Conference PaperPDF Available

Guidelines for Transient Analysis in Water Transmission and Distribution Systems

Authors:

Abstract and Figures

Despite the addition of chlorine and potential flooding damage, drinking water is not generally considered a hazardous commodity nor an overwhelming cost. Therefore, considerable water losses are tolerated by water companies throughout the world. However, more extreme variations in dry and wet periods induced by climate change will demand more sustainable water resource management. Transient phenomena (“transients”) in water supply systems (WSS), including transmission and distribution systems, contribute to the occurrence of leaks. Transients are caused by the normal variation in drinking water demand patterns that trigger pump operations and valve manipulations. Other transients are categorised as incidental or emergency operations. These include events like a pumping station power failure or an accidental pipe rupture by external forces. A number of excellent books on fluid transients have been written (Tullis 1989; Streeter and Wylie 1993; Thorley 2004), which focus on the physical phenomena, anti-surge devices and numerical modelling. However, there is still a need for practical guidance on the hydraulic analysis of municipal water systems in order to reduce or counteract the adverse effects of transient pressures. The need for guidelines on pressure transients is not only due to its positive effect on water losses, but also by the contribution to safe, cost-effective and energy-saving operation of water distribution systems. This chapter addresses the gap of practical guidance on the analysis of pressure transients in municipal water systems.
Content may be subject to copyright.
Chapter 1
Guidelines for Transient Analysis in
Water Transmission and Distribution Systems
Ivo Pothof and Bryan Karney
Additional information is available at the end of the chapter
http://dx.doi.org/10.5772/53944
1. Introduction
Despite the addition of chlorine and potential flooding damage, drinking water is not gener‐
ally considered a hazardous commodity nor an overwhelming cost. Therefore, considerable
water losses are tolerated by water companies throughout the world. However, more ex‐
treme variations in dry and wet periods induced by climate change will demand more sus‐
tainable water resource management. Transient phenomena (“transients”) in water supply
systems (WSS), including transmission and distribution systems, contribute to the occur‐
rence of leaks. Transients are caused by the normal variation in drinking water demand pat‐
terns that trigger pump operations and valve manipulations. Other transients are
categorised as incidental or emergency operations. These include events like a pumping sta‐
tion power failure or an accidental pipe rupture by external forces. A number of excellent
books on fluid transients have been written (Tullis 1989; Streeter and Wylie 1993; Thorley
2004), which focus on the physical phenomena, anti-surge devices and numerical modelling.
However, there is still a need for practical guidance on the hydraulic analysis of municipal
water systems in order to reduce or counteract the adverse effects of transient pressures. The
need for guidelines on pressure transients is not only due to its positive effect on water loss‐
es, but also by the contribution to safe, cost-effective and energy-saving operation of water
distribution systems. This chapter addresses the gap of practical guidance on the analysis of
pressure transients in municipal water systems.
All existing design guidelines for pipeline systems aim for a final design that reliably resists
all “reasonably possible” combinations of loads. System strength (or resistance) must suffi‐
ciently exceed the effect of system loads. The strength and load evaluation may be based on
the more traditional allowable stress approach or on the more novel reliability-based limit
state design. Both approaches and all standards lack a methodology to account for dynamic
© 2013 Pothof and Karney; licensee InTech. This is an open access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
hydraulic loads (i.e., pressure transients) (Pothof 1999; Pothof and McNulty 2001). Most of
the current standards simply state that dynamic internal pressures should not exceed the de‐
sign pressure with a certain factor, duration and occurrence frequency. The Dutch standard
NEN 3650 (Requirements for pipeline systems) includes an appendix that provides some
guidance on pressure transients (NEN 2012).
One of the earliest serious contributions to this topic was the significant compilation of Pe‐
jovic and Boldy (1992). This work not only considered transient issues such as parameter
sensitivity and data requirements, but usefully classified a range of loading conditions that
accounted for important differences between normal, emergency and catastrophic cases, and
the variation in risk and damage that could be tolerated under these different states.
