Conference PaperPDF Available

A phytosociological study on Melendiz Mountain in Central Anatolia (Niğde/Turkey)

Authors:

Abstract and Figures

It is commonly accepted that the mountain ecosystems have a key importance with regards to genetic sources and endemic species. The mountainous areas covering great part of Turkey have also an important role in terms of plant biodiversity. The reason of rich biodiversity of mountainous areas in Anatolia is the altitudinal variation in short horizontal distance, exposure, climatic changes in the last glacial period. Melendiz Mountain (2963m) which is located in the southern part of Central Anatolia is within the boundaries of Central Anatolian district of Irano-Turanian floristic region phytogeographically. The study area is under influences of semi-arid very cold type of Mediterranean climate. The vegetation of the area was studied according to Braun-Blanquet approach and classified into 6 associations and 6 subassociations. In addition, some some statistical methods (Cluster Analysis & DCA) were used for the determination of associations and subassociations to ensure accuracy and provide easiness. All the associations and subassociations are new for science. It is thought that this study will be able to be helpful for determining the vegetation composition of mountainous areas which have unique and special living conditions but are under the influence of human intensely, contributing the studies of vegetation classification, observing alteration of vegetation in the next years.
Content may be subject to copyright.
The phytosociology of Melendiz Mountain in the Cappadocian part of Central
Anatolia (Ni ˘
gde, Turkey)
Nihal Kenar* & Osman Ketenog
˘lu
Abstract
Aim and study area: This paper deals with the phytosociology of the vegetation of Melendiz Mountain
(2963 m) located in Central Anatolia. Methods: Steppe, deciduous forest, shrub and xero-mesic meadow
vegetation of the subalpine zone of Melendiz Mountain were analysed according to Braun-Blanquet approach.
Additionally by applying cluster analysis and ordination (Detrended Correspondence Analysis), the phytoso-
ciological units were described and verified. Results and conclusions: Three associations in the study area
characterize the shrub and degraded forest vegetation. These are included in the alliance Quercion anatolicae,
which is distributed in the peripheral zone of the Central Anatolian basin, and the order Querco cerridis-Car-
pinetalia orientalis (Quercetea pubescentis), which includes the deciduous and coniferous forests in the supra-
Mediterranean zone of Anatolia. The xeromorphic dwarf grassland vegetation is represented by two associa-
tions. One of them is classified in the alliance Agropyro-Stachydion (order Astragalo-Brometalia, class
Astragalo-Brometea) covering oreal to subalpine xerophytic grasslands, dwarf-shrub, and thorn cushion com-
munities in the Taurus range. The xero-mesic meadow vegetation is characterized by an association within the
order Trifolio anatolici-Polygonetalia arenastri (Astragalo-Brometea) and contains snowpatch and meltwater
communities of the mesophytic vegetation on Taurus range.
Keywords: Central Anatolia; Irano-Turanian region; mountain steppe; oak scrubs; phytosociology; plant com-
munity; syntaxonomy.
Nomenclature: Flora of Turkey and the East Aegean Islands (Davis 1965–1985; Davis et al. 1988; Güner et al.
2000; Güner et al. 2012).
Submitted: 9 June 2015; first decision: 8 August 2015; accepted: 7 June 2016
Co-ordinating Editor: Wolfgang Willner
© 2016 Gebrüder Borntraeger, 70176 Stuttgart, Germany
DOI: 10.1127/phyto/2016/0065
www.borntraeger-cramer.de
0340-269X/2016/0065 $ 19.80
Phytocoenologia Vol. 46 (2016), Issue 2, 141–183 Research Paper
Published online August 2016
*Corresponding author’s address: Aksaray University, Department of Biology, Aksaray, Turkey; nkenar@aksaray.edu.tr. Complete
addresses of all authors can be found at the bottom of the paper.
Introduction
Turkey has quite a high and rough topography. The
mountainous areas covering a great part of Turkey con-
tribute to various microclimatic conditions, plant diver-
sity, and many different high mountain vegetation types
(Parolly 2004; Duran 2013). A number of important plant
areas in Turkey are situated in the mountainous areas
(Özhatay et al. 2005).
Cappadocia is an ancient region that makes up a large
part of Central Anatolia. At present, the “natural” vege-
tation of this region is characterized by steppe and dry
forests composed of Quercus sp., Juniperus sp., Cratae-
gus sp., and Prunus sp. The lower treeline in this region
lies at 1300–1400 m, while degraded scrub-woodlands are
found within the steppes (Atalay 1994; Eastwood et al.
2009). The Anatolian steppes are spread over a large area
of Cappadocia and show different types depending on
the elevation. These are also known as “plain steppes”,
occuring between 800 and 1200 m, and “mountain
steppes”, which are widespread above 2000 m. The
mountain steppe is composed of different plant commu-
nities depending on the physical and chemical properties
of the soil (Kurt et al. 2015).
The Central Anatolian steppes were affected by the
Würm glaciation in the Quaternary period. Forest com-
munities including Pinus sp., Juniperus sp., Quercus sp.
had gradually established in the region about 10,000
years ago. The development of forests in the Anatolian
plateau ceased immediately following the first appear-
ance of agro-pastoral human societies in the Neolithic
era. After human occupation, the vegetation of the re-
phyto_46_2_0141_0000_kenar_0065.indd 141phyto_46_2_0141_0000_kenar_0065.indd 141 21.09.16 12:5021.09.16 12:50
eschweizerbart_xxx
142 Nihal Kenar & Osman Ketenoğlu
gion changed to open forests (Asouti 2009). Forests and
woodlands, dominated by oak and pine, were replaced
by degraded woodlands and shrublands (Kürschner &
Parolly 2012). After the destruction of these oak and
pine dominated forests of Mediterranean origin, steppe
vegetation of Irano-Turanian origin dominated Central
Anatolia. Thus, a great deal of variation had occurred in
the biogeographical structure of the vegetation (Kurt et
al. 2015). Particularly, in the last fifty years, overgrazing,
illegal cuttings, population growth, the increase of cereal
farming and unplanned urbanization is the reason Cen-
tral Anatolia has steppes today (Akman et al. 2014).
Therefore, the Central Anatolian steppe is an anthropo-
genic one and a secondary type of vegetation due to de-
forestation of the primary vegetation of Mediterranean
area (Akman 1974a; Supplement S1). Plant communities
in the Anatolian steppe evolve depending on the physi-
cal and chemical structure of the bedrock. Their floristic
structure and sociological units also change, and the
Anatolian steppe seems to have a landscape mosaic pat-
tern (Kurt et al. 2006). It is included in the Central Ana-
tolian sector of the West Asian subregion of the Irano-
Turanian region in the Tethys subkingdom of the Holo-
arctic kingdom (Takhtajan 1986). The determination of
the present-day status of the steppe vegetation is impor-
tant to local forestry and agriculture, as well as contrib-
uting to the scientific knowledge of this region (Akman
et al. 2014).
The first available phytosociological papers on the
Central Anatolian mountain vegetation were produced
by Akman (1972, 1974b, 1976), Akman & Ketenoğlu
(1976), and Akman & Aydoğdu (1986) in the northwest
part of Central Anatolia. In these studies, Astragalus an-
gustifolius and Quercus pubescens communities were
identified, but the communities were not described in
accordance with the Code of Phytosociological Nomen-
clature (Weber et al. 2000). Later studies in the northwest
of Central Anatolia were carried out by Ketenoğlu &
Akman (1982), Akman (1990), Ketenoğlu et al. (1994)
and Adıgüzel & Vural (1995). Akman (1990) described
the Veronico-Astragaletum angustifolii. Ketenoğlu et al.
(1994) defined the Asperulo-Quercetum pubescentis as a
community of degraded forest vegetation and the Astra-
galetum angustifolio-leuchotrichis as community of
steppe vegetation. Adıgüzel & Vural (1995) described the
communities Trifolio-Quercetum pubescentis and the
Festuco-Thymetum sipylei. “Astragalus angustifolius”
and “Festuca valesiaca” communities were reported by
Düzenli (1976), Çetik (1982), Ocakverdi & Ünal (1991),
and Vural et al. (1995). All communities in these studies
were from volcanic bedrock and they belong to moun-
tain steppes growing between 1500 and 2500 m a.s.l.
However, the floristic composition of these communities
is different from each other. Düzenli (1976) identified an
Astragalus angustifolius community but the name of the
syntaxon does not follow the Code. Ocakverdi & Ünal
(1991) and Șanda et al. (2000) described the A. angustifo-
lius communities as Acantholimo-Astragaletum angusti-
folii and Onobrychido fallaxii-Astragaletum angustifolii.
Ocakverdi & Ünal (1991), Vural et al. (1995) and Şanda et
al. (2000) described F. valesiaca communities as Diantho-
Festucetum valesiacae, Hyperico pseudoleavis-Festuce-
tum valesiacae, and Arenario ledebourianii-Festucetum
valesiacae, respectively. Hamzaoğlu & Duran (2004) des-
cribed a Juniperus community in the north of Central
Anatolia as Junipero oxycedri-Cistetum laurifolii. Oc-
akverdi & Ünal (1991) and Ocakverdi & Oflas (1999)
described Q. pubescens communities as Allio-Quercetum
pubescentis and Rhamno-Quercetum pubescentis, and
Kurt et al. (1996) described a Quercus vulcanica commu-
nity in the southwest of Central Anatolia as Diantho ci-
brarii-Quercetum vulcanicae. Kılınç (1985) reported a Q.
pubescens community of degraded forest vegetation and
an Astragalus angustifolius-Poa alpina subsp. fallax com-
munity in the north of Central Anatolia.
A synopsis of the Central Anatolian steppe vegetation
at alliance level was proposed by Kurt et al. (2006). While
that study was focused on the plain steppes, the syntaxo-
nomic units of the mountain steppes of Central Anatolia
are still not sufficiently known. Our study aims to fill this
gap of knowledge.
The effects of the inappropriate land-use on distribu-
tion of vegetation at Melendiz Mountain were studied by
Altın (2008). However, no phytosociological studies
have been carried out in this area. The aim of our paper is
therefore to provide phytosociological data on the main
plant communities occuring in this part of the Anatolian
mountains.
Study area
The Melendiz Mountain is located in the Niğde province
in the south of Central Anatolia between 1300 m and
2963 m (Fig. 1). It is surrounded by the Melendiz plain in
the north, the Bor district in the south, the Misli plain in
the east and the Hasandağ Mountain in the west (Eyce &
Ocakverdi 1987). The mountain range is formed by both
Hasandağ Mountain and Melendiz Mountain and is the
most widely distributed volcanic area in Central Anatolia
(Altın 2008). The volcanism in the region began with the
rise of the Taurus Mountains, the tectonic movements in
the Middle Miocene, which continued until the Quarter-
nary age (Ercan 1985). The bedrock of the area is com-
posed of andesite, basalt, tuff, and agglomerate (Beekman
1966; Anonymous 2009).
The Central Anatolian climate is defined as cold step-
pic by Todd (1980). It is more continental than the Medi-
terranean climate with colder winters and smaller
amounts of summer rainfall (Woldring & Bottema 2003).
According to data from the climatic station in Niğde, the
closest to the sampling area, the average annual tempera-
phyto_46_2_0141_0000_kenar_0065.indd 142phyto_46_2_0141_0000_kenar_0065.indd 142 21.09.16 12:5021.09.16 12:50
eschweizerbart_xxx
Phytosociology of Melendiz Mountain 143
Fig. 1. The study area including points of relevé locations.
1L÷GHP
Ϳ







7HPSHUDWXUH&







3UHFLSLWDWLRQPP
7HPSHUDWXUH 3UHFLSLWDWLRQ
$ULGVHDVRQ
&PP
Fig. 2. Ombrothermic diagram of Niğde.
phyto_46_2_0141_0000_kenar_0065.indd 143phyto_46_2_0141_0000_kenar_0065.indd 143 21.09.16 12:5021.09.16 12:50
eschweizerbart_xxx
144 Nihal Kenar & Osman Ketenoğlu
ture is 11.1 ºC. The average maximum temperature and
average minimum temperature are 29.5 ºC in August and
-4.8 ºC in January. The annual rainfall in the area is
334 mm, and the main period of precipitation is during
spring and winter. As seen in Fig 2, the arid season is
from June to mid-October. According to the Emberger’s
(1954) aridity index and Emberger’s pluviometric quo-
tient, the climate of Niğde is at S = 1.22 and Q = 34, re-
spectively. In this respect, the research area is under the
influence of a cold-semiarid Mediterranean climate, and
it corresponds to the second type of Eastern Mediterra-
nean precipitation regime (Akman 1999). This type of
climate is characteristic for most of the Anatolian region.
Although the Melendiz Mountain is dominated by
semi-arid climate, it is affected by orographic precipita-
tion due to moist air masses coming from south. More-
over, the anticyclonal regime and altitude cause a decrease
in the temperatures in the mountainous areas of the
Niğde province.
Methods
Data collection
The vegetation was analyzed using Braun-Blanquet’s
(1964) method during the summers of 2013 and 2014. 86
relevés were recorded between 1450 and 2250 m a.s.l. in
floristically and physiognomically homogenous habitats.
The minimal sizes of the relevés were estimated 8 × 8 m2
for steppe vegetation and 17 × 17 m2 for shrub and forest
vegetation (Akmann et al. 2011). All specimens collected
are being preserved at the Herbarium of Ankara Univer-
sity (ANK).
Soil samples were taken from various sample plots
representing the different plant formations and from a
depth ranging between 0 and 30 cm. Physical analysis of
the soil was carried out according to the Bouyoucos Hy-
drometer Method (Bouyoucos 1955). The following
measurements were performed for the chemical analyses
of soil samples: electrical conductivity (saturation slush,
EC meter), pH (potentiometric method), organic matter
measurement (Walkley & Black 1934), plant-available
soil phosphorus spectrophotometrically (Olsen method),
CaCO3 (calsimetric method), and potassium (ammonium
acetate flame photometer method).
Data analysis
The relevés were sorted into communities based on the
dominant and/or diagnostic species and phytosociologi-
cal tables were constructed according to the method of
Braun-Blanquet (Akman et al. 1978, 1979a, 1979b; Braun-
Blanquet 1964). The data were stored in a TURBOVEG
database (Hennekens & Schaminée 2001). The phytoso-
ciological tables of the communities were processed by
using the JUICE software (Tichý 2002).
To ensure the accuracy of the communities’ classifica-
tion, the relevés were also analysed with multivariate sta-
tistics using hierarchical cluster analysis provided in the
PC-ORD package (version 5, MjM Sofware Design,
Gleneden Beach, Oregon, US) and ordination techniques
(Detrended Components Analysis; DCA) through R-
Project (version 2.10.1, http://www.r-project.org). Nu-
meric analyses were carried out separately for forest,
shrub, and steppe vegetation using different similarity
indices and the group linkage method for better clarifica-
tion.
In agglomerative clustering, some studies state that
Ward’s method is more successful and effective when
based on dissimilarity/distance measures other than Eu-
clidean’s such as Jaccard’s or Sørensen’s distance measure
(Cao et al. 1997; Aho 2006). However, Stančić (2008) re-
ported that the Euclidean distance measure performs bet-
ter at lower levels as the cover values of the dominant
species are given greater weight. Therefore, we used the
Euclidean distance as a measure of dissimilarity and
Ward’s linkage method (Ward 1963) for the data set of
forest vegetation, while the Jaccard distance and Ward’s
linkage method were used for the data of steppe vegeta-
tion.
The influence of some ecological factors on variation
in vegetation units were examined by Principal Compo-
nents Analysis (PCA) using the vegan package in R-Pro-
ject (version 2.10.1, http://www.r-project.org). Fourteen
environmental factors including soil variables such as
saturation, organic matter, calcium carbonate, phospho-
rous, pH, and potassium were used.
The rules of the International Code of Phytosociolog-
ical Nomenclature (Weber et al. 2000) were followed in
naming the new syntaxa. Sørensen’s (1948) index of simi-
larity was used in order to compare the syntaxa in the
study area with similar associations in different regions.
Climatic data were supplied by Turkish State Meteoro-
logical Service (Ankara). Species chorology was taken
from Davis (1965–1985), and life forms were defined ac-
cording to Raunkiaer (1934).
Results and discussion
Numerical classification, DCA and PCA
ordination
Three associations and five subassociations are classified
in the class Astragalo microcephali-Brometea tomentelli
while three associations and three subassociations are as-
signed to the class Quercetea pubescentis. The results of
the cluster analysis are summarized in the dendrograms
(Fig. 3 for the forest and shrub vegetation and Fig. 4 for
the steppe vegetation) and in the phytosociological tables
phyto_46_2_0141_0000_kenar_0065.indd 144phyto_46_2_0141_0000_kenar_0065.indd 144 21.09.16 12:5021.09.16 12:50
eschweizerbart_xxx
Phytosociology of Melendiz Mountain 145
(Supplement S2 and S3). The dendrograms show a clear
division into five main clusters for the shrub and de-
graded forest vegetation and six main clusters for the
steppe vegetation. The forest Group 5 (Galio ibicini-
Quercetum vulcanicae) is separated at the highest level of
dissimilarity within degraded forest vegetation (Fig. 3).
In the DCA ordination (Fig. 5), the three associations
of the forest and shrub vegetation are well separated from
each other. Two of the three subassociations of the
Rhamno oleoidis-Quercetum pubescentis exhibit a partial
overlapping in the first DCA diagram (axes 1 and 2),
whereas the same subassociations appear well separated
in the second DCA diagram (axes 1 and 3). The DCA
ordination of the steppe vegetation (Fig. 6) exhibits a
clear separation amongst all the communities identified.
Table 1 and Fig. 7 show the soil characteristics of the
vegetation units in the study area and the relation be-
tween ecological factors and associations, respectively.
According to the PCA diagram, Filipendulo-Lotetum al-
pini, Astragaletum pycnocephalo-angustifolii, and Thymo
Fig. 3. Hierarchical classification of relevés of degraded forest and shrub vegetation in the study area. (1: Daphno oleoidis-
Juniperetum oxycedrii, 2: Rhamno oleoides-Quercetum pubescentis quercetosum macrolepidis, 3: Rhamno oleoides-
Quercetum pubescentis quercetosum trojanae, 4: Rhamno oleoides-Quercetum pubescentis typicum, 5: Galio ibicini-Querce-
tum vulcanicae).
Fig. 4. Hierarchical classification of relevés of steppe vegetation in the study area (1: Thymo sipylei-Festucetum valesiacae,
2: Thymo sipylei-Festucetum valesiacae typicum, 3: Thymo sipylei-Festucetum valesiacae stipetosum crassiculmis, 4: Astra-
galetum pycnocephalo-angustifolii typicum, 5: Astragaletum pycnocephalo-angustifolii astragaletosum acmophylii, 6: Astra-
galetum pycnocephalo-angustifolii astragaletosum microcephalii, 7: Astragaletum pycnocephalo-angustifolii).
phyto_46_2_0141_0000_kenar_0065.indd 145phyto_46_2_0141_0000_kenar_0065.indd 145 21.09.16 12:5021.09.16 12:50
eschweizerbart_xxx
146 Nihal Kenar & Osman Ketenoğlu
Fig. 5. DCA of degraded forest and shrub vegetation (1: Daphno oleoidis-Juniperetum oxycedri, 2: Rhamno oleoides-Querce-
tum pubescentis quercetosum macrolepidis, 3: Rhamno oleoides-Quercetum pubescentis quercetosum trojanae, 4: Rhamno
oleoides-Quercetum pubescentis typicum, 5: Galio ibicini-Quercetum vulcanicae).
Fig. 6. DCA of steppe vegetation (1: Thymo sipylei-Festuce-
tum valesiacae typicum, 2: Thymo sipylei-Festucetum vale-
siacae stipetosum crassiculmis, 3: Astragaletum pycnoceph-
alo-angustifolii typicum, 4: Astragaletum pycnocephalo-an-
gustifolii astragaletosum acmophylii, 5: Astragaletum
pycnocephalo-angustifolii astragaletosum microcephalii).
pH. This is because south-facing slopes tend to be war-
mer and drier than north-facing slopes (Quideau 2002).
Therefore, the decomposition of organic matter takes a
longer time on the north-facing slopes compared to the
southern warmer slopes, and the northern slopes are cha-
racterized by acidity (Onipchenko 2004). Also, Kutiel
(1992) stated that the lower pH value in northern slopes
may be explained by leaching in the soil. Rhamno oleoi-
dis-Quercetum pubescentis and Thymo sipylei-Festuce-
tum valesiacae typicum in southern slopes have lower
inclination and higher amounts of NaCl, K, and CaCO3
than Filipendulo-Lotetum alpini and Astragaletum pyc-
nocephalo-angustifolii in northern slopes. According to
Kutiel (1992), the amount of organic matter, Na, Cl, and
K are higher in the north-facing slopes, while pH,
CaCO3, and P are higher in the south-facing slopes. The
high amounts of organic matter in northern slopes and
high pH and CaCO3 amounts in the southern slopes
align with our findings and the results found in the study
of Kutiel (1992). The inclination is an important factor on
soil properties, and the sharpness of the inclination works
in tandem with microclimatic differences. This is because
a sharp inclination leads to runoff and removal of the ma-
terials in the soil (Hall 1983; Tsui et al. 2004; Yimer et al.
2006). Therefore, high inclination may cause low amounts
of Na, Cl, and K in the northern aspect in the study area.
Filipendulo-Lotetum alpini, Astragaletum pycnocephalo-
angustifolii, and Thymo sipylei-Festucetum valesiacae ty-
picum are correlated with high P. Wienhold & Klemmed-
son (1992) indicate that P is found to be higher in north-
facing slopes, and this was confirmed in our study. They
explain this finding by long-continued differential ero-
sipylei-Festucetum valesiacae typicum in the north-facing
slopes of the mountain have higher organic matter
content and low pH, whereas Rhamno oleoidis-Querce-
tum pubescentis and Thymo sipylei-Festucetum valesiacae
typicum in the south-facing slopes of the mountain are
seen to have a lower organic matter content and a higher
phyto_46_2_0141_0000_kenar_0065.indd 146phyto_46_2_0141_0000_kenar_0065.indd 146 21.09.16 12:5021.09.16 12:50
eschweizerbart_xxx
Phytosociology of Melendiz Mountain 147
sion between slopes with similar bedrock material but
with different aspects. This results in the decrease of P in
the soil on south-facing slopes. In addition, the different
microclimates of north- and south-facing slopes may in-
fluence geomorphological processes such as chemical
weathering due to temperature in arid and semi-arid re-
gions. These processes may lead to lower organic matter
content on south-facing slopes compared to north-facing
ones (Branson et al. 1981). Each plant community has
specific characteristics due to various environmental fac-
tors. The study posits that slope inclination and aspect
are indicative factors on soil structure and influence the
distribution of plant communities in the study area.
Description of vegetation units
The floristic composition of the communities is pre-
sented in the synoptic tables (Table 2 and 3). The syn-
taxonomic classification is summarized in Table 4.
1. Shrub vegetation
1.1 Ass. Daphno oleoidis-Juniperetum oxycedri
ass. nov. hoc loco
Typus: Relevé 1 in Table 5
Characteristic species: Juniperus oxycedrus subsp. oxyce-
drus, dominating the physiognomy of the association,
Daphne oleoides subsp. oleoides, Campanula stricta
subsp. stricta, Asperula stricta subsp. stricta, Silene ar-
mena var. armena.
