ArticlePDF Available

La teoría de la neuroinmunomodulación en enfermedades neurodegenerativas: nuevas evidencias científicas

Authors:

Abstract

Microglial cells play a major role in the innate immunity of the central nervous system. Alterations in the normal cross-talks between microglia and brain neuronal cells may lead to serious disturbances and neurodegenerative diseases. We have postulated that neuroinflammatory processes are a critical factor triggering the pathological cascade leading to neuronal degeneration. In our neuroimmunomodulation theory, external or internal damage signals activate microglial cells, producing cytotoxic factors that induce neuronal degeneration. These factors activate protein-kinases, that lead to tau hyperphosphorylation, and its consequent oligomerization. The tau aggregates released into the extracellular medium favor a positive feedback mechanism that determines neurodegeneration. Nowadays, natural components with a string anti-inflammatory activity and that cross the blood brain barrier appears as candidates for prevention and treatment of degenerative brain disorders such as Alzheimers'disease.
53
www.sonepsyn.cl
La teoría de la neuroinmunomodulación en enfermedades
neurodegenerativas: nuevas evidencias cientícas
Neuroinmmunomodulation in neurodegenerative diseases:
new scientic evidence
Inelia Morales1,2, Loredana Arata1,2 y Ricardo B. Maccioni1,2,3
Microglial cells play a major role in the innate immunity of the central nervous system. Alterations
in the normal cross-talks between microglia and brain neuronal cells may lead to serious
disturbances and neurodegenerative diseases. We have postulated that neuroinflammatory
processes are a critical factor triggering the pathological cascade leading to neuronal degeneration.
In our neuroimmunomodulation theory, external or internal damage signals activate microglial
cells, producing cytotoxic factors that induce neuronal degeneration. These factors activate
protein-kinases, that lead to tau hyperphosphorylation, and its consequent oligomerization. The
tau aggregates released into the extracellular medium favor a positive feedback mechanism that
determines neurodegeneration. Nowadays, natural components with a string anti-inflammatory
activity and that cross the blood brain barrier appears as candidates for prevention and treatment
of degenerative brain disorders such as Alzheimers´disease.
Key words: Neurodegenerative diseases, neuroimmunomodulation, glial cells, proinflammatory
cytokines, tau protein, neuronal cells.
Rev Chil Neuro-Psiquiat 2015; 53 (1): 53-58
artículo dE rEvisión
Recibido: 07/01/2015
Aceptado: 02/04/2015
Los autores no presentan ningún tipo de conicto de interés.
1 Laboratorio de Biología celular, molecular y neurociencia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
2 Centro Internacional de Biomedicina (ICC), Santiago, Chile.
3 Departamento de Ciencias Neurológicas, Oriente, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
REV CHIL NEURO-PSIQUIAT 2015; 53 (1): 53-58
Nuevas evidencias científicas
Las células de microglia juegan un papel impor-
tante en el sistema inmune a nivel cerebral.
La función saludable y apropiadamente regulada
de estas células es esencial para la homeostasis
del sistema nervioso central (SNC), ya sea en las
condiciones normales o en presencia de una en-
fermedad. Numerosas señales que representan un
peligro para la homeostasis del SNC, tales como las
estructuras y/o residuos de bacterias, virus, hongos,
proteínas endógenas anormales, factores de com-
plemento, anticuerpos, citoquinas, quimioquinas,
entre otros, se unen a determinados receptores de
la microglia, entre ellos los toll-like receptors (TLR),
receptores RAGE, los que inducen su activación1.
Bajo estas condiciones, estas células regulan la
expresión de diferentes marcadores de superficie,
tales como el complejo mayor de histocompatibi-
lidad II (CMH-II)2 receptores de reconocimiento
54
www.sonepsyn.cl
de patrones moleculares (PPRs), produciendo así
citoquinas proinflamatorias como la interleuquina
1 beta (IL-1β), interleuquina 6 (IL-6), interleuqui-
na 12 (IL-12), interferón gamma (IFN-γ) y el factor
de necrosis tumoral alfa (TNF-α), y también sin-
tetizan y liberan factores citotóxicos de corta vida
media como son los radicales superóxido (O2-), el
óxido nítrico (NO) y especies reactivas de oxígeno
(ROS)3,4. De acuerdo con esto, claramente las cé-
lulas microgliales tienen un papel importante en
la inmunidad innata y son la principal fuente de
factores proinflamatorios en el cerebro humano.