Boulos et al. (2005) introduced a flow chart for surge design in WSS. The authors address a
number of consequences of hydraulic transients, including maximum pressure, vacuum
conditions, cavitation, vibrations and risk of contamination. They proposed three potential
solutions in case the transient analysis revealed unacceptable incidental pressures:
1. Modification of transient event, such as slower valve closure or a flywheel;
2. Modification of the system, including other pipe material, other pipe routing, etc.; and
3. Application of anti-surge devices.
Boulos et al. list eight devices and summarise their principal operation. They do not provide
an overview of the scenarios that should be included in a pressure transient analysis. Jung
and Karney (2009) have recognised that an a priori defined design load does not necessarily
result in the worst-case transient loading. Only in very simple systems can the most critical
parameter combination can be defined a priori (Table 4). In reality, selecting appropriate
boundary conditions and parameters is difficult. Further, the search for the worst case sce‐
nario, considering the dynamic behaviour in a WSS, is itself a challenging task due to the
complicated nonlinear interactions among system components and variables. Jung and Kar‐
ney (2009) have extended the flow chart of Boulos et al. (2005), taking into account a search
for the worst-case scenario (Figure 1). They propose to apply optimisation tools to find the
worst-case loading and a feasible set of surge protection devices.
Automatic control systems have become common practice in WSS. Since WSS are spatially
distributed, local control systems may continue in normal operating mode, after a power
failure has occurred somewhere else in the system. The control systems may have a positive
or negative effect on the propagation of hydraulic transients. On the other hand, the distrib‐
uted nature of WSS and the presence of control systems may be exploited to counteract the
negative effects of emergency scenarios. Therefore, existing guidelines on the design of WSS
must be updated on a regular basis in order to take these developments into account.
Typical design criteria for drinking water and wastewater pipeline systems are listed in
section 2. Section 3 presents a systematic approach to the surge analysis of water systems.
This approach focuses on guidelines for practitioners. The key steps in the approach in‐
clude the following: preconditions for the surge analysis; surge analysis of emergency sce‐
narios without provisions; sizing of anti-surge provisions and design of emergency
Water Supply System Analysis - Selected Topics
2
controls; evaluation of normal operations and design of control systems. The approach
has been applied successfully by Both Deltares (formerly Delft Hydraulics) and HydraTek
and Associates Inc. in numerous large water transmission schemes worldwide. Especially
the integrated design of surge provisions and control systems has many benefits for a
safe, cost-effective and energy-efficient operation of the water pipeline system. Section 4
summarises the key points of this paper.
Figure 1.
Pressure Transient design (Jung and Karney 2009).
Guidelines for Transient Analysis in Water Transmission and Distribution Systems
http://dx.doi.org/10.5772/53944
3
2. Pressure transient evaluation criteria for water pipelines
In any transient evaluation, pressure is the most important evaluation variable, but certainly
not the only one. Component-specific criteria must be taken into account as well, such as a
minimum fluid level in air vessels, maximum air pressure during air release from an air
valve or the maximum fluid deceleration through an undamped check valve.
The maximum and minimum allowable pressure is directly related to the pressure rating of
the components. Thin-walled steel and plastic pipes are susceptible to buckling at a combi‐
nation of external pressure and minimum internal pressure.
The design pressure for continuous operation is normally equal to the pressure rating of the
system. During transient events or emergency operation, the system pressure may exceed
the design pressure up to a certain factor of the design pressure. Table 1 provides an over‐
view of maximum allowable incidental pressure (MAIP) in different national and interna‐
tional codes and standards.
Code
Maximum Incidental Pressure Factor [-]
DVGW W303:1994 (German guideline) 1.00
ASME B31.4 (1992), IS 328, BS 8010, ISO CD 16708:2000 1.10
NEN 3650-1:2012 1.15
BS 806 1.20
Italian ministerial publication 1.25 – 1.50
Table 1. Overview of maximum allowable incidental pressures (MAIP) in international standards, expressed as a factor
of the nominal pressure class.
The minimum allowable pressure is rarely explicitly addressed in existing standards. The
commonly accepted minimum incidental pressure in drinking water distribution systems is
atmospheric pressure or the maximum groundwater pressure necessary to avoid intrusion
at small leaks. If the water is not for direct consumption, negative pressures down to full
vacuum may be allowed if the pipe strength is sufficient to withstand this condition, al‐
though tolerance to such conditions varies with jurisdiction. Full vacuum and cavitation can
be admitted under the condition that the cavity implosion is admissible. Computer codes
that are validated for cavity implosion must be used to determine the implosion shock. The
maximum allowable shock pressure is 50% of the design pressure. This criterion is based on
the following reasoning: The pipeline (including supports) is considered a single-mass-
spring system for which a simplified structural dynamics analysis can be carried out. The
ratio of the dynamic response (i.e., pipe wall stress) to the static response is called the dy‐
namic load factor (DLF). The dynamic load factor of a mass-spring system is equal to 2. It is
therefore recommended that a maximum shock pressure of no more than 50% of the design
pressure be allowed. This criterion may be relaxed if a more complete Fluid-Structure-Inter‐
action (FSI) simulation is performed for critical above-ground pipe sections.
