ArticlePDF Available

Abstract and Figures

The most important changes in cartography are associated with the development of computer technology, and regarding the function and usage of maps, the accent has been given to cartographic visualisation. Animation, multimedia presentation, Internet, WWW, market economy and politics have remarkably influenced cartography. The paper emphasises the need for closer collaboration of experts in informatics, geodesists, geographers, spatial planners and others with cartographers. The future of cartography is associated with map production, GIS, visualisation of spatial databases, and the production of detailed three-dimensional landscape presentations.
Content may be subject to copyright.
S. Frangeš, N. Frančula, M. Lapaine: The Future of Cartography KiG, 2002, 1
6
The Future of Cartography
Stanislav Frangeš, Nedjeljko Frančula, Miljenko Lapaine
University of Zagreb, Faculty of Geodesy
Kačićeva 26, 10000 Zagreb
ABSTRACT. The most important changes in
cartography are associated with the development
of computer technology, and regarding the func-
tion and usage of maps, the accent has been given
to cartographic visualisation. Animation, multime-
dia presentation, Internet, WWW, market economy
and politics have remarkably influenced cartogra-
phy. The paper emphasises the need for closer
collaboration of experts in informatics, geodesists,
geographers, spatial planners and others with
cartographers. The future of cartography is
associated with map production, GIS, visualisation
of spatial databases, and the production of de-
tailed three-dimensional landscape presentations.
1. INTRODUCTION
It is presumed that at the beginning of the 21st Century
positions and attributes will be routinely registered into
digital data files with the accuracy sufficient enough to
meet the needs of the majority of users. Technologically
speaking, it will be possible for the people in the world
of the 21st Century to reconstruct the appearance of any
part of the world for whichever moment in the past, of
that time and partly of the future. We believe that digital
spatial data will become the expected and accepted part
of everyday life and activities.
Goodchild (1999) notices the principal paradox of the
present cartography. On one hand, there is constantly
growing marginalization of cartography within bigger
and bigger spreading of spatial data in digital form, and
on the other hand there is a constant need coming up for
good cartographic practice in visual communications,
since more and more people have the possibility to use
new technologies in map production. It is very difficult
today to find a drawing nib for making a map or in
cartographic classrooms, says Goodchild, and drawing-
tables disappear. Furthermore, map users start looking
for digital products obviously because of digital
analysis potentials and of simultaneous growing of GIS
as a machine for analysing map data.
We do not speak about digital revolution any more, but
about digital world, about digital virus infection and
about digital transition (Goodchild, 1999).
We witness the globalisation of some jobs where some
aspects of cartography belong to as well, accompanied
by the growth of multinational trade of almost
everything. The most obvious examples for it are oil
companies, software firms, banking and retail trade.
Together with a large number of small firms, Autodesk,
ESRI, Intergraph, MapInfo and Microsoft supply bigger
and bigger part of GIS and map production market.
Indeed, there are probably more maps made a day by
100000 or a similar subset of 2 million users of
AutoCAD than all cartographic experts together. It also
seems very probable that the largest number of maps
drawn daily is made from encyclopaedias like Encarta.
Do-It-Yourself cartography is commonplace (Rhind
1999).
GIS has made it possible for everyone who has got
personal computer and a cheap software to present
spatial information in the form of a map. In the world in
which everyone can make a map, who needs a
cartographer any more? We shall try to answer this
question in a more detailed manner in this paper. We
shall complete the introductory part with the quotation
S. Frangeš, N. Frančula, N. Lapaine: Budućnost kartografije KiG, 2002, 1
7
vizualnim komunikacijama, budući da sve više ljudi
ima mogućnost upotrebe novih tehnologija za izradu
karata. Danas je, prema Goodchildu, teško naći pero za
crtanje pri izradi karata ili u kartografskim učionicama,
a i crtači stolovi isčezavaju. Korisnici karata počinju
tražiti digitalne proizvode zbog očitog potencijala
digitalnih analiza i istodobnog porasta GIS-ova kao
strojeva za analiziranje podataka s karte.
Više se ne govori o digitalnoj revoluciji nego o
digitalnom svijetu, o zarazi digitalnim virusom i o
digitalnoj tranziciji (Goodchild, 1999).
Svjedoci smo globalizacije nekih poslova, među kojima
su i neki aspekti kartografije, s porastom
multinacionalne trgovine gotovo svega. Najočitiji su
primjer za to naftne kompanije, softverske tvrtke,
bankarstvo i maloprodaja. Sve veći dio tržišta GIS-a i
kartografije snabdijevaju Autodesk, ESRI, Intergraph,
MapInfo i Microsoft, uz mnoštvo malih poduzeća.
Vjerojatno više karata na dan napravi 100 000 ili sličan
broj od 2 milijuna korisnika AutoCAD-a nego svi
kartografi stručnjaci. Također se čini vrlo vjerojatnim
da najveći broj karata koje se dnevno iscrtaju nastaje iz
enciklopedija kao što je Encarta. Kartografija “uradi
sam” postala je stvarnost (Rhind 1999).
Svakomu tko ima osobno računalo i jeftini softver GIS
je omogućio prikazivanje prostornih informacija u
obliku karte. U svijetu u kojem svatko može izraditi
kartu, tko još treba kartografa? Na to pitanje detaljnije
ćemo pokušati odgovoriti u ovome radu. Uvodni dio
zaključit ćemo Rhindovim (1999) citatom: “Kada je
Europsko povjerenstvo pozvalo predstavnike država
članica iz ministarstava nadležnih za kartografiju na
sastanak u Luksemburg, bila su zastupljena sljedeća
Sažetak. Najvažnije promjene u kartografiji
vezane su uz razvoj računalne tehnologije i
geoinformacijskih sustava (GIS-a), a glede
funkcije i upotrebe karata naglasak je na
kartografskoj vizualizaciji. Na kartografiju
također znatno utječu animacija, multimedijski
prikazi, Internet, WWW, tržišno gospodarstvo i
politika. Kartografija se mijenja od ponudom
vođene do zahtjevom vođene kartografije. U radu
je posebno istaknuta potreba uže suradnje
informatičara, geodeta, geografa, prostornih
planera i drugih s kartografima. Budućnost
kartografije nije samo u izradi karata, već i u GIS-
ovima, vizualizaciji prostornih baza podataka i
izradi detaljnih trodimenzionalnih prikaza
krajolika.
1. UVOD
Pretpostavlja se da će početkom 21. stoljeća položaji i
atributi biti rutinski registrirani u digitalne datoteke s
dovoljnom točnošću da se zadovolji većinu korisnika. U
svijetu 21. stolje, tehnološki govoreći, ljudi će moći
rekonstruirati izgled bilo kojeg dijela Zemlje za bilo
koji trenutak u prošlosti, sadašnjosti, pa djelomično i
budućnosti. Vjerujemo da će digitalni prostorni podaci
postati očekivani i prihvaćeni dio svakodnevnog života i
aktivnosti.
Goodchild (1999) uočava osnovni paradoks današnje
kartografije. S jedne strane sve je veća marginalizacija
kartografije unutar sve većeg širenja prostornih
podataka u digitalnom obliku, a s druge strane javlja se
povećana potreba za dobrom kartografskom praksom u
Budućnost kartografije
Stanislav Frangeš, Nedjeljko Frančula, Miljenko Lapaine
Sveučilište u Zagrebu, Geodetski fakultet
Kačićeva 26, 10000 Zagreb
S. Frangeš, N. Frančula, M. Lapaine: The Future of Cartography KiG, 2002, 1
8
by Rhind (1999): “When the European Commission
invited representatives from the ministries in charge of
mapping in member countries to a meeting in
Luxembourg, at least the following ministries were
represented: Ministry of Environment, Ministry of
Agriculture and Forestry, Ministry of Housing and
Physical Planning, Ministry of Finance, Ministry of the
Interior, Ministry of Defence and Ministry of Justice.
This shows how mapping and geographic information
issues cover all the sectors of administration and it is in
many cases a matter of taste which is the most natural
ministry for these issues”.
2. THE INFLUENCE OF COMPUTER
TECHNOLOGY
The application of computer technology in cartography
is especially important because the process of map
production is rather complex and very long, and
therefore many maps are out of date in the moment of
publishing. In addition, there is a great need today for a
larger number of various maps that cannot be satisfied
by means of classical methods in map production.
Hence, computer technology has found and still does a
very convenient area in cartography, and the advantages
of new technology are manifold:
• faster map production
• faster updating
• cheaper map production
• improvement of working conditions
• improvement of work quality
• solving the tasks that could not be solved so far or
their solution used to be connected with great
difficulties, e.g. in transferring map contents from one
map projection into another.
Furthermore, the experts from other professions request
from geodesists and cartographers more and more the
data in digital form. These are agronomists, ecologists,
geographers, geologists, town planners, foresters and
many others who want to geocode the results of their
measurements and researches. In this respect, if
cartographic organisation would not adopt new
technologies, there will be no more competition in the
market.
Computer technology has contributed, according to
Štefanović et al. (1999), that the maps have become
remarkably stronger means for data communication,
because it is now possible to pay more attention to a
map user and leave out everything unimportant to the
user.
The introduction of computers into cartography has also
some negative effects. The quantity of technical skills
that a cartographer has to bring under control has grown
excessively lately. A cartographer, apart from being an
expert for traditional cartography, has to be an expert
for computer programming as well, for databases,
digital image processing, remote sensing, land and
geoinformation systems.
The majority of cartographic software is now cheap and
available to almost everybody, enabling them to
produce maps by means of personal computers and
approach to Web. Farmers can produce the maps of
their field using technology, with much larger resolution
than the traditional soil maps used to have, they can also
gather and arrange detailed spatial information about
investments and yields by means of devices attached to
harvesters or tractors. Local administrations can rent
vehicles with GPS devices, drive them along every road
and make a road map with much greater accuracy and
much cheaper than using traditional method of map
production organised by central administration. In short,
the changes in technology and economy transfer the
map production from the system of a unique central
production into local areas, and a complex network
replaces the old, centrifugal, radial system of
distribution.