El proceso de activación microglial es fenotípica
y funcionalmente diverso, ya que la respuesta de-
pende del tipo, intensidad y contexto del estímulo,
y sobre la base a estos factores puede generarse un
efecto neuroprotector o también un posible efecto
proinflamatorio. Precisamente, el delicado equi-
librio entre los efectos neurotóxicos y neuropro-
tectores, así como, las acciones pro-inflamatorias
y anti-inflamatorias, determinan la actividad de la
microglia en una enfermedad neurológica o en una
condición específica.
Sobre la base de la investigación actual, no
debemos considerar la activación microglial como
un evento de todo o nada, o un solo proceso, sino
mas bien considerar que las respuestas a los even-
tos patológicos dependen del contexto celular, y
adaptarse mientras se producen los cambios del
microambiente. Evidencias importantes sobre
la función crítica de la neuroinflamación en en-
fermedades neurodegenerativas provienen de
varios tipos de resultados experimentales: 1) La
epidemiología muestra una notable mejoría en
la capacidad cognitiva de los pacientes con EA,
que han sido expuestos a tratamientos con drogas
anti-inflamatorias. Esta evidencia epidemiológica
proviene de estudios con pacientes que reciben fár-
macos anti-inflamatorios no esteroidales (AINE)
para sus tratamientos crónicos, a veces por largos
períodos de tiempo. Los resultados mostraron una
disminución en la incidencia de la enfermedad de
Alzheimer (EA), lo que sugiere que la atenuación
de la respuesta inflamatoria ayudaría a prevenir o
reducir la posibilidad de desarrollar EA5-7; 2) Los
estudios en animales transgénicos demostraron
el efecto neuroprotector de inhibidores contra la
enzima ciclooxigenaza (COX-1), la inhibición de
estos factores proinflamatorios, en tanto en anima-
les no tratados, se evidenció la neuropatología de
cerebros del tipo EA que demuestran la presencia
de células gliales activadas; 3) Los estudios en sis-
temas celulares8,9.
Así, una vez detonada la sobre-activación de
las células microgliales, con la consecuente pro-
ducción de factores citotóxicos y las citoquinas
pro-inflamatorias, las que constituyen la causa
del fenómeno neuroinflamatorio. Este fenómeno
está directamente relacionado con la degeneración
neuronal, principalmente por efecto de moleculas8
pro-inflamatorias, y la relevancia de la microglia, y
de las citoquinas como agentes claves en el desarro-
llo de trastornos neurodegenerativos del tipo EA9.
Sobre la base de estos antecedentes, se llega a la
hipótesis de la función de neuroinmunomodula-
ción en la patogénesis de la EA. Hemos postulado
que, manifestaciones persistentes de varios signos
de daños innatos, de manera prolongada, podría
causar la activación microglial de manera estable
y permanente, provocando así el status de sobre-
activación10-13. Un estado de activación incesante
desencadenaría el daño neuronal, resultando en
una muerte creciente de neuronas, y la liberación
de tau patológica hacia el medio extracelular. Sobre
la base de esta hipótesis, realizamos estudios que
mostraron que los agregados de tau patológicos
que inducen la activación microglial, desencade-
naron los eventos que llevan a la cascada neuroin-
flamatoria. Es decir, con el inicio de la muerte neu-
ronal, agregados de la proteína tau patológica se
liberan hacia el medio extracelular, lo que causaría
la activación de la microglia, favoreciendo un me-
canismo de retroalimentación positiva y generando
una cascada constante de daño celular13 (Figura 1).
Específicamente en la EA, se ha demostrado una
alta expresión de mediadores inflamatorios en las
proximidades del β-amiloide (Aβ), de los depósi-
tos de péptidos y filamentos helicoidales aparea-
dos (PHF), marcadores clásicos de la EA, que se
asocian con zonas de alta neurodegeneración14.