Water Supply System Analysis - Selected Topics
4
3. Systematic approach to pressure transient analysis
The flow chart in Figure 2 integrates the design of anti-surge devices and distributed control
systems. It is emphasised that a surge analysis is strongly recommended upon each modifi‐
cation to an existing system. The systematic approach also applies to existing systems.
3. Systematic approach to pressure transient analysis
The flow chart in Figure 2 integrates the design of anti-surge devices and distributed control
systems. It is emphasised that a surge analysis is strongly recommended upon each modifi‐
cation to an existing system. The systematic approach also applies to existing systems.
Preconditions (steady)
Basic Pipeline design
Pumping station design
3.1
Surge analysis without provisions 3.2
Criteria
acceptable?
List possible solutions 3.3
No
Design anti-surge devices and
emergency controls
3.3
Finish Surge Analysis
Modify Pipeline or
Pumping station
Design
Yes
Define normal operating procedures and
control systems
3.4
Emergency
controls
triggered?
YesNo
Figure 2. Integrated design for pressure transients and controls.
Guideline for Transient Analysis in Water Transmission and Distribution Systems
http://dx.doi.org/10.5772/53944
5
Figure 2. Integrated design for pressure transients and controls.
Guidelines for Transient Analysis in Water Transmission and Distribution Systems
http://dx.doi.org/10.5772/53944
5
Because system components are tightly coupled, detailed economic analysis can be a com‐
plex undertaking, However, the net present value of anti-surge equipment may rise to 25%
of the total costs of a particular system. Therefore, the systematic approach to the pressure
transient analysis is preferably included in a life cycle cost optimisation of the water system,
because savings on investment costs may lead to operation and maintenance costs that ex‐
ceed the net present value of the investment savings.
3.1. Necessary information for a pressure transient analysis
The phenomenon of pressure transients, surge or water hammer is defined as the simultane‐
ous occurrence of a pressure and velocity changes in a closed conduit. Water hammer may
occur in both long and short pipes. The larger and faster the change of velocity, the larger
the pressure changes will be. In this case, 'fast' is not an absolutely term, but can only be
used relative to the pipe period, that is, relative to the pipe’s internal communications. The
most important parameters for the magnitude of transient pressures are:
Velocity change in time, Δv (m/s) (or possibly the pressure equivalent)
Acoustic wave speed, c (m/s)
Pipe period, T (s)
Joukowsky pressure, Δp (Pa)
Elevation profile
The acoustic wave speed c is the celerity at which pressure waves travel through pressurised
pipes. The wave speed accounts for both fluid compressibility and pipe stiffness: the more
elastic the pipe, the lower the wave speed. In fact, all phenomena that create internal storage
contribute to a reduction of wave speed. Since air is much more compressible than water, air
bubbles reduce the wave speed considerably, but this is the primary positive effect of air in
pipelines. The negative consequences of air in water pipelines, particularly in permitting or
generating large velocity changes, can greatly exceed this positive effect in mitigating cer‐
tain transient changes; thus, as an excellent precaution, free or mobile air must generally be
avoided in water systems whenever possible and cost-effective. The maximum acoustic
wave speed in an excavated water tunnel through rocks is 1430 m/s and drops to approxi‐
mately 1250 m/s in steel, 1000 m/s in concrete and ductile iron, 600 m/s in GRP, 400 m/s in
PVC and about 200 m/s in PE pipes.
1
1
1
c
C D
eE K
r
=
æ ö
+
ç ÷
è ø
(1)
where:
c = Acoustic wave speed (m/s)
Water Supply System Analysis - Selected Topics
6
E = Young’s modulus of pipe material (N/m
2
)
K = Bulk modulus of fluid (N/m
2
)
ρ = Fluid density (kg/m
3
)
D = Pipe diameter (m)
e = Wall thickness (m) and
C
1
= Constant depending on the pipe anchorage (order 1).
The acoustic wave speed in water pipelines is shown in Figure 3.
Steel
Cast iron
Ductile iron
concrete
Asbestos cement
GRP (woven)
GRP (fibre)
Perspex
PVC
PVC (ductile)
HDPE
LDPE
Figure 3. Graph of acoustic wave speed in water pipelines in relation to pipe material (E) and wall thickness (D/e).
The pipe period T [s] is defined as the time required for a pressure wave to travel from
its source of origin through the system and back to its source. For a single pipeline with
length L:
2T L c=
(2)
Guidelines for Transient Analysis in Water Transmission and Distribution Systems
http://dx.doi.org/10.5772/53944
7
This parameter defines the natural time scale for velocity and pressure adjustments in
the system.