Daphne oleoides subsp. oleoides, which has a short and
woody-cushion growth habit, is a common species be-
tween 1050 and 3200 m in Anatolia and ranges from
southern Europe, northwest Africa, to Lebanon. It grows
mostly on limestone slopes and screes, in Quercus scrubs,
Pinus nigra forests, Astragalus-Acantholimon steppe.
Campanula stricta subsp. stricta is distributed in rocky,
stony slopes between 1200 and 3050 m in Central and
Table 1. The soil characteristics of the vegetation units in the study area.
Vetetation type Saturation(%) Sand(%) Silt(%) Clay(%) EC(dS/m) NaCl(%)
Rhamno oleoidis-Quercetum pubescentis 69 42 36 23 0.58 0.026
Daphno oleoidis-Juniperetum oxycedri 62 62 18 21 0.20 0.008
Filipendulo-Lotetum alpini 70 50 34 17 0.28 0.012
Astragaletum pycnocephalo-angustifolii 63 42 36 23 0.21 0.008
T.s-F.v. stipetosum crassiculmis 78 36 42 23 0.16 0.008
T.s-F.v. typicum 66 40 34 27 0.41 0.017
Vegetetation type Org. matter(%) P (kg/da) K(kg/da) CaCO3(%) pH
Rhamno oleoidis-Quercetum pubescentis 2.52 1.66 167.89 0.89 6.85
Daphno oleoidis-Juniperetum oxycedri 3.01 1.60 64.74 0.15 6.29
Filipendulo-Lotetum alpini 5.94 3.09 27.83 0.30 5.47
Astragaletum pycnocephalo-angustifolii 3.68 2.92 64.74 0.44 6.10
T.s-F.v. stipetosum crassiculmis 7.01 4.12 89.84 0.59 5.60
T.s-F.v. typicum 2.91 2.18 61.71 0.44 6.85
Fig. 7. PCA ordination of ecological variables of Melendiz
Mountain (1. Rhamno oleoidis-Quercetum pubescentis, 2.
Daphno oleoidis-Juniperetum oxycedri, 3. Filipendulo-Lote-
tum alpine, 4. Astragaletum pycnocephalo-angustifolii 5.
Thymo sipylei-Festucetum valesiacae stipetosum crassicul-
mis, 6. Thymo sipylei-Festucetum valesiacae typicum).
phyto_46_2_0141_0000_kenar_0065.indd 147phyto_46_2_0141_0000_kenar_0065.indd 147 21.09.16 12:5021.09.16 12:50
eschweizerbart_xxx
148 Nihal Kenar & Osman Ketenoğlu
Table 2. Synoptic table of degraded forest and shrub vegetation. Species values are percentage frequencies. 1: Daphno ole-
oidis-Juniperetum oxycedri, 2: Rhamno oleoides-Quercetum pubescentis typicum, 3: Rhamno oleoides-Quercetum pubescen-
tis quercetosum trojanae, 4: Rhamno oleoides-Quercetum pubescentis quercetosum macrolepidis, 5: Galio ibicini-Quercetum
vulcanicae. An: Andesite, Ph: Phanerophyte, Ch: Chamaephyte, H: Hemicryptophyte, Cr: Cryptophyte, T: Therophyte.
Group Number 1 2 3 4 5
Number of plots 8 11 5 9 10
Mean altitude (m) 1855 1519 1639 1510 1940
Bedrock An. An. An. An. An.
Mean inclination (°) 25 32 34 36 46
Mean total vegetation cover (%) 65 72 77 60 84
Mean cover herb layer (%) 30 32 30 23 49
Mean cover tree layer (%) 35 59 69 51 73
Species diagnostic for one group
Group 1
Juniperus oxycedrus subsp. oxycedrus Ph100....
Daphne oleoides subsp. oleoides Ch100....
Campanula stricta subsp. stricta H 63....
Asperula stricta subsp. stricta Ch 50....
Silene armena var. armena H 50....
Clinopodium vulgare subsp. arundanum H 63....
Group 2
Quercus pubescens subsp. pubescens Ph 50 100 100 100 .
Rhamnus lycioides subsp. oleoides Ph . 27 100 89 .
Phlomis nissolii H . 18 60 78 .
Pimpinella olivieroides H . 18 40 56 .
Torilis ucranica T . 55 40 11 .
Pilosella cymosa H . 27 40 11 .
Onobrychis oxyodonta H . . 20 89 .
Inula montbretiana H 13 9 80 22 20
Onobrychis hypargyrea H . 18 . . .
Pyrus eleagnifolia subsp. eleagnifolia Ph 13 27 . 11 .
Sorbus umbellata Ph . 18 . . .
Hypericum perforatum subsp. veronense H . 18 . . .
Group 3
Quercus trojana Ph . 17 100 . .
Fraxinus angustifolia subsp. angustifolia Ph . . 60 . .
Elymus divaricatus subsp. divaricatus H . . 40 . .
Scutellaria brevibracteata subsp. brevibracteata H . . 40 . .
Group 4
Quercus ithaburensis subsp. macrolepis Ph . . . 67 .
Crupina crupinastrum T . . . 44 .
Torilis leptophylla T . . . 33 .
Euphorbia falcata subsp. falcata var. galilaea T . . . 22 .
Group 5
Quercus vulcanica Ph ....100
Galium spurium subsp. ibicinum T . . . . 80
Vicia truncatula H. . . . 60
Euphorbia denticulata H . . . . 40
Geranium macrostylum Cr . . . . 40
Lactuca hispida Cr . . . . 40
Tanacetum cilicium H . . . . 30
phyto_46_2_0141_0000_kenar_0065.indd 148phyto_46_2_0141_0000_kenar_0065.indd 148 21.09.16 12:5021.09.16 12:50
eschweizerbart_xxx
Phytosociology of Melendiz Mountain 149
Group Number 1 2 3 4 5
Number of plots 8 11 5 9 10
Mean altitude (m) 1855 1519 1639 1510 1940
Bedrock An. An. An. An. An.
Mean inclination (°) 25 32 34 36 46
Mean total vegetation cover (%) 65 72 77 60 84
Mean cover herb layer (%) 30 32 30 23 49
Mean cover tree layer (%) 35 59 69 51 73
Characteristics of Quercion anatolicae and Querco-Carpinetalia orientalis
Vicia cracca subsp. stenophylla H 13 45 . 67 40
Securigera varia H 25 27 80 56 10
Trifolium elongatum H 13 36 20 11 60
Lathyrus digitatus H . . 20 . 60
Lathyrus czeczottianus H .... 20
Anthriscus nemorosa H .... 50
Characteristics of the class Quercetea pubescentis
Cotoneaster nummularius H 100 55 40 . 50
Milium vernale subsp. vernale T . 27 . . 30
Trifolium physodes var. physodes H 50 55 40 67 60
Teucrium chamaedrys subsp. syspirense Ch 100 . 80 78 .
Carex leersii Cr .... 40
Lapsana communis subsp. pisidica H .... 20
Lactuca mulgedioides H .... 20
Crataegus orientalis subsp. orientalis Ph .... 10
Characteristics of the order Querco-Cedretalia libani
Dorycnium graceum H..2011.
Briza humilis T.18.11.
Quercus libani Ph . 9 . . .
Dorycnium penthaphyllum subsp. anatolicum H .9...
Characteristics of the order Onobrychido armenae-Thymetalia leucostomi
Galium verum subsp. verum Ch 100 82 100 78 90
Astragalus microcephalus subsp. microcephalus Ch 100 82 80 100 70
Allium scrodoprosum subsp. rotundum Cr .91404480
Cota tinctoria var. tinctoria H 38 64 100 89 10
Centaurea virgata H . 27 100 44 .
Scabiosa argentea H 13 9 60 44 .
Teucrium polium subsp. polium Ch .272056 .
Phlomis armeniaca H889 .22 .
Helianthemum nummularium subsp. nummularium Ch 25 9 80 33 .
Teucrium chamedrys subsp. chamaedrys Ch .45202220
Acantholimon acerosum subsp. acerosum var. acerosum Ch 13 36 . . .
Polygala anatolica H509 . . .
Phlomis pungens var. hirta H . 9 . 22 .
Dianthus crinitus var. crinitus H..2011.
Achillea santolinoides subsp. wilhelmsii H ....20
Characteristics of the class Astragalo-Brometea
Thymus sipyleus Ch 100 73 80 33 .
Salvia absconditifl ora H . 64 60 78 40
Stachys cretica subsp. anatolica H 1336801120
Taeniatherum caput-medusae subsp. crinitum T 13188078 .
Table 2. cont.
phyto_46_2_0141_0000_kenar_0065.indd 149phyto_46_2_0141_0000_kenar_0065.indd 149 21.09.16 12:5021.09.16 12:50
eschweizerbart_xxx
150 Nihal Kenar & Osman Ketenoğlu
Group Number 1 2 3 4 5
Number of plots 8 11 5 9 10
Mean altitude (m) 1855 1519 1639 1510 1940
Bedrock An. An. An. An. An.
Mean inclination (°) 25 32 34 36 46
Mean total vegetation cover (%) 65 72 77 60 84
Mean cover herb layer (%) 30 32 30 23 49
Mean cover tree layer (%) 35 59 69 51 73
Asyneuma limonifolium subsp. pestalozzae H 25 36 . 22 20
Euphorbia macroclada H . . . 22 .
Festuca valesiaca H 88 91 100 100 40
Eryngium campestre H 88 64 80 100 50
Bromus tomentellus Cr 100 82 . 11 70
Potentilla recta H 38 45 100 33 30
Alyssum murale subsp. murale var. murale H 5018807810
Cyanus triumfettii H .36..90
Veronica multifi da Ch . 27 . 22 60
Bromus tectorum Cr . . . 56 60
Helichrysum plicatum subsp. plicatum H2518..50
Morina persica H889 .11 .
Cruciata taurica Ch . 27 . 11 50
Erysimum crassipes H . . . 89 .
Leontodon asperrimus H389...
Centaurea urvellei subsp. stepposa H13..11.
Anthemis cretica subsp. albida H1327..10
Galium incanum subsp. elatius Ch 13 18 . 11 10
Astragalus angustifolius subsp. angustifolius Ch . . . . 40
Scabiosa rotata H . . . 22 .
Minuartia juniperina Ch . 9 . . 10
Koeleria macrantha H . . . 11 .
Stipa holosericea H .9...
Table 2. cont.
South Anatolia, and Asperula stricta subsp. stricta, which
is an East Mediterranean element, is found on rocky
steppe hills, scree, igneous slopes, dried riverbeds be-
tween 250 and 2600 m in South Anatolia. Silene armena
var. armena is a steppic caespitose perennial and endemic
to Turkey (Davis 1965–1985).
Physiognomy and ecology: The mean cover of the as-
sociation varies between 55% and 80%. The association
spreads on andesite bedrock. The soil texture of the as-
sociation is sandy (62%), clay (21%), and loam (18%),
and it contains 3.01% organic matter. The pH is about
6.29 (Table 1).
Distribution: It is situated within the northwestern
slopes of Melendiz Mountain and at the summit of Dede-
tepe Hill between 1707 and 1915 m, and generally forms
communities of limited area.
2. Degraded forest vegetation
2.1 Ass. Rhamno oleoidis-Quercetum pubescentis
ass. nov. hoc loco
Typus: Relevé 19 in Table 6
Characteristic species: Quercus pubescens subsp. pubes-
cens (dominant), Rhamnus lycioides subsp. oleoides,
Phlomis nissolii, Pilosella cymosa, Inula montbretiana,
Onobrychis oxyodonta, Pimpinella olivieroides, and Tori-
lis ucranica.
Rhamnus lycioides subsp. oleoides is an East Mediter-
ranean element, its distribution ranges from Greece to
west of Syria. Its leaves are herbaceous, deciduous and
young branches are spinous. It occurs on rocky lime-
stone places and in maquis. Phlomis nissolii is an ende-
mic species and an Irano-Turanian element. It spreads
phyto_46_2_0141_0000_kenar_0065.indd 150phyto_46_2_0141_0000_kenar_0065.indd 150 21.09.16 12:5021.09.16 12:50
eschweizerbart_xxx
Phytosociology of Melendiz Mountain 151
Table 3. Synoptic table of steppe and meadow vegetation. Species values are percentage frequencies. 1: Filipendulo-Lote-
tum alpini, 2: Thymo sipylei-Festucetum valesiacae typicum, 3: Thymo sipylei-Festucetum valesiacae stipetosum crassicul-
mis, 4: Astragaletum pycnocephalo-angustifolii typicum, 5: Astragaletum pycnocephalo-angustifolii astragaletosum acmo-
phylii, 6: Astragaletum pycnocephalo-angustifolii astragaletosum microcephalii. An.: Andesite, Bas.: Basalt, Ph: Phanero-
phyte, Ch: Chamaephyte, H: Hemicryptophyte, Cr: Cryptophyte, T: Therophyte.
Group Number 1 2 3 4 5 6
Number of plots 6 8 7 9 5 8
Mean altitude (m) 1890 1726 2044 2032 2111 2180
Bedrock An. An. + Bas. An. + Bas. An. + Bas. An. + Bas. An. + Bas.
Mean inclination (°) 12 13 32 29 25 27
Mean total vegetation cover (%) 77 83 69 64 66 78
Group 1
Lotus corniculatus var. alpinus H 100 . . . . .
Euphrasia pectinata T67.....
Filipendula vulgaris H83.....
Prunella orientalis H83.....
Group 2
Festuca valesiaca H 838886676050
Thymus sipyleus Ch .8886892025
Taeniatherum caput-medusae subsp. crinitum T 50 100 . 11 . .
Bromus tectorum T . 75 . 22 . 13
Alyssum simplex T .75....
Alyssum minutum T .63....
Helianthemum microcarpum Ch.63....
Elymus hispidus subsp. barbulatus Cr.50....
Group 3
Stipa pulcherrima subsp. crassiculmis H . . 100 . . .
Hieracium pannosum H..86...
Trisetum fl avescens H..43...
Group 4
Astragalus angustifolius subsp. angustifolius Ch . 50 14 100 100 100
Astragalus pycnocephalus Ch . . .564050
Trifolium physodes var. physodes H . 38 29 67 20 13
Group 5
Astragalus acmophyllus Ch....10013
Achillea kotschyi subsp. kotschyi H . . . 11 80 .
Bolanthus spergulifolius Ch . . . . 60 .
Group 6
Astragalus microcephalus subsp. microcephalus Ch . 100 86 22 40 100
Marrubium astracanicum subsp. astracanicum H....2075
Minuartia corymbulosa var. corymbulosa H .....63
Pimpinella olivieroides H .....25
Characteristics of the order Trifolio anatolici-Polygonetalia arenastri
Scorzonera cana var. alpina H83.....
Ranunculus demissus var. major H ......
Characteristics of the alliance Agropyro-Stachydion
Eremogone ledebouriana H . 38 86 . . .
Silene supina Ch.13....
Marrubium globosum subsp. globosum Ch.13....
phyto_46_2_0141_0000_kenar_0065.indd 151phyto_46_2_0141_0000_kenar_0065.indd 151 21.09.16 12:5021.09.16 12:50
eschweizerbart_xxx
152 Nihal Kenar & Osman Ketenoğlu
Group Number 1 2 3 4 5 6
Number of plots 6 8 7 9 5 8
Mean altitude (m) 1890 1726 2044 2032 2111 2180
Bedrock An. An. + Bas. An. + Bas. An. + Bas. An. + Bas. An. + Bas.
Mean inclination (°) 12 13 32 29 25 27
Mean total vegetation cover (%) 77 83 69 64 66 78
Characteristics of the order Astragalo-Brometalia
Sanguisorba minor subsp. balearica H . 75 43 56 20 .
Globularia trichosantha subsp. trichosantha H . 13 86 33 40 13
Galium incanum subsp. elatius Ch . . .222050
Onobrychis oxyodonta var. armena H .25....
Helianthemum nummularium subsp.
nummularium
Ch . 13 . 11 . .
Characteristics of the order Onobrychido armenae-Thymetalia leucostomi
Dianthus crinitus var. crinitus H .13....
Scabiosa argentea H . 13 . 11 . .
Stachys cretica subsp. anatolica H .13....
Galium verum subsp. verum Ch 100 75 71 56 60 38
Allium scrodoprosum Cr . . 43 . . 13
Salvia absconditifl ora H . 50 . 22 . .
Cota tinctoria H . 50 . 22 . .
Acantholimon acerosum subsp. acerosum var.
acerosum
Ch . . . . . 50
Characteristics of the class Astragalo-Brometea
Centaurea virgata H 83 100 57 33 40 75
Bromus tomentellus subsp. tomentellus Cr . 63 100 78 60 75
Teucrium chamederys subsp. chamaedrys Ch . 50 100 67 80 63
Eryngium campestre H . 100 57 33 60 75
Leontodon asperrimus H . 50 57 33 80 75
Phlomis armeniaca H . 38 57 67 . 63
Potentilla recta H 33631444 .13
Cruciata taurica Ch .13572210038
Asyneuma limonifolium subsp. pestalozzae H . . 100 . 80 25
Alyssum murale subsp. murale var. murale H . 13 43 56 . 38
Inula montbretiana H . 38 86 22 . .
Anthemis cretica subsp. albida H 17 . 57 11 40 .
Polygala anatolica H 50132933 . .
Morina persica var. persica H . 25 14 33 . 13
Centaurea urvellei subsp. stepposa H .25....
Koeleria macrantha C
r . . .114038
Apera intermedia Cr 33 . . 22 . .
Minuartia juniperina Ch . . . . 20 38
Euphorbia macroclada H . .141120 .
Cyanus triumfettii H......
Veronica multifi da Ch . 13 . . . .
Helichrysum plicatum subsp. plicatum H ..14...
Erysimum crassipes H...11..
Scorzonera cana var. jaquiniana H.....13
Table 3. cont.
phyto_46_2_0141_0000_kenar_0065.indd 152phyto_46_2_0141_0000_kenar_0065.indd 152 21.09.16 12:5021.09.16 12:50
eschweizerbart_xxx
Phytosociology of Melendiz Mountain 153
Group Number 1 2 3 4 5 6
Number of plots 6 8 7 9 5 8
Mean altitude (m) 1890 1726 2044 2032 2111 2180
Bedrock An. An. + Bas. An. + Bas. An. + Bas. An. + Bas. An. + Bas.
Mean inclination (°) 12 13 32 29 25 27
Mean total vegetation cover (%) 77 83 69 64 66 78
Characteristics of Querco-Carpinetalia orientalis, Quercion anatolicae, Querco-Cedretalia libani, Quercetea pubescentis
Cotoneaster nummularius Ph . . 71 22 . .
Trifolium elongatum H..1411..
Securigera varia H . . . 11 . 13
Crataegus orientalis subsp. orientalis Ph.13....
Juniperus oxycedrus subsp. oxycedrus Ph......
Dorycnium penthaphyllum subsp. anatolicum H .13....
Hypericum perforatum subsp. veronense H..14...
Carex leersii Cr.13....
Table 3. cont.
Table 4. Syntaxonomic scheme of the communities.
Steppe Vegetation
Class: Astragalo microcephali-Brometea tomentelli Quézel 1973
Order: Astragalo microcephali-Brometalia tomentelli Quézel 1973
Ass.: Astragaletum pycnocephalo-angustifolii ass. nov.
Subass.: Astragaletum pycnocephalo-angustifolii typicum subass. nov.
Subass.: – astragaletosum acmophylii subass. nov.
Subass.: – astragaletosum microcephalii subass. nov.
Alliance: Agropyro tauri-Stachydion lavandulifoliae Quézel 1973
Ass.: Thymo sipylei-Festucetum valesiacae ass. nov.
Subass.: Thymo sipylei-Festucetum valesiacae typicum subass. nov.
Subass.: – stipetosum crassiculmis subass. nov.
Wet Meadow Vegetation
Class: Astragalo microcephali-Brometea tomentelli Quézel 1973
Order: Astragalo microcephali-Brometalia tomentelli Quézel 1973
Ass.: Filipendulo-Lotetum alpini ass. nov.
Forest Vegetation
Class: Quercetea pubescentis (Oberd. 1948) Doing Kraft 1955
Order: Querco cerridis-Carpinetalia orientalis Quézel, Barbéro & Akman1980
Alliance: Quercion anatolicae Akman, Barbéro & Quézel 1979
Ass.: Galio ibicini-Quercetum vulcanicae ass. nov.
Ass.: Rhamno oleoidis-Quercetum pubescentis ass. nov.
Subass.: Rhamno oleoidis-Quercetum pubescentis typicum subass. nov.
Subass.: quercetosum macrolepidis subass. nov.
Subass.: quercetosum trojanae subass. nov.
Shrub Vegetation
Class: Quercetea pubescentis (Oberd. 1948) Doing Kraft 1955
Order: Querco cerridis-Carpinetalia orientalis Quézel, Barbéro & Akman1980
Alliance: Quercion anatolicae Akman, Barbéro & Quézel 1979
Ass.: Daphno oleoidis-Juniperetum oxycedri ass. nov.
phyto_46_2_0141_0000_kenar_0065.indd 153phyto_46_2_0141_0000_kenar_0065.indd 153 21.09.16 12:5021.09.16 12:50
eschweizerbart_xxx
154 Nihal Kenar & Osman Ketenoğlu
on the steppes of West, South, and Central Anatolia.
Pilosella cymosa, a Euro-Siberian element, is distributed
throughout Europe, and in the east of Siberia. However
it is absent from Caucasia, and South, Southwest and
Central Anatolia. It is found in scrub, pasture and rocky
slopes between 1280 and 2300 m. Inula montbretiana is
a rhizomatous perennial species with basal leaves. It is
an element of the Irano-Turanian region and occurs
mainly in Central Anatolia. Onobrychis oxyodonta is
widespread, distributed within a wide altitudinal range,
and grows in a great number of habitats in Anatolia.
Pimpinella olivieroides spreads from Anatolia to Iran,
but this species has not been found in eastern Anatolia,
and its distribution is therefore rather disjunct. Torilis
ucranica exists in inner, south, and west of Anatolia
(Davis 1965–1985).
The herb layer of the forest vegetation includes Securi-
gera varia, Vicia cracca subsp. stenophylla, Trifolium
elongatum, which are widespread and characteristic spe-
cies of the Quercion anatolicae. They are typically found
as the understorey of oak forests in Central Anatolia.
Physiognomy and ecology: The association occurs on
andesite and pyroclastic bedrock between 1453 and 1967
m. It is found in areas showing a slope ranging between
10º and 50º. The total cover is about 45–80%. The soil
texture is loamy (36%), and the organic matter amount is
rather low (2.52%). The pH is about 6.85 (Table 1).
Distribution: It occurs around Asmasız Village in the
north of the mountain, Kırlandı Valley around Karan-
lıkdere Village, in the southwest, and around Balcı Village,
in the south.
Three subassociations of the Rhamno oleoidis-Quer-
cetum pubescentis were identified in the study area.
2.1.1 Sub-Ass. typicum subass. nov. hoc loco
Typus: The same as for the association name.
Differential species: Onobrychis hypargyrea, Pyrus elea-
gnifolia subsp. eleagnifolia, Sorbus umbellata, Hyperi-
cum perforatum subsp. veronense.