For almost twenty years the computer cartography has
been producing rather bad map products that have been
accepted because of being new and different. It is
possible today to make maps that are good or even
aesthetically better than those made manually. However,
as it has been pointed out several times at the 19th
International Cartographic Conference in Ottawa in
1999, “a large number of the maps produced using
today’s software are simply awful .... GIS technology
lets us produce rubbish faster, more cheaply, and in
greater volume than ever before” (Goodchild 1999).
3. INFLUENCE OF GIS
The most attractive part of GIS is its visual aspect:
colourful maps appear on a screen, and users
manipulate with them by means of a mouse. GIS
communicates primarily through the channels of visual
senses, especially when it is used with the intention to
be promoted or to influence public opinion.
Maps are the main source of information for GIS and
one of the ways in visualising information generated
with GIS. Cartographers are included into creation and
usage of GIS. They are especially involved in the
formation of necessary databases, i.e. into determination
of data models, database contents, data types, data
dictionary and similar, into hardware selection and
S. Frangeš, N. Frančula, N. Lapaine: Budućnost kartografije KiG, 2002, 1
9
ministarstva: za okoliš, za poljoprivredu i šumarstvo, za
stambena pitanja i planiranje, za financije, za unutrašnje
poslove, za obranu i ministarstvo za pravosuđe. To
pokazuje koliko su kartografija i prostorne informacije
važne za upravu, a samo je stvar sklonosti kojem je
ministarstvu najprirodnije bavljenje takvim pitanjima.”
2. UTJECAJ RAČUNALNE TEHNOLOGIJE
Primjena računalne tehnologije u kartografiji osobito je
važna jer je proces izrade karata složen i vrlo dug, pa su
mnoge karte u trenutku izdavanja već zastarjele. Osim
toga, danas postoji potreba za sve većim brojem
raznovrsnih karata koju klasičnim metodama izrade
karata nije moguće zadovoljiti. Prema tome, računalna
je tehnologija našla i nalazi u kartografiji zahvalno
područje, a prednosti su te nove tehnologije višestruke:
• ubrzanje izrade karata
• ubrzanje osuvremenjivanja
• pojeftinjenje izrade karata
• poboljšanje uvjeta rada
• poboljšanje kvalitete rada
• rješavanje zadataka koje do sada uopće nije bilo
moguće riješiti ili je njihovo rješavanje bilo povezano
s velikim teškoćama, npr. prenošenje sadržaja karte iz
jedne kartografske projekcije u drugu.
Stručnjaci drugih struka sve više traže od geodeta i
kartografa podatke u digitalnom obliku. To su
agronomi, ekolozi, geografi, geolozi, urbanisti, šumari i
mnogi drugi, koji rezultate svojih mjerenja i istraživanja
žele prostorno definirati - geokodirati. Uz to, ne usvoje
li kartografske organizacije nove tehnologije, u
određenom trenutku neće više biti konkurentne na
tržištu.
Računalna tehnologija pridonijela je, prema Štefanoviću
i dr. (1999), da su karte postale znatno snažnije sredstvo
za priopćavanje podataka, jer se sada pri oblikovanju
karata najveća pozornost može obratiti korisniku karte,
a sve ono za korisnika nebitno može se izostaviti.
Uvođenje računala u kartografiju ima i neke negativne
učinke. Količina tehničkih umijeća kojima kartograf
mora ovladati u posljednje je vrijeme prekomjerno
porasla. Kartografski stručnjak, osim za tradicionalnu
kartografiju, danas mora biti i stručnjak za računalno
programiranje, za baze podataka, digitalnu obradu slika,
daljinska istraživanja, zemljišne i geoinformacijske
sustave.
Većina je kartografskog softvera sada jeftina i gotovo
svima dostupna, pa omogućuje izrađivanje karata
svakomu s osobnim računalom i pristupom internetu.
Poljoprivrednici s pristupom tehnologiji mogu izraditi
karte svojih polja s mnogo većom rezolucijom nego što
je bila ona tradicionalnih karata tla, mogu prikupiti i
sastaviti detaljne prostorne informacije o unosima i
prinosima s pomoću uređaja priključenih na strojeve za
žetvu ili traktore. Lokalna uprava može iznajmiti vozila
s uređajima GPS-a, provesti ih po svakoj cesti i izraditi
kartu cesta s većom točnošću i mnogo jeftinije od
tradicionalne izrade organizirane od središnje uprave.
Ukratko, promjene tehnologije i gospodarstva
premještaju izradu karata iz sustava jedinstvene
središnje izrade u lokalna područja, a stari centrifugalni,
radijalni sustav raspaavanja zamjenuje se složenom
mrežom.
Gotovo dvadeset godina računalna je kartografija
stvarala prilično loša kartografska djela koja su
prihvaćena zbog toga što su bila nova i različita. Danas
se s pomoću računala mogu izrađivati karte koje su
dobre ili čak estetski bolje od onih izrađenih rukom.
Međutim, kao što je u nekoliko navrata bilo
naglašavano na 19. međunarodnoj kartografskoj
konferenciji u Ottawi 1999., “veliki broj karata koje su
proizvod današnjeg softvera jednostavno je užasan.
Tehnologija GIS-a omogućava proizvodnju smeća brže,
jeftinije i u većem opsegu nego ikad prije” (Goodchild,
1999).
3. UTJECAJ GIS-A
Najatraktivniji je dio GIS-a njegov vizualni aspekt:
šarene karte pojavljuju se na zaslonu, a korisnik njima
rukuje s pomoću miša. GIS komunicira primarno
kanalima vizualnih osjetila, posebice kada se
upotrebljava s namjerom promidžbe ili utjecaja na javno
mnijenje.
Karte su za GIS glavni izvor podataka i jedan od načina
vizualizacije informacija generiranih GIS-om.
Kartografi su uključeni u stvaranje i upotrebu GIS-a,
posebno u oblikovanje potrebnih baza podataka, i to u
određivanje modela podataka, sadržaja baze podataka,
tipova podataka, rječnika podataka i sl., odabiranje
hardvera i softvera za potporu GIS-a, odabiranje izvora
i metoda za uzimanje prostornih podataka s karata i
odabiranje, razvoj i primjenu metoda za vizualizaciju
generiranih informacija na različitim izlaznim
uređajima podržanima GIS-om (Guptill i Morrison,
1995).
O odnosu kartografije i GIS-a postoje različita
mišljenja, pa je za jedne kartografija podsustav GIS-a
koji služi za vizualizaciju podataka (Kraak i Ormeling,
1996). Za kartografe je GIS, bez dvojbe, tehničko-
analitički podsustav kartografije. Očito je da su GIS i
kartografija dva neodvojiva pojma. Karta je istodobno
ulazni podatak i jedan od rezultata svake analize
provedene s pomoću GIS-a. Naime, koncepcija je GIS-a
S. Frangeš, N. Frančula, M. Lapaine: The Future of Cartography KiG, 2002, 1
10
software for GIS support, into selection of sources and
methods for taking spatial data from maps and into
selecting, developing and applying methods for
visualisation of generated information on various output
devices supported by GIS (Guptill and Morrison 1995).
There are various opinions about the relationship
between cartography and GIS, one of them
characterising cartography as the subsystem of GIS
used for data visualisation (Kraak and Ormeling 1996).
For cartographers, GIS is undeniably technical and
analytical subsystem of cartography. It is obvious that
GIS and cartography are two concepts that cannot be
separated. A map is at the same time the input datum
and one of the results of each analysis carried out by
means of GIS. The integrity of GIS and cartography can
also be seen from the fact that the majority of tools used
for GIS have numerous functions for quick and highly
professional map production, and there are also the
programs developed that are specialised for map
production and based on attributed database. The
appearance and expansion of GIS has also stimulated
the popularisation of cartography, which is especially
related to thematic cartography (Lovrić 1995). The role
of GIS for cartography, according to Wood (1994), is
not only in popularisation and enlargement of
cartographic activity, but also in realising new
possibilities for innovation in further development of
cartography being a research tool.
Today, GIS supports more and more almost all tools of
graphic programs and they have the tools for
manipulating with objects, text, retrieved objects (raster
graphics etc.), for special effects, export filters. All
programs support also a definite number of basic
elements that are used for creating a more complex
drawing. These are the tools for drawing rectangles
(square being a special case), ellipses (circle being a
special case), general curves (straight line as a special
case), bitmaps and for writing a text. Special tools
enable the work in layers and with them, creation of
round edges on a rectangle, the production of circle
sections, classifying and connecting, and making single
objects thicker or thinner, making them straight or
doubled, focusing, zooming, distance and angle
measuring, filtering for the purpose of improving image
quality, masking, shading, vectorization, rasterization,
etc. (Weber 1990, Knezović 1993).
During the last decade many started to work on map
production. Widespread usage of geoinformation
systems has enlarged immensely the number of
produced maps. Many of these maps have not been
made as final product, but more as an inter-product to
help users in their work with spatial data. A map, as
such, started to play an entirely new role: it is not only
the means of communication but also the means to help
user’s (visual) thinking process.
4. CARTOGRAPHIC VISUALISATION
In the last few centuries a map had two important
functions: it was a medium for saving information about
space and it was the image of the world that helped us
to learn about the complexity of our environment.
Digital cartography has brought the co-ordinates in
digital form in order to establish databases and
cartometric usage, and referring to the space image, a
map being in digital or analogous form, intrudes itself
upon us as being the most important cartographic
visualisation of space (Robinson et al. 1995).
There is an old proverb saying that one image is worth
more than thousands of words, giving thus the simplest
answer to the question why visualisation is necessary. It
is an act of learning, i.e. man’s capability to develop
images mentally that makes the recognition of pattern
and the formation of arrangement possible. Although
some authors discover and connect the visualisation
only with computer technology, it is not a new method
in computer technology or in digital cartography. The
research and efforts in finding out the way how to
present diminished and simplified earth’s features and
objects have been done even before the introduction of
computers in cartographic activity, but it is quite certain
that digital procedures contributed in achieving higher
quality and quicker performance of such an act and
have also opened some new possibilities for changes in
the development and usage of map graphics
(MacEachren and Ganter 1990, DiBiase et al. 1992,
MacEachren and Monmonier 1992, Frangeš 1998).