Only after the pipe period the pressure wave will start to interact with other pressure waves
from the boundary condition, such as a tripping pump or a valve closure. Any velocity
change Δv within the pipe period will result in a certain “practical maximum” pressure, the
so-called Joukowsky pressure, Δp.
p c v
r
D = ± × ×D
(3)
A slightly more conservative assessment of the maximum transient pressure includes the
steady friction head loss Δp
s
= ρgΔH
s
.
( )
s
p c v g H
r r
D = ± × ×D + D
(4)
All these parameters follow directly from the basic design. The maximum rate of change in
velocity is determined by the run-down time of a pump or a valve closure speed. The pump
run-down time is influenced by the polar moment of inertia of the pump impeller, the gear
box and motor. The full stroke closure time of valves may be increased in order to reduce
the rate of velocity change.
Pressure waves reflect on variations of cross-sectional area (T-junctions, diameter
changes, etc.) and variation of pipe material. All these parameters must be included in a
hydraulic model.
Finally, the elevation profile is an important input, because extreme pressures typically oc‐
cur at its minimum and maximum positions.
3.2. Emergency scenarios without anti-surge provisions
A pressure transient analysis or surge analysis includes a number of simulations of
emergency scenarios, normal operations maintenance procedures. The emergency scenar‐
ios may include:
Complete pump trip
Single pump trip to determine check valve requirements
Unintended valve closure; and
Emergency shut-down procedures.
A pump trip without anti-surge provisions causes a negative pressure wave traveling into
the WSS. If the downstream boundary is a tank farm or large distribution network, then the
reflected pressure wave is an overpressure wave. If the check valves have closed within the
pipe period, then the positive pressure reflects on the closed check valves by doubling the
Water Supply System Analysis - Selected Topics
8
positive pressure wave (Figure 4). In this way, the maximum allowable pressure may be ex‐
ceeded during a pump trip scenario.
Hydraulic
grade
line
Hydraulic
grade
line
Hydraulic
grade
line
Figure 4. Pressure wave propagation following a pump trip
Check valves will generally close after pump trip. The transient closure of a check valve is
driven by the fluid deceleration through the check valve. If the fluid decelerates quickly, an
undamped check valve will slam in reverse flow. Fast-closing undamped check valves, like
a nozzle- or piston-type check valve, are designed to close at a very small return velocity in
order to minimize the shock pressure. Ball check valves are relatively slow, so that their ap‐
plication is limited to situations with small fluid decelerations.
Guidelines for Transient Analysis in Water Transmission and Distribution Systems
http://dx.doi.org/10.5772/53944
9
Figure 5. Pressure wave propagation following valve closure
Emergency closure of a line valve creates a positive pressure wave upstream and negative
pressure wave downstream of the valve. Although the total closure time may well exceed
the characteristic pipe period, the effective closure may still occur within one pipe period, so
that the Joukowsky pressure shock may still occur. The effective closure is typically only
20% of the full stroke closure time, because the valve starts dominating the total head loss
when the valve position is less than 20% open (e.g., Figure 6). If a measured capacity curve
of the valve is used, simulation software will deliver a reliable evolution of the discharge
and transient pressures in the WSS.
Figure 6 shows an example of a butterfly valve at the end of a 10 km supply line (wave
speed is 1000 m/s). A linear closure in 5 pipe periods (100 s) shows that the pressure rises
only during the last 30% of the valve closure. Therefore the pressure rise is almost equal to
the Joukowsky pressure. A two-stage closure, with a valve stroke from 100% to 30% open in
1 pipe period (20 s), shows a more gradual pressure rise during the closing procedure and a
lower peak pressure.
Water Supply System Analysis - Selected Topics
10
Figure 6. Single and two-stage valve in 5 pipe periods (100 s)
In general, for each scenario multiple simulations must be carried out to determine the ex‐
treme pressures and other hydraulic criteria. Scenario variations may include flow distribu‐
tions, availability of signal transfer (wireless or fiber-optic cable) for the control system and
parameter variations. For example, the minimum pressure upon full pump trip will be
reached in a single pipeline, if the maximum wall roughness value is used. If an air vessel is
used as an anti-surge device, the minimum wall roughness and isothermal expansion must
be applied to determine the minimum water level in the air vessel. Adiabatic pocket expan‐
sion in air vessels must be applied for other scenarios. The selection of input parameters so
that the extreme hydraulic criterion values are computed is called a conservative modeling
approach (Pothof and McNulty 2001). The proper combination of input parameters can be
determined a priori for simple (single pipeline) systems only. Table 4 provides some guid‐
ance on the conservative modeling approach.