Onobrychis hypargyrea is a perennial and occurs on
rocky slopes, often limestone, fallow fields and Quercus
scrub between 300 and 1200 m. It occurs mostly in Outer
Anatolia. Pyrus eleagnifolia subsp. eleagnifolia is a spi-
nescent tree and occurs in North, Central and South
Anatolia. Subsp. elaeagnifolia is close to P. georgica
Kuthath. which is a Caucasian species. Sorbus umbellata
is scattered in Anatolia and also occurs in Balkans, Lata-
kia, Lebanon, Palestine, and Caucasia. Hypericum perfo-
ratum subsp. veronense occurs in dry habitats in meso-
phytic regions up to 2500 m. It is widespread in Turkey
and also occurs in Europe, North Africa, Caucasia, Sibe-
ria, Central Asia, Iran, North Iraq, Cyprus, and W. Syria.
Physiognomy and ecology: The subassociation grows
on andesite and pyroclastic bedrock between 1547 and
1967 m. It is found in the areas with the inclinations of
10–40º and is on the west, northwest, and southwest
slopes. The total cover is about 60–80%.
Distribution: It is widespread in a large area extending
from the Kaletepe-Kurșunlu Hills of the Asmasız Vil-
lage, in the north, to the Kırlandı Valley, in the vicinity of
Beșkat and Harmanseki in Balcı Village, in the south.
2.1.2 Sub-Ass. quercetosum macrolepidis subass.
nov. hoc loco
Typus: Relevé 42 in Table 6
Differential species: Quercus ithaburensis subsp. mac-
rolepis, Crupina crupinastrum, Torilis leptophylla, and
Euphorbia falcata subsp. falcata var. galilaea.
Crupina crupinastrum, Torilis leptophylla, and Eu-
phorbia falcata subsp. falcata var. galilaea are small
therophytes and are widespread species. They are distrib-
uted from west and south Europe and the Mediterranean
area to the west of Pakistan (Davis 1965–1985).
Distribution: The subassociation is located on the
slopes with inclinations of 25–40º between 1453 and
1560 m in Balcı Village around Musa Hill.
2.1.3 Sub-Ass. quercetosum trojanae subass. nov.
hoc loco
Typus: Relevé 33 in Table 6
Differential species: Quercus trojana, Fraxinus angustifo-
lia subsp. angustifolia, Elymus divaricatus subsp. divari-
catus, and Scutellaria brevibracteata subsp. brevibracte-
ata.
Fraxinus angustifolia subsp. angustifolia is a Euro-Si-
berian element and it exists on mostly dryish, rocky
places, in maquis, deciduous scrub or forest, Pinus brutia
and P. nigra forests in West, South and Central Anatolia
up to 1700 m. Elymus divaricatus subsp. divaricatus is a
caespitose perennial with short rhizomes and an Irano-
Turanian endemic. It occurs in the Central and South
Anatolia between 1000 and 2700 m. Scutellaria brevi-
bracteata subsp. brevibracteata is an East Mediterranean
endemic and it occurs on rocky slopes and screes, in Ce-
drus and Juniperus forests, maquis, on limestone rocks up
to 1750 m in South Anatolia (Davis 1965–1985).
Distribution: It is found on slopes with inclinations of
10–50º between 1600 and 1685 m around Tepeköy Vil-
lage and Kızıltepe Hill in the southwestern slopes of the
mountain.
phyto_46_2_0141_0000_kenar_0065.indd 154phyto_46_2_0141_0000_kenar_0065.indd 154 21.09.16 12:5021.09.16 12:50
eschweizerbart_xxx
Phytosociology of Melendiz Mountain 155
Table 5. Relevé table of Daphno oleoidis-Juniperetum oxycedri. (Holotype*).
Relevé No. 1*2345678Life Form
Aspect SE SE S SW SW SE SE SE
Inclination (%) 15 5 25 25 25 40 40 25
Relevé size (m²) 289 289 289 289 289 289 289 289
Bedrock And And And And And And And And
Mean cover (%) 75 80 60 60 65 60 70 55
Herb cover (%) 30 30 20 35 35 30 30 25
Tree cover (%) 50 50 40 25 25 25 40 30
Characteristic species of Daphno oleoidis-Juniperetum oxycedri
Juniperus oxycedrus subsp. oxycedrus 33322222 F
Daphne oleoides subsp. oleoides +1112111 Cha
Campanula stricta subsp. stricta +.+r+.++ H
Asperula stricta subsp. stricta .+...
+++ Cha
Silene armena var. armena +++ ...
+.H
Characteristic species of Quercion anatolicae and Querco-Carpinetalia orientalis
Quercus pubescens subsp. pubescens 22 ..rr21 F
Clinopodium vulgare subsp. arundanum +..
++++ . H
Securigera varia subsp. varia ++ ...... H
Pyrus eleagnifolia subsp. eleagnifolia 2..r.... F
Vicia cracca subsp. stenophylla +....... H
Trifolium elongatum .+...... H
Characteristic species of Quercetea pubescentis
Cotoneaster nummularius ++11++++ F
Teucrium chamaedrys subsp. syspirense ++++++++ Cha
Trifolium physodes var. physodes .r +++ .+.H
Characteristic species of Onobrychido armenae-Thymetalia leucostomi
Astragalus microcephalus subsp. microcephalus 11111111 Cha
Thymus sipyleus 11+1111+ Cha
Phlomis armeniaca +..
+++++ H
Polygala anatolica ..
1+ .+.. H
Cota tinctoria ++ ..
+... H
Inula montbretiana .r.r..
+.H
Scabiosa argentea ....r+.rH
Asyneuma limonifolium subsp. pestalozzae +.+..... H
Helianthemum nummularium subsp. nummularium .....
++ .Cha
Eryngium campestre +++++++ .H
Stachys cretica subsp. anatolica +....... H
Morina persica var. persica .+++++++ H
Alyssum murale subsp. murale var. murale ++ ....
++ H
Leontodon asperrimus ..r++..
+H
Potentilla recta ++ ....r+ H
Helichrysum plicatum subsp. plicatum ++.....rH
Centaurea urvellei subsp. stepposa ....r+.rH
Anthemis cretica subsp. albida .+...... H
Galium incanum subsp. elatius +....... Cha
Companions
Phleum exaratum subsp. exaratum ++++++++ T
Eremogone ledebouriana ++++++++ H
Stipa pulcherrima subsp. crassiculmis +1+++111 H
phyto_46_2_0141_0000_kenar_0065.indd 155phyto_46_2_0141_0000_kenar_0065.indd 155 21.09.16 12:5021.09.16 12:50
eschweizerbart_xxx
156 Nihal Kenar & Osman Ketenoğlu
Relevé No. 1*2345678Life Form
Aspect SE SE S SW SW SE SE SE
Inclination (%) 15 5 25 25 25 40 40 25
Relevé size (m²) 289 289 289 289 289 289 289 289
Bedrock And And And And And And And And
Mean cover (%) 75 80 60 60 65 60 70 55
Herb cover (%) 30 30 20 35 35 30 30 25
Tree cover (%) 50 50 40 25 25 25 40 30
Pilosella piloselloides subsp. magyarica .+++++++ H
Pilosella hoppeana subsp. testimonialis ++ .+++++ H
Sanguisorba minor subsp. balearica ++++ .1.+H
Lotus corniculatus var. alpinus ++++++ .. H
Globularia trichosantha subsp. trichosantha ++++ .+.+H
Dactylis glomerata subsp. glomerata ..
++++ .+H
Stachys iberica subsp. stenostachya +..
+1++ .Cha
Verbascum cherianthifolium var. cherianthifolium ++ .+.++ .H
Rosa pulverulenta +.1.++ .rF
R1: Echinops ritro (+), Achillea setacea (+), Silene chlorifolia (+), Dianthus zederbauri (+), Hieracium pannosum (+); R2: Astragalus acmophyl-
lus (r), Anthyllis vulneraria subsp. variegata (+), Dianthus zederbauri (+), Carduus nutans subsp. nutans (r); R3: Scutellaria salviifolia (+), Pilo-
sella hoppeana subsp. cilicica (+), Rumex tuberosus subsp. tuberosus (+); R4: Orobanche minor (+), Carduus nutans subsp. nutans (+); R6:
Dianthus calocephalus (+), Hieracium pannosum (r); R7: Orobanche aegyptiaca (r), Medicago sativa subsp sativa (r), Rumex tuberosus subsp.
tuberosus
Table 5. cont.
2.2 Ass. Galio ibicini-Quercetum vulcanicae ass.
nov. hoc loco
Typus: Relevé 11 in Table 7
Characteristic species: Quercus vulcanica, Galium spu-
rium subsp. ibicinum, Vicia truncatula, Euphorbia den-
ticulata, Geranium macrostylum, Tanacetum cilicium,
and Lactuca hispida.
Galium spurium subsp. ibicinum and Euphorbia denti-
culata are Irano-Turanian elements and exist in Central
Anatolia, Anti-Taurus, Iraq, Iran, Afghanistan, and Cen-
tral Asia. They are mostly found in rock crevices, stony
places, groves, Quercus woods, scrub, in montane and al-
pine zone in South Anatolia. Geranium macrostylum and
Tanacetum cilicium are East Mediterranean elements. The
first species, which is a slender plant, occurs in Quercus,
Juniperus, and Cedrus forests, mountain slopes in West
and Central Anatolia. The second one occurs in Quercus
woods, shady banks, and in metamorphic valleys in South
and East Anatolia. Both of the species are found between
500 and 1900 m. Lactuca hispida and Vicia truncatula exist
in deciduous woodlands, and Quercus or coniferous fo-
rests or scrubs, between 600 and 2600 m from Balkans to
Caucasus. Vicia truncatula is an Euro-Siberian element
and it occurs in the north and rarely in Southwest Anato-
lia, Lactuca hispida is scattered in Anatolia except in the
northeast of Anatolia (Davis 1965–1985).
Physiognomy and ecology: The mean cover of the as-
sociation is 60–95% at the tree layer and 35–90% at the
herb layer. The association grows on andesite bedrock in
the area. It often prefers the southeast and northwest
sides of the mountain where the inclination is in the range
of 35º–55º.
Distribution: It spreads on Kırlandı Valley between
1900 and 2020 m in the southwest of the study area.
3. Mountain steppe vegetation
3.1. Ass. Thymo sipylei-Festucetum valesiacae
ass. nov. hoc loco
Typus: Relevé 55 in Table 8
Characteristic species: Festuca valesiaca and Thymus
sipyleus.
Festuca valesiaca is a densely cespitose perennial. It is
often dominant in the steppes and also occurs in alpine
meadows, Quercus pubescens scrubs, and open Pinus ni-
gra woods between 400 and 2800 m in West, South, and
Central Anatolia. Thymus sipyleus is a low woody and
freely branching sub-shrub forming dense cushions. It
occurs in mountain steppes, rocky slopes between 400
and 2700 m, mainly in north and central Anatolia (Davis
1965–1985). This species is related to heavy grazing
which influences species richness and floristic composi-
tion (Fırıncıoğlu et al. 2010).
Physiognomy and ecology: The association occurs on
andesite and pyroclastic bedrock which dominates slopes
phyto_46_2_0141_0000_kenar_0065.indd 156phyto_46_2_0141_0000_kenar_0065.indd 156 21.09.16 12:5021.09.16 12:50
eschweizerbart_xxx
Phytosociology of Melendiz Mountain 157
Table 6. Relevé table of Rhamno oleoidis-Quercetum pubescentis. (Holotype*).
Relevé No. 19* 20 21 22 23 24 25 26 27 28 29 38 39 40 41 42* 43 30 31 32 33* 34 35 36 37 Life
Form
Aspect NW NW SW SE NE N W SE NW N NW SW SW S WN SW WN WN S N WWWWSW
Inclination (%) 30 25 20 10 35 40 35 10 35 40 30 40 50 30 35 35 25 20 10 50 30 50 50 30 30
Relevé size (m²) 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289
Bedrock An An An An An An An An An An An An An An An An An An An An An An An An An
Mean cover (%) 70 60 80 80 70 80 75 80 70 70 80 60 45 60 55 60 80 85 85 80 75 70 70 70 80
Herb cover (%) 20 20 40 60 40 20 25 70 35 30 40 20 20 20 20 20 40 50 30 30 30 20 20 30 30
Tree cover (%) 65 60 70 75 55 65 60 50 40 40 40 55 40 50 45 50 65 75 75 60 70 65 65 60 75
Characteristic species of Rhamno oleoidis-Quercetum pubescentis
Quercus pubescens subsp.
pubescens
4444444333333333344433333 F
Rhamnus lycioides subsp.
oleoides
11.1...
1.1.111++1 ...
1++1+ F
Phlomis nissolii ...
+..
+2 ...
++++++ ...
+++ .. H
Pimpinella olivieroides ++............
++++ .++r+.. H
Torilis ucranica ..
+....
+.+......
++++++ ... T
Pilosella cymosa r+....r..
+........
++++ r .. H
Onobrychis oxyodonta .+....
+....
+++ .+....r+.r.H
Inula montbretiana +.....
+.+...........
++++ .H
Differential species of
subass. typicum
Onobrychis hypargyrea ...
+...
+................. H
Pyrus eleagnifolia subsp.
eleagnifolia
+r...
2..r1r ........
+..... F
Sorbus umbellata ....
+.....
+.............. F
Hypericum perforatum
subsp. veronense
........
+.+.............. H
Differential species of quercetosum macrolepidis
Quercus ithaburensis
subsp. macrolepis
...........
212123 ........ F
Crupina crupinastrum . ..........
+++ .+......... T
Torilis leptophylla . ..........
++ ..
+......... T
Euphorbia falcata subsp.
falcata var. galilaea
............r+.+......... T
Differential species of quercetosum trojanae
Quercus trojana . ................
11122223 F
Fraxinus angustifolia subsp.
angustifolia
....................
1.11 .F
Elymus divaricatus subsp.
divaricatus
....................
++ ... H
phyto_46_2_0141_0000_kenar_0065.indd 157phyto_46_2_0141_0000_kenar_0065.indd 157 21.09.16 12:5021.09.16 12:50
eschweizerbart_xxx
158 Nihal Kenar & Osman Ketenoğlu
Relevé No. 19* 20 21 22 23 24 25 26 27 28 29 38 39 40 41 42* 43 30 31 32 33* 34 35 36 37 Life
Form
Aspect NW NW SW SE NE N W SE NW N NW SW SW S WN SW WN WN S N WWWWSW
Inclination (%) 30 25 20 10 35 40 35 10 35 40 30 40 50 30 35 35 25 20 10 50 30 50 50 30 30
Relevé size (m²) 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289
Bedrock An An An An An An An An An An An An An An An An An An An An An An An An An
Mean cover (%) 70 60 80 80 70 80 75 80 70 70 80 60 45 60 55 60 80 85 85 80 75 70 70 70 80
Herb cover (%) 20 20 40 60 40 20 25 70 35 30 40 20 20 20 20 20 40 50 30 30 30 20 20 30 30
Tree cover (%) 65 60 70 75 55 65 60 50 40 40 40 55 40 50 45 50 65 75 75 60 70 65 65 60 75
Scutellaria brevibracteata
subsp. brevibracteata
....................
+..
+.H
Characteristic species of Quercion anatolicae and Querco-Carpinetalia orientalis.
Securigera varia ....
+++ .+....
++++ ...
++ .++ H
Vicia cracca subsp.
stenophylla
+.221 ......
+++++ .+2 ...... H
Trifolium elongatum . ...
++ ..
+.+...
+.....
+.... H
Lathyrus digitatus . .......................
+H
Characteristic species of Querco-Cedretalia libani
Milium vernale subsp.
vernale
...
+...
+...........
+.....
Dorycnium graceum r+......................
+H
Briza humilis ................
+++ ...... T
Quercus libani ...................
1..... F
Dorycnium penthaphyllum
subsp. anatolicum
...................
+..... H
Characteristic species of Quercetea pubescentis
Trifolium physodes var.
physodes
++1+ .+...
+.++ .1.++ .+...
++ H
Teucrium chamaedrys
subsp. syspirense
++....
+....
+++ .+....
++++ .Cha
Cotoneaster nummularius ...
1.1.11 .1........
1..
1.+F
Characteristic species of Onobrychido armenae-Thymetalia leucostomi
Astragalus microcephalus ++1.111 .+11++++++1+1 .1+++Cha
Galium verum subsp. verum ++11+.1.2 ++++ .+.+++++++++Cha
Cota tinctoria var. tinctoria +++.+++ ..
+.++ .+++++++++++ H
Allium scrodoprosum
subsp. rotundum
.r ++++ .+.++ r ++ r ++++++ ..
+.Cr
Salvia absconditifl ora ..
1+ ..
+1 .1.++++++++1+++ .. H
Thymus sipyleus ..
1.++1 .+.1....
++2++1++1 .Cha
Stachys cretica subsp.
anatolica
.r r +++ r + ......
+r ....
+++ .+H
Table 6. cont.
phyto_46_2_0141_0000_kenar_0065.indd 158phyto_46_2_0141_0000_kenar_0065.indd 158 21.09.16 12:5021.09.16 12:50
eschweizerbart_xxx
Phytosociology of Melendiz Mountain 159
Table 6. cont.
Relevé No. 19* 20 21 22 23 24 25 26 27 28 29 38 39 40 41 42* 43 30 31 32 33* 34 35 36 37 Life
Form
Aspect NW NW SW SE NE N W SE NW N NW SW SW S WN SW WN WN S N WWWWSW
Inclination (%) 30 25 20 10 35 40 35 10 35 40 30 40 50 30 35 35 25 20 10 50 30 50 50 30 30
Relevé size (m²) 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289
Bedrock An An An An An An An An An An An An An An An An An An An An An An An An An
Mean cover (%) 70 60 80 80 70 80 75 80 70 70 80 60 45 60 55 60 80 85 85 80 75 70 70 70 80
Herb cover (%) 20 20 40 60 40 20 25 70 35 30 40 20 20 20 20 20 40 50 30 30 30 20 20 30 30
Tree cover (%) 65 60 70 75 55 65 60 50 40 40 40 55 40 50 45 50 65 75 75 60 70 65 65 60 75
Taenitherum caput-
medusae subsp. crinitum
...
+..
11 ...
1+++++ ...
1111 .T
Centaurea virgata ++............
+.+++++++++ H
Teucrium polium subsp.
polium
r..
1...
1...
+++ .+++ ..r...
+ Cha
Asyneuma limonifolium
subsp. pestalozzae
.r...
+..
+.+.+.+r ...
+...r.H
Scabiosa argentea ......
++ ....
++ .+......
+++ H
Helianthemum
nummularium subsp.
nummularium
............
++ .+.+..
++++ .Cha
Teucrium chamedrys subsp.
chamaedrys
..
1......
+....
+.1111 ....
+ Cha
Phlomis pungens var. hirta +r.+..........
+........r.H
Acantholimon acerosum
subsp. acerosum var.
acerosum
........
+.+......
+.+.....
Cha
Dianthus crinitus var.
crinitus
r+....................r+.H
Phlomis armeniaca ++..
+.................... H
Euphorbia macroclada ...............
++ ........ H
Onobrychis oxyodonta var.
armena
..............
+.1........ H
Polygala anatolica ..........
+.............. H
Characteristic species of Astragalo-Brometea
Festuca valesiaca 11 22+11 .121++1113312+++11 H
Eryngium campestre + +1+ ..
+1 .+.++++++1++++++ .H
Potentilla recta r+...
++ .+++ .....
++ ..
+++++ H
Alyssum murale subsp.
murale var. murale
++..
+++ ....
++ .+.+..
.
++++ .H
Bromus tomentellus ..
+1 ...
1+1++ .....
++1 .....Cr
Erysimum crassipes ++....
+....
+++ .++ ........ H
Veronica multifi da . ....
+......
+...
+.++ ...r.Cha
phyto_46_2_0141_0000_kenar_0065.indd 159phyto_46_2_0141_0000_kenar_0065.indd 159 21.09.16 12:5021.09.16 12:50
eschweizerbart_xxx
160 Nihal Kenar & Osman Ketenoğlu
Relevé No. 19* 20 21 22 23 24 25 26 27 28 29 38 39 40 41 42* 43 30 31 32 33* 34 35 36 37 Life
Form
Aspect NW NW SW SE NE N W SE NW N NW SW SW S WN SW WN WN S N WWWWSW
Inclination (%) 30 25 20 10 35 40 35 10 35 40 30 40 50 30 35 35 25 20 10 50 30 50 50 30 30
Relevé size (m²) 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289
Bedrock An An An An An An An An An An An An An An An An An An An An An An An An An
Mean cover (%) 70 60 80 80 70 80 75 80 70 70 80 60 45 60 55 60 80 85 85 80 75 70 70 70 80
Herb cover (%) 20 20 40 60 40 20 25 70 35 30 40 20 20 20 20 20 40 50 30 30 30 20 20 30 30
Tree cover (%) 65 60 70 75 55 65 60 50 40 40 40 55 40 50 45 50 65 75 75 60 70 65 65 60 75
Bromus tectorum +.....
+.......
+++ ........ T
Cyanus triumfettii ..
+.....
+.+.......
+...... H
Cruciata taurica +.+......
+.........
+.....
Cha
Scabiosa rotata +r.............
+r ........ H
Leontodon asperrimus . .........
+r ...r......... H
Anthemis cretica subsp.
albida
.....
+..
+.+.............. H
Centaurea urvellei subsp.
stepposa
...........r..
+r ......... H
Galium incanum subsp.
elatius
+. ...
+....
+..............
Cha
Helichrysum plicatum
subsp. plicatum
........
+.+.............. H
Morina persica . ........
+....
+.......... H
Minuartia juniperina . ....
+...................
Cha
Koeleria macrantha ................
+........ H
Stipa holosericea .......
+................. H
Companions
Prunus divaricata var.
divaricata
..
1...r..
+....
1.1.1..
1... F
Tragopogon porrifolius var.
longirostris
......
++ ...
+r+.+..
+.r.... H
Sanguisorba minor subsp.
balearica
++...
+.....
+..
+.......
++ .H
Cerastium dichotomum
subsp. dichotomum
..
++ ...
+.+.......
+++ ..... T
Microthlaspi perfoliatum ..
+....
+.+....
+..
++ ...... T
Globularia trichosantha
subsp. trichosantha
.+..
++ ..
+.+............
+.H
Vicia peregrina ......
1.............
++1+1 T
Prangos meliocarpoides
var. meliocarpoides
..
+.++ ..........
+.+.....rCr
Arrhenatherum palaestinum ..
++ ...
+........
+.+.....
+H
Table 6. cont.
phyto_46_2_0141_0000_kenar_0065.indd 160phyto_46_2_0141_0000_kenar_0065.indd 160 21.09.16 12:5021.09.16 12:50
eschweizerbart_xxx
Phytosociology of Melendiz Mountain 161
Relevé No. 19* 20 21 22 23 24 25 26 27 28 29 38 39 40 41 42* 43 30 31 32 33* 34 35 36 37 Life
Form
Aspect NW NW SW SE NE N W SE NW N NW SW SW S WN SW WN WN S N WWWWSW
Inclination (%) 30 25 20 10 35 40 35 10 35 40 30 40 50 30 35 35 25 20 10 50 30 50 50 30 30
Relevé size (m²) 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289
Bedrock An An An An An An An An An An An An An An An An An An An An An An An An An
Mean cover (%) 70 60 80 80 70 80 75 80 70 70 80 60 45 60 55 60 80 85 85 80 75 70 70 70 80
Herb cover (%) 20 20 40 60 40 20 25 70 35 30 40 20 20 20 20 20 40 50 30 30 30 20 20 30 30
Tree cover (%) 65 60 70 75 55 65 60 50 40 40 40 55 40 50 45 50 65 75 75 60 70 65 65 60 75
Phleum exaratum subsp.
exaratum
++..