Modern cartographic visualisation, according to Taylor
(1994), encompasses digital cartography and computer
graphics. Considering the quality, it is a remarkable
change of visual presentation in almost realistic time
that leads to better understanding of many spatial
objects. Referring to the quantity, it is the possibility of
faster and cheaper production of a wide range of various
cartographic products.
Extremely large extension of the application area for a
map on the screen will lead to the assessment of
cartographic tools of formation and visualisation
according to the possibilities on such a map. It will be
demanded more and more from cartographic tools to be
able to present a map immediately, in real time on the
screen, in accordance with the demands and usage,
respecting thereby the spatial reality, satisfactory
visualisation with the elements of map graphics,
emphasising the associations and similarity, and also
satisfactory translation of spatial information into
S. Frangeš, N. Frančula, N. Lapaine: Budućnost kartografije KiG, 2002, 1
11
stvaranje baze geografskih podataka, a upravo se na tom
konceptu razvija i već spomenuta kartografija iz baze
podataka. Nedjeljivost GIS-a i kartografije očita je i po
tome što većina alata za GIS imaju i mnogobrojne
funkcije za brzu i visokoprofesionalnu izradu karata, a
razvijaju se i programi specijalizirani za izradu karata
temeljenih na atributnoj bazi podataka. Pojava i
ekspanzija GIS-a dovela je i do popularizacije
kartografije, što se osobito odnosi na tematsku
kartografiju (Lovrić, 1995). Uloga GIS-a u kartografiji,
prema Woodu (1994), nije samo popularizacija i
povećanje kartografske aktivnosti, već ostvarenje novih
mogućnosti za inovaciju u daljnjem razvitku
kartografije kao istraživačkog alata.
Danas GIS-ovi sve više podržavaju gotovo sve alate
grafičkih programa, pa tako imaju alate za rukovanje
objektima, tekstom, učitanim objektima (rasterska
grafika i sl.), za specijalne efekte, eksportne filtre. Svi
programi podržavaju također određeni skup temeljnih
elemenata od kojih se stvara složeniji crtež. To su alati
za crtanje pravokutnika (kao poseban slučaj kvadrat),
elipsa (kao poseban slučaj kružnica), krivulja općenito
(kao poseban slučaj ravna linija), bitmapa te za
upisivanje teksta. Posebni alati omogućuju npr. rad u
slojevima i s njima, kreiranje zaobljenih rubova na
pravokutniku, izradu kružnih isječaka, svrstavanje i
spajanje te zadebljavanje i stanjivanje pojedinih
objekata, poravnavanje i podvostručivanje objekata,
fokusiranje, zumiranje, mjerenje duljine i kuta,
filtriranje za poboljšanje kvalitete slike, maskiranje,
sjenčanje, vektorizaciju, rastriranje i dr. (Weber 1990,
Knezović 1993).
Tijekom posljednjeg desetljeća mnogi su se počeli
baviti izradom karata. Široko rasprostranjena upotreba
geoinformacijskih sustava znatno je povećala broj
izrađenih karata. Mnoge od tih karata nisu izrađene kao
krajnji proizvod već prije kao međuproizvod da
pomogne korisniku u njegovu radu s prostornim
podacima. Takva je karta dobila potpuno novu ulogu:
ona nije samo sredstvo za komunikaciju već također
sredsvo za pomoć korisnikovu (vizualnom) procesu
mišljenja.
4. KARTOGRAFSKA VIZUALIZACIJA
Tijekom proteklih stoljeća karta je imala dvije važne
funkcije: bila je medij za spremanje informacija o
prostoru i slika svijeta koja nam je pomagala u
spoznavanju složenosti okoliša u kojem živimo.
Digitalna je kartografija donijela koordinate u
digitalnom obliku za uspostavljanje baza podataka i
kartometrijsku upotrebu, a glede predodžbe prostora,
bila karta u digitalnom ili analognom obliku, nameće se
kao najvažnija kartografska vizualizacija prostora
(Robinson i dr., 1995).
Stara uzrečica da jedna slika vrijedi više nego tisuću
rijeći najjednostavniji je odgovor zašto je potrebna
vizualizacija. Vizualizacija je stvaranje mentalne slike
prostora koji se trenutačno ne vidi. To je čin spoznaje,
tj. čovjekova sposobnost mentalnog razvijanja
slikovnog predočenja koje omogućuje prepoznavanje
predloška i oblikovanje poretka. Iako neki autori
otkrivaju i povezuju vizualizaciju samo uz računalstvo,
to nije nova metoda u računalstvu ni u digitalnoj
kartografiji. Istraživanja i pokušaji kako što bolje
prikazati umanjene i pojednostavnjene zemljišne oblike
i objekte provodili su se i prije upotrebe računala u
kartografske svrhe, no sigurno je da su digitalni
postupci pridonijeli kvalitetnijem i bržem činu takve
spoznaje te da su otvorili neke nove mogućnosti za
promjene u razvoju i upotrebi kartografike
(MacEachren i Ganter, 1990; DiBiase i dr., 1992;
MacEachren i Monmonier, 1992; Frangeš, 1998).
Moderna kartografska vizualizacija, prema Tayloru
(1994), obuhvaća digitalnu kartografiju i računalnu
grafiku. Glede kvalitete, to je znatna promjena
vizualnog izlaganja u gotovo realnom vremenu, koje
omogućuje povećanje razumijevanja mnoštva
prostornih objekata. Što se tiče kvantitete, to je
mogućnost brže i jeftinije proizvodnje različitih
kartografskih proizvoda.
Iznimno veliko proširenje područja primjene karte na
zaslonu monitora dovest će do toga da će se
kartografski alati oblikovanja i vizualizacije
procjenjivati prema mogućnostima na takvoj karti. Od
kartografskih će se alata sve više tražiti mogućnost
prikaza karte odmah, u realnom vremenu na zaslonu
monitora, primjereno zahtjevima i upotrebi korisnika,
poštujući pritom prostornu stvarnost, zadovoljavajuću
vizualizaciju elementima kartografike, s naglaskom na
asocijacije i sličnost, te zadovoljavajuće prevođenje
prostornih informacija u znanje (Bollmann, 1996).
Digitalni alati neprekidno se razvijaju pa se očekuju
uvjerljiviji vizualizacijski alati za oblikovanje
kartografike. iščezavanje, zamagljivanje, rasplinjavanje
i sl.
Nadalje, gotovo su do savršenstva razvijeni zumiranje,
pri kojem se može razlikovati grafički, sadržajni i
inteligentni zum, te rad s isječcima, prozorima,
grafovima i ikonama (Timpf i Devogele 1997).Uz to,
također, postoje trodimenzionalni prikazi, sjenčanje s
različitim modelima osvjetljivanja, npr. konstantno
sjenčanje (flat shading), metoda interpolacije zrake
(ray-tracing) i metoda isijavanja tijela (radiosity),
S. Frangeš, N. Frančula, M. Lapaine: The Future of Cartography KiG, 2002, 1
12
knowledge (Bollman 1996).
Digital tools are being developed continuously, and
hence, it is expected that convincing visualisation tools
for the formation of map graphics will appear. So far,
focusing has been developed that is used for
determining the contrast between objects and
environment, defining thereafter the limits of clear
distinctness. The accompanying effects are known as
disappearing, obscuring, and similar. Furthermore,
zooming has been developed almost perfectly enabling
the distinction between graphic, contextual and
intelligent zoom, and also the work with the sections,
windows, graphs and icons (Timpf and Devogele 1997).
There are also three-dimensional presentations, shading
with various models of illumination, e.g. flat shading,
the method of intensity interpolating (Gourad shading),
the method of interpolating normal onto the surface
(Phong shading), the method of ray-tracing and the
method of radiosity, blinking and glittering, various
filters, simultaneous presentation of various maps,
colour transformation and other phenomena (Slocum
1994, Van der Well et al. 1994, Kraak and Ormeling
1996). It should not be exaggerated when using
visualisation tools. One should, namely, try to achieve
visual simplicity and, when it is not necessary, avoid
any burdening of a user.
The development of visualisation software requires,
especially for cartographic purposes, the research of
real needs and aim that users want to reach. The
cartographers offer expert opinions for every purposeful
speciality, including also the classification data,
consequences of generalisation and association of signs,
assessment of how a user understands map graphics,
etc. Cartographers must have a share in scientific
visualisation, as well as users and creators of tools,
leaning in it on scientific and professional cognition,
but also on individual skills (MacEachren and
Monmonier 1992). The tools of cartographic
visualisation give users the possibility to carry out
extensive transformations and changes of data
presentation, e.g. different observation angle, changing
various conditions etc. enabling the comparison of
essential facts (MacEachren and Ganter 1990).
5. MODERN CHANGES
It should be pointed out that the application of
computers and the development of analytical
cartography have brought the concepts of real and
virtual maps. A lot of cartographic products have
namely appeared, e.g. images on screens and digital
relief models that have escaped ordinary map frames as
a permanent product on the paper. According to
Moellering (1980, 1991, 1999), there are two decisive
characteristics that distinguish conventional maps in
real form of a visible copy from virtual maps. The real
map is a product that can be seen directly as
cartographic image.
Ordinary maps on the paper and images on the screen
can be seen in such a way, but the files of cartographic
data cannot be seen in that way. They have to be
transformed first into the state of direct visibility. The
other decisive characteristic is whether the product can
be touched. Table 1 shows the classes of real and virtual
maps obtained by means of answers yes and no as
Table 1. Four classes of real and virtual maps with the presentation of all 16 possible transformations
among them (according to Moellering 1991)
Directly viewable as cartographic image
Premanent
tangible
reality
YES
YES
NO
NO
REAL MAP
conventional map sheet, globe,
orthophoto map, machine drawn
map, computer output microfilm,
block-diagram, plastic terrain
model
VIRTUAL MAP TYPE II
traditional field data, field book,
anaglyph, film animation, hollogram
(stored), Fourier transformation
(saved)
VIRTUAL MAP TYPE I
CRT map image, cognitive map
(two-dimensional image)
VIRTUAL MAP TYPE III
digital memory (data), magnetic
disc or tape (data), video
animation, digital
terrain model, cognitive map
(relational geographic
information)
S. Frangeš, N. Frančula, N. Lapaine: Budućnost kartografije KiG, 2002, 1
13
treptanje i bliještanje, različiti filtri, istodobni prikaz
raznih karata, transformacija boja i drugo, što se navodi
u sljedećem odjeljku (Slocum, 1994; Van der Well i dr.,
1994; Kraak i Ormeling, 1996). Pri upotrebi
vizualizacijskih alata ne smije se pretjerati. Naime,
treba ipak težiti vizualnoj jednostavnosti i, kada to nije
nužno, izbjeći bilo kakvo preopterećenje korisnika.
