. Faced with increasing rates of drug resistance, the identification of genes that are required for the growth of this organism should provide new targets for the design of antimycobacterial agents. Here, we describe the use of transposon site hybridization (TraSH) to comprehensively identify the genes required by the causative agent, Mycobacterium tuberculosis, for optimal growth. These genes include those that can be assigned to essential pathways as well as many of unknown function. The genes important for the growth of M. tuberculosis are largely conserved in the degenerate genome of the leprosy bacillus, Mycobacterium leprae, indicating that non-essential functions have been selectively lost since this bacterium diverged from other mycobacteria. In contrast, a surprisingly high proportion of these genes lack identifiable orthologues in other bacteria, suggesting that the minimal gene set required for survival varies greatly between organisms with different evolutionary histories.
Article
Much of the early structural definition of the cell wall of Mycobacterium spp. was initiated in the 1960s and 1970s. There was a long period of inactivity, but more recent developments in NMR and mass spectral analysis and definition of the M. tuberculosis genome have resulted in a thorough understanding, not only of the structure of the mycobacterial cell wall and its lipids but also the basic genetics and biosynthesis. Our understanding nowadays of cell-wall architecture amounts to a massive "core" comprised of peptidoglycan covalently attached via a linker unit (L-Rha-D-GlcNAc-P) to a linear galactofuran, in turn attached to several strands of a highly branched arabinofuran, in turn attached to mycolic acids. The mycolic acids are oriented perpendicular to the plane of the membrane and provide a truly special lipid barrier responsible for many of the physiological and disease-inducing aspects of M. tuberculosis. Intercalated within this lipid environment are the lipids that have intrigued researchers for over five decades: the phthiocerol dimycocerosate, cord factor/dimycolyltrehalose, the sulfolipids, the phosphatidylinositol mannosides, etc. Knowledge of their roles in "signaling" events, in pathogenesis, and in the immune response is now emerging, sometimes piecemeal and sometimes in an organized fashion. Some of the more intriguing observations are those demonstrating that mycolic acids are recognized by CD1-restricted T-cells, that antigen 85, one of the most powerful protective antigens of M. tuberculosis, is a mycolyltransferase, and that lipoarabinomannan (LAM), when "capped" with short mannose oligosaccharides, is involved in phagocytosis of M. tuberculosis. Definition of the genome of M. tuberculosis has greatly aided efforts to define the biosynthetic pathways for all of these exotic molecules: the mycolic acids, the mycocerosates, phthiocerol, LAM, and the polyprenyl phosphates. For example, we know that synthesis of the entire core is initiated on a decaprenyl-P with synthesis of the linker unit, and then there is concomitant extension of the galactan and arabinan chains while this intermediate is transported through the cytoplasmic membrane. The final steps in these events, the attachment of mycolic acids and ligation to peptidoglycan, await definition and will prove to be excellent targets for a new generation of anti-tuberculosis drugs.
Article
Unlike other methods for docking ligands to the rigid 3D structure of a known protein receptor, Glide approximates a complete systematic search of the conformational, orientational, and positional space of the docked ligand. In this search, an initial rough positioning and scoring phase that dramatically narrows the search space is followed by torsionally flexible energy optimization on an OPLS-AA nonbonded potential grid for a few hundred surviving candidate poses. The very best candidates are further refined via a Monte Carlo sampling of pose conformation; in some cases, this is crucial to obtaining an accurate docked pose. Selection of the best docked pose uses a model energy function that combines empirical and force-field-based terms. Docking accuracy is assessed by redocking ligands from 282 cocrystallized PDB complexes starting from conformationally optimized ligand geometries that bear no memory of the correctly docked pose. Errors in geometry for the top-ranked pose are less than 1 A in nearly half of the cases and are greater than 2 A in only about one-third of them. Comparisons to published data on rms deviations show that Glide is nearly twice as accurate as GOLD and more than twice as accurate as FlexX for ligands having up to 20 rotatable bonds. Glide is also found to be more accurate than the recently described Surflex method.