In more realistic situations a sensitivity analysis is required to determine the worst case
loading. A more recent development for complex systems is to combine transient solvers
with optimization algorithms to find the worst case loading condition and the appropriate
protection against it (Jung and Karney 2009).
In most cases, the emergency scenarios result in inadmissible transient pressures. Possible
solutions include modifications to the system or transient event (e.g., slower valve closure),
anti-surge devices, emergency controls, or a combination of the above. The solutions will be
discussed in more detail in the next section.
3.3. Design of anti-surge devices and emergency controls
In order to mitigate inadmissible transient pressures, hydraulic design engineers have four
different management options at their disposal:
Guidelines for Transient Analysis in Water Transmission and Distribution Systems
http://dx.doi.org/10.5772/53944
11
1. System modifications (diameter, pipe material, elevation profile, etc.);
2. Moderation of the transient initiation event;
3. Emergency control procedures; and/or
4. Anti-surge devices.
3.3.1. System modifications
Measure 1 is only feasible in an early stage. A preliminary surge analysis may identify cost-
effective measures for the surge protection that cannot later be incorporated. If, for example,
inadmissible pressures occur at a local high point that seem difficult to mitigate, the pipe
routing may be changed to avoid the high point. Alternatively, the pipe may be drilled
through a slope to lower the maximum elevation.
Selection of a more flexible pipe material reduces the acoustic wave speed. Larger diameters
reduce the velocities and velocity changes, but the residence time increases, which may ren‐
der this option infeasible due to quality concerns.
A cost-benefit analysis is recommended to evaluate the feasibility of these kinds of options.
3.3.2. Moderating the transient initiation event
A reduction of the rate of velocity change will reduce the transient pressure amplitude. A
variable speed drive or soft start/stop functionality may be effective measures for normal
operations, but their effect is negligible in case of a power failure. A flywheel increases the
polar moment of inertia and thereby slows down the pump trip response. It should be veri‐
fied that the pump motor is capable of handling the large inertia of the flywheel during
pump start scenarios. Experience shows that a flywheel is not a cost-effective option for
pumps that need to start and stop frequently.
If inadmissible pressures are caused by valve manipulations, the valve closure time must be
increased. The velocity reduction by a closing valve is not only influenced by the valve char‐
acteristic, but also by the system. The valve resistance must dominate the total system resist‐
ance before the discharge is significantly reduced. Therefore, the effective valve closure time
is typically 20% to 30% of the total closure time. A two-stage closure, or the utilization of a
smaller valve in parallel, may permit a rapid initial stage and very slow final stage as an ef‐
fective strategy for an emergency shut down scenario. The effective valve closure must be
spread over multiple pipe periods to obtain a significant reduction of the peak pressure. Ex‐
isting books on fluid transient provide more detail on efficient valve stroking (Tullis 1989;
Streeter and Wylie 1993; Thorley 2004).
3.3.3. Emergency control procedures
Since WSS are spatially distributed, the power supply of valves and pumps in different
parts of the system is delivered by a nearly-independent power supply. Therefore, local con‐
trol systems may continue operating normally, after a power failure has occurred some‐
Water Supply System Analysis - Selected Topics
12
where else in the network. The control systems may have a positive or negative effect on the
propagation of hydraulic transients. The distributed nature of WSS and the presence of con‐
trol systems may be exploited to counteract the negative effects of emergency scenarios.
If a centralised control system is available, valves may start closing or other pumps may
ramp up as soon as a pump trip is detected. Even without a centralised control system,
emergency control rules may be developed to detect power failures. These emergency con‐
trol rules should be defined in such a way that false triggers are avoided during normal op‐
erations. An example of an emergency control rule is: ESD valve closure is initiated if the
discharge drops by more than 10% of the design discharge and the upstream pressure falls by at least
0.5 bar within 60 seconds.
3.3.4. Anti-surge devices
The above-described measures may be combined with one or more of the following anti-
surge devices in municipal water systems.
Devices, affecting
velocity change in time
Pressure limiting devices
Surge vessel By-pass check valve
Flywheel Pressure relief valve
Surge tower Combination air/vacuum valves
Feed tank
Table 2. Summary of anti-surge devices
An important distinction is made in Table 2 between anti-surge devices that directly af‐
fect the rate of change in velocity and anti-surge devices that are activated at a certain
condition. The anti-surge devices in the first category immediately affect the system re‐
sponse; they have an overall impact on system behaviour. The pressure-limiting devices
generally have a local impact. Table 3 lists possible measures when certain performance
criteria are violated.
