ArticlePDF Available

[Down-regulated βIII-tubulin Expression Can Reverse Paclitaxel Resistance in A549/Taxol Cells Lines].

Authors:

Abstract and Figures

Background: Chemotherapy drug resistance is the primary causes of death in patients with pulmonary carcinoma which make tumor recurrence or metastasis. β-tubulin is the main cell targets of anti-microtubule drug. Increased expression of βIII-tubulin has been implicated in non-small cell lung cancer (NSCLC) cell lines. To explore the relationship among the expression level of βIII-tubulin and the sensitivity of A549/Taxolcell lines to Taxol and cell cycles and cell apoptosis by RNA interference-mediated inhibition of βIII-tubulin in A549/Taxol cells. Methods: Three pairs of siRNA targetd βIII-tubulin were designed and prepared, which were transfected into A549/Taxol cells using LipofectamineTM 2000. We detected the expression of βIII-tubulin mRNA using Real-time fluorescence qRT-PCR. Tedhen we selected the most efficient siRNA by the expression of βIII-tubulin mRNA in transfected group. βIII-tubulin protein level were mesured by Western blot. The taxol sensitivity in transfected group were evaluated by MTT assay. And the cell apoptosis and cell cycles were determined by flow cytometry. Results: βIII-tubulin mRNA levels in A549/Taxol cells were significantly decreased in transfected grop by Real-time qRT-PCR than control groups. And βIII-tubulin siRNA-1 sequence showed the highest transfection efficiency, which was (87.73±4.87)% (P<0.01); Western blot results showed that the expressional level of BIII tublin protein was significantly down-reulated in the transfectant cells than thant in the control cells. By MTT assay, we showed that the inhibition ratio of Taxol to A549/Taxol cells transfeced was higher than that of control group (51.77±4.60)% (P<0.01). The early apoptosis rate of A549/Taxol cells in transfected group were significantly higher than that of control group (P<0.01); G2-M content in taxol group obviously increased than untreated samples by the cell cycle (P<0.05). Conclusions: βIII-tubulin down-regulated significantly sensitized NSCLC A549/Taxol cells to Paclitaxel.
Content may be subject to copyright.
·581·
中国肺癌杂志20148月第17卷第8Chin J Lung Cancer, August 2014, Vol.17, No.8
·基 础 研 究·
DOI:10.3779/j.issn.1009-3419.2014.08.01
βIII-tubulin逆转肺腺癌A549/Taxol
细胞株紫杉醇耐药
禚银玲 郭其森
摘要 背景与目的 化疗耐药导致肿瘤很快复发和/或转移,是目前肺癌死亡的主要原因之一。β-tubulin
是抗微管药物的主要细胞靶点。已有的研究证明:βIII-tubulin高表达与非小细胞肺癌(non -small cell lung c ancer,
NSCLC)耐药有关。利用RNA干扰技术沉默耐紫杉醇A549细胞(A549/Taxol)中βIII-tubulin基因表达,探讨靶基因
下调后对化疗药物紫杉醇的敏感性的变化以及细胞周期和细胞凋亡情况。方法 构建靶向βIII-tubulinsiRNA,以脂
质体为载体介导βIII-tubulin siRNA转染A549/Taxol细胞,利用qRT-PCR检测细胞内βIII-tubulin mRNA的变化情况,并筛
选出最佳干扰序列;Western blot法检测A549/Taxol细胞内βIII-tubulin蛋白表达的变化;M法检测转染后细胞株对紫
杉醇敏感性的变化;流式细胞仪检测细胞周期和细胞凋亡的变化。结果 实时荧光qRT-PCR法显示转染后细胞株靶
基因水平较对照组降低,其中βIII-tubulin siRNA-1序列抑制率最高为(87.73±4.87%P<0.01);Western blot显示转
染后靶蛋白水平较对照组明显降低;M法表明紫杉醇处理转染后细胞株的细胞抑制率较对照组明显增加(51.77±
4.60%P<0.01);细胞凋亡显示βIII-tubulin siRNA+Taxol组细胞早期凋亡率较对照组明显增加(P<0.01),两者的
差异有统计学意义;细胞周期检测结果显示紫杉醇处理组的G2/M期细胞百分率高于对照组,且转染后紫杉醇处理
组的细胞晚期凋亡率较对照组增加。结论 βIII-tubulin表达下调明显提高A549/Taxol细胞株对Taxol的敏感性。
关键词 肺肿瘤;A549/TaxolRNA干扰;βIII-tubulin;紫杉醇
Down-regulated βIII-tubulin Expression Can Reverse Paclitaxel Resistance in A549/
Taxol Cells Lines
Yinling ZHUO, Qisen GUO
Department of Internal Medicine, Shandong Province Hospital of Occupational Diseases, Jinan 250002, China
Corresponding author: Qisen GUO, E-mail: guoqs369@163.com
Abstract Background and objective Chemotherapy drug resistance is the primary causes of death in patients
with pulmonary carcinoma which make tumor recurrence or metastasis. β-tubulin is the main cell targets of anti-microtubule
drug. Increased expression of βIII-tubulin has been implicated in non-small cell lung cancer (NSCLC) cell lines. To explore the
relationship among the expression level of βIII-tubulin and the sensitivity of A549/Taxolcell lines to Taxol and cell cycles and
cell apoptosis by RNA interference-mediated inhibition of βIII-tubulin in A549/Taxol cells. Methods ree pairs of siRNA
targetd βIII-tubulin were designed and prepared, which were transfected into A549/Taxol cells using LipofectamineTM 2000.
