ArticlePDF Available

Structure of verticine N-oxide hydrate

Authors:
1334 a-TRUXILLAMIDE MONOHYDRATE
Declercq & Woolfson, 1978), HBLS-V and DAPH
(Ashida, 1973), MOLCON (Fujii, 1979) and ORTEP
(Johnson, 1971). Computations were carried out at
the Research Center for Protein Engineering, Insti-
tute for Protein Research, Osaka University, and at
the Okayama University Computer Center. The final
atomic parameters are listed in Table 1.* Thermal
ellipsoids of the phot0dimer and water molecule are
shown in Fig. 1 with the atomic numbering. Bond
lengths and angles, and geometry of the hydrogen
bonds are listed in Table 2.
Related literature. In contrast with the monomer
crystals grown from a chloroform solution
(Iwamoto, Kashino & Haisa, 1989a), the crystals
grown from an ethanol solution are photoreactive.
Evidence of the solid-state photoreaction of cinnam-
amide has been described by Osaki & Schmidt
(1972). The molecule of the dimer has a pseudo
center of symmetry in the crystals and the conforma-
tions around the C--C bonds of the cyclobutane ring
are similar to those found in 4,4'-dimethyl-a-truxillic
acid having T symmetry (Kashino, Oka & Haisa,
1989). The crystal structure is stabilized by the three-
dimensional hydrogen-bond network involving the
amide groups and the water molecules, as found in
a tetrahydrate of the photodimer of a-acetylamino-
cinnamic acid (Iwamoto, Kashino & Haisa, 1989b).
* Lists of structure factors, anisotropic thermal parameters,
H-atom parameters, bond lengths and angles involving H atoms
and selected torsion angles have been deposited with the British
Library Document Supply Centre as Supplementary Publication
No. SUP 52658 (16 pp.). Copies maybe obtained through The
Technical Editor, International Union of Crystallography, 5
Abbey Square, Chester CH 1 2HU, England.
The authors wish to thank Emeritus Professor
Masao Haisa of Okayama University for his time
spent with us on the work and Emeritus Professor
Kenji Osaki of Kyoto University for discussion on
the early work of solid-state reactions of cinnam-
amide. The Research Center for Protein Engi-
neering, Institute for Protein Research, Osaka
University, is gratefully acknowledged for the use of
the facility.
References
ASI~DA, T. (1973). I-IBLS-V and DAPtt. The Universal Crystallo-
graphic Computing System, Osaka. The Computation Center,
Osaka Univ., Japan.
COHEN, M. D., SCaMIDT, G. M. J. & SONNTAG, F. I. (1964). J.
Chem. Sac. pp. 2000-2013.
FuJn, S. (1979). MOLCON. The Universal Crystallographic Com-
puting System, Osaka. The Computation Center, Osaka Univ.,
Japan.
International Tables for X-ray Crystallography (1974). Vol. IV.
Birmingham: Kynoch Press. (Present distributor Kluwer
Academic Publishers, Dordrecht.)
IWAMOTO, T., KASHrNO, S. & HAtSA, M. (1989a). Acta Cryst. CA5,
1110-1112.
IWAMOTO, T., KASHmO, S. & HAISA, M. (1989b). Acta Cryst. C45,
1753-1758.
JOHNSON, C. K. (1971). ORTEPII. Report ORNL-3794, revised.
Oak Ridge National Laboratory, Tennessee, USA.
KASnTNO, S., OKA, H. & HAISA, M. (1989). Acta Cryst. C45,
154-157.
MAIN, P., HULL, S. E., LESSlNGER, L., GERMAIN, G., DECLERCQ,
J.-P. & WOOLFSON, M. M. (1978). MULTAN78. A System of
Computer Programs for the Automatic Solution of Crystal Struc-
tures from X-ray Diffraction Data. Univs. of York, England,
and Louvain, Belgium.
OSAKI, K. & SCHMIDT, G. M. J. (1972). Isr. J. Chem. 10, 189-193.