The surge vessel is an effective (though relatively expensive) measure to protect the system
downstream of the surge vessel against excessive transients. However, the hydraulic loads
in the sub-system between suction tanks and the surge vessel will increase with the installa‐
tion of a surge vessel. Special attention must be paid to the check valve requirements, be‐
cause the fluid deceleration may lead to check valve slam and consequent damage. These
local effects, caused by the installation of a surge vessel, should always be investigated in a
detailed hydraulic model of the subsystem between tanks and surge vessels. This model
may also reveal inadmissible pressures or anchor forces in the suction lines and headers, es‐
pecially in systems with long suction lines (> 500 m). A sometimes-effective measure to re‐
duce the local transients in the pumping station is to install the surge vessels at a certain
distance from the pumping station.
Guidelines for Transient Analysis in Water Transmission and Distribution Systems
http://dx.doi.org/10.5772/53944
13
Operation Criterion Violation Improvement
pump trip low pressure
bypass pipe, flywheel
larger pipe diameter
air vessel, accumulator
surge tower, surge vessel, feed tank
air valve(s) at low pressure points in the system
other pipe material with lower Young’s modulus
pump trip high pressure air vessel with check valve and throttled by-pass
pump trip reverse flow in pump
increase (check) valve closure rate by choosing an
appropriate fast-closing check valve (e.g. nozzle type)
pump trip
rate of fluid deceleration through
check valve (high pressure due to
valve closure)
apply spring to reduce check valve closing time
apply spring or counter weight with damper to increase
check valve closing time and allow return flow
valve closure high pressure (upstream)
air vessel
slower valve closure
pressure relief valve or damper at high pressure points
higher pressure rating
valve closure low pressure (downstream)
air vessel
slower valve closure
air valves at low pressure points
valve throttling pressure instability
use multiple valves
adjust control settings
drainage, filling entrapped air
use air valves
prevent drainage on shut-down
Table 3. Possible mitigating measures in case of violation of one or more performance criteria
Air vent
compressor
"”non vented”
Be- en ontluchter
"”vented”
Figure 7. Non-aerated surge vessel
One of the disadvantages of a surge tower is its height (and thus cost and the siting chal‐
lenges). If the capacity increases, so that the discharge head exceeds the surge tower level,
then the surge tower cannot be used anymore. A surge tower is typically installed in the vi‐
cinity of a pumping station in order to protect the WSS downstream. A surge tower could
also be installed upstream of a valve station to slow down the over pressure due to an emer‐
gency valve closure.
Guideline for Transient Analysis in Water Transmission and Distribution Systems
http://dx.doi.org/10.5772/53944
15
Figure 7. Non-aerated surge vessel
Water Supply System Analysis - Selected Topics
14
One of the disadvantages of a surge tower is its height (and thus cost and the siting chal‐
lenges). If the capacity increases, so that the discharge head exceeds the surge tower level,
then the surge tower cannot be used anymore. A surge tower is typically installed in the vi‐
cinity of a pumping station in order to protect the WSS downstream. A surge tower could
also be installed upstream of a valve station to slow down the over pressure due to an emer‐
gency valve closure.
Pump trip
Closing valve
Figure 8. Surge tower near pumping station or valve station.
Another device that reduces the velocity change in time is the flywheel. A flywheel may be an
effective measure for relatively short transmission lines connected to a tank farm or distribu‐
tion network. A flywheel can be an attractive measure if the following conditions are met:
1. Pump speed variations are limited.
2. The pump motor can cope with the flywheel during pump start-up, which means that the
motor is strong enough to accelerate the pump impeller - flywheel combination to the
pump’s rated speed. If the polar moment of pump and flywheel inertia is too large for the
motor, then a motor-powered trip may occur and the rated speed cannot be reached.
Guidelines for Transient Analysis in Water Transmission and Distribution Systems
http://dx.doi.org/10.5772/53944
15
c
Hydraulic grade line, steady state
pump
without
flywheel
flywheel
with
pump
Hydraulic grade line, steady state
c
Figure 9. Effect of flywheel on transient pressure after power failure in the pumping station
A by-pass check valve is effective at sufficient suction pressure, which becomes available au‐
tomatically in a booster station. Wavefront steepness is not affected until the by-pass check
valve opens. A similar reasoning applies to the other pressure-limiting devices. Further‐
more, the release of air pockets via air valves is an important source of inadmissible pres‐
sure shocks. Air release causes a velocity difference between the water columns on both
sides of the air pocket. Upon release of the air pocket’s last part, the velocity difference Δv
must be balanced suddenly by creating a pressure shock of half the velocity difference (Fig‐
ure 10). The magnitude of the pressure shock is computed by applying the Joukowsky law:
2p c v
r
D = ± × ×D
(5)
A large inflow capacity is generally positive to avoid vacuum conditions, but the outflow
capacity of air valves must be designed with care.