Za razvoj vizualizacijskog softvera, osobito u
kartografske svrhe, nužna su istraživanja stvarnih
potreba i cilja korisnika te suradnja tvoraca alata.
Kartografi pružaju vještačenja za svaku svrsishodnu
specijalnost uključujući tu podatke klasifikacije,
posljedice generalizacije i pridruživanja znakova,
procjenu korisnikova shvaćanja kartografike i drugo.
Kartografi mogu imati udjela u znanstvenoj
vizualizaciji i kao korisnici i kao tvorci alata,
oslanjajući se pritom na znanstvene i stručne spoznaje,
ali i na individualne sklonosti (MacEachren i
Monmonier, 1992). Alati kartografske vizualizacije
pružaju korisniku provedbu opsežnih preobrazbi i
preinaka prikaza podataka, npr. drugačiji kut gledanja,
promjenu različitih uvjeta i dr., koje omogućuju
usporedbu bitnih činjenica. Bez toga one bi one bi
ostale nedostupne ili bi mogle izgledati nepotrebne i
međusobno nepovezane (MacEachren i Ganter, 1990).
5. SUVREMENE PROMJENE
Treba istaknuti da su se primjenom računala te
razvojem analitičke kartografije pojavili pojmovi
realnih i virtualnih karata. Naime, pojavilo se mnogo
kartografskih proizvoda, npr. slike na zaslonima
monitora i digitalni modeli reljefa, koji su izašli izvan
uobičajenih okvira karte kao trajnog produkta na papiru.
nedostaje jedno ili oba svojstva nazivaju se virtualnim
kartama. Te tri klase omogućuju proširenje definicije
karte, što odražava razvoj suvremene kartografije.
Odatle proizlazi da virtualne karte mogu sadržavati iste
informacije kao realne, a u slučaju kartografskih baza
podataka i više od toga. Dakle, kartografske baze
podataka treba smatrati kartama jer one mogu
sadržavati informacije realnih karata i mogu se u njih
transformirati ako je to potrebno. Transformacije
između četiriju klasa realnih i virtualnih karata mogu se
primijeniti za definiranje svih važnih obrada podataka u
kartografiji. Tako tih 16 transformacija (vidi strelice u
tablici 1) definira operacije kao što su digitaliziranje
(transformiranje realne karte u virtualnu kartu 3. tipa ),
prikazivanje na zaslonu monitora (transformiranje
virtualne karte 3. tipa u virtualnu kartu (1. tipa), izradu
analogne kopije sa zaslona (transformiranje virtualne
Prema Moelleringu (1980, 1991, 1999), postoje dvije
odlučujuće značajke koje razlikuju konvencionalne
karte u realnom obliku vidljive kopije od virtualnih
karata. Realna je karta proizvod koji može biti izravno
viđen kao kartografska slika. I uobičajene karte na
papiru i slike na zaslonu mogu se vidjeti na taj način, ali
npr. datoteke kartografskih podataka ne mogu se tako
vidjeti. One se najprije moraju transformirati u stanje
izravne vidljivosti. Drugo je odlučujuće svojstvo
opipljivost proizvoda. Tablica 1 prikazuje klase realnih i
virtualnih karata dobivenih odgovorima da ili ne s
obzirom na spomenuta dva svojstva.
Konvencionalni kartografski prozvodi, npr. listovi
karata, atlasi i globusi, koji imaju čvrstu, opipljivu
realnost i izravno su vidljivi kao kartografske slike,
nazivaju se realnim kartama. Ostale tri klase kojima
Izravno vidljiva kartografska slika
Stalno
opipljiva
realnost
DA
DA
NE
NE
REALNA KARTA:
konvencionalni list karte, globus,
ortofotokarta, karta iscrtana
strojem, raèunalni izlaz na
mikrofilm, blok-dijagram, plastièni
model terena
2. TIP VIRTUALNE KARTE:
tradicionalni podaci s terena,
zapisnik, anaglif, filmska animacija,
hologram (spremljen), Fourierova
transformacija (spremljena)
1.TIP VIRTUALNE KARTE:
slika na zaslonu monitora,
kognitivna karta (dvodimen-
zionalna slika)
3. TIP VIRTUALNE KARTE:
digitalna memorija (podaci),
magnetski disk ili traka (podaci),
videoanimacija, digitalni model
terena, kognitivna karta (relacijske
geografske informacije)
Tablica 1. Četiri klase realnih i virtualnih karata s prikazom svih 16 mogućih transformacija među njima
(prema Moelleringu, 1991)
S. Frangeš, N. Frančula, M. Lapaine: The Future of Cartography KiG, 2002, 1
14
referring to the above-mentioned characteristics.
Conventional cartographic products, e.g. map sheets,
atlases and globes that have firm, touchable reality and
are seen directly as cartographic images are called real
maps. The other three classes that lack one of the
characteristics or both are called virtual maps. These
three classes enable the extension of the definition of a
map that reflects the development of modern
cartography.
Thus, it can be derived that the virtual maps can contain
the same information as the real ones, but in the case of
cartographic bases even more than that. Hence, the
cartographic databases should be considered as maps
because they can contain the information of real maps
and can be transformed into them, if it should be
necessary. The transformations among four classes of
real and virtual maps can be applied in order to define
all important data processing in cartography. Thus,
those 16 transformations (see arrows in the Table 1)
define the operations as digitising (transforming the real
map into the virtual map of the type III), presentation on
a screen (transforming the virtual map of the type III
into the virtual map of the type I), the production of
analogous copy from the screen (transformation of the
virtual map of the type III into the real map) or
transferring the database (transforming the virtual map
of the type III into the virtual map of the type III)
(Moellering 1991, 1999).
There are numerous digital databases created every day
being accurately connected with the position on the
Earth. These bases can be completed with digital images
and sound. It has already been suggested to use
unpleasant sound with the presentation of inaccurate
data and pleasant sound or without sound with the usage
of accurate and checked data. In some spatial
presentations in the video environment the impression
of uncertainty was tried to be created by obscuring the
presentation or colour transfer among the classes. A
cartographer will be able to take the methods from the
film industry that he will use for obscuring a part of the
presentation. Let us suppose that accurate data will be
presented with precise and clean signs, and inaccurate
data and dubious data with unclear and dim signs.
However, the techniques that are good for a computer
screen might not be applicable for analogous graphic
outputs. The analogous maps might demand a series of
diagrams, each for a single information.
There are more and more electronic maps and atlases in
CD-ROMs. The greatest advantage of a multimedia
atlas, as compared with the printed one, is the speed of
searching: changing map scale, transferring from one
part of the Earth’s globe to another, searching a specific
name etc. Apart from that, we are not limited by the
given formats, but can choose ourselves the segment we
are interested in. Furthermore, each map supplemented
with our own data can be printed on paper. Of course,
the multimedia atlas has also some disadvantages
referring to the printed atlases. With respect to the
graphic quality, the cartographic presentation on screen
cannot be compared with the printed atlases, the
classification of roads is insufficient, the algorithms for
automatic title location are defective, etc. (Frančula
1999).
The influence of Internet and World Wide Web (WWW)
on cartography is enormous. WWW is unrivalled in its
capability to offer a great amount of information to
many users at minimum prices. The expenses of
maintaining the server and connection with Internet are
minimum related to the prices of producing and
distributing CD-ROMs. Updating is quick and cheap.
The atlases on CD-ROMs, as well as printed atlases
become obsolete very quickly, and the atlases on WWW
can always be available for users in the most updated
state (Frančula and Lapaine 1999).
The development of animation has contributed
remarkably to visual thinking and communication, as
well as to dynamic presentation of information. The
most maps either those two-dimensional or three-
dimensional, are namely static and contain respectfully
adequate map graphics. The animation in cartography
has contributed mostly to the dynamics of a map
enabling thus direct presentation of movements and
changes. The map graphics necessary for expressing the
dynamics is very complex and still insufficiently
researched (DiBiase et al. 1992).
The presentation of three-dimensional objects on a two-
dimensional screen has always been a special challenge.
The software for visualisation contains unfailingly the
tools for the presentation in 3D graphics, so that a great
number of data coming from various sources in the real
time could be presented in such a way that they are
immediately understandable. The production of detailed
three-dimensional landscape presentations, especially
cities, is another challenge for cartographers. Such
three-dimensional models are demanded by more and
more disciplines, e.g. regional and urban planning,
telecommunications, insurance companies,
environmental and cultural monuments protection,
tourism and many others (Frančula and Lapaine 1999).
Ambitious expert systems test adequate map graphics
demanding human creativity, prudence and judgement.
The expert systems have been developed that locate the
names already saved in the database according to the
co-ordinate position at adequate places on the map,
S. Frangeš, N. Frančula, N. Lapaine: Budućnost kartografije KiG, 2002, 1
15
sadrže kartografiku primjerenu tomu. Animacija u
kartografiji najviše je pridonijela dinamici karte,
omogućivši izravan prikaz kretanja i promjena.
Kartografika potrebna za izražavanje dinamike vrlo je
složena i još nedovoljno istražena (DiBiase i dr., 1992).
Prikazivanje trodimenzionalnih objekata na
dvodimenzionalnom zaslonu oduvijek je bio poseban
izazov. Softver za vizualizaciju obavezno sadrži alate za
prikaz u 3D grafici, kako bi veliko mnoštvo podataka,
koji u realnom vremenu pristižu iz najrazličitijih izvora,
bilo moguće prikazati tako da budu odmah razumljivi.