We detected the expression of βIII-tubulin mRNA using Real-time uorescence qRT-PCR. Tedhen we selected the most e-
cient siRNA by the expression of βIII-tubulin mRNA in transfected group. βIII-tubulin protein level were mesured by Western
blot. e taxol sensitivity in transfected group were evaluated by M assay. And the cell apoptosis and cell cycles were deter-
mined by ow cytometry. Results βIII-tubulin mRNA levels in A549/Taxol cells were signicantly decreased in transfected
grop by Real-time qRT-PCR than control groups. And βIII-tubulin siRNA-1 sequence showed the highest transfection e-
ciency, which was (87.73±4.87)% (P<0.01); Western blot results showed that the expressional level of BIII tublin protein was
signicantly down-reulated in the transfectant cells than thant in the control cells. By M assay, we showed that the inhibition
ratio of Taxol to A549/Taxol cells transfeced was higher than that of control group (51.77±4.60)% (P<0.01). e early apopto-
sis rate of A549/Taxol cells in transfected group were signicantly higher than that of control group (P<0.01); G2-M content in
taxol group obviously increased than untreated samples by the cell cycle (P<0.05). Conclusion βIII-tubulin down-regulated
signicantly sensitized NSCLC A549/Taxol cells to Paclitaxel.
Key wordsLung neoplasms; A549/Taxol; RNA interference; βIII-tubulin; Taxol
本研究受山东省科技厅基金项目(No.2010GSF10258)资助
作者单位:250002 济南,山东省职业病医院内科(通讯作者:郭其森,E-mail: guoqs369@163.com
中国肺癌杂志
www.lungca.org
中国肺癌杂志20148月第17卷第8Chin J Lung Cancer, August 2014, Vol.17, No.8
·582·
is work was supported by a grant from Medical and Health Project of Health Department of Shandong Province (to
Qisen GUO)(No.2010GSF10258).
肺癌是当今世界上最常见的癌症,每年约有10 0万患
者被诊断为肺癌,并且是癌症相关死亡的主要原因[1]。非
小细胞肺癌(non-small cell lung cancer, NSCLC)中约半
数以上的患者在诊断时已属晚期,因此化疗是最主要
的治疗方案[2]。在临床应用中,铂类联合化疗已经成为
NSCLC的标准化疗方案,然而由于肿瘤耐药的出现,使
得绝大部分肿瘤很快出现复发和/或转移。从而限制了许
多化疗药物例如紫杉醇、多西他赛和长春瑞滨等微管结
合药物在NSCLC治疗的临床应用[3,4]
微管(microtubule)是构成细胞骨架的主要成分,
微管蛋白分为αβ两个亚型,由α-tubulinβ-tubulin形成
的异二聚体组装成的多聚体,具有维持细胞形态,进
行物质 换,递信息,与有丝分 裂等重要功能[5,6]
NSCLCβIII-tubulin表达与肿瘤的分化程度和分级有
关,表达越高,肿瘤的分化越差、分级越高,并且肿
瘤转移潜力增加[7,8]。研究[9]发现NSCLC在腺癌组织中的
βIII-tubulin表达水平较鳞癌和其它组织学类型高。
β-tubulin是抗微管药物主要细胞靶点其中βIII-tubulin
高表NSCLC细胞株和卵巢癌细胞株的耐药有[10,11]RNA
干扰(RNA interference, RNAi)在探索基因功能、基因治
疗、病毒性疾病、传染性疾病以及肿瘤的治疗领域有广
泛应用。与传统反义核酸进行转录后基因沉默相比,能
高效地特异性抑制目的基因。设计更简便、作用迅速、
效果明显,能根据不同病情,设计个体化治疗方案。
本研究利用RNA干扰技术沉默人肺腺癌A549/Taxol
细胞中βIII-tubulin基因的表达,探讨靶基因下调后对化疗
药物紫杉醇的敏感性的变化以及对细胞周期和细胞凋亡
的影响。
1 材料与方法
1.1 细胞株及主要试剂 人肺腺癌耐紫杉醇A549细胞株
A549/Taxol)来自山东省肿瘤医院中心实验室,A549/
Taxol0.2 μg/mLTaxol中正常生长。DM EM培养基
Hyclone公司),OPTI-MEM培养液(GIBCO公司),
胎牛血清(杭州四季青生物制品公司);βIII-tubulin
siRNA序列(上海吉玛公司), PCR引物(上海生物工
程公司);RT-PCR试剂:Lipofectamine 2000Trizol试剂
invitrogen公司);反转录试剂盒ScriptTM RT reagent kit
以及SYBR Premix Ex TaqTMPerfect Real Time)(TaKaRa
公司);Western blot试剂:βIII-tubulin鼠抗人单抗(Ab-
cam公司),β-actin鼠抗人单抗(Amersham Biosciences
司),羊抗人二抗(中杉公司);紫杉醇(paclitaxel
(四川太极制药有限公司),-20 oC冻存。
1.2 细胞培养 人肺腺癌A549/Taxol细胞株在含10%胎牛血
清的DMEM培养基,37 oC5%CO2培养箱中培养,隔
天换液,取对数生长期的细胞进行实验。
1.3 人工合成βIII-tubulin siRNA序列 根据Genebank βIII-
tubulin mRNA序列和siRNA的设计原则,人工设计合成3
βIII-tubulin siRNA序列和1对阴性对照siRNA序列:βIII-
tubulin siRNA sense 5’-UCUCUUCAGGCCUGACAAU-3’