VAIDA, M., SHIMON, L. J. W., VAN MIL, J., ENRST-CABRERA, K.,
ADDADI, L., LEISEROWlTZ, L. & LAHAV, M.
(1989).
J. Am.
Chem. Sac. 111, 1029-1034.
Acta Cryst. (1990). C46, 1334-1336
Structure of Verticine N-Oxide Hydrate
BY VIKTOR KETTMANN
Department of Analytical Chemistry, Faculty of Pharmacy, University of Komensky, Odbojrrov 10,
83232 Bratislava, Czechoslovakia
AND IRENA MA~TEROV.~ AND JOZEF TOMKO
Department of Pharmacognosy and Botany, Faculty of Pharmacy, University of Komensky, Odbojdrov 10,
83232 Bratislava, Czechoslovakia
(Received 10 October 1989; accepted 29 January 1990)
Abstract. C27H45NO4.H2 O, Mr = 465.68, monoclinic,
P21, a = 10.830 (2), b = 5.85 (1), c = 20.187 (4) A, fl
=
97.26 (2) °, V= 1270.7 (3)
h 3, Z = 2,
D m
= 1.21 (1),
Dx = 1.217 Mg m -a, A(Cu Ka) = 1"54178 A, /z =
0108-2701/90/071334-03503.00
0-59
mm-1, F(000) =
512, T = 293 K, R = 0.047 for
1448 unique observed reflections. All the six-
membered rings were found to have normal chair
conformations and the five-membered ring takes an
© 1990 International Union of Crystallography
VIKTOR KETTMANN, IRENA MASTEROV/~ AND JOZEF TOMKO 1335
Table 1. Final atomic coorh~dates
10 4)
with e.s.d. 's
in parentheses and equivalent isotro~ic thermal param-
eters Boq defined as Beq = ~Y.iYjBoa.a j
x y z B~(~fl)
C(I) - 1388 (4) 2068 (9) 271 (2) 3.78
C(2) - 1867 (4) 3456 (8) -358 (2) 3-80
C(3) -3272 (4) 3656 (9) -426 (2) 3.91
C(4) - 3709 (4) 4664 (8) 196 (2) 3.88
C(5) -3244 (3) 3217 (8) 806 (2) 3'33
C(6) -3783 (3) 3906 (9) 1443 (2) 3.89
C(7) - 3411 (4) 2190 (9) 1999 (2) 3.80
C(8) - 1989 (3) 1988 (8) 2131 (2) 3.41
C(9) - 1475 (3) 1367 (8) 1482 (2) 3.13
C(10) - 1789 (3) 3041 (7) 911 (2) 3.10
C01) -87 (4) 832 (8) 1733 (2) 3.66
C(12) -55 (4) 104 (8) 2484 (2) 3-44
C(13) 716 (3) 1805 (8) 2948 (2) 3.07
C(14) - 1439 (3) 99 (8) 2596 (2) 3.33
C(15) 1645 (4) 167 (9) 3327 (2) 4.15
C(16) -857 (4) 1980 (9) 3733 (2) 3.97
C(17) 508 (4) 1518 (8) 3669 (2) 3-50
C(18) 2084 (3) 1528 (8) 2854 (2) 3-48
C(19) 1164 (4) 5337 (9) 1066 (2) 4.33
C(20) 1412 (3) 3011 (8) 4163 (2) 3"33
C(21) 1293 (4) 2379 (I I) 4880 (2) 5.16
C(22) 2760 (4) 2616 (8) 4022 (2) 3.48
C(23) 3715 (4) 4019 (9) 4477 (2) 3-96
C(24) 5046 (4) 3471 (10) 4343 (2) 4.61
C(25) 5229 (4) 3934 (9) 3627 (2) 4.32
C(26) 4227 (3) 2705 (9) 3159 (2) 3.65
C(27) 5351 (4) 6494 (10) 3492 (2) 5.32
N(I) 2907 (3) 3121 (6) 3301 (I) 2.99
O(1) 3699 (3) 5113 (7) -988 (I) 4.94
0(2) -5121 (2) 4094 (6) 1329 (I) 4.18
0(3) 1109 (2) 5373 (6) 4079 (I) 4-26
0(4) 2584 (2) 5387 (6) 3142 (1) 3.57
0(5) 3319 (4) 7045 (8) 1956 (2) 7.94
envelope form. The ring junctions A/B, B/C, D/E
and E/F are trans and C/D is cis. An elaborate
network of hydrogen bonds interlinks the molecules.
