ArticlePDF Available

The Manche-à-Eau Mangrove Lagoon, Guadeloupe (16°16'N; 61°33'W), French West Indies, in the Life Cycle of Coastal Fish Species

Authors:

Abstract and Figures

The functioning of the Manche-à-Eau lagoon and of its mangrove environment with the population of marine fish of Guadeloupe has been studied since 1983, and particularly in the 2000s. This ecosystem supports a stable fish assemblage structure because of its twice a day turnover (14.8%) of marine water. It is a favorable and important site for the reproduction (38%) and growth (46%) of a large number of species. The life cycle of these fish species share, for the most part, an ecophase in the mangrove in brackish water and a marine ecophase outside the lagoon. The mangrove plays a vital role in the retention of continental nutrients. This facilitates the trophic exploitation of vegetal and animal detritus bases by the fish in high population density. The majority of populations present individuals reaching length at least 40% from the known maximum length for the species, although only 38.1% have individuals longer than 300 mm. The mangrove aids in the spawning activity of fish species (41% to 58% of the total abundance) and in the reproductive (maturation, migration) process (58% in density and 70% in biomass). The sedentary species lay their eggs in the mangrove, whereas the temporary species stay there during their trophic ecophase or after a genesic migration from the sea to assure sexual maturation for both sexes in the species.
Content may be subject to copyright.
Proceedings of the 61st Gulf and Caribbean Fisheries Institute November 10 - 14, 2008 Gosier, Guadeloupe, French West Indies
The Manche-à-Eau Mangrove Lagoon, Guadeloupe (16°16'N; 61°33'W), French West Indies,
in the Life Cycle of Coastal Fish Species
JEAN-LUC BOUCHEREAU1 and PAULO DE TARSO CHAVES2
1Université des Antilles-Guyane, UMR 7138 CNRS IRD MNHN UPMC, Systématique, Adaptation, Évolution, Dpt de
Biologie, Campus Fouillole, BP 592, F-97159 Pointe-à-Pitre, France
2Depto de Zoologia, Universidade Federal do Paraná (UFPR), Brazil.
ABSTRACT
The functioning of the Manche-à-Eau lagoon and of its mangrove environment with the population of marine fish of
Guadeloupe has been studied since 1983, and particularly in the 2000s. This ecosystem supports a stable fish assemblage structure
because of its twice a day turnover (14.8%) of marine water. It is a favorable and important site for the reproduction (38%) and
growth (46%) of a large number of species. The life cycle of these fish species share, for the most part, an ecophase in the mangrove
in brackish water and a marine ecophase outside the lagoon. The mangrove plays a vital role in the retention of continental
nutrients. This facilitates the trophic exploitation of vegetal and animal detritus bases by the fish in high population density. The
majority of populations present individuals reaching length at least 40% from the known maximum length for the species, although
only 38.1% have individuals longer than 300 mm. The mangrove aids in the spawning activity of fish species (41% to 58% of the
total abundance) and in the reproductive (maturation, migration) process (58% in density and 70% in biomass). The sedentary
species lay their eggs in the mangrove, whereas the temporary species stay there during their trophic ecophase or after a genesic
migration from the sea to assure sexual maturation for both sexes in the species.
KEY WORDS: Life cycle, guilds, trophic, genesic, ecophase
El Ciclo de Vida de los Peces Costeros en una Laguna de Manglar:
La Manch-à-Eau (16°16’N; 61°33’O), Guadalupe, Antillas Francesas
El funcionamiento de la laguna de la Manche-à-Eau y de su ecosistema de manglar en conjunto con el samblaje de peces
marinos ha sido estudiado desde 1983 y particularmente en los años 2000. Este ecosistema alberga una samblaje de peces de
estructura estable a causa de la renovación bicotidiana del agua marina (14,8%). Es un sitio favorable e importante para la
reproducción (38%) y el crecimiento (46%) para un gran número de especies. El ciclo de vida de la mayor parte de ellas se
descompone en una eco fase en el agua sometida a al manglar y la otra al exterior de la laguna en la mar. El manglar juega un papel
crucial en la retención de nutrientes de origen continental. Este facilita la explotación trófica del detritus de base vegetal o animal
para los individuos de poblaciones presentes en gran número. En la mayor parte de las poblaciones de peces, al menos 40 % de los
individuos llegan a su talla máxima conocida aunque solamente el 38,1 % poseen individuos de una longitud superior a 300mm.
Los manglares contribuyen al desove de la diferentes especies de peces ( 41% a 58% de la abundancia total) y a los procesos
reproductivos de migración y/o de maduración (58% en densidad y 70% en biomasa). Las especies sedentarias depositan sus huevos
en el manglar en tanto que las especies temporales se quedan allí durante su eco fase trófica o después de una migración genésica del
mar para asegurar la maduración sexual de ambos sexos en la especie.
PALABRAS CLAVES: Ciclo de vida, gremios, eco fase, trófico, genésico.