Water Supply System Analysis - Selected Topics
16
Figure 10. Pressure shock due to air valve slam.
3.4. Design of normal procedures and operational controls
The following scenarios may be considered as part of the normal operating procedures (see
also appendix C.2.2. in standard NEN 3650-1:2012):
1. Start of pumping station in a primed system.
2. Normal stop of single pump or pumping station.
3. Commissioning tests.
4. Priming operation or pump start in partially primed system.
5. Procedure to drain (part of) the system for maintenance purposes.
6. Normal, scheduled, valve closure.
7. Stop of one pumping station or valve station and scheduled start of another source.
8. Other manipulations that result in acceleration or deceleration of the flow.
9. Switch-over procedures.
10. Risk assessment of resonance phenomena due to control loops.
Guidelines for Transient Analysis in Water Transmission and Distribution Systems
http://dx.doi.org/10.5772/53944
17
Normal operating procedures should not trigger emergency controls. If this is the case, the con‐
trol system or even the anti-surge devices may have to be modified. As a general rule for normal
operations, discharge set-points in control systems tend to exaggerate transient events while
pressure set-points automatically counteract the effect of transients. Two examples are given.
The first deals with a single pipeline used to fill a tank or supply reservoir. Suppose a down‐
stream control valve is aiming for a certain discharge set-point to refill the tank or reservoir. If an
upstream pump trip occurs, the control logic would lead to valve-opening in order to maintain
the discharge set-point. This will lower the minimum pressures in the pipe system between the
pumping station and the control valve. On the other hand, if the control valve aims for an up‐
stream pressure set-point, the valve will immediately start closing as soon as the downsurge has
arrived at the valve station, thereby counteracting the negative effect of the pump trip.
The second example is a distribution network in which four pumping stations need to main‐
tain a certain network pressure. The pumping stations have independent power supply.
Suppose that three pumping stations follow a demand prediction curve and the fourth
pumping station is operating on a set-point for the network pressure. If a power failure oc‐
curs in one of the discharge-driven pumping stations, then the network pressure will drop
initially. As a consequence the pump speed of the remaining two discharge-driven pumping
stations will drop and the only pressure-driven pumping station will compensate tempora‐
rily not only the failing pumping station, but also the two other discharge-driven pumping
stations. If all pumping stations would be pressure-driven pumping stations, then the fail‐
ure of a single pumping station will cause all other pumping stations to increase their pump
speed, so that the loss of one pumping stations is compensated by the three others.
The simulation of the normal operating procedures provides detailed knowledge on the dy‐
namic behaviour of the WSS. This knowledge is useful during commissioning of the (modi‐
fied) system. For example, a comparison of the simulated and measured pressure signals
during commissioning may indicate whether the system is properly de-aerated.
It is emphasized that a simulation model is always a simplification of reality and simulation
models should be used as a decision support tool, not as an exact predictor of reality. The
design engineer of complex WSS must act like a devil’s advocate in order to define scenarios
that have a reasonable probability of occurrence and that may lead to extreme pressures or
pressure gradients.
4. Modelling of water supply systems for transient analyses
This section provides some guidelines on the modelling of a pipeline system with respect to
pressure surge calculations.
It is recommended to model the top of the pipes in computer models, because the dynamic
behaviour may change significantly at low pressures due to gas release or cavitation.
The modelling and input uncertainties raise the question of which model parameter values
should be applied in a particular simulation. The simulation results may be too optimistic if
Water Supply System Analysis - Selected Topics
18
the model parameters are selected more or less arbitrarily. The model parameters should be
selected such that the relevant output variables get their extreme values; this is called a con‐
servative modelling approach. The conservative choice of input parameters is only possible
in simple supply systems without active triggers for control procedures. Table 4 lists the pa‐
rameter choice in the conservative modelling approach.