anti sense 5’-AUUGUC AGGCCUG AAG AGATT-3βIII-
tubulinsiRNA sense 5’-GACCUCAACCACCUGGUAU-3’
antisense 5’-AUACCAGGUGGUUG AGGUCTT-3βII I-
tubulin siRNA sense 5’-GCACGUUGCUCAUCAGCAA-3’
antisense 5’ UUGCUGAUGAGCAACGUGCTT-3’Negative
control siRNA sense 5’-UUCUCCGAACGUGUCACGU-3’
antisense 5’-ACGUGACACGUUCGGAGAA-3’
1.4 细胞转染 采用阳性脂质体LipofectamineTM2000介导转
染。转染前一天将对数生长期的A549/Taxol细胞接种于
6孔板,调整细胞密度为1×105/mL,设siRNA组:(βIII-
tubulin siRNA-1组、βIII-tubulin siRNA-2组、βIII-tubulin siR-
NA-3组)、阴性对照组(Negative control siRNA)、mock
组(只含转染试剂)和空白对照组(non-transfection)。
6孔板置于37 oC5%CO2孵箱中培养。次日,待细胞生
长至70%-80%融合时,按说明书进行转染。转染5 h
换为全培养液。
1.5 实时荧光定量RT-PCR检测βIII-tubulin mRNA表达
48 hTRIzol法提取细胞内总RNA,参照TR Izol Re-
agent说明书分别提取6组细胞内总RNA,检测总RNA
度及浓度。反转录合成cDNA第一链,体系如下:5×
Prime ScriptTM Buffer 2 μLPrime ScriptTM RT Enzyme Mix I
0.5 μLOligo dT Primer 50 μM 0.5 μLRandom 6 mers
(100 μM) 0.5 μLTotal RNA 500 ngRnase free dH2O10
μL。反应条件:37 oC 15 min85 oC 5 s。对各组细胞反
转录合成的βIII-tubu lin cDNA板进PCR扩增反应
中国肺癌杂志
www.lungca.org
·583·
中国肺癌杂志20148月第17卷第8Chin J Lung Cancer, August 2014, Vol.17, No.8
β-actin为内对照。引物序列如下:βIII-tubulinForward
primer 5'-GGAGATCGTGCACATCCAG-3'Reverse primer
5'-TCGATGCCATGCTCATCAC-3'β-actinForward primer
5'-TGGCACCCAGCACAATGAA-3'Reverse primer 5'-CTA-
AGTCATAGTCCGCCTAGAAGCA-3'。实时荧光qPCR
应体系(50 μL)如下:SYBR® Premix Ex TaqTM25.0
μLPCR Forward Primer10 μM 1.0 μLPCR Reverse
Primer10 μM1.0 μLROX Reference Dye50×),1.0
μLDNA模板4.0 μLdH2O(灭菌蒸馏水)18.0 μLTotal
50.0 μL。扩增反应条件:95 oC 10 s 1个循环,95 oC 5 s 40
个循环,60 oC 31 s 40个循环。
扩增结束后excell软件分析计算Ct值、△Ct、△△
Ct2-△△CtCt=CtβIII-tubulin-Ctβ-actin,△△Ct=实验
组△Ct-对照组△Ct,并计算βIII-tubulin mRNA含量。
1.6 Western blot检测βIII-tubulin蛋白表达 RT-PCR法筛
选的有效βIII-tubulin siRNA-1序列6孔板转染细胞,设对
照组。48 h后,提取细胞总蛋白,测定总蛋白浓度,蛋
白质变性;电泳分离蛋白质;转膜将蛋白质从凝胶转移
PVDF膜;4 oC封闭过夜;加入βIII-tubulin鼠抗人一抗
1:2,000)、β-actin一抗(1:2,000),室温孵育2 h
310 min/次;加入羊抗人二抗(1:2,000),室温孵
2 hT洗膜310 min/次;显色;曝光;常规显影定
影;Bio2rad图像分析系统进行图像分析。β-actin为内对
照。
1.7 MTT法检测紫杉醇对A549/Taxol细胞的敏感性 转染
48 h后,收集处于对数生长期的细胞,制成为1×105/mL
的细胞悬液,接种于96孔培养板中,每孔100 μL,紫杉
醇设6个浓度倍比稀释等级,每浓度设3个复孔。待细胞
贴壁后加入不同浓度Taxol1.25 μg/mL2.5 μg/mL5.0
μg/mL
10.0 μg/mL
20.0 μg/mL
40.0 μg/mL
37 oC
5%CO2孵箱中培养48 h;加入MTT溶液(5 mg/mL)每孔
10 μL,继续培养4 h;加10%SDS-HCL每孔100 μL24 h
Bio-rad 450型酶标仪测各孔吸光度(A),检测波长为
570 nm,参考波长为630 nm。按下式计算各浓度条件下
细胞抑制率(inhibitor y rate, IR),IC=1-实验组A/
照组A值)×100%Excell软件绘制浓度效应曲线,实验重
3次。
1.8 流式细胞仪检测细胞凋亡(Annexin V-FITC法) Taxol
诱导处理细胞48 h后,制备细胞悬液,PBS溶液洗涤2
次,1,000 rpm离心5 minPBS溶液重悬细胞调整细胞密
度为1×106/mL,按照Annexin V-FITC细胞凋亡检测试剂盒
说明操作,流式细胞仪检测细胞早期凋亡率。
1.9 流式细胞仪检测细胞周期 Taxol诱导处理细胞48 h
后,制备细胞悬液,PBS溶液洗涤,1,000 rpm离心5 min
PBS溶液重悬细胞调整细胞密度为1×106/mL1,000 r离心
5 min,弃去PBS,加入预冷70%乙醇固定,4 oC过夜。加
入碘化丙啶缓冲液500 μL/孔,4 oC避光30 min,流式细胞
仪检测细胞周期。
1.10 统计学分析 实验数据以Mean±SD表示,采用SPSS
17.0统计软件进行t检验,P<0.05表示差异有统计学意
义。
2 结果
2.1 βIII-tubulin siRNA转染下调A549/Taxol细胞中βIII-
tubulin mRNA表达 NC siRNA组、mocknon-transfection
组比较,βIII-tubulin siRNA-1βIII-tubulin siRNA-2βIII-
tubulin siRNA-3组的mRNA表达水平均有不同程度的下调
P<0.05),其中βIII-tubulin siRNA-1组的抑制率最高,
为(87.73±4.87%P<0.01)(图1 )。
2.2 βIII-tubulin siRNA转染下调A549/Taxol细胞中βIII-
tubulin蛋白表达 Western blot结果显示:βIII-tubulin siRNA
组可见到分子量为51 kDa左右微弱的βIII-tubulin特异性条
带和β-actin条带,其靶蛋白表达量较对照组明显减少,
β-actin条带与对照组基本一致。这与βIII-tubulin mRNA
表达减少结果相一致(图2)。