Le Cycle de Vie des Poissons Côtiers dans une Lagune à Mangrove:
La Manche-à-Eau (16°16'N; 61°33'O), Guadeloupe, Antilles Françaises
Le fonctionnement de la lagune de la Manche-à-Eau et de son écosystème à mangrove avec l’assemblage des poissons marins
de la Guadeloupe à été étudié depuis 1983, et particulièrement dans les années 2000. Cet écosystème héberge une structure stable de
l’assemblage de poisons à cause du renouvellement biquotidien d’eau marine (14,8%). C’est un site favorable et important pour la
reproduction (38%) et la croissance (46%) d’un grand nombre d’espèces.. Le cycle de vie de la plupart d’entre elles se décompose
en une écophase en eau saumâtre de mangrove et l’autre à l’extérieur de la lagune en mer. La mangrove joue un rôle crucial dans la
rétention de nutriments d’origine continentale. Ceci facilite l’exploitation trophique des détritus de base végétale ou animale par les
individus de populations présents en grand nombre. Dans la plupart des populations de poissons, au moins 40% des individus
atteignent la longueur maximum connue pour l’espèce, bien que 38,1% seulement ont une longueur individuelle supérieure à
300mm. La mangrove participe à l’activité de ponte des espèces de poissons (41% à 58% de l’abondance totale), et aux processus
reproductifs de migration et/ou de maturation (58% en densité et 70% en biomasse). Les espèces sédentaires déposent leurs œufs
dans la mangrove, alors que les temporaires y accomplissent une écophase trophique pour leur croissance ou génésique pour leur
reproduction.
MOTS CLÉS: Cycle de vie, guildes, écophase, trophique, génésique.
Page 308 61st Gulf and Caribbean Fisheries Institute
INTRODUCTION
The characteristics of the ecosystems in shallow
depths belong to the paralic domain. The dense concentra-
tion of suspended matter associated with an important
biological productivity provides excellent conditions for
the colonization of these environments by a large number
of invertebrate and vertebrate species (Yáñez-Arancibia et
al. 1993). Because of their mobility and influence on many
trophic levels, the fish play a very important role in the
functioning of the paralic ecosystems. The fish occupy
them at different stages of their life history in using them
as a nursery to benefit the young through the abundance of
food present and as shelter against predators (Thayer et al.
1987). Also, it is used as a place of permanent residence,
in the case of sedentary species; it is temporary for the
anadromous and catadromous species, those that seasonally
migrate, (trophic or genesic), or for many occasional
incursions for those who use these environments only in an
irregular fashion (Quignard 1984). This study describes,
with the results of several authors, how a mangrove
ecosystem, such as the Manche-à-Eau lagoon, is used by
the fish assemblage living there.
MATERIAL AND METHODS
The Manche-à-Eau lagoon (MAE) is located (16°15'N;
61°35'W) at the Northeast of the Island of Basse-Terre in
Guadeloupe, French West Indies, in the Caribbean Sea
(Figure 1). This semiclosed 0.26 km2 lagoon receives
continental freshwaters from diffuse peripheral running
waters and marine waters via a semidiurnal tide of low
amplitude (40 cm). The average depth ranges from 1.5 m
to 2.0 m (Assor 1987), and the movements of the water
masses are slow and complex. This lagoon is linked with
the Grand-Cul-de-Sac-Marin (GCSM) lagon by a channel,
the Rivière-Salée, which delimits the two main islands of
the Guadeloupe archipelago: the Basse-Terre and the
Grande-Terre Islands (Figure 1). The lagoon is totally
fringed by a typical vegetation of mangrove trees
(Rhizophora mangle, Avicennia germinans and Laguncu-
laria racemosa). The fish were caught with a passive
fishing gear called capéchade (Quignard and Farrugio,
1981), with high selectivity, including a 45-m-long
stopping net (the paradière) suspended with floats. Fish
are driven to three bow nets sustained with arches forming
funnels with mesh sizes decreasing from 8 to 6 mm
(Bouchereau et al. 1989).
Description of the Ecosystem and Fish Community
Studied
Seasonality of the abiotic factors and the presence of
important relationships between the marine and continen-
tal regions The composition of the MAE lagoon is
influenced by the entry of marine water all year long. The
water volume turnover at each tide (14.8%) twice a day
combined with an active and various hydrodynamism
(Mantran et al., submitted to Geomorphology) contribute to
vivify the lagoon more and provide information for a better
interpretation of the Well-Being Index values and the
populational parameters gradients of the fish assemblage
living in this ecosystem. No gradient are observed with the
abiotic variables. The water characteristics are homogene-
ous (Mantran et al. In press) everywhere in the lagoon, in
the water column and whatever the period studied
(temperature: 30.02°C; salinity: 36.16 ‰; pH: 8.29;
turbidity: 6.10 mg/L; conductivity: 5.51 S/m; dissolved
oxygen: 7.18 mg/L; dissolved solids: 32.78 g/L; osmolar-
ity: 1021.7milliosmoles). Salinity is not a global explaina-
tory factor in the understanding of the fish assemblage
structuration in the MAE (Bouchereau et al. 2008). During
the dry season in February or April, the salinization
influence due to marine water entrance or hydric deficit
consequently to evaporation is little spread because only
two stations are concerned from the seven visited. During
the rainy season, the desalinization mainly governed by the
direct impluvium and the continental water percolation
exerts a larger influence since it concerns five stations in
July and four in December.
