ArticlePDF Available

Design and Implementation of Embedded Based Cane Robot Using Solar Power Panel for Visually Impaired People

Authors:

Abstract

The paper aim is to design a smart multipurpose human assistance robotic dog that needs zero maintenance. The primary purpose of this dog is to guide the visually impaired and elderly people to some predefined destination avoiding obstacles and traffic. It is also designed to act as an advanced multipurpose human assistance and service robot that is able recognize the words spoken by the user, talk to them and take action according to the spoken voice command. Voice commands are recognized by an android smartphone and the information is transferred to the main MCU using a bluetooth serial port that runs bluetooth SPP protocol stack. The robotic dog has the ability to follow a human when commanded with voice. Touch sensitive e-skin senses human finger touch and helps answering complex user requests such as time, date and weather conditions such as light and temperature. The same can be asked using voice also. It even allows the user to set wake up alarm. A built in audio playback system can play music tracks in MP3 format. One of the music tracks is kept as the alarm tone. It also plays the role of a regular watchdog during night and barks like any normal dog if it finds any abnormal activity. During the day time it can charge itself by moving around within a given region in order to find the maximum sun light, intelligently avoiding the shaded areas, thereby freeing the user completely from maintenance issues such as battery charging. It has a head; eyes and a tail like a real dog which it uses to perform special gestures during human-robot interaction.
A preview of the PDF is not available
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
The control system for a personal aid for mobility and health monitoring (PAMM) for the elderly is presented. PAMM is intended to assist the elderly living independently or in senior assisted living facilities. It provides physical support and guidance, as well as monitoring basic vital signs for users that may have both limited physical and cognitive capabilities. This paper presents the design of a bi-level control system for PAMM. The first level is an admittance-based mobility controller that provides a natural and intuitive human machine interface. The second level is an adaptive shared controller that allocates control between the user and the computer based on metrics of the user's performance. Field trials at an eldercare facility show the effectiveness of the design.
Article
Full-text available
This paper presents the design and control of a novel assistive robotic walker that we call “JAIST activerobotic walker (JARoW)”. JARoW is developed to providepotential users with sufficient ambulatory capability in anefficient、 cost-effective way. Specifically、 our focus is placed on how to allow easier maneuverability by creating a natural interface between the user and JARoW. For the purpose、 we develop a rotating infrared sensor to detect the user’s lower limb movement. The implementation details of the JARoW control algorithms based on the sensor measurements are explained、 and the effectiveness of the proposed algorithms is verified through experiments. Our results confirmed that JARoW can autonomously adjust its motion direction and velocity according to the user’s walking behavior without requiring any additional user effort.
Article
Full-text available
In this paper we present several new advancements in the area of smart rehabilitation devices that have been developed by the Northeastern University Robotics and Mechatronics Laboratory. They are all compact, wearable and portable devices and boast re-programmable, real time computer controlled functions as the central theme behind their operation. The sensory information and computer control of the three described devices make for highly efficient and versatile systems that represent a whole new breed in wearable rehabilitation devices. Their applications range from active-assistive rehabilitation to resistance exercise and even have applications in gait training. The three devices described are: a transportable continuous passive motion elbow device, a wearable electro-rheological fluid based knee resistance device, and a wearable electrical stimulation and biofeedback knee device.
Article
In order to realize a wearable power assisting suit for assisting a nurse caring a patient in her arm, the power supply and control systems have been miniaturized. The new suit consists of shoulders, arms, waist and legs units and is fitted on her body. The arms, waist and legs have pneumatic rotary actuators driven directly with micro air pumps. The muscle forces are sensed with a new muscle hardness sensor utilizing a sensing tip mounted on a polymer thick film device. This paper gives the design and characteristics of the new power assisting suit verifying its practicability.
Article
A human-friendly. interactive system that is based on the harmonious symbiotic coexistence of humans and robots is explored. Based on the interactive technology paradigm, a robotic cane is proposed for blind or visually impaired pedestrians to navigate safely and quickly through obstacles and other hazards. Robotic aids, such as robotic canes, require cooperation between humans and robots. Various methods for implementing the appropriate cooperative recognition, planning, and acting, have been investigated. The issues discussed include the interaction between humans and robots, design issues of an interactive robotic cane, and behavior arbitration methodologies for navigation planning.