Estudios realizados por el grupo de Kitazawa,
mostraron que las células microgliales se activan
LA TEORíA dE LA NEUROINMUNOMOdULACIóN EN ENFERMEdAdES NEUROdEgENERATIVAS: NUEVAS EVIdENCIAS CIENTíFICAS
REV CHIL NEURO-PSIQUIAT 2015; 53 (1): 53-58
55
www.sonepsyn.cl
gradualmente y en forma dependiente de la edad,
y al mismo tiempo, esta activación se correlaciona
con el inicio de la acumulación de péptidos Aβ
fibrilares y la hiperfosforilación de tau.
Al mismo tiempo, los experimentos en ratones
transgénicos jóvenes, la exposición a lipopolisacá-
rido (LPS), un conocido inductor de la inflamación
del SNC, demostraron que la activación microglial
podría exacerbar esta patología, aunque no se
observaron alteraciones en el procesamiento de
la proteína precursora de amiloide. Además, LPS
indujo significativamente la hiperfosforilación de
tau en sitios específicos, lo que demuestra que la
activación microglial fortalece la aparición de mar-
cadores neuropatológicos tales como la formación
de ovillos neurofibrilare15. Por lo tanto, las ideas
presentadas anteriormente están estrechamente
relacionadas, donde la inflamación y la formación
de ovillos neurofibrilares están relacionados de
forma secuencial en el desarrollo de EA.
Como se recoge de la información acumulada,
las células microgliales se convierten en uno de los
puntos de convergencia en el desarrollo del proce-
so neuroinflamatorio, ya que no sólo el proceso de
Figura 1. Agregados de tau promueven el proceso de degeneración neuronal mediante la activación de la microglia por
efecto de las denominadas señales de peligro (entre ellas, la tau patológica), a través de un mecanismo de retroalimentación
positiva. La activación microglial por señales que representan un peligro para la homeostasis del SNC, tales como, bacterias,
virus, hongos, proteínas endógenas anormales, factores de complemento, anticuerpos, citoquinas, quimioquinas, moléculas
pro-oxidantes, entre otros, representan las señales de peligro a la homeostasis del SNC. Todo lo cual parece desencadenar
la cascada que conduce a un fenotipo neurodegenerativo. Estos factores actuarían mediante la activación de las células
microgliales, lo que a su vez induce la liberación de factores citotóxicos (IL-1β, IL-6, IL-12, IFN-α, TNF-α O2-, NO, ROS),
que estimulan la cascada neuroinflamatoria que conduce a la degeneración neuronal. Como consecuencia, neuronas muertas
liberan agregados patológicos de tau y oligómeros hacia el medio extracelular, los que promueven una “sobre-activación” de
la microglia, generando así una cascada continua de daño celular.
INELIA MORALES et al.
REV CHIL NEURO-PSIQUIAT 2015; 53 (1): 53-58
56
www.sonepsyn.cl
activación y los cambios que ocurren determinan
esta condición, pero también se demostró que una
activación permanente puede aumentar la permea-
bilidad de la barrera hematoencefálica y promo-
ver un aumento de la infiltración de macrófagos
periféricos. Estas alteraciones pueden complicar
las proximidades de la zona dañada y contribuir a
la disfunción neuronal, acelerando así el proceso
neurodegenerativo16.
Hasta al fecha, los tratamientos para la EA se
han establecido sobre la base de la naturaleza de la
EA sintomática, y en la mayoría de los casos tratan
de contrarrestar la perturbación producida en el
nivel de los neurotransmisores implicados en esta
enfermedad.
Las terapias basadas en la proteína tau, sugieren
que esta proteína es un blanco interesante, debido
a que la formación de los PHFs constituyen un
evento crítico en el proceso neurodegenerativo. Ac-
tualmente, nuestro laboratorio está investigando la
actividad antiinflamatoria de una fórmula natural
que contiene el Compuesto Andino, un producto
natural endémico del norte de Chile, y vitaminas
del complejo B (es decir, B6, B9 y B12), que fue
llamado BrainUp-10®. Curiosamente, de acuerdo
con estudios realizados por el Doctor Cornejo y
colaboradores (2011), el principio activo de este
compuesto, ácido fúlvico, es capaz de bloquear
la auto-agregación de tau in vitro que afecta a la
longitud y la morfología de los PHFs generados17.