N
0250 m
16° 16' 39''
61° 33' 20''
GUADELOUPE
6
1
7
2
3
4
5
RS
Rivi¸re Salˇe
x
61°30
16°15
10km
Basse-
Terre
Grande-Terre
Lagon du Grand-
Cul-de-Sac-Marin
Rivi¸re
Salˇe
Lagune de la
Manche--Eau
Figure 1. Guadeloupe’s position in the French West Indies
and the location of the Manche-à-Eau lagoon, with its
connexion to the Grand Cul-de-Sac Marin lagon.
Bouchereau, J.-L. and J. de T. Chaves GCFI:61 (2009) Page 309
The biological zonation of the Manche-à-Eau lagoon,
according to the quality observed, is made of three zones,
from II to IV: the zone II is more spread at South and
narrow along the island, the zone III occupies the greater
part of the ecosystem and the zone IV centered on the two
main depressions at South and West, on the shallows and
its North-West border and the end of the sector enclaved at
South-West. The geomorphology, hydrodynamism and
current populational descriptors relationship are to be more
taken into account to understand the fish assemblage
structure and other biological compartments.
An ichtyofaunistic composition of strong marine identity
Except when salinity could be supposed to attain some-
times low values in certain part of the lagoon and then
freshwaterfish like Poecilia vivipara are observed (Nelson
2003), more than 98.4% of the 64 species of fish counted
(from the studies of Louis 1983, Bouchereau et al. 2008,
Caberty et al. 2004, Chantrel 2002, Fréjaville 2002, Lopes
2003, Moura 2003, Veilleur et al. 2008) are saltwater fish.
The Perciforms (Gerreidae, 53,26%; Sciaenidae, 3,64%;
Haemulidae, 0.03%) and the Clupeiforms (Clupeidae,
34.38%; Engraulidae, 5.58%) dominate in biomass and
number (96.89%) of species. Among the species, a
majority occupies the lagoon, either occasionally, or to
carry out a trophic or reproductive (genesic) ecophase.
Only a small fraction of the fish assemblage fulfills all of
its life cycle in the ecosystem (Figure 2).
Even though the number of species in this fraction is
small, its members are numerous (Bouchereau et al. 2008).
This was observed by Chaves and Bouchereau (1999) in
the Guaratuba Bay, Southern Brazil.
Constancy of the totality of the assemblage A group of
seven species constitutes between 75% and 98% of the
abundance of the fish population. Depending on the year,
this group is shared between any of 14 species. The
species that has the maximum abundance is not uniform
throughout the year, even though they are present there
almost permanently. One can say that the species change,
but their functions remain essentially the same, regardless
of the year (Bouchereau et al. 2008, Chantrel and
Bouchereau 2002, Fréjaville and Bouchereau 2002, Lopez
2003, Moura 2003) as it was observed in the Guaratuba
Bay (Chaves and Bouchereau 1999).
One can notice two peaks of abundance of the
ichtyofauna, one after the dry season (April) and the other
after the hurricane season (December), that are transition
periods with dry and rainy seasons. This is probably linked
to a primary productivity more important to this time
period, resulting from an increase in the transparency of the
water and of the availability of nutrients, brought to the
system by the bay’s tributaries during strong rains. Here
the mangrove plays a very important role in the functioning
of this assemblage (Yáñez-Arancibia et al. 1993). The fact
that the roots favor the retention and sedimentation of the
suspended materials permits their ulterior incorporation in
the primary productivity when the photosynthesis becomes
more important (Caberty et al. 2004).
Tendency to concentrate small sized species It is well
known that the laguno-estuairian environments are
normally rich in small fish. The presence of reduced
length individuals can be explained at the following levels
(Bouchereau et al. 2000, Veilleur et al. 2008):
RESIDENT SPECIES:
(<13% of species)
Lophogobius cyprinoides
Bathygobius soporator
Coryphopterus glaucofraenum
Gobionellus smaragdus
Gobionellus shufeldti
Sphoeroides testudineus
Bairdiella ronchus
Gymnothorax furnieri
MIGRATORY/OCCASIONAL SPECIES
(>87% of species):
Harengula clupeola, H. humeralis
Diapterus rhombeus
Eucinostomus argenteus, E. gula,
E. melanopterus, Eugerres brasilianus,
Gerres cinereus
Chaetodipterus faber
Atherinomorus stipes
Archosardus rhomboidalis
Sphyraena baracuda
Caranx latus
Centropomus undecimalis, C. par.
SEA
MANCHE-À-EAU LAGOON
Figure 2. Examples of residing, occasional or migrant species occupying the Manche-à-
Eau lagoon.
Page 310 61st Gulf and Caribbean Fisheries Institute
i) Specific if the individuals belong to a species
whose maximum size is naturally reduced;
ii) Populational if the species to which they
belong demonstrates a slower and/or more limited
growth in the estuaries when compared to
populations of the same species in other ecosys-
tems, and
iii) Ecophase if the ecosystem only accommodates
the individuals of these populations in the early
stages of their life cycle.