Article
The last 10 years have seen resurgent industry activity in discovery and development of new drugs for the treatment of tuberculosis (TB), a growing widespread and devastating (more than 2 million deaths annually) bacterial infection that is of increasing concern in developing and developed nations alike. This review describes drugs currently being evaluated in the clinic for treatment of uncomplicated and drug resistant pulmonary TB, and updates the literature on 5 new drugs that entered clinical trials in the last 4 years.
Article
N-Acetylglucosamine-1-phosphate uridyltransferase (GlmU) is an essential enzyme in aminosugars metabolism and an attractive target for antibiotic drug discovery. GlmU catalyzes the formation of uridine-diphospho-N-acetylglucosamine (UDP-GlcNAc), an important precursor in the peptidoglycan and lipopolisaccharide biosynthesis in both Gram-negative and Gram-positive bacteria. Here we disclose a 1.9 A resolution crystal structure of a synthetic small-molecule inhibitor of GlmU from Haemophilus influenzae (hiGlmU). The compound was identified through a high-throughput screening (HTS) configured to detect inhibitors that target the uridyltransferase active site of hiGlmU. The original HTS hit exhibited a modest micromolar potency (IC(50) approximately 18 microM in a racemic mixture) against hiGlmU and no activity against Staphylococcus aureus GlmU (saGlmU). The determined crystal structure indicated that the inhibitor occupies an allosteric site adjacent to the GlcNAc-1-P substrate-binding region. Analysis of the mechanistic model of the uridyltransferase reaction suggests that the binding of this allosteric inhibitor prevents structural rearrangements that are required for the enzymatic reaction, thus providing a basis for structure-guided design of a new class of mechanism-based inhibitors of GlmU.
Article
UDP-N-acetyl-D-glucosamine (UDP-GlcNAc) is an essential precursor of peptidoglycan and the rhamnose-GlcNAc linker region of mycobacterial cell wall. In Mycobacterium tuberculosis H37Rv genome, Rv1018c shows strong homology to the GlmU protein involved in the formation of UDP-GlcNAc from other bacteria. GlmU is a bifunctional enzyme that catalyzes two sequential steps in UDP-GlcNAc biosynthesis. Glucosamine-1-phosphate acetyl transferase catalyzes the formation of N-acetylglucosamine-1-phosphate, and N-acetylglucosamine-1-phosphate uridylyltransferase catalyzes the formation of UDP-GlcNAc. Since inhibition of peptidoglycan synthesis often results in cell lysis, M. tuberculosis GlmU is a potential anti-tuberculosis (TB) drug target. In this study we cloned M. tuberculosis Rv1018c (glmU gene) and expressed soluble GlmU protein in E. coli BL21(DE3). Enzymatic assays showed that M. tuberculosis GlmU protein exhibits both glucosamine-1-phosphate acetyltransferase and N-acetylglucosamine-1-phosphate uridylyltransferase activities. We also investigated the effect on Mycobacterium smegmatis when the activity of GlmU is fully removed or reduced via a genetic approach. The results showed that activity of GlmU is required for growth of M. smegmatis as the bacteria did not grow in the absence of active GlmU enzyme. As the amount of functional GlmU enzyme was gradually reduced in a temperature shift experiment, the M. smegmatis cells became non-viable and their morphology changed from a normal rod shape to stubby-rounded morphology and in some cases they lysed. Finally a microtiter plate based assay for GlmU activity with an OD340 read out was developed. These studies therefore support the further development of M. tuberculosis GlmU enzyme as a target for new anti-tuberculosis drugs.
Multi-targeting by monotherapeutic antibacterials
  • Ll Silver
Silver LL. Multi-targeting by monotherapeutic antibacterials. Nat Rev Drug Discov 2007;6:41e55.