Experimental. Crystallization from methanol,
colourless needles, crystal used: 0.5 × 0.15 × 0.1 mm.
D m
by flotation in bromoform/cyclohexane. Sys-
tematic absences: 0k0 for k odd, Syntex P21 dif-
fractometer, graphite-monochromated Cu Ka radia-
tion, room temperature, cell dimensions from 15
reflections, 15 < O < 35 °, intensity data (h = 0 to 11,
k=0 to 6, l = -21 to 21) by 0/20 scans, 20___ 110 °,
two standards measured every 96 reflections, no
significant systematic fluctuation. 1785 unique
reflections, 1448 with I_ 2o-(1) considered observed
and included in the refinement. Lp correction but
none for absorption or extinction. Structure solved
by direct methods using MULTAN78 (Main, Hull,
Lessinger, Germain, Declercq & Woolfson, 1978)
and MAGIC (Declercq, Germain & Woolfson, 1979)
and refined by block-diagonal least squares. Ap map
showed positions of all H atoms, refinement con-
tinued on positional parameters and anisotropic
thermal parameters for non-H atoms (isotropic
thermal parameters for H atoms were set to Beq of
the bonded atom, not refined). In the final cycle R =
0.047, wR = 0.052 for observed reflections only, S =
1.6, max. shift/e.s.d. 0-08. Function minimized
~'.w(AF) 2,
where w = 1 if IFol < 30 and w = 30/IFol if
IFol >-30. Max. and min. heights in final Ap syn-
Table 2. Bond
lengths (A) and angles
(°)
with e.s.d. 's
in
parentheses
C(1)--C(2) 1.541 (6) C(15)-----C(16) 1.535 (7)
C(2}--C(3) 1.515 (6) C(16)---C(17) 1.524 (6)
C(3)---C(4) 1.517 (6) C(17)--C(13) t.511 (5)
C(3)--O(I) 1-449 (5) C(13)--C(12) 1.539 (6)
C(4)---C(5) 1.526 (6) C(17)-----C(20) 1.571 (6)
C(5)--C(10) 1.566 (5) C(20)--C(22) 1.540 (6)
C(5}--C(6) 1.533 (6) C(20)---C(21) 1.515 (6)
C(6)-----C(7) 1.522 (6) C(20)--O(3) 1.427 (6)
C(6)--O(2) 1.443 (5) C(22)--C(23) 1.532 (6)
C(7)--C(8) 1-534 (5) C(22)--N(I) 1.513 (5)
C(8)---C(9) 1.529 (5) N( I )--C(18) 1.509 (5)
C(8)--C(14) 1'524 (6) C(18)--C(13) 1-525 (5)
C(9)--C(I0) 1.519 (6) C(23)--C(24) 1-534 (6)
C(10)--C(I) 1.525 (6) C(24)--C(25) 1.507 (6)
C(I0)--C(19) 1.521 t7) C(25)----C(26) 1-527 (6)
C(9)--C( I 1) 1.557 (5) C(25)-----C(27) 1-533 (8)
C(I I)--C(12) 1.573 (6) C(26)--N(I) 1.513 (5)
C(12}--C(14) 1-543 (5) N(I)--O(4) 1.400 (5)
C(14)--C(I 5) 1-520 (6)
C(IO)--C(I)--C(2)
C(I)--C(2)--C(3)
C(2)--C(3)--C(4)
C(2}--C(3)--0(1 )