In the MAE lagoon, the distribution in those three
groups of 42 species studied is the following : A, 33.33%;
B, 40.47%; C, 26.19%. Group B is the most important. In
A the individuals own to species whose potential size is
week or correspond to a little advanced development stage.
In B they cannot reach in lagoon the MLO noted elsewhere
because their growth is limited in mangrove system. The
fish populations of this group are found in the workshop
lagoon at juvenile or sub-adult stages. Group C contains
all species able to exceed the 300mm MLO elsewhere than
the MAE workshop lagoon (Bouchereau et al. 2008).
The relationship "maximum length observed in the
lagoon (MLO) - maximum available length in scientific
documentation (MAL)" can be expressed by the equation:
MLO/MAL= -0.389 x MAL-0.0002695
(n = 41; r = 0.391; for
ν
= 40, Pr > F = 0.011).
This formula can be used to compare this mangrove
with other mangroves or other coastal regions in general as
a favorable site for different sized fish. Bouchereau et al.
(2000) present an approach considering these descriptions
and their implications for the aquaculture.
Flexibility of feeding habits and dominance of detritivorous
bases Many studies show the role played by the
mangroves as a place of growth of the fish and crustaceans.
These studies are founded on the idea that in these
ecosystems exists a larger availability of food, either in
plant matter, or refuse (Yáñez-Arancibia et al. 1993). All
the trophic and occupancy guilds are represented in the
MAE lagoon. In the fish assemblage studied by Caberty et
al. (2004) made up with 39 species and 25 families, the
fishes feed preferentially on invertebrates associated or not
with plants or fish, like that of Guaratuba Bay. The small
number of piscivorous species is a very common trait to
many mangrove ecosystems. The occupancy guilds are
represented differently in biomass: in the lagoon, migrant
and occasional species dominate in different proportions
whereas in the Guaratuba Bay resident and migrant
dominate in equivalent proportions (Chaves and
Bouchereau 2004). The resident of both ecosystems
exploit similarly the available resources, showing their
strong adaptativeness. Resident, primarily detritivorous,
and migrants, exploit alternatively detritus and primary
production without trophic competition. The trophic guilds
and migrants are eeuitably represented.
These facts reinforce the importance of the primary
consumers, associated with the producers, as a dietary
resource for the ichthyofauna of the mangrove. Flexible
feeding habits are observed at MAE lagoon within the
major part of the studied group; their general diet is
susceptible to overlap between other species. Yet,
according to Albaret (1994) lagoon fish have a common
famous strategy, in which trophic opportunism is necessary
for their population to face strong seasonal variations and
trophic competitors in this type of environment.
An important reproductive site not only for paralic species
but also thalassic species The Manche-à-Eau mangrove
lagoon is used as a spawning area, regularly or occasion-
ally, by the fish in the region. In addition to the species
that spawn in the mangrove, the bay also attracts other non-
resident species that carry out their sexual maturation there.
As a result, direct participation of the mangrove in the
reproductive activity concerns an estimated 58 to 70% of
total fish abundance (38% of species). This reinforces the
importance of mangrove environments for the success of
the life cycle of fish species in this coastal region.
The reproductive patterns of MAE fish assemblage can
be classified in four types (Figure 3), according to the
model proposed by Chaves and Bouchereau (2000) on the
use of mangrove habitat for reproductive activity by the
fish community. Two types from the four spawn in the
mangrove.
Type 1 - Regular spawners. Spawning activity occurs
regularly in the mangrove. These species are not necessar-
ily residents of region, but always use it to spawn. Exam-
ples: Bairdiella ronchus, Lophogobius cyprinoids and
several other Gobiidae.
Type 2 - Occasional spawners. Spawning activity in the
mangrove is merely random. This region can be used to
spawn, but there is no evidence that a great number of
individuals in this group of species use it. These species
are not as abundant in the mangrove as those belonging to
Type 1. Examples: Centropomus parallelus, C. undeci-
malis, Dasyatis americana (Capapé et al., 2002).
Type 3 - Mature in system. Spawning activity does not
occur in the mangrove, but this region is frequented
regularly during the final phase of maturation. Examples:
Diapterus rhombeus, Mugil curema.
Type 4 - Do not mature in system. Spawning activity
does not occur in the mangrove, nor does gonadal matura-
tion, in many individuals. Examples: A. chirurgus, Anchoa
lyolepis, Harengula clupeola, Lutjanus griseus, Hyporham-
phus unifaciatus. Of the latter species, only juvenile
individuals were found in the mangrove.
Bouchereau, J.-L. and J. de T. Chaves GCFI:61 (2009) Page 311
From the 50 species registered in the MAE lagoon in
2002, and after the literature data and personal observa-
tions, 14% is type 1, 20% type 2, 4% (type 3) and 62%
(type 4). The density is for each type 1, 2, 3 and 4: 3.9,
20.8, 33.4, 41.9, respectively. Therefore, the spawning
activity in a regular or eventual frequency (types 1+2)
concentrates on species that represent a minimum of 41%
(number) or 58% (biomass) of the stock occupying the
lagoon. The fish species participation in the reproductive
process, in a larger sense (types 1+2+3), is represented by
at least 58% (density) or 70% (biomass) of the total
abundance.