Izrada detaljnih trodimenzionalnih prikaza krajolika,
posebno gradova, još je jedan novi izazov kartografima.
Takve trodimenzionalne modele u sve većem opsegu
zahtijevaju mnoge discipline, npr. regionalno i urbano
planiranje, telekomunikacije, osiguravajuća društva,
zaštita okoliša i spomenika kulture, turizam i mnogi
drugi (Frančula i Lapaine, 1999).
Ambiciozni ekspertni sustavi ispituju primjerenu
kartografiku zahtijevajući ljudsku kreativnost,
razboritost i prosuđivanje. Razvijeni su već ekspertni
sustavi koji imena spremljena u bazi podataka prema
koordinatama smještaju na odgovarajuća mjesta na
karti, pronalazeći u blizini objekta na koji se odnose
optimalan položaj (Kresse, 1994). Umjetna
inteligencija, prema Yufenu (1997), ključ je za napredak
u izradi ekspertnoga sustava za oblikovanje karte i
kartografike. Umjetna inteligencija treba biti
kombinacija između vizualnoga i apstraktnoga
razmišljanja, kojemu je konačni proizvod karta. No, sve
to nije tako jednostavno, što pokazuju i dosadašnja
istraživanja i rezultati.
U vodećim laboratorijima postoje projekti koji razvijaju
simulacije i eksperimente u realnom vremenu sa
stereoprikazom, a ima i rješenja koja se popularno
nazivaju virtualna ili prividna stvarnost. Tako je npr. S
pomoću posebne zaštitne kape s dva zaslona za
stereosliku i s pomoću rukavica za upravljanje moguće
je u virtualnom prostoru u najrazličitijim uvjetima. To
zvuči kao znanstvena fantastika, ali nekima je već
stvarnost (Šimić, 1995). Anketa među vrhunskim
američkim stručnjacima predviđa da će se do 2018.
upotrebljavati 3D holografski telefon, a barem do 2004.
3D holografski pisač. To bi značilo da će se bez
pomagala, npr. bez naočala ili zaštitne kape, gledati 3D
slike u punoj boji. Pretpostavlja se da će takvi pisači
upotrebljavati tekuće kristale kako bi eksponirali
holografski film na svjetlo. Za prikaz nekog područja ili
neke pojave upotrebljavala bi se hologramska slika, pa
ne bi trebalo na to mjesto putovati i slično (Frangeš,
1998). Na izložbi karata održanoj na 19. međunarodnoj
kartografskoj konferenciji u Ottawi 1999. godine jednu
je od nagrada osvojila holografska karta planinskog
masiva Dachstein u austrijskim istočnim Alpama u
Kartografski prikaz na ekranu monitora nije po
grafičkoj kvaliteti usporediv s otisnutim atlasima,
nedovoljna je klasifikacija prometnica, manjkavi su
algoritmi za automatski smještaj naziva itd. (Frančula,
1999).
Internet i World Wide Web (WWW) imaju golem
utjecaj na kartografiju. WWW nema konkurencije u
sposobnosti da veliku količinu informacija pruži
mnogim korisnicima po minimalnim cijenama.
Troškovi održavanja poslužitelja i veza s Internetom
minimalni su u odnosu na cijene izrade i distribucije
CD-ROM-ova. Osuvremenjivanje je brzo i jeftino.
Atlasi na CD-ROM-u kao i tiskani atlasi brzo
zastarijevaju, dok atlasi na WWW-u mogu uvijek biti
dostupni korisnicima u najaktualnijem stanju (Frančula
i Lapaine, 1999).
Razvoj animacije znatno je pridonio vizualnom
razmišljanju i komunikaciji te dinamičkom prikazu
informacija. Naime, većina je karata, bile one
dvodimenzionalne ili trodimenzionalne, statična i one
karte 3. tipa u realnu kartu) ili prijenos baze podataka
(transformiranje virtualne karte 3. tipa opet u virtualnu
kartu 3. tipa) (Moellering 1991, 1999).
Svakodnevno se stvara velik broj digitalnih baza
podataka koje su točno povezane s položajima na
Zemlji. Te baze mogu biti upotpunjene digitalnim
slikama i zvukom. Već se predlaže upotreba
neugodnoga zvuka kod prikaza nesigurnih podataka i
ugodnoga zvuka ili bez zvuka kod prikaza sigurnih i
provjerenih podataka. Na nekim se prikazima prostora u
videookružju utisak nesigurnosti pokušao stvoriti
zamagljivanjem prikaza ili prijelazom boja između
klasa. Kartograf će moći preuzeti metode iz filmske
industrije, koje će iskoristiti za zamagljivanje ili
zamućivanje dijela prikaza. Pretpostavimo da će se
sigurni podaci prikazivati oštrim i jasnim znakovima, a
nesigurni i problematični podaci nejasnim i mutnim
znakovima. Međutim, tehnike koje su dobre za zaslon
monitora računala možda neće biti primjenjive za
analogne grafičke izlaze. Za analogne karte možda će
trebati niz dijagrama, po jedan za svaki pojedini
podatak.
Postoji sve više elektroničkih karata i atlasa na CD-
ROM-ovima. Najveća prednost multimedijskog atlasa s
obzirom na otisnuti je brzina pretraživanja: mijenjanje
mjerila karte, prebacivanje s jednoga dijela Zemljine
kugle na drugi, traženje određenog imena i sl. Osim
toga nismo ograničeni danim formatima, već isječak
koji nas zanima biramo sami. Potom, svaku kartu
dopunjenu vlastitim podacima možemo otisnuti na
papir. Naravno da multimedijski atlas u usporedbi s
otisnutim atlasom ima i nedostataka.
S. Frangeš, N. Frančula, M. Lapaine: The Future of Cartography KiG, 2002, 1
16
finding the optimum position in the vicinity of the
object they refer to (Kresse 1994). Artificial
intelligence, according to Yufen (1997), is the key for
the development in the production of expert system for
creating maps and map graphics. The artificial
intelligence should be a combination between visual and
abstract thinking having a map as a final product. But it
is not all so simple, which can be seen from the
previous research and its results as well.
There are projects in leading laboratories for the future
that develop simulation and experiments in real time
with stereo presentation, and there are also solutions
called in a popular way virtual or simulated reality. One
can thus, using special protective cap with two screens
for stereo image and the gloves for manipulating, move
in virtual space in the most various conditions. It sounds
as science fiction, but some feel it already as the present
time (Šimić 1995). A poll carried out among top
American experts predicts that until 2018 3D
holographic telephones will be used, and the
holographic printer till 2004 at least. It means, that 3D
images will be watched in full colour without any tools,
e.g. without glasses or protective cap. It is presumed
that such printers will use liquid crystals to expose
holographic film to the light. To present some other area
or phenomenon, a hologram image would be used
without someone having to travel to some place
(Frangeš 1998). At the exhibition of maps held at the
19th International Cartographic Conference in Ottawa
in 1999, one of the prices has gone to the holographic
map of the mountain massif Dachstein in the Austrian
East Alps at the scale of 1:25 000 (plan) and 1:17500
(heights), size 90 cm x 110 cm. The authors are M. F.
Buchroitner and R. Schenkel from the Cartographic
Institute at the Technological University in Dresden. It
is the first cartographic hologram at large scale in the
world. The titles accompanying hydrographic network,
the names of mountains and settlements and other
cartographic symbols are made in digital form and
located above the terrain at various levels so that you
can see only one title, all titles or none if observed from
various directions. You can thus see the relief and land
without disturbing influence of other cartographic
information (ICEC 1999).
Non-visual procedures, e.g. sound, touch, smell and
taste, could give even more elements for cartographic
visualisation. Their successful application is another
challenge for a successful usage of computers in
presenting and interpreting (Van der Well et al. 1994).
Referring to the quality of spatial data, the
cartographers are very much interested in maintaining
high quality and updated spatial data, because their
products will be valid as much they are accurate for
users. Namely, if a large number of users make
expensive mistakes because of bad data used for
analyses and visualisations, it will reflect finally on
cartographic profession. On the other hand, referring to
the principal of the standard ISO9000 “do not give to a
user either more or less quality than he/she needs”, one
can notice an interesting turning-point in demands that
the society puts upon cartographers. The cartographers
do not have to try to create the most accurate
visualisations any more. There are now reasons for
systematic reduction of data quality for specific users
(Guptill and Morrison 1995).
6. REFLECTIONS ON THE FUTURE
Since Rhind (1993) predicted very successfully for the
period between 1993 and 1998 the continuation of
digital cartography and wider usage of network systems
in accomplishing various cartographic activities, then
after the attack of information experts in publishing
branch with very frequent violation of author’s rights,
furthermore, very big increase of the number of various
map users, it is rather interesting what he has to say
about the future. For the period from 1998 – 2003 he
predicts routine usage of networks completely
accessible on the basis of connecting computers and
telephones, and widespread availability of top software.
The role of state cartographic offices should become of
current interest again, and map publishing should be
very much spread, but followed with greater presence of
market economy. Regarding technology, satellites
should be more important, and the structure of users
should be respectfully even more diverse.
Internationalisation should become a significant actor in
cartography. For the period between 2003 and 2009
Rhind predicts multimedia tools present in every single
home, and even uneducated users would have the
possibility to reach distant information and use them.
All products will be more and more harmonised with
the market power, and some state cartographic offices
should dominate in world cartography associated with
economic companies. There will be international co-
ordination in map publishing among all world areas and
people, and the existing international communities
should be joined.
According to the same author, analogous maps will
become obsolete step by step. The technology for
transforming analogous maps into digital will be more
and more sophisticated, and analogous maps as a
medium for data saving will be used until 2009. Hence,
the technology has the main role. Many simple rules of
map graphics can be installed into the existing software.