++ ..
+.+............. . T
Echinops ritro ......rr...
++ ..rr........ H
Pterocephalus plumosus r......
+...
+++ ..
+........ T
Alyssum minutum ...
+...
+.+.......
+.+..... T
Rosa canina 2........
1.....
1..
11 ..... F
Bromus japonicus subsp.
anatolicus
...
+++ .+.......
+......... T
Helianthemum microcarpum ..
++1 ...
1......
+.+........ T
Scleranthus annuus subsp.
annuus
..
+....
+......
+.+.+...... T
Agrostemma githago . .....
+.....r.......
++ .+.T
Lotus corniculatus var.
alpinus
+.........
+..
+.++ ........ H
Daphne oleoides subsp.
oleoides
..
1.11 ....
1..............
Cha
Ziziphora persica ..
++ ...
+......
+.......... T
Verbascum cherianthifolium
var. cherianthifolium
..... .
+.....r+.+..... .... H
Rosa pulverulenta ........
+.+...
+.1........ F
Silene rhynchocarpa . ........
+....
+....
+....
+ Cha
Scandix stellata ..
+...............
++ ..... T
Anagallis foemina .r.........
+.+.+......... T
Lotus aegaeus ...........
++ .........
++ .H
Salvia aethiopis +.....r...
..........rr... H
Amygdalus orientalis . ..........
+1+ ......r.... F
Medicago fi cheriana ..
1...........
+.++ ....... T
Alyssum simplex . ........
+.......
++ ...... T
Achillea setacea ........
+++ .............. H
Trifolium scabrum ..
+1 ..............
1...... T
Silene dichotoma subsp.
dichotoma
...........
+++ ........... T
Table 6. cont.
phyto_46_2_0141_0000_kenar_0065.indd 161phyto_46_2_0141_0000_kenar_0065.indd 161 21.09.16 12:5021.09.16 12:50
eschweizerbart_xxx
162 Nihal Kenar & Osman Ketenoğlu
Relevé No. 19* 20 21 22 23 24 25 26 27 28 29 38 39 40 41 42* 43 30 31 32 33* 34 35 36 37 Life
Form
Aspect NW NW SW SE NE N W SE NW N NW SW SW S WN SW WN WN S N WWWWSW
Inclination (%) 30 25 20 10 35 40 35 10 35 40 30 40 50 30 35 35 25 20 10 50 30 50 50 30 30
Relevé size (m²) 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289 289
Bedrock An An An An An An An An An An An An An An An An An An An An An An An An An
Mean cover (%) 70 60 80 80 70 80 75 80 70 70 80 60 45 60 55 60 80 85 85 80 75 70 70 70 80
Herb cover (%) 20 20 40 60 40 20 25 70 35 30 40 20 20 20 20 20 40 50 30 30 30 20 20 30 30
Tree cover (%) 65 60 70 75 55 65 60 50 40 40 40 55 40 50 45 50 65 75 75 60 70 65 65 60 75
Trifolium hirtum ..............
1.+.......
+T
Silene caramanica var.
caramanica
++...
+................... H
Cota austriaca +..
+...
1................. T
Astragalus lagopoides .....
+..
1.1..............
Cha
Androsace maxima ++...............
+....... T
Medicago rigidula var.
rigidula
...........
+..
+..
+....... T
Consolida orientalis ............rr.r......... T
Triticum baeoticum .+..................
+..
+.T
Salvia tomentosa ......
+...............
++ .H
Nepeta nuda subsp.
albifl ora
.......
+.1.........
+..... H
Velezia rigida ...
+............
+....r... T
R19: Carduus nutans subsp. nutans (+), Thymus argaeus (+), Veronica orientalis subsp. nimrodii (+), Filago arvensis (+), Thesium billardieri (.); R20: Plantago atrata (+), Veronica orientalis
subsp. nimrodii (+), Filago arvensis (+), Thymus argaeus (1); R21: Ornithogalum pyrenaicum (+), Oryzopsis holciformis subsp. holciformis var. holciforme (+); R23: Hypericum lydium (+), Cam-
panula stricta subsp. stricta (+), Clinopodium vulgare subsp. arundanum(+); R24: Pilosella hoppeana subsp. cilicica (+), Dianthus zederbauri (+), Solidago virgaurea subsp. virgaurea (+), Scor-
zonera tomentosa (+), Salvia pilifera (+); R25: Lactuca orientalis (.), Malabaila secacul subsp. secacul (.), Silene chlorifolia (.), Ononis pusilla (+); R26: Petrorhagia alpina subsp. alpina (+), Mar-
rubium globosum subsp. globosum (1), Picnomon acarna (+), Secale anatolicum (+), Elymus hispidus subsp. hispidus (1), Bupleurum sulphureum (+), Delphinium dasystachyum (+), Achillea
coarctata (+); R27: Tanacetum parthenium (+), Ferulago aucheri (+), Dianthus zederbaueri (+), Campanula glomerata subsp hispida (+), Silene armena var. armena (+), Dianthus calocephalus
(+), Lathyrus aureus (1); R28: Arenaria serpyllifolia subsp. serpyllifolia (+), Melica ciliata subsp. ciliata (.); R29: Astragalus acmophyllus (1), Dianthus calocephalus (+), Ferulago aucheri (+), Cam-
panula stricta subsp. stricta (+), Silene armena var. armena (+), Asperula stricta subsp stricta (+), Hieracium pannosum (+), Anthyllis vulneraria subsp. variegata (+), Rumex acetosella (+), Cam-
panula glomerata subsp hispida (+), Lathyrus czeczottianus (1); R32: Medicago sativa subsp. sativa (+); R33: Elymus divaricatus subsp. divaricatus (+); R34: Epipactis helleborine subsp. hel-
leborine (.), Elymus divaricatus subsp. divaricatus (+); R35: Acantholimon ulicinum var. ulicinum (.), Crataegus monogyna subsp. monogyna (.); R36: Echium italicum (.), Salvia virgata (.), Scor-
zonera cinerea (+), Stipa pulcherrima subsp. crassiculmis (+), Lapsana communis subsp pisidica (+); R38: Ziziphora capitata (+); R39: Linum nodiflorum (.), Malabaila secacul subsp. secacul
(.), Ziziphora capitata (+); R40: Artedia squamata (.), Linum nodiflorum (+); R41: Ornithogalum pyrenaicum (+), Scorzonera cinerea (+), Epipactis helleborine subsp. helleborine (+), Oryzopsis
holciformis subsp. holciformis var. holciforme (+), Melica ciliata subsp. ciliata (+), Aegilops umbellulata (+); R42: Marrubium globosum subsp. globosum (.), Orobanche aegyptiaca (.), Gaspar-
rinia peucedanoides (.), Linaria corifolia (.), Asperula stricta subsp stricta (.), Paracaryum longipes (.); R43: Secale anatolicum (+), Aegilops umbellulata (1)
Table 6. cont.
phyto_46_2_0141_0000_kenar_0065.indd 162phyto_46_2_0141_0000_kenar_0065.indd 162 21.09.16 12:5021.09.16 12:50
eschweizerbart_xxx
Phytosociology of Melendiz Mountain 163
facing north, northwest and east, where the inclinations
are 5–45° between 1636 and 2030 m.
Distribution: It occurs on the Bozdağ Hill in the north
and on the upper slopes of Kırkpınar and Okçu Villages
in the southern part of the mountain between 1636 and
2141 m.
Thymo sipylei-Festucetum valesiacae was represented
by two subassociations:
3.1.1 Sub-Ass. typicum subass. nov. hoc loco
Typus: The same as for the association name.
Differential species: Taeniatherum caput-medusae subsp.
crinitum, Bromus tectorum, Alyssum simplex, Alyssum
minutum, Helianthemum microcarpum, and Elymus his-
pidus subsp. barbulatus.
Taeniatherum caput-medusae has two subspecies in
Anatolia. Their morphological traits are related to some
extent to their distribution. While T. caput-medusae
subsp. crinitum extends to 2050 m, the other subspecies
reaches up to 1200 m. It occurs on grassy mountain
slopes, stony hillsides, mountain scrub, and in steppes.
Bromus tectorum, Alyssum simplex, A. minutum, and
Helianthemum microcarpum are widespread and they are
often found in open places, scrub and open grasslands up
to 1400 and 2600 m. Elymus hispidus subsp. barbulatus
occur on stony slopes, rocky hills, scree, dry banks, and
in steppes between 500 and 2895 m in Central Anatolia
(Davis 1965–1985).
Physiognomy and ecology: The mean cover of the
subassociation is about 80–85%. The soil texture is
loamy. The pH is about 6.85 (Table 1).
Distribution: It is situated in Okçu, Fesleğen, and
Kırkpınar Villages on the southern, southeastern and
eastern slopes of the mountain between 1636 and 1775 m.
3.1.2 Sub-Ass. stipetosum crassiculmis subass.
nov. hoc loco
Typus: Relevé 59 in Table 8
Differential species: Stipa pulcherrima subsp. crassicul-
mis, Hieracium pannosum, and Trisetum flavescens.
Stipa pulcherrima subsp. crassiculmis exits in stony
places between 500 and 3000 m and is very scattered in
Anatolia. It extends from Central Europe to Khorassan
and its actual distribution is unknown because its popu-
lation intergrades with the population of the other sub-
species (subsp. pulcherrima). Hieracium pannosum is
usually found on calcareous rocks, sometimes in stony
pastures or woodland clearings between 1000 and
2700 m, and is scattered mainly in outer and Central Ana-
tolia. It is an East Mediterranean element that occurs in
Balkan Peninsula and Caucasia. Trisetum flavescens is a
laxly caespitose perennial, an Euro-Siberian element, and
found in meadows, mountain slopes, fallow fields be-
tween 770 and 2900 m in the Northwest, Central, and
Northeast Anatolia.
Physiognomy and ecology: The mean cover of the
subassociation varies between 50 and 85%. The soil tex-
ture of the subassociation is loamy. The organic matter is
2.91% and the pH is about 5.60. The subassociation pre-
fers more acidic soils and is richer than the typical subas-
sociation in terms of organic matter (Table 1).
Distribution: It exists on the slopes of Bozdağ in the
northwestern part and of Tepeköy in the northeastern
part of the mountain between 1975 and 2030 m.
3.2. Ass. Astragaletum pycnocephalo-
angustifolii ass. nov. hoc loco
Typus: Relevé 71 in Table 9
Characteristic species: Astragalus angustifolius subsp. an-
gustifolius and Astragalus pycnocephalus.
Astragalus angustifolius subsp. angustifolius is the
dominant species of the association.The community also
contains Anatolian steppe species such as Bromus tomen-
tellus subsp. tomentellus, Teucrium chamaedrys subsp.
chamaedrys, Phlomis armeniaca, and Thymus sipyleus of
the class Astragalo-Brometea.
Astragalus angustifolius subsp. angustifolius is a dwarf,
cushion-forming shrub and occurs in steppes of North-
west, West, South, and Central Anatolia between 800 and
2900 m. Astragalus pycnocephalus is a small, stout-
stemmed spinous shrub and originated from the Irano-
Turanian region. It exists on calcareous screes and cliffs
between 1000 and 2400 m in Northeast, East, Central,
and South Anatolia. Bromus tomentellus subsp. tomen-
tellus and Phlomis armeniaca, are Irano-Turanian ele-
ments and are widespread, but occur in open forests, dry
mountain slopes, rocky and sandy steppe from 800 to
2700 m mainly in Central Anatolia. Teucrium chamae-
drys subsp. chamaedrys also exists in open forests and
steppe in North, South, and Central Anatolia (Davis
1965–1985).
Physiognomy and ecology: The mean cover of the as-
sociation varies between 25 and 85%. The association oc-
curs on pyroclastic and basalt bedrocks. The soil texture
is loamy, and the organic matter in the soil is about
3.68%. The pH of the soil is about 6.10 (Table 1).
Distribution: It occurs between 1790 and 2260 m on
the northern, northeastern, southern and southwestern
parts of the mountain where the inclinations are 5–60º.
The association consists of three subassociations:
phyto_46_2_0141_0000_kenar_0065.indd 163phyto_46_2_0141_0000_kenar_0065.indd 163 21.09.16 12:5021.09.16 12:50
eschweizerbart_xxx
164 Nihal Kenar & Osman Ketenoğlu
Table 7. Relevé table of Galio ibicini-Quercetum vulcanicae. (Holotype*).
Relevé No. 9 10 11* 12 13 14 15 16 17 18 Life
Form
Aspect SSE SSE NW E NW NW NW SE SE SSE
Inclination (%) 50 50 40 35 40 50 50 45 55 40
Relevé size (m²) 289 289 289 289 289 289 289 289 289 289
Bedrock And And And And And And And And And And
Mean cover (%) 100 100 80 85 70 95 95 70 85 60
Herb cover (%) 90 70 40 45 40 40 50 40 40 35
Tree cover (%) 95 60 70 70 65 80 90 60 75 60
Characteristic species of Galio ibicini-Quercetum vulcanicae
Quercus vulcanica 5544344322 F
Galium spirium subsp. ibicinum 2++2+ ..
11+ T
Vicia truncatula +++ .++ .+.. H
Euphorbia denticulata +...
++ ..
+.H
Geranium macrostylum .++++ ..... Cr
Lactuca hispida ..
+.+..
++ .Cr
Tanacetum cilicium .+...
++ ... H
Characteristic species of Quercion anatolicae and Querco-Carpinetalia orientalis
Lathyrus digitatus +.++..
+r++ H
Trifolium elongatum .++ .++ .++ .H
Anthriscus nemorosa .2+ .+++ ... H
Vicia cracca subsp. stenophylla 12 .....
+1 .H
Quercus pubescens subsp. pubescens .......
233 F
Lathyrus czeczottianus .....
+...
+H
Securigera varia +......... H
Pyrus eleagnifolia subsp. eleagnifolia ....r..... F
Characteristic species of Quercetea pubescentis
Trifolium physodes var. physodes +1++...
+.+H
Cotoneaster nummularius ..
+.1++ .1.F
Carex leersii +..
+....
++ Cr
Milium vernale subsp. vernale ......
+.++ T
Lapsana communis subsp. pisidica +..
+...... H
Lactuca mulgedioides .....
++ ... H
Crataegus orientalis subsp. orientalis ....
+..... F
Characteristic species of Onobrychido armenae-Thymetalia leucostomi
Galium verum subsp. verum +++++++++ .Cha
Allium scrodoprosum subsp. rotundum +++++ ..
+++ Cr
Astragalus microcephalus subsp. microcephalus +++ .1..
111Cha
Salvia absconditiflora ...
++ ...
++ H
Inula montbretiana ....
+....
+H
Stachys cretica subsp. anatolica .......
++ .H
Asyneuma limonifolium subsp. pestalozzae ...
+.....
+H
Teucrium chamederys subsp. chamaedrys .......
++ .Cha
Achillea santolinoides subsp. wilhelmsii ..
+.+..... H
Cota tinctoria ...
+...... H
Centaurea virgata .........rH
Acantholimon acerosum subsp. acerosum var.
acerosum
....r.....
Cha
Achillea santolinoides subsp. wilhelmsii ..
+.+..... H
Characteristic species of Astragalo-Brometea
Cyanus triumfettii +++++++ r ++ H
phyto_46_2_0141_0000_kenar_0065.indd 164phyto_46_2_0141_0000_kenar_0065.indd 164 21.09.16 12:5021.09.16 12:50
eschweizerbart_xxx
Phytosociology of Melendiz Mountain 165
Relevé No. 9 10 11* 12 13 14 15 16 17 18 Life
Form
Aspect SSE SSE NW E NW NW NW SE SE SSE
Inclination (%) 50 50 40 35 40 50 50 45 55 40
Relevé size (m²) 289 289 289 289 289 289 289 289 289 289
Bedrock And And And And And And And And And And
Mean cover (%) 100 100 80 85 70 95 95 70 85 60
Herb cover (%) 90 70 40 45 40 40 50 40 40 35
Tree cover (%) 95 60 70 70 65 80 90 60 75 60
Bromus tomentellus subsp. tomentellus .1+++ ..
+++ Cr
Veronica multifida ..
+++ ..
+++Cha
Bromus tectorum ++ .+..
++ .+T
Eryngium campestre ..
+.+..
+++ H
Helichrysum plicatum subsp. plicatum +.+.++ ..
+.H
Cruciata taurica ..
+.+..
+++Cha
Festuca valesiaca +..
+1 ..
+.. H
Astragalus angustifolius subsp. angustifolius +..
1+ ..
+..
Cha
Potentilla recta ..
+.+...
+.H
Alyssum murale subsp. murale var. murale ....
+..... H
Anthemis cretica subsp. albida .......
+.. H
Galium incanum subsp. elatius ..
+.......
Cha
Minuartia juniperina ......
+...
Cha
Companions
Poa bulbosa ++++++++ .+H
Microthlaspi perfoliatum +.++++++++ T
Dactylis glomerata subsp. glomerata ++ .+++++ .+H
Ziziphora persica +++++ ..
+++ T
Hypericum scabrum +++ .+++ . ++Cha
Orchis mascula subsp. pinetorum ++r++..
++ r Cr
Pilosella piloselloides subsp. magyarica +.++ .+.+++ H
Vicia peregrina ++++ ...
+++ T
Alyssum simplex ++ .++ ..
+++ T
Lamium amplexicaule var. amplexicaule +.r.r..r+r T
Ranunculus cuneatus ..
+++ ..
++ .Cr
Phleum montanum subsp. montanum +.++ ...
++ .H
Prangos meliocarpoides var. meliocarpoides +..
+.+..rr Cr
Pilosella hoppeana subsp. testimonialis ..
+++ ..
+.+H
Alyssum minutum .++ .++ .+.. T
Campanula glomerata subsp. hispida .++ .+++ ... H
Poa pratensis ++ .++ ..
+.. H
Anthemis cretica subsp. anatolica ..
+.++ ..
++ H
Silene vulgaris var. vulgaris .+..
+++ .+.H
Gaudiniopsis macra subsp. macra ..
+.+.++1 .T
Sanguisorba minor subsp. balearica +...
+..+.+H
Cystopteris fragilis ..
+.+++ ... H
Trifolium campestre ..
+....
+++ T
Eremogone ledebouriana ..
+.....r+ H
Silene rhynchocarpa ..
+.+..
+..
Cha
Thymus argaeus ..
+.+....
+Cha
Verbascum lasianthum +......
+r .H
Lathyrus haussknechtii .+..
+....
+H
Table 7. cont.
phyto_46_2_0141_0000_kenar_0065.indd 165phyto_46_2_0141_0000_kenar_0065.indd 165 21.09.16 12:5021.09.16 12:50
eschweizerbart_xxx
166 Nihal Kenar & Osman Ketenoğlu
Relevé No. 9 10 11* 12 13 14 15 16 17 18 Life
Form
Aspect SSE SSE NW E NW NW NW SE SE SSE
Inclination (%) 50 50 40 35 40 50 50 45 55 40
Relevé size (m²) 289 289 289 289 289 289 289 289 289 289
Bedrock And And And And And And And And And And
Mean cover (%) 100 100 80 85 70 95 95 70 85 60
Herb cover (%) 90 70 40 45 40 40 50 40 40 35
Tree cover (%) 95 60 70 70 65 80 90 60 75 60
Carum meifolium ..
+.+..
+.. H
Vicia grandiflora var. grandiflora .+.....
++ .T
Agrostis stolonifera ..
+..
++ ... H
Filago arvensis ...
+...r+.T
Alliaria petiolata ..
+.+..... T
R9: Trifolium arvense var. arvense (+), Limodorum abortivum var. abortivum (+), Rumex tuberosus subsp.tuberosus (+), Rosa canina (+); R10:
Secale anatolicum (+), Senecio doriiformis subsp. orientalis (+), Ferula halophila (+), Silene dichotoma subsp. dichotoma (+), Bupleurum gerardi
(+), Prunus divaricata subsp. divaricata (+), Astragalus pycnocephalus (+), Valeriana dioscoridis (+), Rosa canina (+); R11: Veronica orientalis
subsp nimrodii (+),Onobrychis sulphurea var. sulphurea (+); R12: Trifolium scabrum (+), Veronica verna (+), Cruciata pedemontana (+), Prunus
divaricata subsp. divaricata (+), Scandix stellata (+), Torilis ucranica (+), Astragalus pycnocephalus (+); R13: Achillea setacea (+), Ornithogalum
pyrenaicum (+), Vincetoxicum canescens subsp. canescens (+), Ballota larendana (+), Phlomis nissolii (+), Hypericum pseudolaeve (+), Daphne
oleoides subsp. oleoides (+), Heracleum argeum (+), Alkanna orientalis var. orientalis (+), Sedum hispanicum var. hispanicum (+), Minuartia re-
curva subsp. oreina (+), Symphytum brachycalyx (r), Verbascum cherianthifolium var. cherianthifolium (r), Muscari armeniacum (+), Globularia
trichosantha (+),Onobrychis sulphurea var. sulphurea (+), Astragalus acmophyllus (1), Petrorhagia alpina subsp. alpina (+), Hesperis bicuspidata
(+); R14: Elymus hispidus subsp. barbulatus (+), Scandix stellata (+), Petrorhagia alpina subsp. alpina (+),Hesperis bicuspidata (+); R15: Valeri-
ana dioscoridis (+); R16: Xeranthemum annuum (r), Arrhenatherum palaestinum (+), Carduus nutans subsp. nutans (r), Epipactis helleborine
subsp. helleborine (+), Aethionema arabicum (+), Holosteum umbellatum var. umbellatum (+), Chenopodium album subsp. album var. album
(r), Stachys iberica subsp. stenostachya (+); R17: Bromus japonicus subsp. anatolicus (+), Medicago ficheriana (+), Astragalus acmophyllus (1),
Scutellaria salviifolia (+), Valerianella coronata (+); R18: Orobanche aegyptiaca (+), Lactuca orientalis (+), Hordeum bulbosum (+), Rumex tube-
rosus subsp.tuberosus (+), Globularia trichosantha (+), Torilis ucranica (+), Scutellaria salviifolia (+), Valerianella coronata (+)
Table 7. cont.
3.2.1 Sub-Ass. typicum subass. nov. hoc loco
Typus: The same as for the association name.
Differential species: Trifolium physodes. It is a Mediter-
ranean element and occurs on open ground, clearings in
forests up to 1800 m. It occurs in Outer and Central Ana-
tolia, Portugal, South Europe from Italy to Greece, Crete,
Cyprus, Georgia, Caucasus, and West Iran.
Physiognomy and ecology: The mean cover of the
subassociation varies between 25 and 85%. It occurs on
andesite bedrocks.