2.3 βIII-tubulin下调增加A549/Taxol细胞对紫杉醇的敏感
MTT法检测结果显示,βIII-tubulin siRNA转染A549/
Taxol细胞后,紫杉醇对βIII-tubulin siRNA组的细胞抑制率
明显高于对照组(51.77±4.60%P<0.01),且20 μg/mL
时抑制率明显(图3)。
2.4 A549/Taxol细胞βIII-tubulin下调增加紫杉醇诱导的细
胞凋亡 流式细胞仪检测细胞凋亡,结果显示紫杉醇作用
βIII-tubulin siRNA组细胞早期凋亡率较对照组明显增加
P<0.05),其中Taxol20 μg/L最明显,两组的早期凋
亡率分别为(40.12±3.86%、(21.47±5.44%,有统计
学差异(P<0.01)(图4)。
2.5 βIII-tubulin siRNA转染后检测紫杉醇对A549/Taxol细胞
的细胞周期影响 细胞周期检测结果显示,紫杉醇处理细
胞组的G2/M期细胞百分率高于对照组,差异有统计学意
义(P<0.05),表明紫杉醇将细胞阻滞在G2/M期,可能
与诱导细胞凋亡有关,且紫杉醇处理转染组后细胞晚期
凋亡率较对照组增加(图5)。
中国肺癌杂志
www.lungca.org
中国肺癌杂志20148月第17卷第8Chin J Lung Cancer, August 2014, Vol.17, No.8
·584·
图 1 转染后A549/Taxol细胞中βIII-tubulin mRNA含量。*:与对照组相比,
P
<0.05;#:与βIII-tubulin siRNA-2、βIII-tubulin siRNA-3组相比,
P
<0.05。βIII-tubulin siRNA-1组的抑制率最高(87.73±4.87)%,与对照组比较,差异有统计学意义(
P
<0.01)。
Fig 1 Expression of βIII-tubulin mRNA in A549/Taxol after transfection detected by qRT-PCR. *: compared with the control,
P
<0.05; **: compared
with the control,
P
<0.01; #: compared with βIII-tubulin siRNA-2, βIII-tubulin siRNA-3,
P
<0.05. βIII-tubulin siRNA-1 sequence showed the highest
transfection efficiency, (87.73±4.87)%. The difference was statistically significant compared with control.
图 2 Western blot检测蛋白的βIII-tubulin表达。与对照组相比,βIII-tubulin siRNA-1组靶蛋白表达水平明显减少。
Fig 2 Expression of βIII-tubulin protein level detected by Western blot. Compared with the control group, protein expression of βIII-tubulin siRNA-1
after transfection was significantly reduced.
图 3 MTT法检测紫杉醇处理转染组后细胞抑制率曲线。转染组细胞抑制率较对照组增加(
P
<0.01),且10 μg/mL、20 μg/mL时,抑制率最明显
P
<0.01)。**
P
<0.01, *
P
<0.05。
Fig 3 Inhibition ratio assays on βIII-tubulin siRNA induced by paclitaxel. The inhibition ratio of βIII-tubulin siRNA group was higher than that of con-
trol group (
P
<0.05 ). And it has obviously increased with 10 μg/mL and 20 μg/mL (
P
<0.01). **
P
<0.01, *
P
<0.05.
Control
Mock
βIII-tubulin siRNA
0 10 20 30 40 50
Taxol concentration (μg/mL)
100
80
60
40
20
0
Inhibition rate (%)
Non-
transfection
control
Mock Negative
control
βIII-tubulin
siRNA-1
βIII-tubulin
siRNA-2
βIII-tubulin
siRNA-3
Group
1.4
1.2
1
0.8
0.6
0.4
0.2
0
βIII-tubulin mRNA level
βIII-tubulin
siRNA
negative control
siRNA
mock non-transfection
control
中国肺癌杂志
www.lungca.org
·585·
中国肺癌杂志20148月第17卷第8Chin J Lung Cancer, August 2014, Vol.17, No.8
0 10 20
Taxol concentration (μg/mL)
Control
βIII-tubulin siRNA
图 4 紫杉醇诱导转染后A549/Taxol细胞的早期凋亡率。转染组细胞早期凋亡率较对照组增加(
P
<0.05)。且20 μg/mL时抑制率明显(
P
<0.01)。
Fig 4 Apoptosis ratio induced by taxol on A549/Taxol transfected by βIII-tubulin siRNA. The early apoptosis rate of transfected group were higher
than that of control group (
P
<0.05). And it has the significantly increased in 20 μg/mL (
P
<0.01). #
P
<0.01, *
P
<0.05.
60
50
40
30
20
10
0
Apoptosis rate (%)
Cell number
Cell number
Cell number Cell number
βIII-tubulin siRNA
Control Control+Taxol
βIII-tubulin siRNA+Taxol
图 5 紫杉醇处理后各细胞组细胞周期分析。紫杉醇处理组G2-M期细胞比例较未处理组明显增高(
P
<0.05)。且βIII-tubulin siRNA+Taxol组细胞晚期凋亡
率较对照组增加。
Fig 5 Cell cycle assays of A549/Taxol on effect of taxol. G2-M content induced by paclitaxel is obviously increased than untreated samples. And the
apoptosis rate of βIII-tubulin siRNA+Taxol group were higher than that of control group.