Considering the reproductive features of some of these
species, more specifically fish populations from the French
West Indies mangrove lagoons, it appears that they are
generally multiple spawners, producing little small eggs
per batch. Some of Gobiid fish family provide particular
type of parental care as nest guarders.
The biomass (except the gobiidae not captured by the
fishing net used) is: 9.2, 32.9, 27.9, 30.0, respectively
(Figure 4).
Type 1: usual
spawning in the
mangrove
Type 2: occasional
spawning in the man-
Type 4: no
spawning or
maturation in the
mangrove
Type 3:
In the mangrove,
maturation only
The Manche-à-Eau Lagoon
Sea
Mangrove
0
10
20
30
40
50
60
Type 1 Type 2 Type 3 Type 4
%
Species richness
Density
Biomass
Figure 4. Percentage of fish species number, density and biomass versus each type of
reproduction activity in the MAE lagoon. Types 1 and 2: spawn in the mangrove: type 1
always, type 2, occasionally; type 3: maturation only; type 4: not used for maturation or
spawning.
Figure 3. Use of Manche-à-Eau mangrove lagoon by the fish assemblage for reproduction.
The circles represent spawning and gonadal maturation achieved partially or entirely in or
around the mangrove (adapted from Chaves & Bouchereau, 2000).
Page 312 61st Gulf and Caribbean Fisheries Institute
CONCLUSION
The Manche-à-Eau lagoon and its mangrove environ-
ment largely occupied by ichthyofauna, also present on the
coastal border, contribute considerably to the growth and
reproduction of many species, which reside there perma-
nently, temporarily or as regular migrant. The seasonal
variations of the climate influence lightly the abiotic
parameters in the ecosystem. The geomorphology,
hydrodynamism and current population descriptors
relationship must be more taken into account to understand
the fish assemblage structure and other biological compart-
ments. The high marine water turnover in the MAE lagoon
contributes to vivify the brackish water quality and to
support a stable structure in the fish assemblage regularly
renewed by fish population coming in from the sea. The
mangrove provides shelter and food shared by all the
ecological guilds composing the fish assemblage.
ACKNOWLEDGEMENTS
This study has been undertaken in the framework of CAPES/
COFECUB bilateral project (n°376/02) between Brazil and France.
LITERATURE CITED
Albaret J.-J. 1994. Les poissons, biologie et peuplements. Pages 239-279
in: J.R. Durand, P. Dufour, D. Guiral, and S.G.F. Zabi (Eds.)
Environnement et Ressources Aquatiques de Côte-d'Ivoire, tome II –
Les milieux lagunaires. Éd. Orstom, Paris, France.
Bouchereau, J.-L., P. de T. Chaves, and J.-J Albaret. 2000. Selection of
fish species for farming in the Bay of Guaratuba, Brazil. Brazilian
Archives of Biology and Technology, Curitiba 43(1).
Bouchereau, J.-L., P. de T. Chaves, and D. Monti. 2008. Factors
Structuring the Ichtyofauna Assemblage in a Mangrove Lagoon
(Guadeloupe, French West Indies), Journal of Coastal Research 24
(4): DOI n° 10.2112/06-0804.
Bouchereau, J.-L., J.-C. Joyeux, and J-P. Quignard. 1989. Structure de la
population de Pomatoschistus microps (Krøyer, 1838) Poissons,
Gobiidés, lagune de Mauguio (France). Vie et Milieu 39(1):19-28.
Caberty, S., P. de T. Chaves, and J.L. Bouchereau. 2004. Organisation et
fonctionnement trophiques de l'ichtyofaune d'une lagune à
mangrove: la Manche-à-Eau (Guadeloupe). Cahiers de Biologie
Marine 45:243-254.
Capapé, C., R. Hamparian, A. Marquès, and J.-L. Bouchereau. 2002.
First morphometric data of a gravid female of the southern stingray,
Dasyatis americana Hildebrand and Schrœder. 1928,
(Chondrichthyes: Dasyatidae) in Guadeloupe waters (French West
Indies). Acta Adriatica 43(2):97-104.
Chantrel, J. et J.-L. Bouchereau. 2003. Régime alimentaire des Gerreidae
Diapterus rhombeus, Eucinostomus argenteus, Eucinostomus gula et
du Sciaenidae Bairdiella ronchus dans une lagune à mangrove: la
Manche-à-Eau, Guadeloupe. Communication orale; Actes des
Deuxièmes Rencontres de l’Ichtyologie en France, PARIS, 25-28
mars 2003: 15.
Chaves, P.T.C. and J.-L. Bouchereau. 1999. Biodiversité et dynamique
des peuplements ichtyiques de la mangrove de Guaratuba, Brésil.
Oceanologica Acta, França 22(3):353-364.
Chaves, P.T. and J.-L. Bouchereau. 2000. Use of mangrove habitat for
reproductive activity by the fish assemblage in the Guaratuba Bay,
Brazil. Oceanologica Acta 23(3):273-280.