Distribution: The subassociation occurs between 1790
and 1977 m on both northern and the southern slopes
where the inclination ranges between 5 and 60º. It is
found on the Kaletepe-Kurșunlu Hills in Asmasız Village
in the north, the upper slopes of Fesleğen Village, the val-
ley of Okçu Village in the south, and the way to Kırlandı
Valley in the southwest.
3.2.2 Sub-Ass. astragaletosum acmophylii subass.
nov. hoc loco
Typus: Relevé 77 in Table 9
Differential species: Astragalus acmophyllus, Achillea
kotschyi subsp. kotschyi, and Bolanthus spergulifolius.
Astragalus acmophyllus is a spinous, dwarf cushion-
forming shrub. It occurs on dry rocky igneous slopes
reaching up to 2800 m. It is an Irano-Turanian endemic
and is rare in Central and Northeast Anatolia. Achillea
kotschyi subsp. kotschyi exists on stony slopes, limestone
rocks, and in alpine meadows where the altitude is in the
range of 1200 and 3000 m. It spreads from Bulgaria to
Lebanon, and the mountains of outer and inner Anatolia.
Bolanthus spergulifolius is an endemic perennial, with a
low, many-branched habit. It grows in the steppes, stony
places, and fields between 800 and 1300 m in West Ana-
tolia (Davis 1965–1985), however, within the study area,
it can be found above 2000 m.
Physiognomy and ecology: The total cover ranges be-
tween 30 and 80%. The subassociation is developed on
andesite and the basalt bedrocks.
Distribution: It occurs in the surroundings of the
Sultanpınarı and Murtaza Villages within the northeast-
ern slopes of the mountain between 1826 and 2241 m.
phyto_46_2_0141_0000_kenar_0065.indd 166phyto_46_2_0141_0000_kenar_0065.indd 166 21.09.16 12:5021.09.16 12:50
eschweizerbart_xxx
Phytosociology of Melendiz Mountain 167
Table 8. Relevé table of Thymo sipylei-Festucetum valesiacae. (Holotype*).
Relevé No. 50 51 52 53 54 55* 56 57 58 59* 60 61 62 63 64 Life
form
Aspect NE SS NN SS S ES ES S NE N N N NE N NW
Inclination (%) 5 15 30 5 15 5 10 20 35 35 30 35 45 25 20
Relevé size (m²) 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64
Bedrock And And Bas And And And And And And And And And Bas And And
Mean cover (%) 80 80 85 85 85 80 85 80 85 70 80 70 50 60 70
Characteristic species of Thymo sipylei-Festucetum valesiacae
Festuca valesiaca 2221222.3232 .22 H
Thymus sipyleus ++.1+1 1+21 .1111Ka
Differential species of taenitheretosum criniti
Taenitherum caput-medusae
subsp. crinitum
44333333....... T
Bromus tectorum ..
+++++1....... T
Alyssum simplex .++ .++++....... T
Alyssum minutum .++ ..
+++....... T
Helianthemum microcarpum +...
++++.......
Ka
Elymus hispidus subsp. barbula-
tus
...
+++ .+.......Kr
Differential species of subass. typicum
Stipa pulcherrima subsp.
crassiculmis
........
1232222 H
Hieracium pannosum ........
++++ .++ H
Trisetum flavescens .........
11+...H
Characteristic species of Agropyro-Stachydion
Eremogone ledebouriana +....
+.+1 .+1+11 H
Silene supina .......
+.......
Ka
Marrubium globosum subsp.
globosum
..
1............
Ka
Characteristic species of Astragalo-Brometea and Astragalo-Brometalia
Astragalus microcephalus subsp.
microcephalus
++++++++++ .++++Ka
Globularia trichosantha subsp.
trichosantha
......
1.1+ .1+1+ H
Onobrychis oxyodonta var.
armena
++ .............H
Centaurea virgata ++++++++.++1+ .. H
Eryngium campestre 1 1+++++1+ .+..
++ H
Bromus tomentellus subsp.
tomentellus
..
+.2++11122+11 Kr
Galium verum subsp. verum 1+ .+.++++ 11 1+ ..
Cha
Inula montbretiana ...
+.++.++++ .++ H
Leontodon asperrimus .+1+ ...
+.+..
+++ H
Phlomis armeniaca ....
1+1.+.1..
++ H
Asyneuma limonifolium subsp.
pestalozzae
........
+++++++ H
Astragalus angustifolius subsp.
angustifolius
1.1.1.r+
+......
Cha
Potentilla recta +..
++++...+....H
Cota tinctoria ++ .+...
+.......H
Cruciata taurica .......
+.1.+.++Cha
phyto_46_2_0141_0000_kenar_0065.indd 167phyto_46_2_0141_0000_kenar_0065.indd 167 21.09.16 12:5021.09.16 12:50
eschweizerbart_xxx
168 Nihal Kenar & Osman Ketenoğlu
Relevé No. 50 51 52 53 54 55* 56 57 58 59* 60 61 62 63 64 Life
form
Aspect NE SS NN SS S ES ES S NE N N N NE N NW
Inclination (%) 5 15 30 5 15 5 10 20 35 35 30 35 45 25 20
Relevé size (m²) 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64
Bedrock And And Bas And And And And And And And And And Bas And And
Mean cover (%) 80 80 85 85 85 80 85 80 85 70 80 70 50 60 70
Salvia absconditiflora ....
+++1....... H
Anthemis cretica subsp. albida ........
++++ ...H
Alyssum murale subsp murale
var. murale
..
+......
++ .+..H
Centaurea urvellei subsp.
stepposa
.+..rr.+.......H
Polygala anatolica +.......
+..
+...H
Allium scrodoprosum subsp.
rotundum
.........
+++ ...Cr
Morina persica var. persica .+....
+.....
1..H
Scabiosa argentea +..............H
Dianthus crinitus var. crinitus +..............H
Euphorbia macroclada ............
+..H
Stachys cretica subsp. anatolica .......
+.......H
Cyanus triumfettii ..........r....H
Veronica multifida .......
+.......
Cha
Helichrysum plicatum subsp.
plicatum
........
+......H
Characteristic species of Quercion anatolicae˜, Querco-Cedretalia libani, Quercetea pubescentis
Cotoneaster nummularius ......r.++ .+r+
+Fa
Crataegus orientalis subsp.
orientalis
+.r............Fa
Trifolium physodes var. physodes ++ ....
+......
++ H
Trifolium elongatum˜........
+......H
Dorycnium penthaphyllum subsp.
anatolicum
...
+...........H
Hypericum perforatum subsp.
veronense
...........
+...H
Carex leersii ....
+..........Cr
Companions
Dactylis glomerata subsp.
glomerata
++++ ...
++++++++ H
Sanguisorba minor subsp.
balearica
++++ .++.....
+++ H
Pilosella hoppeana subsp.
testimonialis
....
+..
+1+ .+111 H
Xeranthemum annuum 11+++++1....... T
Daphne oleoides subsp. oleoides ......r.2.+1+11Cha
Hordeum bulbosum +++1.+++.......Cr
Verbascum cherianthifolium var.
cherianthifolium
........
+1++ .++ H
Campanula stricta subsp. stricta ........
++++ .++ H
Astragalus acmophyllus ........
11++.++Cha
Trifolium campestre ++ .++++ ........T
Rosa pulverulenta ........
+.++ .++ F
Table 8. cont.
phyto_46_2_0141_0000_kenar_0065.indd 168phyto_46_2_0141_0000_kenar_0065.indd 168 21.09.16 12:5021.09.16 12:50
eschweizerbart_xxx
Phytosociology of Melendiz Mountain 169
Relevé No. 50 51 52 53 54 55* 56 57 58 59* 60 61 62 63 64 Life
form
Aspect NE SS NN SS S ES ES S NE N N N NE N NW
Inclination (%) 5 15 30 5 15 5 10 20 35 35 30 35 45 25 20
Relevé size (m²) 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64
Bedrock And And Bas And And And And And And And And And Bas And And
Mean cover (%) 80 80 85 85 85 80 85 80 85 70 80 70 50 60 70
Phleum montanum subsp.
montanum
....
1++1....
+..H
Elymus divaricatus subsp.
divaricatus
........
1.11+..H
Dianthus zederbaueri ........
+1++ ...H
Tragopogon porrifolius var.
longirostris
.+..
+++........H
Trifolium scabrum .+.++ .+........ T
Aegilops triuncialis subsp
triuncialis
+++ .+.......... T
Veronica thymoides subsp
hasandaghensis
........
+....
++Cha
Silene caramanica var. carama-
nica
.+...........
++ H
Picnomon acarna ..
++ ..
+........ T
Asperula stricta subsp. stricta .........
++ .+..H
Pilosella cymosa ...
+..r+.......H
Carduus nutans subsp. nutans ..r........r+..H
Ziziphora persica ....
++ .+....... T
Cichorium intybus ++ .+...........H
Verbascum lasianthum 11.....r.......H
Chondrilla juncea ....
2+ .+.......H
Arenaria serpyllifolia subsp.
serpyllifolia
.+...
++........ T
Gasparrinia peucedanoides ........
++ .+...H
Lotus corniculatus var. alpinus ............r11 H
Phleum exaratum subsp.
exaratum
........
+....
11 T
Poa bulbosa ...
++ ..
1.......H
Trifolium arvense var. arvense +...
++ ......... T
R50: Astragalus pycnocephalus (1), Medicago ficheriana (+), Thesium billardieri (+),; R51: Echinops ritro (+), Scutellaria salviifolia (+), Lotus
aegaeus (+), Stachys iberica subsp. stenostachya (+), Nigella arvensis var. glauca (+), Velezia rigida (+); R52: Rumex acetosella (+), Androsace
maxima (+), Microthlaspi perfoliatum (+), Lactuca orientalis (+); R53: Helianthemum nummularium subsp. nummularium (+), Crucianella di-
sticha (+), Microthlaspi perfoliatum (+), Thesium billardieri (+); R54: Alkanna orientalis var. orientalis (+), Rumex acetosella (+), Centaurea sol-
stitialis subsp. solstitialis (1), Scleranthus annuus subsp. annuus (+), Medicago ficheriana (+), Crepis foetida subsp. rholeadifolia (+); R55: Bro-
mus japonicus subsp. anatolicus (+), Androsace maxima (.), Scleranthus annuus subsp. annuus (+), Bupleurum sulphureum (.); R56: Torilis
ucranica (+), Medicago rigidula var. rigidula (+), Allium tauricola (+), Onosma microcarpa (+); R57: Stachys iberica subsp. stenostachya (+), Ni-
gella arvensis var. glauca (+), Rumex tuberosus subsp tuberosus (+), Centaurea solstitialis subsp. solstitialis (+), Astragalus pulmosus (.); R58:
Astragalus lagurus (+); R59: Silene chlorifolia (+); R60: Silene chlorifolia (+), Sedum subulatum (+); R61: Sedum subulatum (+), Achillea kot-
schyi subsp. kotschyi (+); R62: Ziziphora clinopodioides (+), Rosa canina (1), Anthyllis vulneraria subsp. variegata (.), Allium tauricola (.), An-
themis cretica subsp. anatolica (+), Valerianella coronata (1); R63: Plantago lanceolata (+), Achillea goniocephala (+); R64: Achillea kotschyi
subsp. kotschyi (+)
Table 8. cont.
phyto_46_2_0141_0000_kenar_0065.indd 169phyto_46_2_0141_0000_kenar_0065.indd 169 21.09.16 12:5021.09.16 12:50
eschweizerbart_xxx
170 Nihal Kenar & Osman Ketenoğlu
3.2.3 Sub-Ass. astragaletosum microcephalii
subass. nov. hoc loco
Typus: Relevé 79 in Table 9
Differential species: Astragalus microcephalus subsp. mi-
crocephalus, Marrubium astracanicum subsp. astracani-
cum, Minuartia corymbulosa var. corymbulosa, and
Pimpinella olivieroides.
Astragalus microcephalus subsp. microcephalus is a
cushion-forming shrub, an Irano-Turanian element, and
one of the most common species in Anatolia. In Central
Anatolian steppes, it is mainly found between 850 and
2700 m. Minuartia corymbulosa var. corymbulosa is an-
endemic species and an Irano-Turanian element. Marru-
bium astracanicum subsp. astracanicum exists in North,
South, and Central Anatolia up to 3200 m. It also occurs
in Caucasia, North Iraq and Iran. Pimpinella olivieroides
spreads in central and adjacent North Anatolia between
400 and 1500 m, Iran and North Iraq. This species has not
been found in Eastern Anatolia, and its distribution is
therefore rather disjunct (Davis 1965–1985).
Physiognomy and ecology: The mean cover of the
subassociation ranges between 60 and 95%. It is devel-
oped on the andesite and basalt bedrocks.
Distribution: It occurs around Bozdağ and Demirci
Hills on the northwestern slopes of the mountain be-
tween 1941 and 2257 m.
4. Xero-mesic meadow vegetation
4.1 Ass. Filipendulo-Lotetum alpini ass. nov.
hoc loco
Typus: Relevé 48 in Table 10
Characteristic species: Lotus corniculatus var. alpinus,
Filipendula vulgaris, Prunella orientalis, and Euphrasia
pectinata.
Lotus corniculatus has three varieties in Anatolia. All
of them occur in the Euro-Siberian, Mediterranean and
Irano-Turanian regions, but usually grow in different
habitats. L. corniculatus var. alpinus is scattered (1200–
2500 m) on rocky slopes and alpine pastures in the moun-
tain areas of Anatolia. It spreads in Europe, North Af-
rica, and West and Central Asia. L. corniculatus var. alpi-
nus is probably composed of a series of high altitude
forms derived from different populations of L. cornicula-
tus var. corniculatus. Filipendula vulgaris mainly occurs
in dry grasslands of North and East Anatolia, but is rare
in Central and South Anatolia. F. vulgaris and Prunella
orientalis are Euro-Siberian elements. Prunella orientalis
and Euphrasia pectinata occur in alpine pastures and usu-
ally in damp places up to 2900 m (Davis 1965–1985).
Physiognomy and ecology: The mean cover of the as-
sociation varies between 70 and 85%. The association oc-
curs on the andesite bedrocks especially where humus-
rich, decalcified, acidic and humid soils occur. The hu-
midity in the upper part of the soil is due to melting snow
(Kürschner et al. 1998). The pH is about 5.47 and the
organic matter is 5.94% (Table 1).
Distribution: It is found at semi-humid areas and up-
per altitudes where the inclinations are 10–15° on the up-
per slopes of Sultanpınarı Village (1882–1904 m) north-
east of the mountain.
Life forms and chorotypes
The study area is phytogeographically situated in the
Irano-Turanian region and quite close to the Central
Taurus Mountains, which makes the number of Irano-
Turanian species fairly high in all the associations identi-
fied (Fig. 8a). Only in the Filipendulo-Lotetum alpini the
Euro-Siberian chorotype exhibits a higher number of
species. This community occurs on north-facing slopes
of a humid valley, and this leads to semi-humid condi-
tions and a microclimate allowing Euro-Siberian species
to be located in this restricted area.
Djamali et al. (2012) pointed out that the central-west-
ern part of the Irano-Turanian region represents the
province of Iran-Anatolia climatically as well as floristi-
cally in the best possible way. The Central Anatolian
flora is not closely related to the Turanian or Aralo-Cas-
pian flora, because before the influence of Irano-Tura-
nian flora on the region, Central Anatolia had a typical
Mediterranean flora (Takhtajan 1986). Today the effects
of the Irano-Turanian and East Mediterranean flora are
seen in the composition of the Central Anatolian flora,
and Irano-Turanian species have been taking the place of
Mediterranean ones (Kurt et al. 2006). Mediterranean,
Euxine and Euro-Siberian elements now mix with Irano-
Turanian elements in the north part of Central Anatolia.
Here, also many characteristic genera of the Iranian Pla-
teau, such as Acantholimon, Ferula, or Cousinia, grow
(Muratgeldiev et al. 2000).
Fig. 8b shows that the number of hemicryptophytes,
therophytes, and chamaephytes is high in all associations.
Hemicryptophytes and chamaephytes are characteristic
life forms of the Irano-Turanian region. Giménez et al.
(2004) points out that in low altitudes therophytes are the
dominant life forms in regions of Mediterranean climate
(Kavgacı et al. 2010). Also, Panthera et al. (2009) imply
that the number of therophytes increase as a result of hu-
man impact as well as dry climate. The high number of
therophytes confirmed that the study area is under the
influence of semi-arid Mediterranean climate and anthro-
pogenic degradation.
phyto_46_2_0141_0000_kenar_0065.indd 170phyto_46_2_0141_0000_kenar_0065.indd 170 21.09.16 12:5021.09.16 12:50
eschweizerbart_xxx
Phytosociology of Melendiz Mountain 171
Table 9. Relevé table of Astragaletum pycnocephalo-angustifolii. (Holotype*).
Relevé No. 65 66 67 68 69 70 71* 72 73 74 75 76 77* 78 79* 80 81 82 83 84 85 86 Life
Form
Aspect NE NE N N SE SW N N S N NW NW NE NW SW NW SW NW W NW SE SW
Inclination (%) 35 5 30 40 30 20 40 45 60 35 25 30 15 20 25 40 30 20 35 35 25 5
Relevé size (m²) 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64
Bedrock An An An An An An An An An An An An Ba An An An An An An An Ba Ba
Mean cover (%) 80 40 30 25 75 60 25 30 85 75 80 65 30 80 95 85 85 70 85 75 60 65
Characteristic species of Astragaletum pycnocephalo-angustifolii
Astragalus angustifolius subsp. angustifolius 4 3333 3 2 221 2 1 + 1 1 + 1 1 + 1 1 1 Cha
Astragalus pycnocephalus 2.+..1+.+.+.1..
1..
1.+ + Cha
Differential species of subass. typicum
Trifolium physodes var. physodes +++..+++
.. . +.....
1.... H
Differential species of astragaletosum acmophylii
Astragalus acmophyllus .. ... . . ..
+3 322+ . . .....
Cha
Achillea kotschyi subsp. kotschyi . .... . +r
..+ +2+ ........ H
Bolanthus spergulifolius . .... . . ... . +++ ........
Cha
Differential of astragaletosum microcephalii
Astragalus microcephalus subsp. microcephalus r...
++ . ...+.+.33333333Cha
Marrubium astracanicum subsp. astracanicum . .... . . ... . +..
+++++..
+H
Minuartia corymbulosa var. corymbulosa . .... . . ... . . . r +++ .++ .. H
Pimpinella olivieroides .. ... . . ... . . . . +...
.
+.. H
Characteristic species of Astragalo-Brometea and Astragalo-Brometalia
Galium incanum subsp. elatius .+... . +... . . . +.+.+++ ..
Cha
Sanguisorba minor subsp. balearica .111.. +1
.. . . +......... H
Globularia trichosantha subsp. trichosantha ...
+.. ++
.. . . 1+ ......
+.H
Onobrychis oxyodonta var. armena . .... . . .r............. H
Bromus tomentellus subsp. tomentellus ++..
++ + 111 1 + ..
11113+.. Cr
Teucrium chamederys subsp. chamaedrys +1...+ 1 1+1 + .++ .+++.++ .Cha
Leontodon asperrimus ++ ...+r..
+.+++++++++.rH
Festuca valesiaca .+.++ + + .++ .22 ...
+.1+.2H
Eryngium campestre ....
++ ..
++ + + ..
+++++1.. H
Phlomis armeniaca 1+..
1+ .+1 .. ...
+++1.1.. H
Galium verum subsp. verum ++ ...++.+1 1 + .....
1..
+ + Cha
Thymus sipyleus 12 .11 1 1 211 . ......
2..
1.Cha
Cruciata taurica +1... . . ..
++ ++++ .++....
Cha
Alyssum murale subsp. murale var. murale +r.+.+.++ .. ...
+.+.+... H
Asyneuma limonifolium subsp. pestalozzae . .... . . ..r++++ ...
+..
+.H
Acantholimon acerosum subsp acerosum var. acerosum r.... r. ... . . . . 121..
1..
Cha
phyto_46_2_0141_0000_kenar_0065.indd 171phyto_46_2_0141_0000_kenar_0065.indd 171 21.09.16 12:5021.09.16 12:50
eschweizerbart_xxx
172 Nihal Kenar & Osman Ketenoğlu
Relevé No. 65 66 67 68 69 70 71* 72 73 74 75 76 77* 78 79* 80 81 82 83 84 85 86 Life
Form
Aspect NE NE N N SE SW N N S N NW NW NE NW SW NW SW NW W NW SE SW
Inclination (%) 35 5 30 40 30 20 40 45 60 35 25 30 15 20 25 40 30 20 35 35 25 5
Relevé size (m²) 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64
Bedrock An An An An An An An An An An An An Ba An An An An An An An Ba Ba
Mean cover (%) 80 40 30 25 75 60 25 30 85 75 80 65 30 80 95 85 85 70 85 75 60 65
Anthemis cretica subsp. albida ..
+.. . r...++ r ....r.... H
Koeleria macrantha . . . . +....
+.+...
+..
++ .. H
Potentilla recta .+.r+ .++
... ......
+.... H
Morina persica var. persica .1+1.. . .. .....r1. .... . H
Minuartia juniperina . .... . . ..
1....
1+ ..
2...
Cha
Inula montbretiana . . ... r+.+.. ........... H
Euphorbia macroclada ..
1.. . . ..
+............ H
Polygala anatolica ...
1.. ++
... .......... . H
Cota tinctoria +r... . . .
+.. ........... H
Bromus tectorum +....+. ...........
+... T
Salvia absconditiflora ....
2...
1.. ....... .... H
Allium scrodoprosum subsp. rotundum .r.
... . .... .......
+...Cr
Centaurea urvellei subsp. stepposa ....
rr . .... ........... H
Apera intermedia .+..
+. . ............... T
Scabiosa argentea . .... . . .
+.. ........... H
Taenitherum caput-medusae subsp. crinitum .. ... . . .
2.. ........... T
Cyanus triumfettii . .... . . ... . r.......... H
Erysimum crassipes ....
+. . ............... H
Scorzonera cana var. jaquiniana . .... . . ... . . . . +. . ..... H
Characteristic species of Querco-Carpinetalia orientalis•, Quercion anatolicae, Querco-Cedretalia libani , Quercetea pubescentis
Cotoneaster nummularius .r... . 1+
. . . . . . r. . ..... Fa
Trifolium elongatum˜..
+.. . r... . r..... ..... H
Securigera varia˜..
+... . .... ......
+.... H
Juniperus oxycedrus subsp. oxycedrus• ...
r.. . .... ...........Fa
Companions
Eremogone ledebouriana +++1+ + + + .1..
++1111+1++ H
Pilosella hoppeana subsp. testimonialis +....1...
11 111 ..
+1.+1+ H
Daphne oleoides subsp. oleoides ...
+.. +..r11111+++.r..
Cha
Verbascum cherianthifolium var. cherianthifolium .+... . . ..r1 1 ..
+++1++r.H
Campanula stricta subsp. stricta +. ...+. ...+++.+++ .+r+.H
Phleum exaratum subsp. exaratum .+++.. 11
.++ + .....