C(4)--C(3)--0(I)
C(3}---C(4)--C(5)
C(4)-----C( 5)----C( 1 O)
C(4)--C(5)--0(6)
C(10)---C(5}--C(6)
C(5)--C(6}--C(7)
C(5)--C(6)--O(2)
C(7)--C(6)--O(2)
C(6)--C(7)---C(8)
C(7)--C(8)---C(9)
C(7)--C(8)----C(14)
C(9)--C(8)--C(I 4)
C(8)--C(9)--C( 1 O)
C(8}---C(9)--C( 11 )
C( I 0)---C(9)---C( I 1 )
c(1)--c(io)--c(5)
C(I)----~(I 0)--42(9)
C(I )--C(I0)---C(19)
C(5)---C(10)---C(9)
C(5)--C( 10)--C(I 9)
C(9)--C( 1 O)--C(19)
C(9)---C(1 I)--C(I 2)
C(I l)--C(12)----C(I 3)
C(1 I)--C(I 2)--C(14)
C(I 3)--C(12)--C(14)
C(12)---C(13)--C(17)
C( 12)---~(13)-----C(18)
I 13-5 (4)
110-2 (4)
111.7 (4)
109.5 (3)
108.5 (3)
110.2 (4)
111.7 (3)
114.1 (4)
112.7 (3)
110.6 (4)
I1.5 (3)
109.6 (3)
10.2 (4)
109.6 (3)
18"0 (4)
101"4 (3)
15.2 (3)
102-2 (3)
19.4 (3)
107.4 (3)
10.0 (3)
109-7 (4)
105.7 (3)
112-6 (3)
111.3 (3)
105'7 (3)
110.8 (3)
103.8 (3)
112.0 (3)
112.2 (3)
108.5 (3)
C( 17)--C( 13 }----C(18) 111-9 (3)
C(8)--C(I 4)---C(12) 102.7 (3)
C(8}--C(14)--C(I 5) 119.0 (4)
C(12)---C(14)--C(I 5) 114.0 (4)
C(14)--C(15)--C(16) 113.4 (4)
C( 15)----C( 16)---C(17) 108.2 (4)
C( 16}----C(I 7)--C(I 3) 109.0 (4)
C(16)--C(I 7)--C(20) 112.4 (3)
C(I 3)--C(17)--C(20) 113.1 (3)
C(I 3)----C(18)---N(I) 111-7 (3)
C(I 7}--C(20)--C(22) 109"2 (3)
C( 17)----C(20)--C(21 ) 110-4 (4)
C(I 7)--C(20)--O(3) 110-4 (3)
C(21)---C(20)--C(22) 109.7 (4)
C(21 )--C(20)-----O(3) 107.7 (3)
C(22)--C(20)--O(3) 109.5 (3)
C(20)--C(22)--N(1 ) 111.4 (3)
C(20)--C(22)--C(23) I 13.1 (3)
N( 1 )--C(22)-----C(23) 109.0 (3)
C(22)---C(23)-----C(24) I I 1. I (4)
C(23)--C(24)--C(25) I 11.8 (4)
C(24)--C(25)---C(26) 109-9 (4)
C(24}----C(25)-----C(27) 111.8 (4)
C(26)--4S(25)--C(27) 115.0 (4)
C(25)--C(26)--N(I) 114.9 (4)
C(I 8)--N(I )--C(22) 109.2 (3)
C(I 8)--N(1)--C(26) 106.7 (3)
C(I 8)--N(I }--O(4) 109.7 (3)
C(22)--N( 1 }--C(26) I 11.6 (3)
C(22)--N(I }-----O(4) 110-6 (3)
C(26)---N( I )--0(4) 108.9 (3)
thesis 0-15 and 0.20
e A -3.
Scattering factors from
International Tables for X-ray Crystallography
(1974).
All calculations except MULTAN and
MAGIC were performed with a local version of the
NRC system (Ahmed, Hall, Pippy & Huber, 1973).
Final atomic coordinates of non-H atoms and
equivalent isotropic B's are listed in Table 1,* bond
distances and angles in Table 2. A perspective
drawing of the molecule and numbering of the atoms
are shown in Fig. 1.