G1: 67.10%
G2: 23.36%
S: 9.53%
G2/G1: 2.11
Apoptosis: 0.05%
G1: 45.30%
G2: 31.70%
S: 23.01%
G2/G1: 2.20
Apoptosis: 2.82%
G1: 14.68%
G2: 76.74%
S: 8.58%
G2/G1: 1.98
Apoptosis: 5.81%
G1: 8.94%
G2: 80.28%
S: 10.78%
G2/G1: 2.20
Apoptosis: 8.77%
中国肺癌杂志
www.lungca.org
中国肺癌杂志20148月第17卷第8Chin J Lung Cancer, August 2014, Vol.17, No.8
·586·
3 讨论
肿瘤耐药是影响肺癌患者化疗疗效的主要因素。影
NSCLC耐药的因素主要有多药耐药(multi-drug resis-
tant, MDR)基因、多药耐药相关蛋白(multi-drug resistant
related protein, MRP)基因及它们产物表达的增加,以及
拓扑异构酶IITopoisomerase II, Topo II)表达下降和谷胱
甘肽(Glutathione, GSH)及谷胱甘肽S转移酶(glutathione
S-transferase, GST)系统表达增加。此外研究[12]表明,细
胞信号转导中相关因子的表达异常、肿瘤细胞DNA修复
的异常及其他相关基因的表达异常与肺癌耐药的产生也
存在密切联系。因此筛选有效的分子指标,以预测患者
对药物的敏感性,可以更好的指导个体化治疗、提高化疗
疗效。
微管是细胞骨架的重要构成成分,对维持细胞的
空间结构以及各种生理活动都具有重要作用。微管是由
α-tubulinβ-tubulin形成的异二聚体组装成的多聚体,其
中有6β微管蛋白同型体,而βIII-tubulin与抗微管类化疗
药物敏感性有最密切的关系[6]。当可溶性微管蛋白水平
增加后,β-tubulin mRNAs翻译水平出现下调,机体通过
自身调控机制调节β-tubulin同型体的表达[13,14]。抗微管蛋
白聚合药物有三大类,即秋水仙碱类、鬼臼素类和长春
花生物碱类(如长春瑞滨)。而促进微管聚合、抑制微
管蛋白解聚的药物目前有紫杉醇和多西紫杉醇两类[15]
β-tubulin是抗微管类药物的主要靶点,分析β-tubulin
同型体的表达确定药物耐药有关的具体靶蛋白是非常有
必要的。研究[16,17]表明βIII-tubulin高表达与作用于微管的
药物有关,而与其他β-tubulin亚型没有交叉作用。
研究[18.19]表明βIII-tubulin低表达的NSCLC患者经紫杉
类化疗其疗效及预后均优于高表达者。Vilmar[9]的研究
认为NSCLC中不同组织学类型其βIII-tubulin表达不同,
腺癌的阳性表达率较鳞癌和其它组织学类型的阳性表达
率高,βIII-tubulin-negative腺癌患者较βIII-tubulin-positive
腺癌者PFSOS延长(P<0.05),且其OSβIII-tubulin-
negative鳞癌或大细胞癌患者延长(P<0.05)。
许多临床前研究[5,12,21]和临床证据表明βIII-tubulin
肿瘤的发生、发展中发挥重要作用。研究发现上皮源
性肿瘤包括NSCLCβIII-tubulin表达异常与肿瘤分化能
力、侵袭性密切相关,其高表达者表现为肿瘤低分化、
恶性程度高、袭性增加等特点患者生存期短、
差,故不仅是化疗耐药的标记物也是NSCLC独立预
因子[20]
许多临床研究发现肺癌患者术后肿瘤组织中βI I I-
tubulin阳性表达组的OS短于阴性表达组,两者有统计学
差异(P<0.05),证明βIII-tubulin可作为NSCLC术后的
一个独立预后因子,βIII-tubulin高表达可能是肺癌的预
后因子。Rosell[18]和王峻等[12]的研究显示在NSCLC
瘤组织中βIII-tubulin高表达对长春碱类药物敏感性低。
Vilmar[9]的研究认为βIII-tubulin-negative的晚期肺腺癌患
者较βIII-tubulin-positive腺癌者PFSOS延长(P<0.05),
并且化疗后其OS较鳞癌或大细胞癌者延长(P<0.05
以上研究表明βIII-tubulin高表达的患者预后差,PFS
OS短,而且高表达者对化疗耐药,可能与肿瘤的进展有
关。
本研究应用βIII-tubulin siRNA转染A549/Taxol细胞,
并检测βIII-tubulin基因和蛋白水平的表达情况,并检测靶
基因下调后对紫杉醇的敏感性的变化以及细胞凋亡和细
胞周期情况。
结果显示βIII-tubulin siRNA组的靶基因表达明显下调
87.73±4.87%P<0.01);βIII-tubulin siRNA组的靶蛋
白表达较对照组明显减少,与βIII-tubulin mRNA表达下调
相一致;紫杉醇处理后βIII-tubulin siRNA组的细胞抑制率
control组明显增加(51.77±4.60%P<0.01),表明下
βIII-tubulin基因表达明显增加对紫杉醇的敏感性。细胞
早期凋亡率较对照组明显增加(P<0.01),且20 μg/mL
明显(40.12±3.86% vs 21.47±5.44%,提示下调βIII-
tubulin后紫杉醇诱导的细胞早期凋亡率增加,抑制肿瘤
增殖;紫杉醇诱导后βIII-tubulin siRNAG2/M期细胞百
分率明显高于未处理组(P<0.05),将细胞阻滞在G2/M
期,抑制肿瘤细胞增生,可能与促进细胞凋亡有关。且
紫杉醇诱导转染组细胞晚期凋亡率较对照组增加,差
异无统计学差异,细胞早期凋亡率明显增加。因此βIII-
tubulin可能是在调节化疗药物反应方面的一个重要的生
存反应因子。
Hasegawa[22]利用反义寡核苷酸干扰A549/Taxol
调靶基因表达后细胞对紫杉醇的敏感性较对照组明显增
加(P<0.05)。Gan[16]利用siRNA干扰两组肺癌细胞株
NCI-H460Calu-6,发现βIII-tubulin siRNA干扰细胞后I
型、IIIV型和总β-tubulin表达均较对照组无差异。而
βIII-tubulin表达水平较对照组明显减少。且两组细胞对作
用于微管的两种化疗药物紫杉醇和长春新碱的药物敏感
性较对照组明显增加。细胞凋亡率较对照组明显增加。
这与本研究结果相一致。证实了βIII-tubulin高表达对紫杉
醇耐药,相反低表达对紫杉醇敏感,通过增加细胞凋亡
中国肺癌杂志
www.lungca.org
·587·
中国肺癌杂志20148月第17卷第8Chin J Lung Cancer, August 2014, Vol.17, No.8
来抑制肿瘤增殖。
βIII-tubulin表达与紫杉醇敏感性有关,体内和体外
实验已经证实低表达者疗效及预后均优于高表达者,提
βIII-tubulin有可能作为预测紫杉醇敏感性的一个指标,
有利于指导NSCLC的临床个体化治疗。
参 考 文 献
1 Parkin DM. Global cancer statistics in the year 2000. Lancet Oncol, 2001,
2(9): 533-543.