1.... T
Table 9. cont.
phyto_46_2_0141_0000_kenar_0065.indd 172phyto_46_2_0141_0000_kenar_0065.indd 172 21.09.16 12:5021.09.16 12:50
eschweizerbart_xxx
Phytosociology of Melendiz Mountain 173
Relevé No. 65 66 67 68 69 70 71* 72 73 74 75 76 77* 78 79* 80 81 82 83 84 85 86 Life
Form
Aspect NE NE N N SE SW N N S N NW NW NE NW SW NW SW NW W NW SE SW
Inclination (%) 35 5 30 40 30 20 40 45 60 35 25 30 15 20 25 40 30 20 35 35 25 5
Relevé size (m²) 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64
Bedrock An An An An An An An An An An An An Ba An An An An An An An Ba Ba
Mean cover (%) 80 40 30 25 75 60 25 30 85 75 80 65 30 80 95 85 85 70 85 75 60 65
Dactylis glomerata subsp. glomerata +.11 .. . 1..+++....
+.+.. H
Veronica thymoides subsp. hasandaghensis . .... . . ..
++ + + .+++ .+..
+ Cha
Silene caramanica var. caramanica ++... . . ..
++ + r ..
++ ..
+.. H
Alyssum minutum .... .
+..
++ ..rr+....
++.T
Thymus argaeus . .... . . ..
11 1 ..
222 ..
2..
Cha
Echinops ritro .+.... . r.+. .....
+.r... H
Pilosella hoppeana subsp. cilicica . +++ .. 11
.. . . 1......... H
Dianthus zederbaueri ...
r.. ++
.+.......
+.... H
Asperula stricta subsp. stricta .+... . . ... . . +.++ .... .. H
Elymus divaricatus subsp. divaricatus . .... . . ... . . . . 222 .2... H
Stachys iberica subsp. stenostachya +...r...
+.. ......
+....
Cha
Alyssum simplex +.... . . .
+.. ..........
+T
Ziziphora clinopodioides .. ... . . ... . . +1 1 .. .....
Cha
Picnomon acarna 1....+. . +.. ........... T
Acantholimon ulicinum var. ulicinum . .... . . ..
1...r.......
1 Cha
Euphrasia pectinata ..
++ .. +............... T
Cirsium leucocephalum subsp. leucocephalum . .... . . ... . . . 1......
11 H
Anthyllis vulneraria subsp. variegata .rr+
.. . ............... H
Elymus hispidus subsp. hispidus +. ... . . .
+..+..........Cr
Veronica orientalis subsp. nimrodii ..
++ .. r.............. .
Cha
Lotus corniculatus var. alpinus ..r.
.. . ..........
+..r.H
Trifolium campestre .+..
+..
+... ........... T
R65: Arenaria serpyllifolia subsp. serpyllifolia (+), Lactuca orientalis (.), Ziziphora persica (+), Papaver bracteatum (+), Veronica verna (+), Poa bulbosa (+); R66: Dianthus calocephalus (+), Tri-
folium arvense var. arvense (+), Medicago sativa subsp. sativa (.), Astragalus lamarckii (.), Helianthemum nummularium subsp. nummularium (+); R67: Vicia monantha subsp. monantha (+),Pi-
losella cymosa (+); R68: Onobrychis sulphurea var. sulphurea (.); R69: Androsace maxima (+), Ziziphora persica, (+) Orobanche aegyptiaca(+), Helianthemum microcarpum (+), Torilis ucranica
(+), Anthemis cretica subsp. anatolica (+), Alkanna orientalis var. orientalis (.), Cerastium glomeratum (.), Trifolium hirtum (+), Filago arvensis (+), Veronica verna (+), Trifolium arvense var. ar-
vense (+), Poa bulbosa (+), Hordeum bulbosum (+); R70: Helianthemum microcarpum (+), Hordeum bulbosum (+); R71: Pilosella cymosa (+), Silene caryophylloides subsp. masmenaea (+),
Plantago atrata (.); R72: Stipa pulcherrima subsp. crassiculmis (+), Plantago atrata (+), Silene caryophylloides subsp. masmenaea (+); R73: Allium tauricola (1), Minuartia decipiens (+); R74:
Plantago lanceolata (+); R75: Poa angustifolia (+), Helictotrichon argaeum (+), Carduus nutans subsp nutans (+); R76: Carduus nutans subsp nutans (+), Euphorbia R77: Achillea setacea (+);
R81: Elymus hispidus subsp. barbulatus (+), Cota austriaca (+); R82: Achillea goniocephala (+), Astragalus lagopoides (+), Achillea setacea (+), Plantago lanceolata (+); R83: Rumex acetosella
(+), Cota austriaca (+); R85: Elymus hispidus subsp. barbulatus (+); R86: Verbascum lasianthum (.), Rosularia libanotica (.)
R1: N 38° 07’57’’ E 34° 28’ 16’’, 1910m, 04.07.2012; R2: N 38° 07’57’’ E 34° 28’ 16’’, 1915m, 04.07.2012; R3: N 38° 07’47’’ E 34° 28’ 04’’, 1707m, 04.07.2012; R4: N 38° 07’51’’ E 34° 28’ 13’’,
1836m, 04.07.2012; R5: N 38° 07’52’’ E 34° 28’ 12’’, 1834m, 04.07.2012; R6: N 38° 07’53’’ E 34° 28’ 15’’, 1883m, 04.07.2012; R7: N 38° 07’51’’ E 34° 28’ 14’’, 1853m, 04.07.2012; R8: N 38°
07’55’’ E 34° 28’ 17’’, 1836m, 04.07.2012; R9: N 38° 01’57,2’’ E 34° 28’ 28,6’’, 1940m, 12.06.2013; R10: N 38° 02’ 7,4’’ E 34° 28’ 49,6’’, 2020m, 12.06.2013; R11: N 38° 01’49’’ E 34° 28’ 31,2’’,
Table 9. cont.
phyto_46_2_0141_0000_kenar_0065.indd 173phyto_46_2_0141_0000_kenar_0065.indd 173 21.09.16 12:5021.09.16 12:50
eschweizerbart_xxx
174 Nihal Kenar & Osman Ketenoğlu
1946m, 02.06.2013; R12: N 38° 01’54,4’’ E 34° 28’ 28’’, 1920m, 12.06.2013; R13: N 38° 01’43,4’’ E 34° 28’ 23,6’’, 1918m, 01.06.2013; R14: N 38° 01’42,3’’ E 34° 28,2’ 6,4’’, 1956m,
02.06.2013; R15: N 38° 01’41,5’’ E 34° 28’ 27,3’’, 1969m, 02.06.2013; R16: N 38° 01’51,2’’ E 34° 28’ 15,7’’, 1911m, 01.06.2013; R17: N 38° 01’51,5’’ E 34° 28’ 13,8’’, 1898m, 01.06.2013;
R18: N 38° 01’52’’ E 34° 28,2’ 26,5’’, 1920m, 02.06.2013; R19: N 37° 59’52’’ E 34° 26’ 08’’, 1547m, 15.07.2012; R20: N 37° 59’52’’ E 34° 26’ 17’’, 1572m, 15.07.2012; R21: N 37° 57’ 46,2’’
E 34° 27’ 33,5’’, 1725m, 06.07.2013; R22: N 37° 57’ 5,9’’ E 34° 29’ 4,6’’, 1613m, 07.07.2013; R23: N 38° 08’10’’ E 34° 29’ 27’’,1967m 21.06.2012; R24: N 38° 08’11’’ E 34° 29’ 28’’1963m,
21.06.2012; R25: N 38° 00’53’’ E 34° 26’ 34’’, 1653m, 21.07.2012; R26: N 37° 57’ 4,8’’ E 34° 29’ 03’’, 1621m, 07.07.2013; R27: N 38° 08’02’’ E 34° 28’ 07’’, 1897m, 04.07.2012; R28: N 37°
57’ 00’’ E 34° 27’ 36’’, 1570m, 06.07.2013; R29: Dedetepe N 38° 08’01’’ E 34° 28’ 10’’, 1907m, 04.07.2012; R30: N 37° 57’ 49’’ E 34° 27’ 25,7’’, 1665m, 06.07.2013; R31: N 37° 57’ 52,5’’ E
34° 27’ 30,2’’, 1650m, 06.07.2013; R32: Balcı N 37° 57’ 58’’ E 34° 27’ 37,7’’, 1620m, 06.07.2013; R33: N 38° 00’50’’ E 34° 26’ 32’’, 1624m, 21.07.2012; R34: N 38° 00’50’’ E 34° 26’ 35’’,
1657m, 21.07.2012; R35: N 38° 00’49’’ E 34° 26’ 37’’, 1685m, 21.07.2012; R36: N 38° 00’48’’ E 34° 26’ 29’’, 1600m, 21.07.2012; R37: N 38° 01’ 1,9’’ E 34° 26’ 30,8’’, 1611m, 22.06.2013;
R38: N 37° 58’50’’ E 34° 26’ 31’’, 1560m, 16.07.2012; R39: N 37° 58’47’’ E 34° 26’ 39’’, 1540m, 16.07.2012; R40: Tepeköy N 37° 58’40’’ E 34° 26’ 43’’, 1493m, 16.07.2012; R41: N 37° 59’
5,1’’ E 34° 26’ 27,2’’,1453m, 23.06.2013; R42: N 37° 58’36’’ E 34° 26’ 44’’, 1495m, 16.07.2012; R43: N 37° 58’ 5,6’’ E 34° 26’ 33’’, 1517m, 23.06.2013; R44: N 38° 07’52’’ E 34° 31’ 51’’,
1882m, 23.07.2012; R45: N 38° 07’57’’ E 34° 31’ 39’’, 1890m, 23.07.2012; R46: N 38° 07’55’’ E 34° 31’ 38’’, 1898m, 23.07.2012; R47: N 38° 07’51’’ E 34° 31’ 41’’, 1904m, 23.07.2012; R48:
N 38° 07’59’’ E 34° 31’ 40’’, 1870m, 23.07.2012; R49: N 38° 07’53’’ E 34° 31’ 41’’, 1898m, 23.07.2012;R50: N 37° 59’ 38,6’’ E 34° 33’ 3,2’’, 1762m, 20.07.2013; R51: N 37° 59’ 38,9’’ E 34°
33’ 5,3’’, 1710m, 20.07.2013; R52: N 38° 04’ 42,7’’ E 34° 38’ 9,5’’, 1740m, 21.07.2013; R53: N 38° 00’ 9,6’’ E 34° 33’ 3,1’’, 1975m, 21.07.2013; R54: N 37° 58’ 45,2’’ E 34° 30’ 35,1’’, 1768m,
20.07.2013; R55: N 38° 02’ 2,4’’ E 34° 37’ 45,2’’, 1636m, 21.07.2013; R56: N 38° 02’ 4,8’’ E 34° 37’ 43,4’’, 1637m, 21.07.2013; R57: N 37° 58’ 47,8’’ E 34° 30’ 34,8’’, 1782m, 20.07.2013;
R58: N 38° 07’22’’ E 34° 28’ 09’’, 2030m, 06.07.2012; R59: N 38° 07’20’’ E 34° 28’ 01’’, 2127m, 06.07.2012; R60: N 38° 07’17’’ E 34° 28’ 02’’, 2112m, 06.07.2012; R61: N 38° 07’16’’ E 34°
28’ 00’’, 2141m, 06.07.2012; R62: N 38° 05’ 39,8’’ E 34° 37’ 22,1’’, 1910m, 21.07.2013; R63: N 38° 07’22’’ E 34° 28’ 11’’, 2012m, 06.07.2012; R64: N 38° 07’26’’ E 34° 28’ 14’’, 1975m; R65:
N 38° 00’ 48,6’’ E 34° 32’ 27,8’’, 1977m, 21.07.2013; R66: N 38° 08’06’’ E 34° 29’ 28’’, 1940m, 21.06.2012; R67: N 38° 08’ 16’’ E 34° 29’ 38’’, 1804m, 20.06.2012; R68: N 38° 08’ 15’’ E 34°
29’ 37’’, 1818m, 20.06.2012; R69: N 38° 01’ 43,6’’ E 34° 27’ 47,5’’, 1796m, 22.06.2013; R70: N 38° 00’ 52,8’’ E 34° 32’ 35,3’’, 1912m, 21.07.2013; R71: N 38° 08’ 15’’ E 34° 29’ 35’’, 1831m,
20.06.2012; R72: N 38° 08’ 45’’ E 34° 29’ 36’’, 1832m, 20.06.2012; R73: N 37° 58’ 37,7’’ E 34° 30’ 55,1’’, 1790m, 20.07.2013; R74: N 38° 06’20’’ E 34° 31’ 36’’, 2101m, 22.07.2012; R75: N
38° 06’06’’ E 34° 31’ 36’’, 2241m, 22.07.2012; R76: N 38° 06’09’’ E 34° 31’ 33’’, 2179m, 22.07.2012; R77: N 38° 06’19’’ E 34° 35’ 27’’, 2208m, 04.08.2012; R78: N 38° 07’49’’ E 34° 28’ 13’’,
1826m, 06.07.2012; R79: N 38° 06’23’’ E 34° 27’ 10’’, 2204m,, 14.07.2012; R80 N 38° 06’26’’ E 34° 27’ 04’’, 2156m, 14.07.2012; R81: N 38° 06’23’’ E 34° 27’ 10’’, 2244m, 14.07.2012; R82:
N 38° 07’29’’ E 34° 28’ 14’’, 1941m, 06.07.2012; R83: N 38° 06’23’’ E 34° 27’ 20’’, 2280m, 14.07.2012; R84: N 38° 06’28’’ E 34° 27’ 00’’, 2114m, 14.07.2012; R85: N 38° 06’28’’ E 34° 27’
00’’, 2114m, 14.07.2012; R86: N 38° 06’28’’ E 34° 36’ 31’’, 2257m, 05.08.2012
Table 9. cont.
phyto_46_2_0141_0000_kenar_0065.indd 174phyto_46_2_0141_0000_kenar_0065.indd 174 21.09.16 12:5021.09.16 12:50
eschweizerbart_xxx
Phytosociology of Melendiz Mountain 175
Syntaxonomy
The vegetation in the study area is characterized by de-
graded oak forests and steppic grasses. No other forest
vegetation apart from degraded oak forests and a com-
munity of Juniperus oxycedrus is seen in the study area. It
is thought that the oak communities showing fragmental
and scattered distribution in the area act as a subclimax
which has arisen as a consequence of the anthropogenic
influences. The current lower altitudinal limit of the for-
est in the study area is about 1300 m and occurs around
Niğde and Ulukıșla.
The shrub and degraded forest associations identified
in the study area (Rhamno oleoidis-Quercetum pubescen-
tis, Daphno oleoidis-Juniperetum oxycedri, and Galio
ibicini-Quercetum vulcanicae) are included in the alliance
Quercion anatolicae spread on the peripheral zone of
Central Anatolian basin and in the order Querco-Carpin-
etalia orientalis of the class Quercetea pubescentis be-
cause of the higher representation of characteristic spe-
cies belonging to these syntaxa (Table 8). The Querceta-
lia pubescentis Klika 1933 spreading to Western Europe
and the West Mediterranean basin are replaced by the
Querco-Carpinetalia orientalis in Anatolia (Quézel et al.
1980). They also contain some characteristic species of
the order Querco-Cedretalia libani consisting of decidu-
ous and coniferous forest formations in the supra-Medi-
terranean zone (Akman 1995).
J. oxycedrus occurs all over the Mediterranean region
from Portugal to South Morocco and to the northeast of
Iran (Klimko et al. 2007). Because of its wide distribution
in the region, the communities of J. oxycedrus are in-
cluded in various classes. In Turkey, the communities of
J. oxycedrus are mainly classified within the class Querce-
tea pubescentis (Ketenoğlu et al. 2010). In Greece and
Macedonia, communities of J. oxycedrus are also classi-
fied within the Quercetea pubescentis (Dimopoulos et al.
1996; Matevski et al. 2008) while in Italy they are included
in the Pino-Juniperetea and Quercetea ilicis (Camarda et
al. 1995; Brullo et al. 2001; Biondi et al. 2014).
J. oxycedrus is constantly found in transition zones be-
tween forest and steppes in low altitudes of Anatolia and it
acts as an accompanying species at all levels for the forests
in the Mediterranean region. Quercus pubescens is found
as a shrub in the J. oxycedrus community in the study area
as well. Therefore, we regard the classification of the juni-
per community in the study area within the Quercetea
pubescentis as the most appropriate solution in terms of
the floristic composition as well as phytogeographically.
Dominant species are often widespread and have wide
ranges of ecological tolerance. Thus, these species often
form communities in different regions, but these com-
munities may not be floristically similar (Hamzaoğlu
2005; Vural et al. 2007). We assessed the floristic similari-
ties between the syntaxa in the study area and associa-
tions described from other regions (Supplement S4). The
floristic similarity ratio is the highest between the Daphno
oleoidis-Juniperetum oxycedri in the study area and the
association dominated by Juniperus oxycedrus subsp.
oxycedrus described by Vural et al. (1985). The associa-
tion identified by Vural et al. (1985) was included in the
order Querco-Carpinetalia orientalis, but not in an alli-
ance. Hamzaoğlu & Duran (2004) assessed that the com-
munities dominated by Juniperus oxycedrus had to be
classified in to the alliances Quercion anatolicae or in the
Cisto laurifolii-Pinion pallasianae of the Querco cerridis-
Carpinetalia orientalis. Özen & Kılınç (2002) and
Eminağaoğlu et al. (2007) classified the Juniperus com-
munities in to another alliance of the order. The Junipero
oxycedri-Quercetum pubescentis described by Türe et al.
(2005) occurs in more humid conditions anddue to its
distribution in the transitional zone – contains the meso-
philous species of the Querco cerridis-Carpinetalia orien-
talis, some species of the Quercetalia ilicis (such as Jasmi-
num fruticans, Rhamnus oleioides, Clematis flammula),
and species of the Cisto-Micromerietea (such as Psoralea
bituminosa, Cistus creticus, Teucrium polium, Trifolium
arvense). Therefore, the assosication described in the
study area and the assosications dominated by Juniperus
oxycedrus subsp. oxycedrus in adjacent regions are differ-
ent from each other in terms of their floristic composi-
tion (Supplement S4).
Arslan et al. (2013) stated that the natural distribution
of Quercus vulcanica includes mainly the mountainous
areas in the transition zone between the Mediterranean
floristic region and the Central Anatolia. The species oc-
curs between 1500 and 1800 m a.s.l. on limestone be-
drocks and between 1750 and 2000 m on basalt rocks
(Kargıoğlu et al. 2009). Most of the Quercus vulcanica
communities described so far were included in the order
Querco-Cedretalia libani (Kurt et al. 1996; Kargıoğlu &
Tatlı 2005; Kargıoğlu 2007). The association described by
Ocakverdi & Ünal (1991) was classified in the Quercion
anatolicae, but it involves many elements of the Querco-
Cedretalia libani. The Galio ibicini-Quercetum vulcani-
cae described in this study is also included in the Quer-
cion anatolicae. The fact that the floristic similarity be-
tween the various Quercus vulcanica communities is low
may be explained by local climatic and ecological condi-
tions (Supplement S4).
Quercus pubescens communities occupy heliophilous
stands in Central Anatolia where precipitation does not
exceed 500 mm (Akman 1995; Türe et al. 2005). One of
the Quercus pubescens communities was identified first
by Akman (1972) in the Beynam Forests (Ankara). The
Quercus pubescens communities described by Çetik
(1982), Akman et al. (1983), Ketenoğlu et al. (1994),
Adıgüzel & Vural (1995), and Türe et al. (2005) are
classified within the Quercion anatolicae. However,
other Quercus pubescens communities have been in-
cluded in the Querco-Carpinetalia orientalis and Querco-
Cedretalia libani (Akman 1976; Kılınç 1985; Kargıoğlu &
phyto_46_2_0141_0000_kenar_0065.indd 175phyto_46_2_0141_0000_kenar_0065.indd 175 21.09.16 12:5021.09.16 12:50
eschweizerbart_xxx
176 Nihal Kenar & Osman Ketenoğlu
Table 10. Relevé table of Filipendulo-Lotetum alpini. (Holotype*).
Relevé No. 44 45 46 47 48* 49 Life
Form
Aspect NE NE NE NE NE NE
Inclination (%) 10 10 15 15 10 10
Relevé size (m²) 64 64 64 64 64 64
Bedrock Ande. Ande. Ande. Ande. Ande. Ande.
Mean cover (%) 80 85 75 75 75 70
Characteristic and diagnostic species
Lotus corniculatus var. alpinus 22211+H
Filipendula vulgaris .22222H
Prunella orientalis .+++++H
Euphrasia pectinata .++++ .T
Characteristic species of Trifolio anatolici-Polygonetalia arenastri
Scorzonera cana var. alpina +1 .+++H
Ranunculus demissus var. major ..r...
H
Characteristic species of Astragalo-Brometea
Galium verum subsp. verum ++++++Cha
Centaurea virgata ++ r +++H
Festuca valesiaca .11222H
Potentilla recta .+.r+rH
Taenitherum caput-medusae subsp. crinitum ++ ..
+.T
Polygala anatolica ..
+++ .H
Apera intermedia +...
+.T
Dianthus crinitus var. crinitus ....r.H
Globularia trichosantha subsp. trichosantha .....rH
Anthemis cretica subsp. albida .+....
H
Companions
Cichorium intybus +1++++H
Ononis spinosa subsp. leiosperma 1 r 1+1 r H
Trifolium campestre 3r++1+T
Sanguisorba minor subsp. balearica 1111+1H
Plantago lanceolata .222+2H
Pilosella piloselloides subsp. magyarica ++++ .+H
Thymus argaeus ..
+++1Cha
Dianthus zonatus var. hypochlorus ++ .+r .H
Trifolium physodes var. physodes .11 .1.H
Eremogone ledebouriana .r.+.+H
Dactylis glomerata subsp. glomerata +..
++ .H
Elymus divaricatus subsp. divaricatus .++ .+.H
Rumex acetosella +.+..
+H
Petrorhagia alpina subsp. alpina ..
++ .rT
Phleum exaratum subsp. exaratum 1+ ..
+.T
Agrostis capillaris var. capillaris .1+ .2.Cr
R44: Poa angustifolia (1), Convolvulus arvensis (+), Anagallis foemina (+), Centaurea iberica (+), Trifolium hybridum var. anatolicum (+), Ely-
mus tauri (+), Cota austriaca (.); R45: Cynosurus cristatus (+), Velezia rigida (.); R46: Juncus inflexus (.), Carex divisa (1), Cynosurus cristatus
(1), Torilis leptophylla (+); R48: Rosa pulverulenta (.), Pilosella cymosa (+), Achillea setacea (+), Hordeum brevisubulatum subsp. violaceum (+),
Elymus tauri (+), Cota austriaca (+), Velezia rigida (.); R49: Hordeum bulbosum (.)
phyto_46_2_0141_0000_kenar_0065.indd 176phyto_46_2_0141_0000_kenar_0065.indd 176 21.09.16 12:5021.09.16 12:50
eschweizerbart_xxx
Phytosociology of Melendiz Mountain 177
Fig. 8. Percentage of species according to chorotypes (a) and life forms (b) in the study area.
Tatlı 2005). The Rhamno-Quercetum pubescentis de-
scribed by Ocakverdi & Oflas (1999), despite having a
similar name, is different to the Rhamno oleoidis-Querce-
tum pubescentis in the study area in terms of characteris-
tic species, floristic similarity and higher-rank syntaxa.