Además, este compuesto tiene la capacidad de
desensamblar los PHFs preformados y oligómeros
y especies de tau, liberados al medio extracelular.
Este compuesto natural es una sustancia anti-in-
flamatoria potente, y un compuesto nutracéutico18
biológicamente muy seguro. En un ensayo clínico
piloto, los pacientes con EA que se sometieron a
tratamiento con este compuesto mostraron una
menor tendencia hacia el deterioro cognitivo,
sumado a una reducción de los síntomas neuropsi-
cológicos y menor estrés neuropsiquiátrico para los
cuidadores de los pacientes. El Compuesto Andino
es una mezcla compleja de sustancias húmicas ge-
neradas por la descomposición en el propio suelo
de material vegetal a través de cientos o miles de
años. Se genera así, un producto natural endémico
de la Cordillera de Los Andes. Su principio activo
son los ácidos fúlvicos y esta formulación emerge
como un nuevo potencial nutracéutico contra de-
sórdenes cerebrales neurodegenerativos19.
En la actualidad, existen enfoques terapéuticos
basados en el uso de antioxidantes, los que se han
encontrado, serían capaces de contribuir a una
mejor salud y calidad de vida de los pacientes con
EA. Los estudios basados en este tipo de com-
puestos naturales, han ido creciendo, así como la
búsqueda de compuestos antioxidantes naturales
con una fuerte actividad anti-inflamatoria y que
crucen la barrera de sangre a nivel cerebral. Estos
aparecen como una alternativa al tratamiento de
esta enfermedad. Por lo tanto, una estrategia im-
portante, para prevenir el daño cerebral se basa en
los cambios en la dieta y los suplementos alimen-
tarios, alimentos funcionales y nutracéuticos, entre
otros múltiples factores, incluyendo ejercicios, vida
social activa y actividad intelectual sostenida. Sin
embargo, aún queda mucho por investigar, con el
fin de validar médicamente este tipo de alternativas
naturales, pero su aplicación como un enfoque
preventivo es un punto importante a considerar
en la búsqueda de nuevas vías para el tratamiento
de la EA.
Agradecimientos
La investigación fue apoyada por el subsidio
de Fondecyt 1110373, e Innova Corfo proyecta
12IDL2-18218 y Tecnología Avanzada proyecto
14IEAT-28658. Agradecemos la generosa coope-
ración de Tatiana Ponce, en el desarrollo de este
trabajo.
LA TEORíA dE LA NEUROINMUNOMOdULACIóN EN ENFERMEdAdES NEUROdEgENERATIVAS: NUEVAS EVIdENCIAS CIENTíFICAS
REV CHIL NEURO-PSIQUIAT 2015; 53 (1): 53-58
57
www.sonepsyn.cl
Referencias bibliográficas
1. Venneti S, Wiley CA, Kofler J. Imaging micro-
glial activation during neuroinflammation and
Alzheimer’s disease. J Neuroimmune Pharmacol
2009; 4 (2): 227-43.
2. Streit WJ, Miller KR, Lopes KO, Njie E. Microglial
degeneration in the aging brain-bad news for neu-
rons?. Front Biosci 2008; 13: 3423-38.
3. Meda L, Baron P, Scarlato G. Glial activation in
Alzheimer’s disease: the role of Abeta and its as-
sociated proteins. Neurobiol Aging 2001; 22 (6):
885-93.
4. Colton CA, Wilcock DM. Assessing activation sta-
tes in microglia. CNS & Neurological Disorders-
Drug Targets 2010; 9: 174-91.
5. McGeer PL, Schulzer M, McGeer EG. Arthritis and
anti-inflammatory agents as possible protective
factors for Alzheimer’s disease: a review of 17 epi-
demiologic studies. Neurology 1996; 47: 425-32.
6. McGeer PL, Rogers J, McGeer EG. Inflammation,
anti-inflammatory agents and Alzheimer disease:
the last 12 years. J Alzheimers Dis 2006; 9: 271-6.
7. Town T. Inflammation, immunity, and Alzheimer’s
Resumen
Las células microgliales juegan un papel importante en la inmunidad innata del sistema
nervioso central. Las alteraciones en la normal diafonía celular, entre microglias y células
neuronales cerebrales, pueden conducir a graves disturbios y enfermedades neurodegenerativas.