Fréjaville, Y. and J.-L. Bouchereau. 2003. La faune ichtyologique dans
l’organisation biologique d’une lagune de mangrove: la Manche-à-
Eau (Guadeloupe). Communication orale; Actes des Deuxièmes
Rencontres de l’Ichtyologie en France, Paris, 25-28 mars 2003:37.
Lopes, R. 2003. Étude temporelle de la faune ichtyologique d’un lagon
de mangrove : la Manche-à-Eau. Mémoire de Maîtrise. Convention
Socrates-Erasmus. Université des Antilles et de la Guyane.
Universidad de Aveiro. 35 pp.
Louis, M. 1983. Biologie, Écologie et Dynamique des Populations de
Poissons dans les Mangroves de Guadeloupe (Antilles Françaises).
Thèse doctorat, Université des Antilles et de la Guyane, 275 p.
Mantran, M., R. Hamparian, and J.-L. Bouchereau. 2008. Évolution de la
morphologie de la lagune de la Manche-à-Eau (Guadeloupe, Antilles
françaises) de 1950 à 2004; bathymétrie et courantologie, soumise à
Géomorphologie, le 01/06/08.
Mantran, M., R. Hamparian, P.T. Chaves, and J.-L. Bouchereau. [In
press]. Relations entre géomorphologie, hydrodynamisme et
assemblage des poissons dans une lagune à mangrove: la Manche-à-
Eau (Guadeloupe, Antilles françaises), soumise au 61th annual
meeting of the GCFI 2008.
Moura, C. 2003. Variation spatiale de l’ichtyofaune d’une lagune à
mangrove antillaise: la Manche-à-Eau, Guadeloupe. Mémoire de
maîtrise. Université des Antilles et de la Guyane. Université de
Aveiro (convention Socrates-Erasmus). 66 pp.
Nelson, L. 2003. Eléments de biologie et de dynamique du poisson
sédentaire Lophogobius cyprinoides Pallas, 1770, (Gobiidé):
systématique, régime alimentaire, structure populationnelle, dans
une lagune à mangrove antillaise, la Manche-à-Eau, Guadeloupe.
Mémoire de DEA. Université des Antilles et de la Guyane. 42 pp.
Quignard, J.-P. 1984. The biological and environmental characteristics
of lagoons as the biological basis of fisheries management In
Management of coastal lagoon fisheries. Kapetsky and Lasserre
(Eds.) Studies and Reviews FAO, 61, Volume1.
Quignard, J.-P. and H Farrugio. 1981. Les pêcheries fixes lagunaires:
caractéristiques et possibilities. Pêches Maritimes 1238:289-293.
Thayer, G.W., D.R. Colby, and W.F. Hettler, Jr. 1987. Utilization of the
red mangrove prop root habitat by fish in south Florida. Marine
Ecology Progress Series 35:25-38.
Veilleur M., P.T. Chaves, and J.L. Bouchereau. [In press]. Utilisation de
la taille maximale des poissons de mangrove en vue de la sélection
d’espèces natives pour leur pisciculture aux Antilles, Proceedings of
the Gulf and Caribbean Fisheries Institute.
Yáñez-Arancibia, A., A.L. Lara-Dominguez, and J.W. Day, Jr. 1993.
Interactions between mangrove and seagrass habitats mediated by
estuarine nekton assemblages: coupling of primary and secondary
production. Hydrobiologia 264:1-12.
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
An inventory of the maximum length (ML) reached by 57 species of fishes living in the mangrove of Guaratuba, Brazil, was undertaken with an aim to evaluate the relationship between the ecosystem and the size of individuals. For each of these species, the maximum length found in the region were compared with those available in existing literature. The majority of populations presented individuals whose length reached at least 40% than the known maximum length for the species, although only 19.3% were longer than 300mm in absolute value. population of the other species were represented only by individuals either in their initial development phases, or reduced length as compared to the maximum length known elsewhere for the same species. In this mangrove, species having the largest relative size are generally those that had the smallest absolute length. Proposed is use of an index LR (maximum observed lengths/maximum available lengths) as a fool for description and comparison of fish assemblages. Observations of the maximum size make possible the pre-selection of 12 species for breeding tests. In combining the biological, technical and commercial parameters, the pre-selection retains as primordial the following species: Centropomus parallelus, Centropomus undecimalis, Menticirrhus americanus and Micropogonias furnieri.