The characteristic species of the Rhamno-Quercetum
pubescentis Ocakverdi & Oflas 1999 are Rhamnus nitidus
and Silene squamigera subsp. squamigera. Moreover, the
association contains more Mediterranean elements such
as Pistacia terebinthus subsp. palaestina, Jasminum fruti-
cans, Crataegus aronia var. minuta, Galium peplidifo-
lium, and Bunium microcarpum subsp. microcarpum.
The characteristic species of the Rhamno oleoides-Quer-
cetum pubescentis ass. nov. are Quercus pubescens subsp.
pubescens, Rhamnus lycioides subsp. oleoides, Phlomis
nissolii, Pimpinella olivieroides, Torilis ucranica, Pilosella
cymosa, Onobrychis oxyodonta, and Inula montbretiana.
The dominant and diagnostic species of both associations
do not match each other. The Rhamno-Quercetum pu-
bescentii Ocakverdi & Oflas 1999 was classified within
the Querco-Cedretalia libani, while the Rhamno oleoides-
Quercetum pubescentis belongs to another order and alli-
ance (Querco-Carpinetalia orientalis and Quercion ana-
tolicae). The highest floristic similarity ratio was found
with the Quercus pubescens community described by
Adıgüzel & Vural (1995). Both associations contain many
elements of the Astragalo-Brometea. The upper canopy
of degraded forests is mostly open, thus allowing these
species to settle in the herb layer. A large number of
steppe species may indicate that the forest structure has
been altered towards steppe vegetation.
Quercus ithaburensis subsp. macrolepis and Quercus
trojana, which are characteristic oak species of the East-
Mediterranean region, they range from Southern Italy
through the Balkan Peninsula to West and South Anato-
lia (Davis 1965–1985; Pignatti 1982; Strid & Tan 1997).
phyto_46_2_0141_0000_kenar_0065.indd 177phyto_46_2_0141_0000_kenar_0065.indd 177 21.09.16 12:5021.09.16 12:50
eschweizerbart_xxx
178 Nihal Kenar & Osman Ketenoğlu
While the Quercus trojana communities of Italy and the
Balkans are included in the Quercetea ilicis and Querco-
Fagetea (Biondi et al. 2004; Matevski et al. 2011), they are
classified in the Quercetea pubescentis in Anatolia
(Ketenoğlu et al. 2010). In West, South, and Central Ana-
tolia, Q. trojana occurs in pseudomacchia and deciduous
oak forests associated with Q. macrolepis, Q. pubescens,
Q. infectoria, Q. cerris, J. oxycedrus, Pyrus salicifolius,
Pistacia terebinthus, and Pinus nigra (Yaltırık 1973). Al-
though Q. trojana has a wide distribution in Anatolia,
only two associations (Quercetum macrolepido-trojanae
and Asyneumo-Quercetum trojanae) have been reported
from Turkey so far (Akman 1979a; Ocakverdi & Çetik
1987).
Quercus ithaburensis subsp. macrolepis forests differ
greatly in terms of vegetation zone, climate and grazing
intensity (Dufour-Dror & Ertaș 2004; Dufour-Dror
2007; Pantera et al. 2008). These forests are mostly situ-
ated in the Quercetea ilicis zone, but in the forests of the
transition zone of Quercetea ilicis and Quercetea pubes-
centis, mediterranean and submediterranean species are
equal in number (Pantera et al. 2009). The associations of
Q. ithaburensis subsp. macrolepis in Turkey are mostly
included in the Querco-Carpinetalia orientalis (Ketenoğlu
et al. 2010). Many researchers noted that the undergrowth
flora of Q. ithaburensis subsp. macrolepis forests is af-
fected by anthropogenic activity (Kargıoğlu & Tatlı 2005;
Vural et al. 2007; Pantera et al. 2008).
Only two classes of xeric grassland communities
(Daphno-Festucetea and Astragalo-Brometea) have been
reported for Turkey. The first one occurs in Northwest
and West Anatolia, while the second one in the majority
of the Anatolian Peninsula (Parolly 2004). The Astragalo-
Brometea dominate particularly in Central and Eastern
Anatolia. Nevertheless, they are quite different from each
other in terms of floristic composition, vegetation, and the
many steppe communities classified in various orders of
the Astragalo-Brometea (Hamzaoğlu 2006). The high
mountain vegetation of Central Anatolia was classified by
Quézel (1973) in the class Astragalo-Brometea, which is
also known for the high mountain grasslands of the Tau-
rus Mountains. However, the floristic composition of the
steppe communities in Taurus Mountains and Central
Anatolia is slightly different because of the precipitation
regime and bedrock properties (Kurt et al. 2015).
According to Walter (1956), the climate of Central
Anatolia supports the potential occurrence of Bromus-
Stipa steppe. Today, this type of steppe can often be
found as patches in ungrazed areas. Rossignol-Strick
(1995) suggested that this grass-steppe vegetation could
appear in some areas of Central Anatolia due to some
rain in the summer, and the absence of this vegetation
could be a result of overgrazing since prehistoric times.
Indeed, the steppes formed by Festuca valesiaca may be
secondary vegetation following the Bromus-Stipa steppe
after grazing as it is a species resistant to grazing, and it
may be an indicator of rangeland degradation
(Fırıncıoğlu et al. 2008; Kürschner & Parolly 2012).
However, it is less resistant to grazing than Astragalus
sp. and Thymus spyleus (Fırıncıoğlu et al. 2007). Festuca
valesiaca occurs on steep slopes of steppe soils that have
been accumulated after erosion and it can be seen as fes-
cue belts in the Central Anatolian steppe. It also spreads
in the alpine zone of West, South, and Central Anatolia
(Davis 1965–1985; Ocakverdi & Ünal 1991; Șanda &
Küçüködük 2000). In the study area, F. valesiaca is
found along with Stipa pulcherrima subsp. crassiculmis
on the northern slopes at ca. 2000 m and with Taenia-
therum caput-medusae subsp. crinitum on the southern
slopes at ca. 1700 m. Kavgacı et al. (2010) described in
the Taurus mountains the association Taeniathero ca-
put-medusae-Hordeum geniculati within a new alliance
Trifolio caudati-Hordeion geniculati characterized by
endemic species, such as Astragalus pinetorum and Tri-
folium caudatum. The number of therophytes is rather
high in Taeniathero caput-medusae-Hordeum genicu-
lati due to the lower altitude and intensive grazing
which causes the existence of Taeniatherum caput-me-
dusae. In the study area, although the number of hemi-
cryptophytes is higher than that of therophytes, T. ca-
put-medusae is not found above 2000 m. The high fre-
quency of Eryngium campestre and Euphorbia
macroclada in the study area supports intensive grazing
(Kürschner & Parolly 2012).
The species of Festuca and Stipa exist together in Ana-
tolian steppe due to high species competition of Festuca
sp. with other species and high ecological tolerance of
Stipa spp. (Ocakverdi et al. 2009). The associations domi-
nated by F. valesiaca in Anatolia were mostly associated
with the order Onobrychido armenea-Thymetalia leu-
costomi that forms plain steppe units (Ocakverdi & Ünal
1991; Vural et al. 1995; Șanda et al. 2000). Parolly (2004)
pointed out that the Astragalo-Brometalia is a “forgotten
order” representing xerophytic high mountain vegeta-
tion of the class Astragalo-Brometea. Thus, we regard it
suitable to include the Thymo sipylei-Festucetum valesia-
cae of the study area within the alliance Agropyro-Sta-
chydion, order Astragalo-Brometalia, which includes bo-
real to subalpine xerophytic grasslands, dwarf-shrub, and
thorn cushion communities in the central Taurus and the
western part of the eastern Taurus range (Parolly 2004).
The majority of the study area is covered by pulvinate
(tragacanthic) steppes. Ünal et al. (2013) state that thorny
and unpalatable plants expand easily and the number of
palatable plants correspondingly declines with increasing
grazing intensity in the steppe rangelands. The domi-
nance of the thorny Astragalus species is a typical indica-
tor of overgrazing (Asouti & Kabukcu 2014). Astragalus
angustifolius subsp. angustifolius is found in the sub-al-
pine belt between 1790 and 2300 m together with other
thorny Astragalus species such as Astragalus microcepha-
lus and A. acmophyllus.
phyto_46_2_0141_0000_kenar_0065.indd 178phyto_46_2_0141_0000_kenar_0065.indd 178 21.09.16 12:5021.09.16 12:50
eschweizerbart_xxx
Phytosociology of Melendiz Mountain 179
Astragalus angustifolius communities found between
1700 and 2200 m in the high mountains of Greece were
included in the class Daphno-Festucetea (European
Commission 2003). The same communities occurring in
the Central Anatolia and the Taurus were included in the
class Astragalo-Brometea (Akman & Ketenoğlu 1986).
Here, they are developed in places where the forest for-
mations were destroyed, in the forest-steppe ecotones,
and within rocky slopes. The climatic variation depend-
ing on altitude is the main factor on the basis of the dis-
tribution of the Astragalus angustifolius communities in
Anatolia. Ketenoğlu et al. (1994) state that the floristic
composition of these communities is closely related to
the bedrock.
Akman (1976), Düzenli (1976), Akman (1990), and
Akman & Ketenoğlu (1976) did not formally describe the
A. angustifolius communities as associations. However,
other associations dominated by A. angustifolius identi-
fied by Ocakverdi & Ünal (1991), Șanda & Küçüködük
(2000), and Bingöl et al. (2007) have been included in the
order Onobrychido armeni-Thymetalia leucostomi of the
class Astragalo-Brometea. Only Kılınç (1985) remarked
that the association dominated by A. angustifolius might
be included in the orders Astragalo-Brometalia or
Daphno-Festucetalia. Kürschner (1986) proposed an alli-
ance “Bromion cappadoci” for xerophytic grasslands and
thorn-cushion communities of the high Central Anato-
lian volcanoes. This unit is classified within the order
Onobrychido armeni-Thymetalia leucostomi (Parolly
2004). Since this alliance was only formed by relevé s from
the Hasandağ and Erciyes Mountain, it can not be evalu-
ated at present. We expected the A. angustifolius associa-
tion described by Düzenli (1976) to show the highest
floristic similarity with the community in our study area
because it grows on the same bedrock and closer to the
area. However, a few species were uncommon with the
association in our study area. In view of floristic similari-
ties and composition (Supplement S4, Table 9), the Astra-
galetum pycnocephalo-angustifolii in the study area was
classified in the order Astragalo-Brometalia of the class
Astragalo-Brometea. However, the association could not
be included in any alliances yet. More field work is
needed for the identification of the alliance(s) comprising
the Central Anatolian high mountain steppe communi-
ties, and for full analysis of the syntaxa.
Montane meadows, which are defined as non-forested
habitats occurring below timberline, are rich in species
(Debinski et al. 2000; Davies et al. 2004). Their species
composition and vegetation features are closely linked to
environmental conditions (Knight 1994). In the study
area, the montane xero-mesic meadows with mesophytic
species are located at ca. 1900 m on the north-eastern
slopes. This vegetation type is exclusively found in re-
stricted areas such as drainage melting water lines (Pa-
rolly 2004). Although these habitats have been thor-
oughly investigated in Europe, very few studies have
been carried out on the Turkish communities (Kavgacı et
al. 2010), and it is not easy to establish a proper syntaxo-
nomic assignment. The association was classified here
within the order Trifolio anatolici-Polygonetalia arenas-
tri (Astragalo-Brometea), which includes the mesophytic
vegetation of the snowpatch and meltwater communities
of the Taurus range (Parolly 2004). Yet, it cannot be in-
cluded in any alliances due to the lack of diagnostic spe-
cies. The floristic similarity with the study in Ayaș
Mountains by Akman & Ketenoğlu (1976) is very low
(Supplement S4). Further research is needed in order to
classify this type of vegetation accurately.
Concluding remarks
Agricultural and livestock activities play an important
role in the distribution of plant cover in the study area.
The semi-arid climate, the steep slopes, and the presence
of a steppe vegetation has led the inhabitants to engage in
intensive sheep and goat farming. Dry farming on unsuit-
able lands, overgrazing, the activities of viticulture, and
deforestation for fuel requirements cause significant
pressure on vegetation. Altın (2008) established that the
degraded forests have moved to the upper zone after the
deforestation of the oak forests. The dry forests are sensi-
tive to the factors that are responsible for the destruction,
and the regeneration of these forests is difficult. This led
to the increase of cushion vegetation and of the spread of
steppe species. It can be estimated that biodiversity loss,
disruption of regeneration, and the increase of non-palat-
able plant species will increase in the Melendiz Mountain
because of these factors (Kürschner & Parolly 2012).
Böcük et al. (2009) suggested that the cutting of the oak
trees and heavy grazing should be avoided for the preser-
vation and regeneration of the natural vegetation. Babalık
(2002) proposed that grazing should be controlled in the
upper zones of mountains and that according to the soil
conditions these zones must be afforested. As long as the
land management approach is applied properly, the prob-
lems of erosion and desertification can be resolved. As a
result, the determination of the plant communities in the
area is required through inventory studies and to moni-
tor the change of community structure and composition
for the future.
Acknowledgements
The data of this study have been excerpted from the PhD
thesis of the author (PhD thesis no: 392699).
phyto_46_2_0141_0000_kenar_0065.indd 179phyto_46_2_0141_0000_kenar_0065.indd 179 21.09.16 12:5021.09.16 12:50
eschweizerbart_xxx
180 Nihal Kenar & Osman Ketenoğlu
References
Adıgüzel, N. & Vural, M. 1995. Soğuksu Milli Parkı (Ankara)
vejetasyonu [The vegetation of Soğuksu National Park (An-
kara)]. Turkish Journal of Botany 19: 213–234.
Aho, K. 2006. Multivariate clustering for objective classification
of vegetation data. In: 2006 Billings Land Reclamation Sym-
posium, June 4-8 published by BLRS and ASMR, R.I. Barn-
hisel (ed.) 3134 Montavesta Rd., Lexington, KY 40502.
Akman, Y. 1972. The vegetation of Beynam Forest. Communi-
cations De la Faculté Des Sciences De L’université D’Ankara
Série C(16): 28–53.
Akman, Y. 1974a. Evolution régressive de la végétation a étage
du Pinus nigra subsp. pallasiana dans l’Anatolie Centrale
dans un climat méditerranéen semi aride très froid. Commu-
nications De la Faculté Des Sciences De L’université
D’Ankara Serié C(18): 1–6.
Akman, Y. 1974b. Etude phyto-ecologique de la region de
Beypazarı-Karașar et Nallıhan. Communications De la Fac-
ulté Des Sciences De L’université D’Ankara Serié C1(18):
81–99.
Akman, Y. 1976. Etude phytosociologique du massif d’Ișık.
Communications De la Faculté Des Sciences De L’université
D’Ankara Série C2(20): 1–30.
Akman, Y. & Ketenoğlu, O. 1976. The phytosociological and
phytoecological investigation on the Ayaș mountains. Com-
munications De la Faculté Des Sciences De L’université
D’Ankara Série C(20): 1–43.
Akman, Y., Barbero, M. & Quézel, P. 1978. Contribution a
l’etude de la vegetation forestiere d’Anatolie Mediterra-
neenne. Pyhtocoenologia 5: 1–79.
Akman, Y., Barbero, M. & Quézel, P. 1979a. Contribution a
l’etude de la vegetation forestiere d’Anatolie mediterra-
neenne. Phytocoenologia 5: 189–276.
Akman, Y., Barbéro M. & Quézel, P. 1979b. Contribution à
l’étude de la végétation forestiére d’Anatolie méditerrané-
enne Phytocoenologia 5: 277–346.
Akman, Y., Yurdakulol, E. & Demirörs, M. 1983. The vegeta-
tion of the Ilgaz mountains. Ecologia mediterranea 9: 137–
165.
Akman, Y. & Aydoğdu, M. 1986. A phytosociological study in
the vicinities of Çamlıdere, Çamkoru and Peçenek (Ankara).
Communications De la Faculté Des Sciences De L’université
D’Ankara Série C(V) 4: 9–24.
Akman, Y. & Ketenoğlu, O. 1986. The climate and vegetation
of Turkey. Proceeding of the Royal Society of Edinburgh 89:
123–134.
Akman, Y. 1990. Etude de la végétation steppique des mon-
tagnes d’Aydos située au Nord-Ouest d’Ankara. Ecologia
mediterranea 16: 223–230.
Akman, Y. 1995. Türkiye Orman Vejetasyonu [The forest vege-
tation of Turkey]. Ankara Üniversitesi Fen Fakültesi, An-
kara, TR.
Akman, Y. 1999. İklim ve Biyoiklim (Biyoiklim metodları ve
Türkiye iklimleri) [Climate and bioclimate (The methods of
bioclimate and the climates of Turkey]. In: Kariyer
Matbaacılık, pp. 1–350, Ankara, TR.
Akman, Y., Ketenoğlu, O. & Kurt, F. 2011. Vejetasyon ekolo-
jisi ve araștırma metodları [Vegetation ecology and research
methods]. Palme Yayıncılık, Ankara, TR.
Akman, Y., Ketenoğlu, O., Kurt, L. & Vural, M. 2014. İç An-
adolu step vejetasyonu [The steppe vegetation of Central
Anatolia]. Palme Yayıncılık, Ankara, TR.
Altın, T.B. 2008. The effects of wrong land-use on distribution
of vegetation at Mount Keçiboyduran and Mount Melendiz.
Turkish Journal of Geography 51: 13–32.
Anonymous, 2009. Aksaray 2009-2010 il çevre durum raporu
[Aksaray Province Environmental Status Report in 2009–
2010]. Aksaray Valiliği İl Çevre ve Orman Müdürlüğü, Ak-
saray, TR.
Arslan, M. 2008. Yaylacık araștırma ormanının sintaksonomik
analizi [Syntaxonomic analysis of Yaylacık Research Forest].
Ph.D. thesis, Ankara University, Ankara, TR.
Arslan, M., Karataș, R., Güner, Ş.T., Çömez, A., Șentürk, Ö. &
Özkan, K. 2013. Study on Prediction of The Ecological Am-
plitute of The Kasnak Oak (Quercus vulcanica Boiss. &
Heldr. ex Kotschy). In: 3rd International Geography Sympo-
sium – GEOMED 2013 Symposium Proceedings, pp. 300–
310, Antalya, TR.
Asouti, E. 2009. The relationship between Early Holocene cli-
mate change and Neolithic settlement in Central Anatolia,
Turkey: Current issues and prospects for future research.
Documenta Praehistorica 36: 1–5.
Asouti, E. & Kabukcu, C. 2014. Holocene semi-arid oak wood-
lands in the Irano-Anatolian region of Southwest Asia: natu-
ral or anthropogenic? Quaternary Science Reviews 90: 158–
182.
Atalay, İ. 1994. Türkiye vejetasyon coğrafyası [Vegetation Geo-
graphy of Turkey]. Ege Üniversitesi Basımevi, İzmir, TR.
Babalık, A.A. 2002. Isparta Yöresinde Arazi Kullanımına İlișkin
Sorunlar [Land Use Problems in the Vicinity of Isparta].
Turkish Journal of Forestry 1: 63–81.
Beekman, P.H. 1966. Hasandağı-Melendiz Dağı bölgesinde
Pliosen ve Kuvarterner volkanizma faaliyetleri [Pliocene and
Quaternary volcanic activities of Hasan-Melendiz Moun-
tains]. In: Maden Tetkik ve Arama Enstitüsü, pp. 89–103,
Ankara, TR.
Bingöl, M.Ü., Geven, F. & Güney, K. 2007. Sakarat Dağı
(Amasya)’nın Bitki Ekolojisi ve Bitki Sosyolojisi Yönünden
Araștırılması [A syntaxonomical and synecological research
of Sakarat Mountain (Amasya)]. Türkiye Bilimsel ve Teknik
Araștırma Kurumu (TÜBİTAK). [Project No: TOVAG-
HD 105O018], Ankara, TR.
Biondi, E., Casavecchia, S., Guerra, V., Medagli, P., Beccarisi,
L. & Zuccarello, V. 2004. A contribution towards the knowl-
edge of semideciduous and evergreen woods of Apulia
(south-eastern Italy). Fitosociologia 41: 3–28.
Biondi, E., Biscotti, N., Pesaresi, S. & Casavecchia, S. 2014. The
Daphne sericea Vahl vegetation in the Gargano promontory
(Southern Italy). Fitosociologia 51: 57–68.
Bouyoucos, G.J. 1955. Hydrometer method improved for mak-
ing particle size analysis of soil. Agronomy Journal 54: 464–
465.
Böcük, H., Türe, C. & Ketenoğlu, O. 2009. Plant diversity and
conservation of the north-east Phrygia region under the im-
pact of land degradation and desertification (Central Anato-
lia, Turkey). Pakistan Journal of Botany 41: 2305–2321.
Branson, F.A., Gifford G.F., Renard, K.G. & Hadley, R.F.
1981. Rangeland hydrology. Kendall-Hunt, Dubuque, IA.
Braun-Blanquet, J. 1964. Pflanzensoziologie. Grundzüge der
Vegetationskunde 3rd edn. Springer, Wien-New York.
Brullo, S., Giusso del Galdo, G. & Guarino, R. 2001. The oro-
philous communities of the Pino-Juniperetea class in the
Central and Eastern Mediterranean area. Feddes Reperto-
rium 112: 261–308.
Camarda, I., Lucchese, F., Pignatti, E. & Pignatti, S. 1995. La
vegetazione dell’area Pantaleo-Gutturu Mannu-Punta
phyto_46_2_0141_0000_kenar_0065.indd 180phyto_46_2_0141_0000_kenar_0065.indd 180 21.09.16 12:5021.09.16 12:50
eschweizerbart_xxx
Phytosociology of Melendiz Mountain 181
Maxia-Monte Arcosu nel Sulcis-Iglesiente (Sardegna sud-
occidentale). Webbia 49: 141–177.
Cao, Y., Bark, A.W. & Williams, W.P. 1997. A comparison of
clustering methods for river benthic community analysis.
Hydrobiologia 347: 24–40.
Çetik, R. 1982. Erciyes Dağı’ nın vejetasyonu [The vegetation
of Erciyes Mountain]. Selçuk Üniversitesi Fen Fakültesi Der-
gisi Seri: B(2): 23–38.
Davies, C.E., Moss, D. & Hill, M.O. 2004. EUNIS habitat clas-
sification revised 2004. In: Report to European Environment
Agency-European Topic Centre on Nature Protection and
Biodiversity, pp. 127–143.
Davis, P.H. 1965-1985. Flora of Turkey and the East Aegean
Islands (1-9). Edinburgh University Press, Edinburgh, UK.
Davis, P.H., Mill, R.R. & Tan, K. (eds.) 1988. Flora of Turkey
and the East Aegean Islands Vol. 10. Edinburgh Univ. Press,
Edinburgh, UK.
Debinski, D.M., Jakubauskas, M.E. & Kindscher, K. 2000.
Montane meadows as indicators of environmental change.
Environmental monitoring and assessment 64: 213–225.
Dimopoulos, P., Georgiadis, T. & Sykora, K. 1996. Phytosoci-
ological research on the montane coniferous forests of
Greece: Mount Killini (NE Peloponnisos – S Greece). Folia
Geobotanica 31: 169–195.
Djamali, M., Brewer, S., Breckle, S.W. & Jackson, S.T. 2012.
Climatic determinism in phytogeographic regionalization: a
test from the Irano-Turanian region, SW and Central Asia.