Related literature. The isolation and identification of
the title compound have been previously described
(Ma~terovfi, Kettmann & Tomko, 1986). The
* Lists of structure factors, anisotropic thermal parameters and
H-atom parameters have been deposited with the British Library
Document Supply Centre as Supplementary Publication
No. SUP
52645 (10 pp.).
Copies may be obtained through The Technical
Editor, International Union of Crystallography, 5 Abbey Square,
Chester
CH! 2HU,
England.
1336 VERTICINE N-OXIDE HYDRATE
/ -',~cu
04 cu~"
.,%? 2
~
22
/
~,, /
~"
Fig. 1. A perspective view of verticine N-oxide in correct absolute
configuration, also showing the atom numbering. H atoms are
not drawn, for clarity.
molecular structure is similar to that of other related
structures (Brisse, 1970; It6, Fukazawa & Miyashita,
1976; Kettman, Magterovfi & Tomko, 1982). Thus,
the presence of an N-oxide arrangement did not
change the usual trans configuration at the E/F ring
junction as already observed with quaternization of
verticinone with CH3Br (It6, Fukazawa & Okuda,
1968), obviously due to a smaller steric volume of the
O atom compared with the methyl group.
References
ArtMEO, F. R.,
HALL,
S. R., PIPPY, M. E. & HUBER, C. P. (1973).
NRC Crystallographic Programs for the IBM/360 System.
Accession Nos. 133-147. J. Appl. Cryst. 6, 309-346.
BRISSE, F. (1970). Acta Cryst. B26, 171-180.
DECLERCQ, J.-P., GERMAIN,
G. &
WOOLFSON,
M. M. (1979). Acta
Cryst. A35, 622-626.
International Tables for X-ray Crystallography (1974). Vol. IV.
Birmingham: Kynoch Press. (Present distributor Kluwer
Academic Publishers, Dordrecht.)
IT0, S., FOKAZAWA, Y. & MIYASHITA, M. (1976). Tetrahedron
Lett. pp. 3161-3164.
IT6, S., FUKAZAWA, Y. & OKUDA, T. (1968). Tetrahedron Lett. pp.
5373-5375.
KETTMANN, V., MAgTEROVA, I. & TOMKO, J. (1982). Acta Cryst.
B38,
978-980.
MAIN, P.,
HULL,
S. E., LESSINGER, L., GERMAIN, G.,
DECLERCQ,
J.-P. & WOOLFSON, M. M. (1978). MULTAN78. A System of
Computer Programs for the Automatic Solution of Crystal Struc-
tures from X-ray Diffraction Data. Univs. of York, England,
and Louvain, Belgium.
MA~TEROVA, 1., KETTMANN, V. & TOMKO, J. (1986). Chem. Zvesti,
40,
385-388.
Acta Cryst. (1990). C46, 1336-1338
Structure of
(1R,5R)-l-p-Menth-3-yloxy-2,4-dimethyl-cis-
2,4,6,8-tetraazabicyclo[3.3.0]octane-3,7-dione*
BY NEVENKA MODRI(~ AND MmKO POJEt
Laboratory of Organic Chemistry, Faculty of Science, University of Zagreb, PO Box 153, 41001 Zagreb,
Yugoslavia
AND IVAN VICKOVIC AND MILENKO BRUVO
Laboratory of General and Inorganic Chemistry, Faculty of Science, University of Zagreb,
PO Box 153, 41001 Zagreb, Yugoslavia
(Received 8 September 1989; accepted 2 February 1990)
Abstract.
C16H28N403,
Mr
=
324"43, monoclinic, P21,
a = 10.488 (3), b = 18-432 (6), c = 9.429 (3) A, fl =
90-63 (2) °, V = 1823 (1) A 3, Z = 4, Dx =
1.182 g cm -3, A(Cu Ka) = 1.54178/~, /z =
6.38cm -1, F(000)=704, room temperature, R=
0.051 for 2914 unique reflections [1_> 5o-(1)]. The
asymmetric unit contains two independent mol-
ecules. The title compound is the first example of a
derivative of the bicyclol tautomer in the allantoin
* p-Menth-3-yl is (1R,2S,5R)-2-isopropyl-5-methylcyclohexyL
1" To whom correspondence should be addressed.