Article
Full-text available
RÉSUMÉ Avec les nouvelles données sur la bathymétrie et la courantologie de cet écosystème et les paramètres physicochimiques étudiés entre février et mai 2007, c'est une actualisation de la zonation biologique établie récemment à partir de l'assemblage de poissons y séjournant qui est proposée dans cette étude. En effet, le volume d'eau renouvelé deux fois par jour à chaque marée (14,8%) combiné à un hydrodynamisme actif et varié contribuent à vivifier la lagune, et apportent des éléments pour une meilleure interprétation des valeurs des indices de bien-être et des gradients des paramètres populationnels de l'ichtyofaune présente. Durant la période étudiée, aucun gradient n'est observé avec les paramètres abiotiques. La caractéristique des eaux est homogène partout dans la lagune, sa colonne d'eau et aux différentes périodes considérées (température: 30,02°C; salinité: 36,16 ‰; pH: 8,29; turbidité: 6,10 mg/L; conductivité: 5,51 S/m; oxygène dissous: 7,18 mg/L; solides dissous: 32,78g/L; osmolarité: 1021,7milliosmoles). Une zonation biologique rectifiée est proposée. Plus conforme à la qualité observée, elle est composée de trois zones, au lieu de quatre, allant de II à IV: la zone II un peu plus étendue au Sud et plus étroite le long de l'île, une zone III dominante sur l'ensemble de la lagune, et une zone IV centrée sur les deux principales dépressions au Sud et à l'Ouest, le haut-fond et sa bordure au Nord-Ouest ainsi que le fond du secteur enclavé au Sud-Ouest. MOTS CLÉS : Géomorphologie littorale, hydrodynamisme, hydrologie lagunaire, peuplement de poissons, confinement.
Article
Full-text available
The Bay of Guaratuba, whose area is approximately 45 km2, is a basin, situated to the south of Brazil (25° 52′ S; 48° 39′ W) and connected to the Atlantic ocean. In its northern part, a region of mangrove is found, under the influence of seasonal fluvial contributions, dominated by Laguncularia racemosa. The depth exceeds 6 m in some places. According to the period of the year, salinity varies between 3 and 37, and temperature between 15 and 28 °C. Several of the present fish species are exploited by commercial and recreational fisheries. This work describes characteristics of the fish populations occupying this mangrove, and temporal and spatial evolution of populations of the main species from available data on their biology. Between September 1993 and August 1996, fish samplings have been undertaken monthly by trawl, according to the same fishing effort (20 min), in channels of this ecosystem. Size, numerical abundance and weight of each individual of species were measured, as well as surface and bottom temperatures and bottom salinity. Species richness, Shannon-Weaver's diversity index were calculated and abundances were processed by the multivaried analysis. The global species richness is 61 species, distributed in 28 families; the better represented species are Sciaenidae (10), Gerreidae (5), Carangidae (5), Ariidae (4), Haemulidae (3), Serranidae (3), Bothidae (3). Each year, the number of species varies between 41 and 44, and a group of eight species represents between 80 to 90 % of the density and 75 % of the biomass. The constancy of this dominance is the main characteristic of this fish assemblage. The most represented species in abundance is Pomadasys corvinaeformis is the first two years, then Stellifer rastrifer. The group of eight main species is shared by 15 species in total, of which 13 for the density and 14 for the biomass. The most important monthly catches take place in winter season, during which one observes a decrease of water temperature and an increase of salinity. These species, however, being likely to be replaced by others according to the year or the season; one never finds the same composition in the assemblage which preserves always the same structures. Seasonal differences between seasons under marine (winter) and continental (summer) influences play a major role on the dynamics of fish in the Guaratuba mangrove. This ecosystem plays a functional role in the achievement of the life cycle of many permanent or temporary species. Those having succeeded to reach high levels of abundance are not represented in a uniform way in the course of the year, even when they reside permanently in the ecosystem. Periodic displacement strategies for self regulation of stocks abundance, are necessary mechanisms for these populations, which thus success to coexist in occupying the mangrove.RésuméA partir de pêches mensuelles d'échantillonnage effectuées entre septembre 1993 et août 1996 dans les chenaux de la mangrove de la baie de Guaratuba, Brésil, nous avons répertorié un total de 61 espèces de poissons d'origine marine, en majorité de petites tailles. L'organisation de l'assemblage conserve toujours la même structure générale, à laquelle 15 espèces ont principalement participé. Chaque année, huit espèces sur les 15 sont responsables de 80 % de l'abondance relative. Les paramètres abiotiques et les descripteurs de l'assemblage varient au cours du temps. En été, l'influence continentale est plus élevée qu'en hiver. Entre ces deux saisons, en automne, la diversité connaît des variations plus fortes que pendant le reste de l'année, alors que la richesse spécifique atteint sa valeur maximale. Sur une période plus étendue. de la fin de l'automne au début du printemps, tout en reflétant les variations qui s'exercent selon l'année, l'abondance relative des effectifs atteint des valeurs maximales. Les mouvements de sortie et d'entrée génésiques et trophiques des différentes populations de poissons occupant la mangrove, mettent en évidence le rôle joué par cet écosystème en tant que lieu d'accueil temporaire ou permanent pour des espèces principalement d'origine thalassique.