Flora-Morphology, Distribution, Functional Ecology of
Plants 207: 237–249.
Dufour-Dror, J.M. & Ertaș, A. 2004. Bioclimatic perspectives
in the distribution of Quercus ithaburensis Decne. subspe-
cies in Turkey and in the Levant. Journal of Biogeography
31: 461–474.
Dufour-Dror, J.M. 2007. Influence of cattle grazing on the den-
sity of oak seedlings and saplings in a Tabor oak forest in
Israel. Acta Oecologica 31: 223–228.
Duran, C. 2013. Türkiye’nin Bitki Çeșitliliğinde Dağlık
Alanların Rolü [The Role of Mountainous Areas on Plant
Diversity of Turkey]. BİBAD 6: 72–77.
Düzenli, A. 1976. Hasan Dağı’nın fitososyolojik ve ekolojik
yönden araștırılması [A syntaxonomical and synecological
research of Hasan Mountain]. Ormancılık Araștırma En-
stitüsü Dergisi 22: 7–53.
Eastwood, W.J., Gümüșçü, O., Yiğitbașıoğlu, H., Haldon, J.F.
& England, A. 2009. Integrating Palaeoecological and Ar-
chaeo-Historical records: Land use and Landscape change in
Cappadocia (central Turkey) since late Antiquity. In: Roo-
denberg, J.J. & Vorderstrasse, T. (eds.), Archaeology of the
countryside in medieval Anatolia, pp. 45–69, Nederlands
Instituut voor het Nabije Oosten, Leiden, NL.
Emberger, L. 1954. Une classification biogéographique des cli-
mats. Recueil des travaux des Laboratoires de botanique,
géologie et zoologie de la Faculté des sciences de l’Université
de Montpellier. Série Botanique 7: 3–43.
Eminağaoğlu, Ö., Anșin, R. & Kutbay, H.G. 2007. Forest vege-
tation of Karagöl-Sahara National Park Artvin-Turkey.
Turkish Journal of Botany 31: 421–449.
Ercan, T. 1985. Orta Anadolu’ daki Senozoyik volkanizması
[Cenozoic volcanism in Central Anatolia]. Maden Tetkik
Arama Dergisi 107: 119–140.
European Commission, 2003. Interpretation manual of Euro-
pean Union habitats – EUR 28. DG Environment-Nature
and Biodiversity. Commission of the European Commu-
nity, Brussels, BE.
Eyce, B. & Ocakverdi, H. 1987. Melendiz Dağları (Niğde)
florasına katkılar [Contributions to the flora of Melendiz
Mountains (Niğde). I. Doğa Türk Botanik Dergisi 11: 241–
255.
Fırıncıoğlu, H.K., Seefeldt, S.S. & Șahin, B. 2007. The effects of
long-term grazing exclosures on range plants in the Central
Anatolian Region of Turkey. Environmental Management
39: 326–337.
Fırıncıoğlu, H.K., Șahin, B., Seefeldt, S.S., Mert, F., Hakyemez,
B.H. & Vural, M. 2008. Pilot study for an assessment of ve-
getation structure for steppe rangelands of Central Anatolia.
Turkish Journal of Agriculture and Forestry 32: 401–414.
Fırıncıoğlu, H.K., Adıgüzel, N., Bani, B. & Șahin, B. 2010. As-
sessment of Grazing Effect on Two Sub-Shrubs (Astragalus
schottianus and Thymus sipyleus) Dominated Mountain
Bozoğlan Grasslands in the Semi-Arid Central-Southern
Anatolian Region of Turkey. Arid Land Research and Man-
agement 24: 282–300.
Giménez E., Melendo M., Valle F., Gómez-Mercado F. & Cano
E. 2004. Endemic flora biodiversity in the south of Iberian
Peninsula: altitudinal distribution, life forms and dispersal
modes. Biodiversity & Conservation 13: 2641–2660.
Güner, A., Özhatay, N., Ekim T. & Bașer, K.H.C. 2000. Flora
of Turkey and the East Aegean Islands Supplement Vol. 12.
Edinburgh University Press, Edinburgh, UK.
Güner, A., Aslan, S., Ekim, T., Vural, M. & Babaç, M.T. (eds.).
2012. Türkiye Bitkileri Listesi (Damarlı Bitkileri) [The
Checklist of the Flora of Turkey (Vascular Plants)]. Nezahat
Gökyiğit Botanik Bahçesi ve Flora Araștırmaları Derneği
Yayını, Istanbul, TR.
Hall, G.F. 1983. Pedology and geomorphology. In: Wilding,
L.P., Smeck, N.E. & Hall, G.F. (eds.), Pedogenesis and Soil
Taxonomy: I. Concepts and Interactions, pp. 117–140, Else-
vier, Amsterdam, NL.
Hamzaoğlu, E. & Duran, A. 2004. A Phytosociological research
on the degraded forest vegetation of Dinek Mountain
(Kırıkkale). Gazi Üniversitesi Fen Bilimleri Enst. Dergisi 17:
1–13.
Hamzaoğlu, E. 2005. The Steppe Vegetation of Dinek Moun-
tain (Kırıkkale). Gazi University Journal of Science 18: 1–15.
Hamzaoğlu, E. 2006. Phytosociological studies on the steppe
communities of East Anatolia. Ekoloji 15: 29–55.
Hennekens, S.M. & Schaminée, J.H. 2001. TURBOVEG, a
comprehensive data base management system for vegetation
data. Journal of Vegetation Science 12: 589–591.
Kargıoğlu, M. & Tatlı, A. 2005. A phytosociological research
on the forest vegetation of Yandağ (Isparta-Turkey). Pakis-
tan Journal of Biological Science 8: 929–939.
Kargıoğlu, M. 2007. A phytosociological research on the vege-
tation of Ahırdağı (Afyonkarahisar). Pakistan Journal of
Biological Science 10: 3272–3283.
Kargıoğlu, M., Șenkul, C., Serteser, A. & Konuk, M. 2009. Bio-
climatic requirements of Quercus vulcanica (Boiss Et Heldr.
Ex) Kotschy – an endemic species in Turkey. Polish Journal
of Ecology 57: 197–200.
Kavgacı, A., Čarni, A., Bașaran, S., Bașaran, M. A., Košir, P.,
Marinšek, A. & Šilc, U. 2010. Vegetation of temporary
ponds in cold holes in the Taurus mountain chain (Turkey).
Biologia 65: 621–629.
Ketenoğlu, O. & Akman, Y. 1982. The phytosociological inves-
tigation of Quercus pubescens Formation in Kızılcahamam-
Kargasekmez region in Central Anatolia. Communications
De la Faculté Des Sciences De L’université D’Ankara. Série
C (25): 1–9.
phyto_46_2_0141_0000_kenar_0065.indd 181phyto_46_2_0141_0000_kenar_0065.indd 181 21.09.16 12:5021.09.16 12:50
eschweizerbart_xxx
182 Nihal Kenar & Osman Ketenoğlu
Ketenoğlu, O., Aydoğdu, M., Kurt, L. & Bingöl, M. Ü. 1994.
Amasya-Yozgat-Çorum Arasında Kalan Bölgenin (Karadağ,
Kırlar ve Buzluk dağları) Floristik ve Sintaksonomik Yönden
Araștırılması [A syntaxonomical and synecological research
of the region (Karadağ, Kırlar and Buzluk Mountains)be-
tween Amasya-Yozgat and Çorum]. [TÜBİTAK Project no:
TBAG-1129], Ankara, TR.
Ketenoğlu, O., Tuğ, G.N., Bingöl, Ü., Geven, F., Kurt, L. &
Güney, K. 2010. Synopsis of syntaxonomy of Turkish for-
ests. Journal of Environmental Biology 31: 71.
Kılınç, M. 1985. İç Anadolu-Batı Karadeniz geçiș bölgesinde
Devrez çayı ile Kızılırmak nehri arasinda kalan bölgenin ve-
jetasyonu [The vegetation of the region between Devrez
stream and Kızılırmak River in the transition zone of Cen-
tral Anatolia and West Blacksea region]. Doğa Bilim Dergisi
Seri A 9(2): 238–314.
Klimko, M., Boratyńska, K., Montserrat, J. M., Didukh, Y.,
Romo, A., Gómez, D., Kluza-Wieloch, M., Marcysiak, K. &
Boratyński, A. 2007. Morphological variation of Juniperus
oxycedrus subsp. oxycedrus (Cupressaceae) in the Mediter-
ranean region. Flora-Morphology, Distribution, Functional
Ecology of Plants 202: 133–147.
Knight, D.H. 1994. Mountains and Plains: The Ecology of Wyo-
ming Landscapes. Yale University Press, New Haven, Con-
neticut, US.
Kurt, L., Akman, Y., Quézel, P., Ekim, T. & Demiryürek, E.
1996. Etude synécologique des forets de Quercus vulcanica
des environs d’Isparta-Egirdir (Turquie). Ecologia Mediter-
ranea 22: 53–57.
Kurt, L., Tuğ, G.N. & Ketenoğlu, O. 2006. Synoptic view of the
steppe vegetation of Central Anatolia (Turkey). Asian Jour-
nal of Plant Sciences 5: 733–739.
Kurt, L., Ketenoğlu, O., Tuğ, G.N. & Șekerciler, F. 2015. High-
land Vegetation Of Inner And Eastern Anatolia And The
Effects Of Global Warming. In: Öztürk, M. Hakeem, K.R.,
Faridah-Hanum, I. & Efe, R. (eds.) Climate Change Impacts
on High-Altitude Ecosystems, pp. 275–288, Springer, Swit-
zerland.
Kutiel, P. 1992. Slope aspect effect on soil and vegetation in a
Mediterranean ecosystem. Israel Journal of Botany 41: 243–
250.
Kürschner, H. 1986. Die syntaxonomische Stellung der subal-
pinen Dornpolsterformationen am Westrand SW-Asiens.
Phytocoenologia 14: 381–397.
Kürschner, H., Parolly, G. & Raab-Straube, E.V. 1998. Phyto-
sociological studies on high mountain plant communities of
the Taurus Mountains (Turkey) 3. Snow-patch and meltwa-
ter communities. Feddes Repertorium 109: 581–616.
Kürschner, H. & Parolly, G. 2012. The Central Anatolian
Steppe. In: Werger, M.J.A. & van Staalduinen, M.A. (eds.)
Eurasian Steppes. Ecological Problems and Livelihoods in a
Changing World, pp. 149–171, Springer, NL.
Matevski, V., Èarni, A., Kostadinovski, M., Košir, P., Šilc, U. &
Zelnik, I. 2008. Flora and Vegetation of the Macedonian
Steppe, Založba ZRC, Ljubljana, SL.
Matevski, V., Carni, A., Avramoski, O., Juvan, N., Kostadi-
novski, M., Košir, P., Marinšek, A., Paušič, A. & Šilc, U.
2011. Forest Vegetation of Galièica Mountain Range in
Macedonia, Založba ZRC, Ljubljana, SL.
Muratgeldiyev, Y., Küçüködük, M., Bingöl, Ü., Güney, K. &
Geven, F. 2000. İran-Turan Floristik Bölgesi [Irano-Tura-
nian Floristic Region]. Selçuk Üniversitesi Fen-Edebiyat
Faültesi Fen Dergisi 1: 119–124.
Ocakverdi, H. & Çetik, A.R. 1987. Seydișehir Maden Bölgesi
(Konya) ve çevresinin vejetasyonu [The vegetation of
Seydișehir mine region]. Doğa Turkish Journal of Botany 11:
102–148.
Ocakverdi, H. & Ünal, A. 1991. Karadağ’ın (Karaman) bitki so-
syolojisi ve ekolojisi yönünden araștırılması [A syntaxo-
nomical and synecological research of Karadağ (Karaman)].
Doğa Turkish Journal of Botany 15: 79–106.
Ocakverdi, H. & Oflas, S. 1999. The plant sociology and ecol-
ogy of the upper Göksu catchment area (Hadim-Konya) and
environs. Turkish Journal of Botany 23: 195–209.
Ocakverdi, H., Vural, M. & Adıgüzel, N. 2009. Vegetation Of
Kısır Dağı (Kars-Ardahan / Turkey). BioDiCon 2(2): 1–37.
Onipchenko, V.G. 2004. Alpine ecosystems in the Northwest
Caucasus. Kluwer Academic Publishers, Dordrecht.
Özen, F. & Kılınç, M. 2002. The flora and vegetation of Kun-
duz Forest (Vezirkopru / Samsun). Turkish Journal of Bot-
any 26: 371–393.
Özhatay, N., Byfield, A. & Atay, S. 2005. Türkiye’nin 122
Önemli Bitki Alanı [Important Plant Areas in Turkey: 122
Key Botanical Sites]. WWF Türkiye Doğal Hayatı Koruma
Vakfı Yayınları, İstanbul, TR.
Pantera, A., Papadopoulos, A.M., Fotiadis, G. & Papanastasis,
V.P. 2008. Distribution and phytogeographical analysis of
Quercus ithaburensis subsp. macrolepis in Greece. Ecology
Mediterranea 34: 73–82.
Parolly, G. 2004. The high mountain vegetation of Turkey – A
state of the art report, including a first annotated conspectus
of the major syntaxa. Turkish Journal of Botany 28: 39–63.
Pignatti, S. 1982. Flora d’Italia, Vol. 1. Edragricole, Roma, IT.
Quézel, P. 1973. Contribution a l’etude phytocoenologique du
masif du Taurus. Phytocoenologia 1: 131–222.
Quézel, P., Barbero, M. & Akman, Y. 1980. Contribution A
l’etude De La Vegetation Forestiere D’anatolie Septentrion-
ale. Phytocoenologia 8: 365–519.
Quideau, S.A. 2002. Organic matter accumulation. In: Latten
R. (ed.) Encyclopedia of soil science Vol. II, pp. 1172–1175,
Marcel Dekker Inc., NY, US.
Raunkiaer, C. 1934. Life forms of plants and statistical plant
geography. Clarendon Press, Oxford, UK.
Rossignol-Strick, M. 1995. Sea-land correlation of pollen re-
cords in the eastern Mediterranean for the glacial-interglacial
transition: biostratigraphy versus radiometric time-scale.
Quaternary Science Reviews 14: 893–915.
Sørensen, T. 1948. A method of establishing groups of equal
amplitude in plant sociology based on similarity of species
content and its application to analyses of the vegetation on
Danish commons. Kongelige Danske Videnskabernes
Selskab, Biologiske Skrifter 5: 1–34.
Stanč, Z. 2008. Classification of mesic and wet grasslands in
northwest Croatia. Biologia 63: 1089–1103.
Strid, A. & Tan, K. 1997. Flora Hellenica. Koeltz Scientific
Books, Königstein.
Șanda, M.A., Küçüködük, M. & Serin M. 2000. Hadim (Konya),
Ermenek Ve Bucakkıșla (Karaman) arasında kalan bölgenin
step vejetasyonu [The steppe vegetation of between Hadim
(Konya), Ermenek Ve Bucakkıșla (Karaman) regions].
Selçuk Üniversitesi Eğitim Fakültesi Fen Bilimleri Dergisi 1:
21–35.
Takhtajan, A. 1986. Floristic region of the world. University of
California Press, Los Angeles, US.
Tichy, L. 2002. JUICE, software for vegetation classification.
Journal of Vegetation Science 13: 45–453.
Todd, I.A. 1980. The prehistory of Central Anatolia 1, The Neo-
lithic period. Studies in Mediterranean Archaeology, Vol. 60.
P. Aström Forlag, Göteborg, SE.
phyto_46_2_0141_0000_kenar_0065.indd 182phyto_46_2_0141_0000_kenar_0065.indd 182 21.09.16 12:5021.09.16 12:50
eschweizerbart_xxx
Phytosociology of Melendiz Mountain 183
Tsui, C.C., Chen, Z.S. & Hsieh, C.F. 2004. Relationships be-
tween soil properties and slope position in a lowland rain
forest of southern Taiwan. Geoderma 123: 131–142.
Türe, C., Tokur, S. & Ketenoğlu, O. 2005. Contributions to the
syntaxonomy and ecology of the forest and shrub vegetation
in Bithynia, Northwestern Anatolia, Turkey. Phyton 45:
81–115.
Ünal, S., Mutlu, Z., Urla, Ö., Șahin, B. & Koç, A. 2013. The
determination of indicator plant species for steppe range-
lands of Nevșehir Province in Turkey. Turkish Journal of
Agriculture and Forestry 37: 401–409.
Vural, M., Ekim, T., İlarslan, R. & Malyer, H. 1985. Afyon
Bașkomutan Tarihi Milli Parkı vejetasyonu [The vegetation
of Historical National Park of Bașkomutan Afyon]. Doğa
Bilim Dergisi A2(9): 363–387.
Vural, M., Duman, H., Adıgüzel, N. & Kol, Ü. 1995. Göreme
Milli Parkı (Nevșehir) Vejetasyonu [The vegetation of
Göreme National Park (Nevșehir)]. Turkish Journal of Bot-
any 19: 389–400.
Vural, M., Yaman, M. & Șahin, B. 2007. Büyükhemit Deresi ve
Civarının (Delice-Kırıkkale) Vejetasyonu [The vegetation
Büyükhemit Deresi (Delice-Kırıkkkale) and its surround-
ings] Ekoloji 16: 53–62.
Walkley, A. & Black, I.A. 1934. An examination of the Degtjar-
eff method for determining soil organic matter, and a pro-
posed modification of the chromic acid titration method.
Soil science 37: 29–38.
Walter, H. 1956. Das Problem der Zentralanatolischen Steppe.
Naturwissenschaften 43: 97–102.
Ward, J.H., Jr. 1963. Hierarchical grouping to optimize an ob-
jective function. Journal of the American Statistical Associa-
tion 58: 236–244.
Weber, H.E., Moravec, J. & Theurillat, J.P. 2000. International
Code of Phytosociological Nomenclature. 3rd edition. Jour-
nal of Vegetation Science 11: 739–768.
Wienhold, B.J. & Klemmedson, J.O. 1992. Effect of prescribed
fire on nitrogen and phosphorus in Arizona chaparral soil
plant systems. Arid Land Research and Management 6: 285–
296.
Woldring, H. & Bottema, S. 2003. The vegetation history of
East-Central Anatolia in relation to archaeology: The Eski
Acıgöl pollen evidence compared with the Near Eastern en-
vironment. Palaeohistoria 43: 1–34.
Yaltırık, F. 1973. Some notes on the morphological characteris-
tics and the distribution of a Balkan woody species grown in
Turkey: Macedonian oak (Quercus trojana Webb.). Istanbul
Üniversitesi Orman Fakültesi Dergisi A 23(2): 118–127.
Yimer, F., Ledin, S. & Abdelkadir, A. 2006. Soil property vari-
ations in relation to topographic aspect and vegetation com-
munity in the south-eastern highlands of Ethiopia. Forest
Ecology and Management 232: 90–99.
Author addresses
Kenar, N. (Corresponding author, nkenar@aksaray.edu.tr)1, Ketenoğlu, O. (ketenogl@science.ankara.edu.tr)2
1Aksaray University, Faculty of Science & Letters, Department of Biology, 68100 Aksaray, Turkey
2Ankara University, Faculty of Science, Biology Department, 06100 Ankara, Turkey
Electronic supplements
Supplementary material associated with this article is embedded in the pdf of this article. The online version of Phytocoenologia
is hosted at www.ingentaconnect.com/content/schweiz/phyt and the journal’s website http://www.schweizerbart.com/journals/
phyto. The publisher does not bear any liability for the lack of usability or correctness of supplementary material.
Supplement S1: The stages of regressive plant succession in Central Anatolia.
Supplement S2: Phytosociological table of degraded forest and shrub vegetation.
Supplement S3: Phytosociological table of mountain steppe and xero-mesic meadow vegetation.
Supplement S4: Comparison of the associations in the study area with similar associations in different regions.
Please download the electronic supplement and rename the file extension to .zip (For security reasons Adobe does not allow to
embed .exe, .zip, .rar etc. files).
phyto_46_2_0141_0000_kenar_0065.indd 183phyto_46_2_0141_0000_kenar_0065.indd 183 21.09.16 12:5021.09.16 12:50
eschweizerbart_xxx
phyto_46_2_0141_0000_kenar_0065.indd 184phyto_46_2_0141_0000_kenar_0065.indd 184 21.09.16 12:5021.09.16 12:50
eschweizerbart_xxx
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
In the central-southern Anatolian region of Turkey, vegetation of Mountain Bozog˘lan grasslands has severely deteriorated, and two sub-shrubs (Astragalus schottianus and Thymus sipyleus) have become dominant species. We hypothesized that the spatial distribution of these dominant shrubs is closely associated with a long history of grazing, and these species might cause alteration of the grassland plant community. Therefore, our objectives were to determine: (1) the patterns in grassland vegetation; (2) how the dominant species contribute to these patterns; and (3) the differences of patterns between ungrazed and protected grassland areas. Plant cover in ungrazed plots was 6% higher than that of grazed plots. Total sub-shrub cover did not differ significantly, but grazing considerably reduced forbs (5% less) and grass cover (5% less). Though A. schottianus and T. sipyleus did not change between the treatments, Festuca valesiaca had greater cover in ungrazed areas (6%) than in that of grazed plots (3%). Grazing effect, soil properties and bare ground appeared to account for most of the variation on the established gradients. Even after 23 years, grazing and protection had little influence on pattern formation, and grazing have expanded dwarf-shrubs at the expense of forbs and grasses. Grazing neither increased nor decreased spatial heterogeneity, so the patterns in both treatments are similar to one another, and relatively stable assemblages of species were likely derived by high grazing pressure experienced before the exclosure establishment.
Article
Full-text available
There are 18 Quercus species in Turkey, and Quercus vulcanica, called "Kasnak oak" in Turkish, is an endemic species. The Kasnak oak has been studied in three localities where the well formed communities of this species exist. The evaluation of bioclimatic tolerance ranges of Kasnak oak in Turkey was the aim of the study. Overall results support that Kasnak oak prefers humid conditions in ambient habitat.
Article
L’auteur décrit la végétation steppique de la région d’Aydos à 30 et 40 km au Nord-Ouest d’Ankara. L’alliance nouvelle d'Arenario Ledebouriani - Astragalion piumosi se rapporte à l’ordre des Onobrycho -thymenetalia leucostomi et sous-ordre des Onobrycho-Thymenetalia leucostomi. Six associations nouvelles sont également décrites.
Chapter
In humid regions the deposition of organic matter is widespread, both on the continents as coal, and in marine basins as oil shales. By contrast, in arid regions forests give way to steppes, and farther within the arid region even the continuous grass cover disappears, leaving only a poor, thin flora, or even in large areas no flora at all. (see Vol. 2, Fig. 134). Under such conditions no coal will accumulate, since it forms only in places of forested growth. Along the margins of deserts only small oases survive locally, under favorable hydrogeological conditions, and these may give rise to insignificant coal beds, a few centimeters thick, and negligible in area. In seas the situation is different. Since increased generation of organic matter, enriching the sediments and converting them into marine sapropels, has been associated not with the supply of biogenic elements from the continent but only with more active vertical mixing of the water, which has raised these elements from deep levels to the zone of photosynthesis, there is a real possibility of oil shales forming in the seas of arid regions. Large bituminous and oil shale sequences are actually formed within arid zones.