En este contexto, hemos postulado que los procesos neuroinflamatorios son un factor crítico a
desencadenar la cascada patológica que conduce a la degeneración neuronal. En nuestra teoría
Neuroinmunomoduladora, señales de daños externos o internos activan las células microgliales,
favoreciendo la producción de factores citotóxicos que inducen la degeneración neuronal. Estos
factores activan la proteína-quinasas, que conducen a la hiperfosforilación de la proteína tau, y
su consecuente oligomerización. Estos agregados de tau liberados al medio extracelular, al activar
a la célula microglial, provocarían un mecanismo de retroalimentación positiva favoreciendo
la neurodegeneración. Hoy en día, compuestos de origen natural con una fuerte actividad
anti-inflamatoria, capaces de cruzar la barrera hematoencefálica del cerebro, aparecen como
candidatos para la prevención y el tratamiento de trastornos neurodegenerativos tales como la
enfermedad de Alzheimer.
Palabras clave: Enfermedades neurodegenerativas, neuroinmunomodulación, células gliales,
citoquinas proinflamatorias, proteína tau, células neuronales.
disease. CNS & Neurological Disorders-Drug Tar-
gets 2010; 9: 129-31.
8. Morales I, Farías G, Maccioni RB. Neuroimmu-
nomodulation in the pathogenesis of Alzheimer’s
disease. Neuroimmunomodulation 2010; 17 (3):
202-4.
9. Morales I, Guzmán-Martínez L, Cerda-Troncoso
C, Farías GA, Maccioni RB. Neuroinflammation
in the pathogenesis of Alzheimer’s disease. A
rational framework for the search of novel thera-
peutic approaches. Front Cell Neurosci 2014; 22
(8): 112.
10. Fernández JA, Rojo L, Kuljis RO, Maccioni RB. The
damage signals hypothesis of Alzheimer’s disease
pathogenesis. J Alzheimers Dis 2008; 14: 329-33.
11. Maccioni RB, Farías GA, Rojo LE, Sekler MA,
Kuljis RO. What have we learned from the tau
hypothesis? Current Hypotheses and Research
Milestones in Alzheimer’s Disease Springer 2009;
2: 49-62.
12. Maccioni RB, Rojo LE, Fernández JA, Kuljis
RO. The role of neuroimmunomodulation in
Alzheimer’s disease. Ann NY Acad Sci 2009; 1153:
240-6.
INELIA MORALES et al.
REV CHIL NEURO-PSIQUIAT 2015; 53 (1): 53-58
58
www.sonepsyn.cl
13. Morales I, Jiménez JM, Mancilla M, Maccioni
RB. Tau oligomers and fibrils induce activation
of microglial cells. J Alzheimers Dis 2013; 37 (4):
849-56.
14. Akiyama H, Barger S, Barnum S, Bradt B, Bauer
J, et al. Inflammation and Alzheimer’s disease.
Neurobiol Aging 2000; 21 (3): 383-421.
15. Kitazawa M, Oddo S, Yamasaki TR, Green KN,
LaFerla FM. Lipopolysaccharide-induced inflam-
mation exacerbates tau pathology by a cyclin-
dependent kinase 5-mediated pathway in a trans-
genic model of Alzheimer’s disease. J Neurosci
2005; 25 (39): 8843-53.
16. Schmid CD, Melchior B, Masek K, Puntambekar
SS, Danielson PE, Lo DD, Sutcliffe JG, Carson
MJ.Differential gene expression in LPS/ IFNgam-
ma activated microglia and macrophages: in vitro
versus in vivo. J Neurochem 2009; 1: 117-25.
17. Cornejo A, Jiménez JM, Caballero L, Melo F,
Maccioni RB. Fulvic acid inhibits aggregation and
promotes disassembly of tau fibrils associated with
Alzheimer’s disease. J Alzheimers Dis 2011; 27 (1):
143-53.
18. Carrasco-Gallardo C, Guzmán L, Maccioni RB.
Shilajit: a natural phytocomplex with potential
procognitive activity. Int J Alzheimers Dis 2012;
(2012): 674142.