2 Breathnach OS, Freidlin B, Conley B, et al. Twenty-two years of phase III
trials for patients with advanced nonsmall-cell lung cancer: sobering results.
J Clin Oncol, 2001, 19(6): 1734-1742.
3 Manegold C. Chemotherapy for advanced non-smallcell lung cancer: stan-
dards. Lung Cancer, 2001, 34 (12): 165-170.
4 Schiller JH, Harrington D, Belani CP, et al. Comparison of four chemother-
apy regimens for advanced non-small cell lung cancer. N Engl J Med, 2002,
346(2): 92-98.
5 Seve P, Isaac S, Tredan O, et al. Expression o f class III { beta}-tubulin is
predictive of patient outcome in patients with non-small cell lung cancer
receiving vinorelbine-based chemotherapy. Clin Cancer Res, 2005, 11(15):
5481-5486.
6 Bhattacha rya R , Cabr al F. A ubiquitous beta tubulin disrup ts microtu-
bule assembly and inhibits cel l proliferation. Mol Biol Cell, 2004, 15(7):
3123-3131.
7 Katsetos CD, Herman MM, Mork SJ. Class III β-tubulin in human develop-
ment and cancer. Cell Motil Cytoskeleton, 2003, 55(2): 77-96.
8 Katsetos CD, Kontogeorgos G, Geddes JF, et al. Dierential distribution of
the neuron-associated class III β-tubulin in neuroendocrine lung tumors.
Arch Pathol Lab Med, 2000, 124(4): 535-544.
9 Vilmar AC, Santoni-Rugiu E, Sørensen JB. Class III β-tubulin in advanced
NSCLC of adenocarcinoma subtype predicts superior o utcome in a ran-
domized trial. Clin Cancer Res, 2011, 17(15): 5205-5214.
10 Luduena RF. Multiple forms of tubulin: dierent gene products and cova-
lent modications. Int Rev Cytol, 1998, 178: 207-275.
11 Kavallaris M, Kuo DY, Burkhart CA, et al. Taxol-resistant epithelial ovarian
tumors are associated with altered expression of specic β-tubulin isoty pes.
J Clin Invest, 1997, 100(5): 1282-1293.
12 Wang J, Pu XL, Yu MF, et al. The relati onship bet ween expre ssion of
β-tubulin-III and therapeutic eect of vinorelbine on non-small cell lung
cancer. Lin Chuang Zhou Liu Xue Za Zhi, 2008, 13(3): 205-208. [王峻,
蒲骁麟, 俞明峰, . β-tubulin-III基因的表达与长春瑞滨治疗非小细
胞肺癌疗效关系的研究. 临床肿瘤学杂志, 2008, 13(3): 205-208.]
13 Yen TJ, Gay DA , Pachter JS, e t al. Autoregul ated chang es in stabilit y of
polyribosome-bound h-tubulin mRNAs are specied by the rst 13 trans-
lated nucleotides. Mol Cell Biol, 1988, 8(3): 1224-1235.
14 Theodora kis NG, Cleveland , DW. Physical evidence for cotranslation al
regulation of h-tubulin mRNA degradation. Mol Cell Biol, 1992, 12(2):
791-799.
15 Jia YM , Lei KJ, Yuan ZP, et al. Inhibition eects of using sequential micro-
tubule depoly merization drug and po lymerizati on dru g on tumor c ells.
Zhong Liu Yu Fang Yu Zhi Liao, 2008, 21(2): 140-143. [贾钰铭, 雷开键,
袁志平, . 微管促解聚与促聚合药物序贯使用对肿瘤细胞的抑制
作用. 肿瘤预防与治疗, 2008, 21(2): 140-143.]
16 Gan PP, Pasquier E, Kavallaris M. Class III β-tubulin mediates sensitiv ity
to chemotherapeutic drugs in non small cell lung cancer. Cancer Res, 2007,
67(19): 9356-9363.
17 McCarroll JA, Gan PP, Liu M, et al. BetaIII-tubulin is a multifunctional pro-
tein involved in drug sensitivity and tumorigenesis in non-small cell lung
cancer. Cancer Res, 2010, 70(12): 4995-5003.
18 Rosell R, Scagliotti G, Danenberg KD, et al. Transcripts in pretreat ment
biop sies from a three2arm ran domized tria l in m etastatic non small cell
lung cancer. Oncogene, 2003, 22 (23): 3548-3553.
19 Seve P, Mackey J, Isaac S, et al. Class III beta-tubulin expression in tumor
cells predicts response and outco me in patients with non- small cell lung
cancer receiving paclitaxel. Mol Cancer er, 2005, 4(12): 2001-2007.
20 Seve P, Dumontet C. Is class III β-tubulin a pre dictive fa ctor in patients
receiving tubulin-binding agents? Lancet Oncol, 2008, 9(2): 168-175.
21 Seve P, Lai R, Ding K, et al. Class III beta-tubulin expression and benet
from adjuvant cis platin/vinorelbine chemotherapy in operable non- small
cell lung cancer: analysis of NCIC JBR.10. Clin Cancer Res, 2007, 13(3):
994-999.