Article
Full-text available
The role played by a southwestern Atlantic mangrove in the breeding activity of estuarine fishes was evaluated. This fish assemblage represented 85% of the total catches of the experimental fishery surveyed between 1993 and 1997. To evaluate the maturation and spawning processes, qualitative (macroscopic stages of maturation) and quantitative (gonadosomatic index) attributes were considered which were combined in a reproductive activity index. Four types of occupation were found in the mangrove, according to the reproductive patterns presented by each species. It was estimated that the Guaratuba mangrove is used as a spawning site – either regularly or occasionally – by about 40% of the species, that make up 41% to 46% of the total abundance of this fish assemblage. However, besides the spawning species, the mangrove attracts other species at advanced stages of maturation. The use of mangrove habitat for reproductive activity by the species is 52 to 57% of the total fish abundance. Spring and summer are the seasons most associated with the maturation and spawning processes. Although most of the assemblage is formed by species that do not permanently inhabit the system, the Guaratuba mangrove is a significant site for the life cycle of estuarine and marine species occupying this coastal region. © 2000 Ifremer/CNRS/IRD/Éditions scientifiques et médicales SASreproduction patterns / mangrove / fish assemblage / migrant and resident species
Article
Full-text available
In Terminos Lagoon, México, more than 80 fish species use the mangrove and seagrass habitats. We studied nekton dynamics in an inlet seagrass system and a more sheltered seagrass/mangrove system located behind a barrier island. Seasonal community biomass ranges from 0.6 to 5.2 g wet wt m-2. For the two habitats together, there are 28 dominant species. Eleven species were common to both areas: Sphoeroides testudineus (Linnaeus, 1758), Archosargus rhomboidalis Linnaeus, 1758, A. probatocephalus (Walbaum, 1792), Arius felis (Linnaeus, 1766), A. melanopus (Gunther, 1864), Eucinostomus gula (Cuvier & Valenciennes, 1830), Bairdiella chrysoura (Lacépède, 1803), Orthopristis chrysoptera (Linnaeus, 1766), Chilomycterus schoepfi (Walbaum, 1792), Opsanus beta (Goode & Bean, 1879) and Lutjanus griseus (Linnaeus, 1758). Ten species used exclusively the inlet seagrass system: Urolophus jamaicensis (Cuvier, 1817), Haemulon aurolineatum (Cuvier, 1829), H. bonariense (Cuvier, 1830), H. plumieri (Lacépède, 1802), Anisotremus virginicus (Linnaeus, 1758), Odontoscion dentex (Cuvier, 1830), Corvula sanctae-luciae (Jordan, 1890), Nicholsina usta (Valenciennes, 1839), Stephanolepis hispidus (Linnaeus, 1766) and Diodon hystrix Linnaeus, 1758. Seven species were dominant only in the seagrass/mangrove system: Anchoa mitchilli (Cuvier & Valenciennes, 1848), Scorpaena plumieri Bloch, 1789, Cynoscion nebulosus (Cuvier & Valenciennes, 1830), Diapterus rhombeus (Cuvier & Valenciennes, 1830), Bairdiella ronchus (Cuvier & Valenciennes, 1830), Cichlasoma urophtalmus (Günther, 1862) and Acanthostracion quadricornis (Linnaeus, 1758). Comparative analysis showed that periodic variation in biomass and diversity of fish assemblages in seagrass and seagrass/mangrove habitats were synchronized with sizes and densities of population, season of the year (dry, wet, ‘nortes’), circulation pattern, and patterns of primary production (phytoplankton, Thalassia testudinum Konig, 1805; and Rhizophora mangle Linnaeus). This analysis allowed the definition of 3 life-cycle patterns with a clear nektonic ‘seasonal programming’ following the timing of primary production in these critical habitats: (1) marine species which spawn in or near the inlet with eggs and larvae transported into and distributed throughout the lagoon by the predominant currents; (2) estuarine-marine species which spawn in different habitats of the lagoon and use the seagrass/mangrove system as a nursery area, and (3) species which complete their life history in the inlet seagrass and/or seagrass/mangrove systems.
Article
The inherent difficulty of sampling the red mangrove prop root habitat has impeded our understanding of the utilization of this habitat by fishes. A block net and rotenone method was developed and used to sample 2 sites in each of 4 regions in Everglades National Park, Florida (USA). At each site a 3 mm mesh net was used to enclose 3 sides of a mangrove stand while an onshore berm formed the fourth side. Samples collected from the mangrove prop root environment were compared with samples collected using a 2-boat otter trawl in the immediately (8 to 10 m) adjacent, fringing seagrass habitat. The density and biomass of fish collected by the 2 gear were greater in the prop root habitat than in the adjacent fringing seagrass areas. There also were consistent differences in species composition between the 2 habitat types across all 4 geographic regions. Analysis of the stomach contents of gray snapper Lutjanus griseus suggested that smaller snapper tend to feed in the prop root habitat while larger snapper may forage out into adjacent areas to feed. The red mangrove prop root habitat is utilized by a wide variety of fish, and greater attention should be given to evaluating its contribution to fish production in south Florida and elsewhere.
Article
Thèse Doctorat d'Etat : Sciences : Montpellier : 1983. Président de la thèse: M. Amanieu. Bibliogr. p. 266-274.
Factors Structuring the Ichtyofauna Assemblage in a Mangrove Lagoon
  • J.-L Bouchereau
  • T Chaves
  • D Monti
Bouchereau, J.-L., P. de T. Chaves, and D. Monti. 2008. Factors Structuring the Ichtyofauna Assemblage in a Mangrove Lagoon (Guadeloupe, French West Indies), Journal of Coastal Research 24 (4): DOI n° 10.2112/06-0804.