19. Carrasco-Gallardo C, Farías GA, Fuentes P, Cres-
po F, Maccioni RB. Can nutraceuticals prevent
Alzheimer’s disease? Potential therapeutic role of
a formulation containing shilajit and complex B
vitamins. Arch Med Res 2012; 43 (8): 699-704.
Correspondencia:
Dr. Ricardo Benjamin Maccioni
International Center for Biomedicine.
Avda. Vitacura 3568, of. 513, Vitacura.
Santiago, Chile.
E-mail: rmaccion@manquehue.net
LA TEORíA dE LA NEUROINMUNOMOdULACIóN EN ENFERMEdAdES NEUROdEgENERATIVAS: NUEVAS EVIdENCIAS CIENTíFICAS
REV CHIL NEURO-PSIQUIAT 2015; 53 (1): 53-58
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Alzheimer disease (AD) is the most common cause of dementia in people over 60 years old. The molecular and cellular alterations that trigger this disease are still diffuse, one of the reasons for the delay in finding an effective treatment. In the search for new targets to search for novel therapeutic avenues, clinical studies in patients who used anti-inflammatory drugs indicating a lower incidence of AD have been of value to support the neuroinflammatory hypothesis of the neurodegenerative processes and the role of innate immunity in this disease. Neuroinflammation appears to occur as a consequence of a series of damage signals, including trauma, infection, oxidative agents, redox iron, oligomers of τ and β-amyloid, etc. In this context, our theory of Neuroimmunomodulation focus on the link between neuronal damage and brain inflammatory process, mediated by the progressive activation of astrocytes and microglial cells with the consequent overproduction of proinflammatory agents. Here, we discuss about the role of microglial and astrocytic cells, the principal agents in neuroinflammation process, in the development of neurodegenerative diseases such as AD. In this context, we also evaluated the potential relevance of natural anti-inflammatory components, which include curcumin and the novel Andean Compound, as agents for AD prevention and as a coadjuvant for AD treatments.
Article
Full-text available
Alzheimer's disease (AD) is a brain disorder displaying a prevalence and impact in constant expansion. This expansive and epidemic behavior is concerning medical and public opinion while focusing efforts on its prevention and treatment. One important strategy to prevent this brain impairment is based on dietary changes and nutritional supplements, functional foods and nutraceuticals. In this review we discuss the potential contributions of shilajit and complex B vitamins to AD prevention. We analyze the status of biological studies and present data of a clinical trial developed in patients with mild AD. Studies suggest that shilajit and its active principle fulvic acid, as well as a formula of shilajit with B complex vitamins, emerge as novel nutraceutical with potential uses against this brain disorder.
Article
Full-text available
Shilajit is a natural substance found mainly in the Himalayas, formed for centuries by the gradual decomposition of certain plants by the action of microorganisms. It is a potent and very safe dietary supplement, restoring the energetic balance and potentially able to prevent several diseases. Recent investigations point to an interesting medical application toward the control of cognitive disorders associated with aging, and cognitive stimulation. Thus, fulvic acid, the main active principle, blocks tau self-aggregation, opening an avenue toward the study of Alzheimer's therapy. In essence, this is a nutraceutical product of demonstrated benefits for human health. Considering the expected impact of shilajit usage in the medical field, especially in the neurological sciences, more investigations at the basic biological level as well as clinical trials are necessary, in order to understand how organic molecules of shilajit and particularly fulvic acid, one of the active principles, and oligoelements act at both the molecular and cellular levels and in the whole organism.
Article
Full-text available
Alzheimer's disease is a neurodegenerative disorder involving extracellular plaques (amyloid-β) and intracellular tangles of tau protein. Recently, tangle formation has been identified as a major event involved in the neurodegenerative process, due to the conversion of either soluble peptides or oligomers into insoluble filaments. At present, the current therapeutic strategies are aimed at natural phytocomplexes and polyphenolics compounds able to either inhibit the formation of tau filaments or disaggregate them. However, only a few polyphenolic molecules have emerged to prevent tau aggregation, and natural drugs targeting tau have not been approved yet. Fulvic acid, a humic substance, has several nutraceutical properties with potential activity to protect cognitive impairment. In this work we provide evidence to show that the aggregation process of tau protein, forming paired helical filaments (PHFs) in vitro, is inhibited by fulvic acid affecting the length of fibrils and their morphology. In addition, we investigated whether fulvic acid is capable of disassembling preformed PHFs. We show that the fulvic acid is an active compound against preformed fibrils affecting the whole structure by diminishing length of PHFs and probably acting at the hydrophobic level, as we observed by atomic force techniques. Thus, fulvic acid is likely to provide new insights in the development of potential treatments for Alzheimer's disease using natural products.