22 Hasegawa S, Miyoshi Y, Egawa C, et al. Prediction of response to docetaxel
by quantitative analysis of class I and III h-tubulin isotype mRNA expres-
sion in human breast cancers. Clin Cancer Res, 2003, 9(8): 2992-2997.
(收稿:2013-09-10 修回:2013-10-25
(本文编辑 南娟)
Cite th is arti cle as: Zhuo Y L, Guo QS . Down-re gulate d βIII-t ubulin Express ion Can Re verse Pacl itaxel R esista nce in A5 49/Ta xol
Cell s Lines . Zhongg uo Fei A i Za Zhi , 2014, 17(8): 5 81-587. [禚银玲, 郭其森. βIII-tubulin逆转肺腺癌A 549/Taxol细胞株紫
杉醇耐药. 中国肺癌杂志, 2014, 17(8): 581-587.] doi: 10.3 779/j.issn .1009-3419.2 014.08.01.
中国肺癌杂志
www.lungca.org
Article
Full-text available
The development of breast cancer is a complex process that involves the participation of different factors. Several authors have demonstrated the overexpression of muscarinic acetylcholine receptors (mAChRs) in different tumor tissues and their role in the modulation of tumor biology, positioning them as therapeutic targets in cancer. The conventional treatment for breast cancer involves surgery, radiotherapy, and/or chemotherapy. The latter presents disadvantages such as limited specificity, the appearance of resistance to treatment and other side effects. To prevent these side effects, several schedules of drug administration, like metronomic therapy, have been developed. Metronomic therapy is a type of chemotherapy in which one or more drugs are administered at low concentrations repetitively. Recently, two chemotherapeutic agents usually used to treat breast cancer have been considered able to activate mAChRs. The combination of low concentrations of these chemotherapeutic agents with muscarinic agonists could be a useful option to be applied in breast cancer treatment, since this combination not only reduces tumor cell survival without affecting normal cells, but also decreases pathological neo-angiogenesis, the expression of drug extrusion proteins and the cancer stem cell fraction. In this review, we focus on the previous evidences that have positioned mAChRs as relevant therapeutic targets in breast cancer and analyze the effects of administering muscarinic agonists in combination with conventional chemotherapeutic agents in a metronomic schedule.
Article
Full-text available
Platinum-based doublets are the cornerstone of treatment in advanced non-small-cell lung cancer (NSCLC) and often include vinorelbine or taxanes. A predictive biomarker is greatly needed to select chemotherapy-sensitive patients for these microtubule-interfering agents. Class III β-tubulin (TUBB3) has been shown of value in NSCLC, but evidence is not uniform. Accordingly, we explored the predictive role of TUBB3 in advanced NSCLC. Four hundred forty-three patients with advanced NSCLC were enrolled in a phase III trial and randomized to vinorelbine- or paclitaxel-containing chemotherapy. Immunohistochemical evaluation of TUBB3 status was mainly done on bioptic material and correlated to response rates, progression-free survival (PFS), overall survival (OS), quality of life (QOL), and toxicity. Two hundred sixty-one (58.9%) patients had representative tissue samples for TUBB3 evaluation. Patients with TUBB3-negative adenocarcinomas had a significantly prolonged PFS and OS when compared with the opposite subgroup (7.87 vs. 6.83 months, P = 0.035 and 14.17 vs. 11.17 months, P = 0.018, respectively). Multivariate analyses revealed an HR of 1.55 (95% CI, 1.04-2.31, P = 0.032) for TUBB3-positive adenocarcinoma patients. TUBB3-negative adenocarcinoma patients showed a mean QOL decline of -18.25 points (95% CI, -4.28 to -32.22, P = 0.013) as compared with -3.86 (95% CI, -7.0 to 15.52, P = 0.5). TUBB3 was of predictive value in adenocarcinoma patients in the largest, randomized advanced NSCLC population published to date. It may be clinically useful in conjunction with other biomarkers, but QOL information should be recorded during validation, as prophylactic intervention may be needed in specific subgroups at risk of toxicity.
Article
Full-text available
Advanced non-small cell lung cancer (NSCLC) has a dismal prognosis. betaIII-Tubulin, a protein highly expressed in neuronal cells, is strongly associated with drug-refractory and aggressive NSCLC. To date, the role of this protein in in vivo drug resistance and tumorigenesis has not been determined. NSCLC cells stably expressing betaIII-tubulin short hairpin RNA displayed reduced growth and increased chemotherapy sensitivity when compared with control clones. In concordance with these results, stable suppression of betaIII-tubulin reduced the incidence and significantly delayed the growth of tumors in mice relative to controls. Our findings indicate that betaIII-tubulin mediates not only drug sensitivity but also the incidence and progression of lung cancer. betaIII-Tubulin is a cellular survival factor that, when suppressed, sensitizes cells to chemotherapy via enhanced apoptosis induction and decreased tumorigenesis. Findings establish that upregulation of a neuronal tubulin isotype is a key contributor to tumor progression and drug sensitivity in lung adenocarcinoma.
Article
Full-text available
Tubulin synthesis is controlled by an autoregulatory mechanism through which an increase in the intracellular concentration of tubulin subunits leads to specific degradation of tubulin mRNAs. The sequence necessary and sufficient for the selective degradation of a beta-tubulin mRNA in response to changes in the level of free tubulin subunits resides within the first 13 translated nucleotides that encode the amino-terminal sequence of beta-tubulin, Met-Arg-Glu-Ile (MREI). Previous results have suggested that the sequence responsible for autoregulation resides in the nascent peptide rather than in the mRNA per se, raising the possibility that the regulation of the stability of tubulin mRNA is mediated through binding of tubulin or some other cellular factor to the nascent amino-terminal tubulin peptide. We now show that this putative cotranslational interaction is not mediated by tubulin alone, as no meaningful binding is detectable between tubulin subunits and the amino-terminal beta-tubulin polypeptide. However, microinjection of a monoclonal antibody that binds to the beta-tubulin nascent peptide selectively disrupts the regulation of beta-tubulin, but not alpha-tubulin, synthesis. This finding provides direct evidence for cotranslational degradation of beta-tubulin mRNA mediated through binding of one or more cellular factors to the beta-tubulin nascent peptide.