The present relatively low prices of hardware will
follow, if the present trends should be continued, the
low prices of more sophisticated software. A
S. Frangeš, N. Frančula, N. Lapaine: Budućnost kartografije KiG, 2002, 1
17
mjerilu 1:25 000 (tlocrt) i 1:17 500 (visine), veličine
90´110 cm. Autori su M. F. Buchroitner i R. Schenkel iz
Kartografskog instituta Tehnološkog sveučilišta u
Dresdenu. To je prvi na svijetu kartografski hologram u
krupnome mjerilu. Nazivi uz hidrografsku mrežu,
nazivi planina i naselja te druge kartografske signature
izvedeni su u digitalnom obliku i smješteni iznad terena
na različitim razinama tako da se, gledajući iz različitih
smjerova, može vidjeti samo jedan naziv, svi nazivi ili
ni jedan. Dakle, može se vidjeti reljef i zemljište bez
smetajućeg utjecaja drugih kartografskih informacija
(ICEC 1999).
Još više elemenata za kartografsku vizualizaciju mogli
bi pružiti nevizualni postupci, npr. zvuk, opip, njuh i
okus. No, njihova je uspješna primjena opet izazov za
uspješnu upotrebu računala u prikazivanju i tumačenju
(Van der Wel i dr., 1994).
Glede kvalitete prostornih podataka, kartografi imaju
veliki interes održavati visokokvalitetne i aktualne
prostorne podatke zbog toga što će njihovi proizvodi
vrijediti onoliko koliko su za korisnika točni. Naime,
ako dovoljan broj korisnika učini skupe pogreške zbog
loših podataka upotrijebljenih za analize ili
vizualizacije, to će se na kraju odraziti na kartografsku
profesiju. S druge strane, s obzirom na načelo norme
ISO9000 “ne daj korisniku ni više ni manje kvalitete
nego što on treba”, zapaža se zanimljiv preokret u
zahtjevima što ih društvo postavlja kartografima.
Kartografi više ne moraju nastojati stvoriti najtočnije
vizualizacije. Sada postoje razlozi za sustavno
smanjenje kvalitete podataka za određene korisnike
(Guptill i Morrison, 1995).
6. RAZMIŠLJANJA O BUDUĆNOSTI
Kako je Rhind (1993), danas je potpuno jasno, vrlo
uspješno predvidio za razdoblje 1993–1998. nastavak
razvitka digitalne kartografije i širu upotrebu sustava
mreža za ostvarenje raznovrsnih kartografskih pothvata,
zatim u izdavaštvu karata udar informatičara s čestim
nepoštivanjem autorskoga prava, potom, velik porast
broja najraznovrsnijih korisnika karata, zanimljivo je
što je predvidio za ubuduće. Tako za razdoblje 1998–
2003. predviđa rutinsku upotrebu mreža u potpunosti
dostupnu na temeljima povezivanja računala i telefona,
te široko dostupan vrhunski softver. Uloga državnih
kartografskih ureda ponovno bi postala aktualnom, a
kartografsko izdavaštvo bilo bi vrlo rašireno, no uza sve
veću nazočnost tržišne ekonomije. Glede tehnologije,
sve bi veću važnost imali sateliti, a struktura korisnika
bila bi primjereno tomu još raznolikija. Značajan
činitelj u kartografiji postala bi internacionalizacija. Za
razdoblje 2003–2009. Rhind predviđa multimedijske
alate prisutne u svakom domu i čak neobrazovanim
korisnicima mogućnost pristupanja udaljenim
informacijama i njihovu upotrebu. U porastu bi bilo
usklađivanje svih proizvoda tržišnoj sili, a neki bi
državni kartografski uredi u sprezi s gospodarskim
tvrtkama dominirali svjetskom kartografijom. U
kartografskom izdavaštvu postojat će internacionalna
koordinacija među svim svjetskim područjima i
narodima, a također bi došlo do spajanja postojećih
internacionalnih zajednica.
Prema istom autoru analogne će karte pomalo
zastarijevati. Usavršavanje tehnologije za pretvaranje
analognih karata u digitalne u sve je jačem zamahu, a
analogne će se karte kao medij za pohranu podataka
upotrebljavati do 2009. Dakle, tehnologija ima glavnu
ulogu. Mnoga jednostavna pravila kartografike mogu
biti ugrađena u postojeći softver. Sadašnje relativno
niske cijene hardvera slijedit će, ako se sadašnji
trendovi nastave, i niske cijene sofisticiranijeg softvera.
Kartograf pritom može i mora naći svoj udjel i mjesto.
Ako je ta vizija budućnosti točna, kartografija će biti
sveprisutna, ali će količina kartografskih proizvoda,
koje će izrađivati školovani kartografi, biti u stalnom
padu. Kartografija će napredovati, a broj stručnjaka
kartografa će se smanjivati (Frangeš, 1998).
I mnogi drugi smatraju da je budućnost u rukama onih
stručnjaka koji će odgovarajućim aktualnim prostornim
informacijama moći opskrbiti specifičnu skupinu
korisnika izvan granica klasične kartografije i da će se
taj iskorak pretvoriti u zlatni rudnik. Svi naglašavaju
potrebu uže suradnje informatičara, geodeta, prostornih
planera, energetičara i drugih s kartografima, te
povećani udio informatike, GIS-a i računalne grafike u
izobrazbi kartografa (Frančula i Lapaine, 1999).
Kartografija, prema Kraaku (1998), može funkcionirati
kao katalizator među otkrićima u geoznanostima.
Kartografija se ne bi smjela promatrati samo kao
zasebna disciplina, već u vezi s drugim
geoinformatičkim disciplinama.
Zanimljiv okoliš za olakšavanje prijenosa znanja bio bi
nacionalna ustanova za obradu geoprostornih podataka
u kombinaciji s nacionalnim atlasom. Takva bi ustanova
mogla postati “geotržnicom”, vrstom trgovine za sve
dostupne prostorne podatke. Međutim, davanjem
dodatne vrijednosti ustanovi za obradu kombiniranjem
podataka s nacionalnim atlasom bio bi izazov i za
korisnika i za sudjelujuće organizacije. Glavna je ideja
da svaka organizacija daje suvremene podatke na
određenom stupnju objedinjavanja. Podaci bi mogli biti
prikazani na kartama koje su oblikovali profesionalni
kartografi, dok bi stručnjaci iz organizacija koje nude
podatke mogli napisati kratke opise objašnjavajući
prostorne uzorke na kartama. Korisnici mogu slobodno
učitati karte i/ili podatke za svoje vlastite svrhe. Karte i
opisi pružit će priliku za povezivanje korisnika s
dodatnim informacijama o primjenjenim kartografskim
S. Frangeš, N. Frančula, M. Lapaine: The Future of Cartography KiG, 2002, 1
18
cartographer can and must find its contribution and
place in it. If this vision of the future is a true one,
cartography will be present everywhere, but the
quantity of cartographic products made by an educated
cartographer will decrease continuously. Cartography
will advance, and the number of cartographic experts
will be reduced (Frangeš 1998).
Many others believe as well that the future is in the
hands of those experts who will be able to supply a
specific group of users with adequate current spatial
information outside of the limits of classical
cartography and that this step forward will turn into a
golden mine. Everybody points out the need for the
information experts, geodesists, spatial planners,
energetic experts and other to collaborate closely with
cartographers, and that informatics, GIS, computer
graphics should be present much more in the education
of cartographers (Frančula and Lapaine 1999).
Cartography can, according to Kraak (1998), function
as a catalyst among the discoveries in geosciences.
Cartography should not be observed only within the
frame of a discipline as such, but in connection with
other geoinformation disciplines.
A national institution for the processing of geospatial
data in combination with national atlas would be an
interesting environment for making the transfer of
knowledge easier. Such an institution could become a
“geomarket”, a sort of a shop for all available spatial
data. However, giving additional value to the institution
for processing by means of combining the data with
national atlas would be a challenge for users, as well as
for participating organisations. The main idea is that
each organisation gives updated data at the specific
level of unification. The data could be presented on
maps made by professional cartographers, and experts
from the organisations offering the data could write
short descriptions explaining spatial patterns on maps.
The users can at the same time retrieve maps and/or
data for their own purposes. Maps and descriptions will
offer the opportunity for connecting users with
additional information about applied cartographic
method or with WWW address of the organisation. This
address should enable the access to the additional data
and knowledge that could be reached commercially.
Such or similar ideas could be carried out on an
international, as well as on regional level (Kraak 1998).
Cartography is changing: it is changing from the one
conducted by offers to the one conducted by demands.
More and more people will be included into the map
production. More maps will be made, many of them
only for one purpose. Maps are changing – from final
product giving spatial information to temporary product
making visual thinking easier. Maps will be the basic
means in interactive, real time and dynamic
environment used for researching spatial databases
connected among each by means of WWW.
Creating or improving cartographic tools that will make
research possible, challenges the cartographers. They
will bring a map in its natural role being the means of
the access to the state infrastructure of spatial data.
Cartographic experts own knowledge about interaction
and correct usage of scales and resolutions in creating
visualisation. Cartographic experts are trained to make
the complexity of the real world abstract, to model
objects and relations between them. These skills will be
indispensable for future effective users of digital spatial
data.
7. CONCLUSIONS
To the traditional cartographer, what started as a useful
tool has turned into something monstrous, because
almost everybody has an access to the tools that used to
be exclusively in the hands of cartographic experts. In
the world in which everybody can make a map, who
needs cartography still? It is paradoxical, but the need
for good cartographic creation is larger than ever
(Goodchild 1999).
In the early phases of digital transition, the new
technology has brought advance in the map production
at lower prices. But along with the advance in
transition, the production itself comes into question
together with the organisation structures and
arrangements included in them. According to Goodchild
(1999), those who can get over the old practice and
accept quickly new possibilities will survive in this
world.
According to Rhind (1999), Ordnance Survey has
reduced the numbers of employees in the last 20 years
from 3500 to the half of it, and at the same time, the
work force has ten times as many graduates as 20 years
ago. In order to cope with the time, cartographers will
have to widen their activities from classical map
production to compilation, updating, control and usage
of cartographic databases (Frančula 1999).
One cannot comprehend completely what is going on
and what can happen in cartography without
considering the interests and needs of the market
economy and administration. It is not quite clear how
these interests will be connected in the next few years –
there are alternative scenarios, but it can vary
significantly in various countries in reality. Money and
politics are however deeply involved in making
decisions, and these decisions influence the life of all
people, including cartographers. Technology is not “a
given fact” that changes the world in a predictable way:
people start to change the world when they have
S. Frangeš, N. Frančula, N. Lapaine: Budućnost kartografije KiG, 2002, 1
19
metodama ili s WWW adresom organizacije. Ta bi
adresa trebala omogućiti pristup dodatnim podacima i
znanju, koje bi moglo biti komercijalno dostupno.