Conference Paper
Task-oriented repetitive movements can improve motor recovery in patients with neurological or orthopaedic lesions. The application of robotics can serve to assist, enhance, evaluate, and document neurological and orthopaedic rehabilitation. ARMin II is the second prototype of a robot for arm therapy applicable to the training of activities of daily living. ARMin II has a semi-exoskeletal structure with seven active degrees of freedom (two of them coupled), five adjustable segments to fit in with different patient sizes, and is equipped with position and force sensors. The mechanical structure, the actuators and the sensors of the robot are optimized for patient-cooperative control strategies based on impedance and admittance architectures. This paper describes the mechanical structure and kinematics of ARMin II.
Conference Paper
For assisting human motion, assistive devices working as muscles would be useful. A robot suit HAL (hybrid assistive limb) has been developed as an assistive device for lower limbs. Human can appropriately produce muscle contraction torque and control joint viscoelasticity by muscle effort such as co-contraction. Thus, to implement functions equivalent to human muscles using HAL, it is necessary to control viscoelasticity of HAL as well as to produce torque in accordance with operator's intention. Therefore the purpose of this study is to propose a control method of HAL using biological and motion information. In this method, HAL produces torque corresponding to muscle contraction torque by referring to the myoelectricity that is biological information to control operator's muscles. In addition, the viscoelasticities of HAL are adjusted in proportion to operator's viscoelasticity that is estimated from motion information by using an on-line parameter identification method. To evaluate the effectiveness of the proposed method, the method was applied to a swinging motion of a lower leg. When this method was applied, HAL could work like operator's muscles in the swinging motion, and as a consequence, the muscle activities of the operator were reduced. As a result of this experiment, we confirmed the effectiveness of the proposed method.
Article
This paper presents a virtual reality (VR)-enhanced new hand rehabilitation support system that enables patients to exercise alone. This system features a multi-degrees-of-freedom (DOF) motion assistance robot, a VR interface for patients, and a symmetrical master-slave motion assistance training strategy called "self-motion control," in which the stroke patient's healthy hand on the master side creates the assistance motion for the impaired hand on the slave side. To assist in performing the fine exercise motions needed for functional recovery of the impaired hand, the robot was constructed in an exoskeleton with 18 DOFs, to assist finger and thumb independent motions such as flexion/extension and abduction/adduction, thumb opposability, and hand-wrist co- ordinated motions. To enhance the effectiveness of the exercises, audio-visual instructions of each training motion using VR technology were designed with the input of clinician researchers. Experimental results from healthy subjects and patients show sufficient performance in the range of motion of the robot as well as sufficient assistance forces.
Article
This paper presents a 6-DOF gait rehabilitation robot that allows patients to update their walking velocity on various terrain types and navigate in virtual environments (VEs) through upper and lower limb connections. This robot is composed of an upper limb device, a sliding device, two footpad devices, and a body support system. The footpad device on the sliding device generates 3-DOF spatial motions on the sagittal plane for each foot. This allows the generation of various terrain types for diverse walking training. The upper limb device allows users to swing their arms naturally through the use of a simple pendulum link with a passive prismatic joint. Synchronized gait patterns for this robot are designed to represent a normal gait with upper and lower limb connections. To permit patients to walk at will, this robot allows walking velocity updates for various terrain types by estimating the interaction torques between the human and the upper limb device, and synchronizing the lower limb device with the upper limb device. In addition, the patient is able to navigate in VEs by generating turning commands with switches located in the handles of the upper limb device. Experimental results using a healthy subject show that the user can update the walking velocity on level ground, slopes, and stairs through upper and lower limb connections. In addition, the user could navigate in the VEs with walking velocity updates and turning input command allowing various rehabilitation training modes. During a pilot clinical test, a hemiplegic patient could use the suggested gait rehabilitation robot with a slow walking speed. The rehabilitation plan was also suggested for the patient and the possible therapeutic effects of the suggested rehabilitation robot system are discussed.