0108-2701/90/071336-03503.00
series and the key intermediate in the asymmetric
synthesis of (-)-(R)-l,3-dimethylallantoin; the
results of the X-ray structure determination confirm
its diastereomeric identity and establish the absolute
(1R,5R) configuration.
Experimental. The title compound was characterized
by its melting point (550-551 K), [a]~ 5°c -28 ° (c 1-6,
Me2SO), IR, 1H- and x3C-NMR spectra, as well as
by regiospecific conversion into (-)-(R)-I,3-
dimethylallantoin, [a]~, s°c -75 ° (c 3, H20) (Modrir,
Drake & Poje, 1989). Recrystallization from ethanol;
© 1990 International Union of Crystallography
Article
Trimethylamine N-oxide, Me 3 N ⁽⁺⁾ O ⁽⁻⁾ , is an important molecule in biology and medicine. Herein, a survey of the interactions involving the oxide-O atom in crystals containing derivatives of Me 3 N ⁽⁺⁾ O ⁽⁻⁾ , namely RR′R″N ⁽⁺⁾ O ⁽⁻⁾ , is presented; R,R′, R″ = alkyl and/or aryl. A total of 119 RR′R″N ⁽⁺⁾ O ⁽⁻⁾ molecules were analysed for the supramolecular interactions involving the oxide-O atom. Hydrates form the largest class of crystals, comprising over 40 % of the 91 crystals investigated, a value slightly higher than expectation. Over 80 % of molecules had at least one O–H⋯O ⁽⁻⁾ (oxide) hydrogen bond: 3, 45 and 33 % of all molecules had three, two or one O–H⋯O ⁽⁻⁾ (oxide) hydrogen bonds, respectively. Further, nearly 15 % of molecules formed at least one N–H⋯O ⁽⁻⁾ (oxide) hydrogen bond, sometimes operating in concert with O–H⋯O ⁽⁻⁾ (oxide) hydrogen bonds. The overwhelming majority of molecules featured inter- and/or intra-molecular supporting C–H⋯O ⁽⁻⁾ (oxide) contacts so that a diverse range of supramolecular interaction patterns is apparent, a situation made more complicated by the appearance of different supramolecular association patterns often observed for independent molecules in crystals with more than one molecule in the crystallographic asymmetric-unit. Of the 6 % of molecules devoid of conventional A–H⋯O ⁽⁻⁾ (oxide) hydrogen bonds, all formed three or four inter-/intra-molecular C–H⋯O ⁽⁻⁾ (oxide) contacts usually characterised by at least one short H⋯O ⁽⁻⁾ (oxide) distance.
Article
The crystal and molecular structure of 2,6-lutidine N-oxide monohydrate (1) has been determined by X-ray diffraction analysis. Each water molecule is acting as bridging ligand between the N→O moieties of two 2,6-lutidine N-oxide molecules through moderate strong intermolecular hydrogen bonding (O–H⋯O, O⋯O distances are 2.787(2) and 2.832 (2)Å) giving rise to a one-dimensional (1D) polymeric helical chain. A two-dimensional (2D) layered network is then formed by self-assembly of 1D helical chains via strong π–π interactions of the aromatic rings (interplanar distances 3.385Å). The molecular structure of 1 is compared with that for the already reported molecular structures of 2-acetylamino-6-methylpyridine N-oxide monohydrate and pyridine trihydrate. Finally, on the basis of the present studies a possible explanation for the formation of the molecular complexes is proposed and discussed.
Article
Full-text available
The two symmetry-independent mol­ecules of the title compound, cevane-3β,6α,20-triol ethanol hydrate (2/1/1), 2C27H45NO3·C2H6O·H2O, have the same stereochemical assignments. The six-membered rings A, B, E and F are in the chair conformation, while ring D is in a boat conformation. The ring fusions are A/Btrans, B/Ctrans, C/Dcis, D/Etrans and E/Ftrans. The verticine mol­ecules are bridged by water and ethanol mol­ecules via hydrogen bonds to form two-dimensional layers, and the crystal structure is built up by stacking of these layers.