Article
Full-text available
The expression of tubulin polypeptides in animal cells is controlled by an autoregulatory mechanism whereby increases in the tubulin subunit concentration result in rapid and specific degradation of tubulin mRNAs. We have now determined that the sequences that are necessary and sufficient to specify mouse beta-tubulin mRNAs as substrates for this autoregulated instability reside within the first 13 translated nucleotides (which encode the first four beta-tubulin amino acids Met-Arg-Glu-Ile). This domain has been functionally conserved throughout evolution, inasmuch as sequences isolated from the analogous region of human, chicken, and yeast beta-tubulin mRNAs also confer autoregulation. Further, for an RNA to be a substrate for regulation, not only must it carry the 13-nucleotide coding sequence, but it must also be ribosome bound and its translation must proceed 3' to codon 41.
Article
Full-text available
The treatment of advanced ovarian cancer with taxol is hindered by the development of drug resistance. The cellular target for taxol is the microtubule that is stabilized by the drug. Taxol preferentially binds to the beta subunit of tubulin of which there are six distinct isotypes in mammalian cells. We have used highly specific oligonucleotides and polymerase chain reaction to analyze expression of all six beta-tubulin genes. Human lung cancer cells (A549) were selected in 12 and 24 nM taxol resulting in cell lines that were 9- and 17-fold resistant, respectively. These cells displayed an altered ratio of classes I, II, III, and IVa beta-tubulin isotypes. Ovarian tumors, seven untreated primary and four taxol- resistant tumor-bearing ascites, displayed significant increases (P < 0.005) in classes I (3.6-fold), III (4.4-fold), and IVa (7.6-fold) isotypes in the taxol-resistant samples as compared with untreated primary ovarian tumors. The increased expression appears to be related to the resistance phenotype, as the basal levels of the class III and IVa isotypes in the untreated tumors were extremely low. This is the first report of altered expression of specific beta-tubulin genes in taxol-resistant ovarian tumors and we propose that the latter may play a role in clinical resistance to taxol.
Article
Purpose: The relationship of intratumoral mRNA levels of class I and III beta-tubulin isotypes with clinical response to docetaxel has been studied in breast cancer patients. Experimental Design: Expression of class I and class III beta-tubulin mRNA levels was determined by a real-time PCR in breast cancer tissues obtained from 39 patients with locally advanced breast cancers (n = 26) or locally recurrent breast cancers (n = 13) before docetaxel treatment. Results: Class I P-tubulin mRNA levels of responders [6.58 +/- 1.43 (x 10(2)), mean +/- SE] were significantly (P = ;0.002) lower than those of nonresponders [14.97 +/- 2.95 (x 10(2))], and class III beta-tubulin mRNA levels of responders (1.38 +/- 0.40) were also significantly (P = 0.003) lower than those of nonresponders (7.43 +/- 2.77). Breast cancers were divided into four groups according to the expression status of class I and class III P-tubulin isotype mRNA, i.e., the class I-high/class III-high group (n = 13), the class I-high/class III-low group (n = 7), the class I-low/class III-high group (n = 7), and the class I-low/class III-low group (n = 12). The class I-high/class III-high group showed a very low response rate (15%), whereas the class I-low/class III-low group showed a very high response rate (75%). The class I-high/ class III-low group and the class I-low/class III-high group showed intermediate response rates of 57% and 43%, respectively. Conclusions: These results demonstrate that high expression of class I and class III beta-tubulin isotype mRNA is significantly associated with docetaxel resistance, and determination of class I and class III beta-tubulin isotype mRNA levels would be useful in the prediction of response to docetaxel.
Article
Objective To investigate the different inhibition effects of different sequential usages of microtubule depolymerization drug and polymerization drug on tumor cells. Methods Three tumor cell lines including MCF-7, SK-OV3, A549 were incubated with paclitaxel (PTX) and/or vinorelbine (NVB) of different concentrations. The cyto-toxicity was examined by MTT test after incubating 72 h. According to different drugs and different sequences added to 96-well tissue culture plates, 5 groups were divided: PTX group (Group 1), NVB group (Group 2), PTX plus NVB group (Group 3), PTX first and NVB 4-h-later group (Group 4), and NVB first and PTX 4-h-later group (Group 5). Drug concentrations were 100% peak plasma concentration (PPC), 50% PPC, 25% PPC, 12.5% PPC, and 6. 25% PPC. Results The inhibition effects on the three tumor cell lines in Group 5 were stronger than those in the other four groups (P < 0.01). And the inhibition effects in Group 4 were not stronger than those in Groups 1, 2 or 3 (P > 0.1). Conclusion Using microtubule depolymerization drug first and then using microtubule polymerization drug has synergic inhibition effect on tumor cells.
Article
Tubulin, the subunit protein of microtubules, is an alpha/beta heterodimer. In many organisms, both alpha and beta exist in numerous isotypic forms encoded by different genes. In addition, both alpha and beta undergo a variety of posttranslational covalent modifications, including acetylation, phosphorylation, detyrosylation, polyglutamylation, and polyglycylation. In this review the distribution and possible functional significance of the various forms of tubulin are discussed. In analyzing the differences among tubulin isotypes encoded by different genes, some appear to have no functional significance, some increase the overall adaptability of the organism to environmental challenges, and some appear to perform specific functions including formation of particular organelles and interactions with specific proteins. Purified isotypes also display different properties in vitro. Although the significance of all the covalent modification of tubulin is not fully understood, some of them may influence the stability of modified microtubules in vivo as well as interactions with certain proteins and may help to determine the functional role of microtubules in the cell. The review also discusses isotypes of gamma-tubulin and puts various forms of tubulin in an evolutionary context.