Article
Full-text available
Two different macrophage populations contribute to CNS neuroinflammation: CNS-resident microglia and CNS-infiltrating peripheral macrophages. Markers distinguishing these two populations in tissue sections have not been identified. Therefore, we compared gene expression between LPS (lipopolysaccharide)/interferon (IFN)gamma-treated microglia from neonatal mixed glial cultures and similarly treated peritoneal macrophages. Fifteen molecules were identified by quantative PCR (qPCR) as being enriched from 2-fold to 250-fold in cultured neonatal microglia when compared with peritoneal macrophages. Only three of these molecules (C1qA, Trem2, and CXCL14) were found by qPCR to be also enriched in adult microglia isolated from LPS/IFNgamma-injected CNS when compared with infiltrating peripheral macrophages from the same CNS. The discrepancy between the in vitro and in vivo qPCR data sets was primarily because of induced expression of the 'microglial' molecules (such as the tolerance associated transcript, Tmem176b) in CNS-infiltrating macrophages. Bioinformatic analysis of the approximately 19000 mRNAs detected by TOGA gene profiling confirmed that LPS/IFNgamma-activated microglia isolated from adult CNS displayed greater similarity in total gene expression to CNS-infiltrating macrophages than to microglia isolated from unmanipulated healthy adult CNS. In situ hybridization analysis revealed that nearly all microglia expressed high levels of C1qA, while subsets of microglia expressed Trem2 and CXCL14. Expression of C1qA and Trem2 was limited to microglia, while large numbers of GABA+ neurons expressed CXCL14. These data suggest that (i) CNS-resident microglia are heterogeneous and thus a universal microglia-specific marker may not exist; (ii) the CNS micro-environment plays significant roles in determining the phenotypes of both CNS-resident microglia and CNS-infiltrating macrophages; (iii) the CNS microenvironment may contribute to immune privilege by inducing macrophage expression of anti-inflammatory molecules.
Article
Virtually none of the hypotheses on Alzheimer's disease (AD) pathogenesis address the earliest events that trigger the molecular alterations that precede cerebral degeneration and account for the diversity of risk factors that converge on a well-defined disease phenotype. We propose that long-term activation of the innate immune system by an individual array of risk factors constitutes a unifying mechanism leading to the triggering of an inflammatory cascade that converges in cytoskeletal alterations (tau aggregation, paired helical filament formation) as a previously hypothesized final common pathway in AD. The key pathogenic phenomena consist in the long-term, maladaptive activation of innate immunity-triggering receptors-such as the toll-like and advanced glycation end-products receptors, and others located in the microglial membrane-by seemingly heterogeneous risk factors such as hyperlipidemia, hyperglycemia, oxidative stress, head injury, amyloid oligomers, etc. Our hypothesis provides a unifying mechanism that explains both the diversity of risk factors acting over long periods of time and the individual response to such insults. This formulation is amenable to both empirical testing and implementation into therapeutic strategies that may lead to effective prevention of AD as well as other disorders in which impaired regulation of the innate immunity is the unifying cause of the condition.
Article
Neuroinflammation is a process related to the onset of several neurodegenerative disorders, including Alzheimer's disease (AD). Increasing sets of evidence support the major role of deregulation of the interaction patterns between glial cells and neurons in the pathway toward neuronal degeneration, a process we are calling neuroimmunomodulation in AD. On the basis of the hypothesis that pathological tau aggregates induce microglial activation with the subsequent events of the neuroinflammatory cascade, we have studied the effects of tau oligomeric species and filamentous structures over microglial cells in vitro. Tau oligomers and fibrils were induced by arachidonic acid and then their actions assayed upon addition to microglial cells. We showed activation of the microglia, with significant morphological alterations as analyzed by immunofluorescence. The augmentation of nitrites and the proinflammatory cytokine IL-6 was evaluated in ELISA assays. Furthermore, conditioned media of stimulated microglia cells were exposed to hippocampal neurons generating altered patterns in these cells, including shortening of neuritic processes and cytoskeleton reorganization.