Article
Eight alkaloids were isolated from the bulb of Fritillaria wabuensis S. Y. Tang et S. C. Yueh (Liliaceae), which is efficacious against cough. Five of them are known and identified as imperialine ( 1), peimisine ( 2), ebeinone ( 3), isoverticine ( 4), and imperialine beta- N-oxide ( 5), respectively. Alkaloid 5 is however, controversial. All the signals for both (1)H- and (13)C-NMR spectra of 5 were assigned unambigously by 2D NMR experiments, and (13)C-NMR assignments previously described in the literature were revised. An X-ray structure of alkaloid 5 is presented.
Article
Two new multisolution direct-methods procedures are described: /b MAGIC/, which employs the magic-integer concept and /b YZARC/ which refines initially random sets of phases by a least-squares approach. Each procedure produces several sets of phases for a number of reflexions, usually in the range 35-100. These are then extended by the tangent formula but with the constraint that the basis phases are not allowed to change until the final cycle. It is shown that for difficult structures these methods, which deal simultaneously with many phase relationships, may have intrinsic advantages over the /b MULTAN/ procedure. Examples of their use are given.
  • S Fokazawa
  • Y Miyashita
IT0, S., FOKAZAWA, Y. & MIYASHITA, M. (1976). Tetrahedron Lett. pp. 3161-3164.
,8-tetraazabicyclo[3.3.0]octane-3,7-dione* BY NEVENKA MODRI
Structure of (1R,5R)-l-p-Menth-3-yloxy-2,4-dimethyl-cis- 2,4,6,8-tetraazabicyclo[3.3.0]octane-3,7-dione* BY NEVENKA MODRI(~ AND MmKO POJEt Laboratory of Organic Chemistry, Faculty of Science, University of Zagreb, PO Box 153, 41001 Zagreb, Yugoslavia AND IVAN VICKOVIC AND MILENKO BRUVO Laboratory of General and Inorganic Chemistry, Faculty of Science, University of Zagreb, PO Box 153, 41001 Zagreb, Yugoslavia (Received 8 September 1989; accepted 2 February 1990)
  • J.-P Germain
  • G Woolfson
DECLERCQ, J.-P., GERMAIN, G. & WOOLFSON, M. M. (1979). Acta Cryst. A35, 622-626.
  • V Kettmann
  • I Magterova
  • J Tomko
KETTMANN, V., MAgTEROVA, I. & TOMKO, J. (1982). Acta Cryst. B38, 978-980.
  • S Fukazawa
  • Y Okuda
IT6, S., FUKAZAWA, Y. & OKUDA, T. (1968). Tetrahedron Lett. pp. 5373-5375.
C(2}-C(3)-0(1 ) C(4)-C(3)-0(I) C(3}-C(4)-C(5) C(4)-C( 5)-C( 1 O) C(4
  • P Main
  • S E Hull
  • L Lesslnger
  • G Germain
  • C Declercq
MAIN, P., HULL, S. E., LESSlNGER, L., GERMAIN, G., DECLERCQ, C(IO)-C(I)-C(2) C(I)-C(2)-C(3) C(2)-C(3)-C(4) C(2}-C(3)-0(1 ) C(4)-C(3)-0(I) C(3}-C(4)-C(5) C(4)-C( 5)-C( 1 O) C(4)-C(5)-0(6) C(10)-C(5}-C(6) C(5)-C(6}-C(7) C(5)-C(6)-O(2) C(7)-C(6)-O(2) C(6)-C(7)-C(8) C(7)-C(8)-C(9) C(7)-C(8)-C(14) C(9)-C(8)-C(I 4) C(8)-C(9)-C( 1 O)
  • M D Scamidt
  • G M J Sonntag
COHEN, M. D., SCaMIDT, G. M. J. & SONNTAG, F. I. (1964). J. Chem. Sac. pp. 2000-2013.