Takva ili slična ideja može biti provedena i na
međunarodnoj i na regionalnoj razini (Kraak, 1998).
Kartografija se mijenja: mijenja se od ponudom vođene
do zahtjevom vođene kartografije. Sve više ljudi
uključivat će se u izradu karata. Više karata bit će
izrađeno, mnoge od njih samo za jednu svrhu. Karte se
mijenjaju – od krajnjeg proizvoda koji daje prostorne
informacije do privremenog proizvoda koji olakšava
vizualno razmišljanje. Karte će biti osnovna sredstva u
interaktivnom, stvarno vremenskom i dinamičkom
okolišu, koji se upotrebljavaju za istraživanje prostornih
baza podataka što su međusobno povezane putem
WWW-a.
Izazov za kartografe je stvaranje ili poboljšavanje
kartografskih alata koji će omogućiti istraživanje. Oni
će dovesti kartu u njezinu prirodnu ulogu kao sredstvo
pristupa državnoj infrastrukturi prostornih podataka.
Kartografi stručnjaci posjeduju znanja o interakciji i
ispravnoj upotrebi mjerila i rezolucije pri stvaranju
vizualizacije. Kartografi stručnjaci izvježbani su za
apstrahiranje složenosti stvarnog svijeta, modeliranje
objekata i odnosa među njima. Te će vještine biti
prijeko potrebne za buduću učinkovitu uporabu
digitalnih prostornih podataka.
7. ZAKLJUČAK
Ono što je počelo kao korisno pomagalo, za
tradicionalnog se kartografa preobratilo u monstruma,
jer gotovo svatko ima pristup alatima koji su nekada bili
isključivo u rukama kartografa stručnjaka. U svijetu u
kojem svatko može izraditi kartu, tko još treba
kartografiju? Paradoksalno je, ali potreba za dobrim
kartografskim oblikovanjem sada je veća nego ikada
prije (Goodchild, 1999).
U ranim fazama digitalne tranzicije nova je tehnologija
donijela napredak u brzini izrade karata uz nižu cijenu.
No s napretkom tranzicije sama izrada dolazi u pitanje,
zajedno s organizacijskim strukturama i aranžmanima
uključenima oko njih. Prema Goodchildu (1999),
preživjet će u tom svijetu oni koji mogu nadvladati staru
praksu i brzo prihvatiti nove mogućnosti.
Prema Rhindu (1999), Ordnance Survey je u posljednjih
20 godina smanjio broj zaposlenih od 3500 na polovicu,
a istodobno se broj diplomiranih povećao deset puta.
Kako bi išli ukorak s vremenom, kartografi će morati
svoje aktivnosti proširiti od klasične izrade karata na
sastavljanje, osuvremenjivanje, kontrolu i upotrebu
kartografskih baza podataka (Frančula 1999).
Ne može se u potpunosti shvatiti što se događa i što se
može dogoditi u kartografiji bez razmatranja interesa i
potreba tržišnoga gospodarstva i uprave. Nije sasvim
jasno kako će se ti interesi ispoljiti u sljedećih nekoliko
godina – izvodivi alternativni scenariji postoje, a
stvarnost se može značajno razlikovati u različitim
zemljama. No, novac i politika uronjeni su u donošenje
odluka, a te odluke utječu na život svih ljudi,
uključujući i kartografe. Tehnologija nije “zadanost”
koja mijenja svijet na predviđeni način: ljudi počinju
mijenjati svijet onda kada imaju nužne poticaje, vještine
i tehnologiju. To je istina kako u kartografiji, tako i
inače (Rhind, 1999).
Literatura:
Bollmann, J. (1996): Kartographische Modellierung –
Integrierte Herstellung und Nutzung von Kartensystemen.
U: Kartographie im Umbruch – neue Herausforderungen,
neue Technologien. Beitrage zum Kartographiekongress
Interlaken 96, Kartographische Publikationsreiche 14,
Schweizerische Gesellschaft für Kartographie, 35-55.
DiBiase, D., MacEachren, A. M., Krygier, J. B., Reeves, C.
(1992): Animation and the Role of Map Design in
Scientific Visualization. Cartography and Geographic
Information Systems, 4, 201-214, 265-266.
Frančula, N. (1999): Digitalna kartografija. Sveučilište u
Zagrebu, Geodetski fakultet, Zagreb.
Frančula, N., Lapaine, M. (1999): Budućnost geodezije,
Hrvatska akademija tehničkih znanosti, Zagreb.
Frangeš, S. (1998): Grafika karte u digitalnoj kartografiji.
Doktorska disertacija, Sveučilište u Zagrebu, Geodetski
fakultet, Zagreb.
Goodchild, M. F. (1999): Cartographic Futures on a Digital
Earth, 19th International Cartographic Conference,
Ottawa, Proceedings (Ed. C. Peter Keller), University of
Victoria, Canada, Vol. 1, 5-13.
Guptill, S. C., Morrison, J. L. (urednici, 1995): Elements of
Spatial Data Quality. ICA Commission on Spatial Data
Quality. Tutić, D., Lapaine, M. (prijevod na hrvatski,
2001): Elementi kvalitete prostornih podataka. Državna
geodetska uprava, Zagreb.
ICEC (Edited by International Cartographic Exhibition
Committee, 1999): ICA 1999, International Cartographic
Exhibition Catalogue, Ottawa, Canada.
Knezović, Z. (1993): Relativitet grafičke PC produkcije. BUG,
7, 26-33.
Kraak, M.-J. (1998): Exploratory cartography – maps as tools
for discovery, ITC Journal, 1, 46-54.
Kraak, M. J., Ormeling, F. J. (1996): Cartography -
Visualization of spatial data. Addison Wesley Longman
Limited, London.
Kresse, W. (1994): Plazierung von Schrift in karten.
Dissertation, Schriftenreiche des Instituts für Kartographie
und Topographie, Bonn, 23.
Lovrić, S. (1995): GIS i digitalna kartografija. INFOTREND,
36, 63-66.
MacEachren, A. M., Ganter, J. H. (1990): A pattern
S. Frangeš, N. Frančula, M. Lapaine: The Future of Cartography KiG, 2002, 1
20
necessary encouragements, skills and technology. It is
the truth in cartography, as well as elsewhere (Rhind
1999).
References
Bollmann, J. (1996): Kartographische Modellierung –
Integrierte Herstellung und Nutzung von Kartensystemen.
In: Kartographie im Umbruch – neue Herausforderungen,
neue Technologien. Beitrage zum Kartographiekongress
Interlaken 96, Kartographische Publikationsreiche 14,
Schweizerische Gesellschaft für Kartographie, 35-55.
DiBiase, D., MacEachren, A. M., Krygier, J. B., Reeves, C.
(1992): Animation and the Role of Map Design in
Scientific Visualization. Cartography and Geographic
Information Systems, 4, 201-214, 265-266.
Frančula, N. (1999): Digital Cartography (Digitalna
kartogafija). University of Zagreb, Faculty of Geodesy,
Zagreb.
Frančula, N., Lapaine, M. (1999): Future of Geodesy
(Budućnost geodezije), Croatian Academy of Engineering,
Zagreb.
Frangeš, S. (1998): Map Graphics in Digital Cartography
(Grafika karte u digitalnoj kartografiji), Doctoral thesis,
University of Zagreb, Faculty of Geodesy, Zagreb.
Goodchild, M. F. (1999): Cartographic Futures on a Digital
Earth, 19th International Cartographic Conference,
Ottawa, Proceedings (Ed. C. Peter Keller), University of
Victoria, Canada, Vol. 1, 5-13.
Guptill, S. C., Morrison, J. L. (editors, 1995): Elements of
Spatial Data Quality. ICA Commission on Spatial Data
Quality. Elsevier Science Ltd.
ICEC (Edited by International Cartographic Exhibition
Committee, 1999): ICA 1999, International Cartographic
Exhibition Catalogue, Ottawa, Canada.
Knezović, Z. (1993): Relativity of Graphic PC Production
(Relativitet grafičke PC produkcije). BUG, 7, 26-33.
Kraak, M.-J. (1998): Exploratory cartography – maps as tools
for discovery, ITC Journal, 1, 46-54.
Kraak, M. J., Ormeling, F. J. (1996): Cartography –
Visualization of spatial data. Addison Wesley Longman
Limited, London.
Kresse, W. (1994): Plazierung von Schrift in karten.
Dissertation, Schriftenreiche des Instituts für Kartographie
und Topographie, Bonn, 23.
Lovrić, S. (1995): GIS and Digital Cartography (GIS i
digitalna kartografija). INFOTREND, 36, 63-66.
MacEachren, A. M., Ganter, J. H. (1990): A pattern
identification approach to cartographic visualization.
Cartography and Geographic Information Systems, 2, 64-
81.
MacEachren, A. M., Monmonier, M. (1992): Introduction.
Cartography and Geographic Information Systems, 4, 197-
200.
Moellering, H. (1980): Strategies of Real-Time Cartography.
Cartographic Journal, 1, 12-15.
Moellering, H. (ed., 1991): Spatial Database Transfer
Standards: Current International Status, Elsevier Applied
Science, London, New York.
Moellering, H. (1999): The Field of Analytical Cartography:
Scope, Contents and Prospects. 19th International
Cartographic Conference, Ottawa, Proceedings (Ed. C.
Peter Keller), University of Victoria, Canada, Vol. 2, 1827-
1837.
Rhind, D. (1993): Mapping for the new millennium. 16th
International Cartographic Conference, Cologne,
Proceedings 1, Bielefeld, 3-14.
Rhind, D. (1999): Business, governments and technology:
inter-linked causal factors of change in cartography, 19th
International Cartographic Conference, Ottawa,
Proceedings (Ed. C. Peter Keller), University of Victoria,
Canada, Vol. 1, 29-35.