Chapter
Until the appearance of the Danger Signals Hypothesis on Alzheimer’s disease (AD), none of the hypotheses on its pathogenesis accounted coherently for the diversity of the earliest events that trigger neurodegeneration, and that eventually result in senile plaques (SP) and neurofibrillary tangles (NFTs). The original version of the most commonly held amyloid hypothesis rests on the concept that amyloid-β (Aβ)1–42 self-polymerizes over many years to form SP, which then triggers the entire array of subsequent brain lesions. However, recent findings point to unpleated Aβ oligomers (ADDLs) as the major culprit for synaptic impairment, well before neuronal degeneration ensues. Amyloid deposits thus appear to be a rather late event in a long chain driving progressively more severe neuronal, glial and neuropil alterations. AD is a multifactorial disorder in that protein alterations, oxidative stress, neuroinflammation, immune deregulation, impairment of neuronal-glial communication, and neurotoxic agents appear to be the major factors triggering neuronal degeneration, and the balance among these seems to vary from patient to patient. Although diverse, these factors induce deleterious signaling through different sets of neuronal receptors that converge in the hyperphosphorylation of tau molecules. Thus, tau hyperphosphorylation constitutes a common final pathway for most of the altered molecular and cellular factors that eventually result in degenerating neurons. This raises the question as to precisely what triggers the pathological phosphorylation. We have shown that Aβ oligomers, oxygen free radicals, and iron overload destabilize the equilibrium between the activities of protein phosphatases and kinases involved in tau assembly. Furthermore, overproduction or processing alterations of trophic factors such as NGF by activated glial cells trigger signaling cascades via p75, leading to cdk5 activation, followed by tau hyperphosphorylation and neuronal death. The cytokines TNFα, IL-1, and IL-6 induce activation of the cdk5/p35 complex, which causes tau phosphorylation. Converging lines of evidence reveal the involvement of innate immunity (in contrast with the more widely acknowledged, but probably less-important involvement of adaptive immunity) and the role of inflammatory processes in the development of AD-associated neuronal changes. While methodological challenges cannot be ruled out in the interpretation of the so far confusing and sometimes even contradictory clinical trials, inflammation is essential in virtually all animal models for AD-like lesions. Taken together, these observations indicate that slowly accumulating danger/alarm signals to the innate immune system interfere with the balance of protective versus degeneration-promoting mechanisms, shifting the equilibrium toward neurodegeneration that involves deregulation of protein kinases cdk5 and GSKβ, tau hyperphosphorylation, and its aggregation into anomalous polymers in the neuronal cytoskeleton that constitutes the converging result of a large array of risk factors over time. These mediate the inexorable worsening of cognitive manifestations along with neuronal degeneration and the eventual appearance of tardy lesions such as SP and NFTs. This new theoretical framework based on recent experimental findings may serve as a powerful tool in the development of the much-sought biomarkers and in vivo imaging technology for the early diagnosis of AD. This will also help in the design of effective interventions to both treat and perhaps even prevent this increasingly prevalent brain disorder.
Article
Few topics in the field of Alzheimer's disease (AD) research have brought about the level of excitement and interest as the role of inflammation and immunity in the pathobiology and treatment of the disease. In this special issue of the journal, experts in the field give their views on how inflammatory processes and the immune system intersect- at both etiological and treatment levels- with disease biology. Collectively, nearly three decades of work are covered in this special issue, beginning with the first epidemiologic studies that showed an inverse risk relationship between AD and use of non-steroidal anti-inflammatory drugs, and ending with "immunotherapy" approaches and recent studies examining the roles of innate immune cells including microglia and peripheral mononuclear phagocytes in AD. Despite considerable work in this area, many important questions remain concerning the nature and timing of immune/inflammatory responses in the context of AD, and at what point and how to therapeutically intervene.