Robinson, A. H., Morrison, J. L., Muehrcke, P. C., Kimerling,
A. J., Guptill, S. C. (1995): Elements of Cartography.
Sixth edition, John Wiley & Sons, Inc., New York.
Slocum, T. A. (1994): Visualization Software Tools. In:
MacEachren, A. M., Fraser Taylor, D. R. (eds.)
Visualization in Modern Cartography. Pergamon, Greath
Yarmouth, 91-96.
Štefanović, P., Čolić, K., Fiedler, T. (1999): GIS, GPS, and
Aerial Photogrammetry – Purposeful Connection and
Effectivity (GIS, GPS i aerofotogrametrija – svrsishodna
povezanost i učinkovitost), 100 Years of Photogrammetry
in Croatia, Proceedings, Croatian Academy of Sciences
and Arts, Zagreb, 87-98.
Taylor, D. R. F. (1994): Perspectives on Visualization and
Modern Cartography. In: MacEachren, A. M., Fraser
Taylor, D. R. (eds.) Visualization in Modern Cartography.
Pergamon, Greath Yarmouth, 333-341.
Timpf, S., Devogele, T. (1997): New Tools for Multiple
Representations. Proceedings 18th ICA/ACI International
Cartographic Conference, 3, Stockholm, 1381-1386.
Van der Wel, F. J. M., Hootsmans, R. M., Ormeling, F. (1994):
Visualization of Data Quality. In: MacEachren, A. M.,
Fraser Taylor, D. R. (eds.) Visualization in Modern
Cartography. Pergamon, Greath Yarmouth, 313-331.
Weber, W. (1990): Zum Entwicklungstand der
rechnergestützen Kartographie. Kartographisches
Taschenbuch, Kirschbaum Verlag, Bonn, 9-35.
Wood, M. (1994): Visualization in Historical Context. In:
MacEachren, A. M., Fraser Taylor, D. R. (eds.)
Visualization in Modern Cartography. Pergamon, Greath
Yarmouth, 13-26.
Yufen, C., Xiangping, Y. (1997): The Role of Thinking in
Images in Map Design. Proceedings 18th ICA/ACI
International Cartographic Conference, 1, Stockholm, 203-
207.
S. Frangeš, N. Frančula, N. Lapaine: Budućnost kartografije KiG, 2002, 1
21
identification approach to cartographic visualization.
Cartography and Geographic Information Systems, 2, 64-
81.
MacEachren, A. M., Monmonier, M. (1992): Introduction.
Cartography and Geographic Information Systems, 4, 197-
200.
Moellering, H. (1980): Strategies of Real-Time Cartography.
Cartographic Journal, 1, 12-15.
Moellering, H. (ed., 1991): Spatial Database Transfer
Standards: Current International Status, Elsevier Applied
Science, London, New York.
Moellering, H. (1999): The Field of Analytical Cartography:
Scope, Contents and Prospects. 19th International
Cartographic Conference, Ottawa, Proceedings (Ed. C.
Peter Keller), University of Victoria, Canada, Vol. 2, 1827-
1837.
Rhind, D. (1993): Mapping for the new millenium. 16th
International Cartographic Conference, Cologne,
Proceedings 1, Bielefeld, 3-14.
Rhind, D. (1999): Bussines, governments and technology:
inter-linked causal factors of change in cartography. 19th
International Cartographic Conference, Ottawa,
Proceedings (Ed. C. Peter Keller), University of Victoria,
Canada, Vol. 1, 29-35.
Robinson, A. H., Morrison, J. L., Muehrcke, P. C., Kimerling,
A. J., Guptill, S. C. (1995): Elements of Cartography.
Sixth edition, John Wiley & Sons, Inc., New York.
Slocum, T. A. (1994): Visualization Software Tools. U:
MacEachren, A. M., Fraser Taylor, D. R. (urednici):
Visualization in Modern Cartography. Pergamon, Greath
Yarmouth, 91-96.
Štefanović, P., Čolić, K., Fiedler, T. (1999): GIS, GPS i
aerofotogrametrija – svrsishodna povezanost i
učinkovitost, Sto godina fotogrametrije u Hrvatskoj,
Zbornik radova, Hrvatska akademija znanosti i umjetnosti,
Zagreb, 87-98.
Taylor, D. R. F. (1994): Perspectives on Visualization and
Modern Cartography. U: MacEachren, A. M., Fraser
Taylor, D. R. (urednici): Visualization in Modern
Cartography. Pergamon, Greath Yarmouth, 333-341.
Timpf, S., Devogele, T. (1997): New Tools for Multiple
Representations. Proceedings 18th ICA/ACI International
Cartographic Conference, 3, Stockholm, 1381-1386.
Van der Wel, F. J. M., Hootsmans, R. M., Ormeling, F. (1994):
Visualization of Data Quality. U: MacEachren, A. M.,
Fraser Taylor, D. R. (urednici) Visualization in Modern
Cartography. Pergamon, Greath Yarmouth, 313-331.
Weber, W. (1990): Zum Entwicklungstand der
rechnergestützen Kartographie. Kartographisches
Taschenbuch, Kirschbaum Verlag, Bonn, 9-35.
Wood, M. (1994): Visualization in Historical Context. U:
MacEachren, A. M., Fraser Taylor, D. R. (urednici)
Visualization in Modern Cartography. Pergamon, Greath
Yarmouth, 13-26.
Yufen, C., Xiangping, Y. (1997): The Role of Thinking in
Images in Map Design. Proceedings 18th ICA/ACI
International Cartographic Conference, 1, Stockholm, 203-
207.
... In the 1990s, the creation oforienteering maps with the help of computer programs gave a new impetus to the production of orienteering maps, which simplified the restoration ofcontent and preparation for printing, while improving the graphic quality at the same time (Frangeš et al. 2002). Maps were increasingly produced by professional draftsmen from various parts ofEurope. ...
Article
Full-text available
Mathematical elements of maps, in addition to the methods of presenting content with cartographic symbols and the criteria of cartographic generalization, are the most important elements of modern ground plan view maps. At the same time, on maps for orienteering disciplines, which are the most internationally unified maps in the world, the mathematical basis is not defined in very detailed specifications. In this paper, we describe the background and reasons for the apparent insignificance of mathematical content in orienteering maps, and on the example of the analysis of selected maps of Croatia and Slovenia, we determine in which period and to what extent mathematical elements were present on the maps.
... Maps are the main source of information for GIS and one of the ways in visualizing information generated with GIS (Franges, Frančula, & Lapaine, 2002). ...
Article
Full-text available
The main objective of this paper is to analyze and develop a GIS system that includes all necessary information obtained by using GPS and mobile GIS techniques as well. Since several techniques for information management exist, the aim is how to integrate them for a sustainable management of vineyards areas in Kosovo. It has been designed a system, which is able to produce maps, make various analyses based on the requests of the specific users and offers trend orientation for decision making. The JAVA programming language has been used. This provides the most possible flexibility in the data flow and data management. The structure of the data base is proposed to be designed in that way that the textual and geometric data have been processed in a unique data base in PostGIS PostgreSQL technology.Web GIS technology presented in this paper, shows an advantage comparing to the desktop based technology since it enables an access in real time. Foremost, the application offers an access depending on the roles and privileges for different users. Development of a WEB application for viticulture management will improve the efficiency and decision making process as well.Results show numerous capabilities of GIS methodologies to manage the agricultural crops, in this particular case, the vineyards. Further, the results provide insight into information management in a single system and serve as a basis for similar researches in other areas of agriculture in the future.
Article
Full-text available
Scientists visualize data for a range of purposes, from exploring unfamiliar data sets to communicating insights revealed by visual analyses. As the supply of numerical environmental data has increased, so has the need for effective visual methods, especially for exploratory data analysis. Map animation is particularly attractive to earth system scientists who typically study large spatio-temporal data sets. In addition to the "visual variables" of static maps, animated maps are composed of three basic design elements or "dynamic variables"–scene duration, rate of change between scenes, and scene order. The dynamic variables can be used to emphasize the location of a phenomenon, emphasize its attributes, or visualize change in its spatial, temporal, and attribute dimensions. In combination with static maps, graphs, diagrams, images, and sound, animation enhances analysts' ability to express data in a variety of complementary forms.
Article
Full-text available
Mental visualization and tools that foster it have recently been acknowledged as significant factors in scientific creativity. Cartography occupies a critical position in the growing array of scientific visualization tools, particularly for geographers, earth scientists and atmospheric scientists. Treating the map as a visualization tool leads to a different perspective on cartography than that generally taken when the map is viewed as a communication device. The goal of cartography and cartographic research shifts from a search for the optimal map to a search for spatial data abstraction methods that prompt pattern identification and lead to insight. A model is proposed for cartographic visualization that stresses the role of maps in data exploration. Emphasis is on the potential for maps to stimulate scientific insight by facilitating the discovery of patterns and relationships in spatial data. Following from this pattern identification model for cartographic visualization some perspectives are offered ...
Article
Full-text available
Multiple representations make up an essential part of Geographic Information Systems. They not only require new database models and structures. They also require new tools within the user interface. The aim of this paper is to show what kinds of new tools are necessary to deal with multiple representations.
Article
An edited volume of 17 chapters on issues of cartographic visualistion. Chapters are identified invididually in Geographical Abstracts, and are grouped under major themes of: context for the development of geographic and cartographic visualisation; technology, symbolisation and human-tool interaction; using cartographic tools in design, analysis, modelling and display; perspectives on the future. -from Authors
Article
As the application of interactive computer graphic methods to cartographic tasks continues to develop and mature, it is useful and instructive to examine these developments in a deeper conceptual context. Possibilities for cartographic communication have been greatly expanded with such interactive cartographic computer systems. A key concept in the power and flexibility of such interactive systems is that of real and virtual maps and transformations that can be made between them. One can now look past current interactive cartographic systems for display, analysis and map production to the potential of more powerful and flexible real-time interactive cartographic systems which can deal with more complex forms of cartographic situations and include the manipulation of a number of aspects of spatiotemporal dynamics. These include cartographic object manipulation and surface exploration, the display of cartographic data as it changes through time, and combinations of the above.