Critical
Scenario
Output Criterion
Model Parameters
(conservative approach)
any operation (cavitation not allowed)
max. pressure and
min. pressure
high wave speed or low wave
speed, high vapour pressure
upstream valve closure or
pump trip (cavitation allowed from process
requirements)
max. pressure due to cavity
implosions
high vapour pressure
upstream valve closure or
pump trip
min. pressure
high friction and
low suction level
downstream valve closure max. pressure
high friction and
high suction level
upstream valve closure or
pump trip (surge tower present)
min. pressure and min. surge
tower level
low friction and
low suction level
downstream valve closure
(surge tower or present)
max. pressure,
max. surge tower
level
low friction and
high suction level
critical
operation
criterion
model parameters
(conservative approach)
upstream valve closure or
pump trip (air vessel present)
min. air vessel level
low friction and
low suction level and
isothermal air behaviour
upstream valve closure or
pump trip (air vessel present)
min. pressure (close to air
vessel)
low friction and
low suction level and
adiabatic air behaviour
upstream valve closure or
pump trip (air vessel present)
min. pressure (downstream
part)
high friction and
low suction level and
adiabatic air behaviour
downstream valve closure
(air vessel present)
max. air vessel level
low friction and
high suction level and
isothermal air behaviour
downstream valve closure
(air vessel present)
max. pressure (close to air
vessel)
low friction and
high suction level and
adiabatic air behaviour
downstream valve closure
(air vessel present)
max. pressure (upstream part)
high friction and
high suction level and
adiabatic air behaviour
Single pump trip, while others run max. rate of fluid deceleration
high friction and
low suction level
Table 4. Overview of conservative modelling parameters for certain critical scenarios and output criteria.
Guidelines for Transient Analysis in Water Transmission and Distribution Systems
http://dx.doi.org/10.5772/53944
19
If control systems are triggered to counteract the negative effect of critical scenarios (pump
trip, emergency shut down), then the extreme pressures may occur at other combinations of
input parameters than listed in Table 4. Therefore, a sensitivity analysis or optimisation rou‐
tine is strongly recommended to determine extreme pressures in these kind of complex wa‐
ter supply systems.
5. Concluding remarks
Since flow conditions inevitably change, pressure transient analysis is a fundamental part of
WSS design and a careful analysis may contribute significantly to the reduction of water
losses from these systems. It is shown that pressure transient analyses are indispensable in
most stages of the life cycle of a water system. Section 2 shows that existing standards focus
on a certain maximum allowable incidental pressure, but also emphasises that other evalua‐
tion criteria should be part of the surge analysis, including minimum pressures, component
specific criteria and maximum allowable shock pressures. It is recommended that pressure
shocks due to cavity collapse, air-release or undamped check valve closure should never ex‐
ceed 50% of the design pressure. The main contributions of this paper, as compared to exist‐
ing pressure transient design guidelines, include an overview of emergency scenarios and
normal operating procedures to be considered, as well as the integrated design of control
systems and anti-surge devices. These will lead to a safe, cost-effective, robust, energy-effi‐
cient and low-leaking water system.
Author details
Ivo Pothof
1,2*
and Bryan Karney
3
*Address all correspondence to: ivo.pothof@deltares.nl
1 Deltares, MH Delft, The Netherlands
2 Delft University of Technology, Department of Water Management, Stevinweg, CN Delft,
The Netherlands
3 University of Toronto, Canada and HydraTek and Associates Inc., Canada
References
[1] Boulos, P. F., B. W. Karney, et al. (2005). "Hydraulic transient guidelines for protect‐
ing water distribution systems." Journal / American Water Works Association 97(5):
111-124.
Water Supply System Analysis - Selected Topics
20
[2] Jung, B. S. and B. W. Karney (2009). "Systematic surge protection for worst-case tran‐
sient loadings in water distribution systems." Journal of Hydraulic Engineering
135(3): 218-223.
[3] NEN (2012). Requirements for pipeline systems, Part 1 General. NEN, NEN.
3650-1:2012.
[4] Pejovic, S. and A. P. Boldy (1992). "Guidelines to hydraulic transient analysis of
pumping systems."
[5] Pothof, I. W. M. (1999). Review of standards and groud-rules on transients and leak
detection. Computing and Control for the Water Industry. Exeter, RSP Ltd, England.
[6] Pothof, I. W. M. and G. McNulty (2001). Ground-rules proposal on pressure transi‐
ents. Computing and Control for the Water Industry. Leicester, RSP Ltd, England.
[7] Streeter, V. L. and E. B. Wylie (1993). Fluid transients in systems. New York, Pren‐
tice-Hall.
[8] Thorley, A. R. D. (2004). Fluid Transients in Pipeline Systems. London, UK, Profes‐
sional Engineering Publishing Ltd.
[9] Tullis, J. P. (1989). Hydraulics of pipelines, pumps, valves, cavitation, transients.
New York, John Wiley & Sons.
Guidelines for Transient Analysis in Water Transmission and Distribution Systems
http://dx.doi.org/10.5772/53944
21
... In (Pothof and Karney 2012) a general hydraulic and control design framework for water distribution networks has been developed and extensively validated. Despite the obvious differences between distribution of drinking water and thermal energy (in a closed water loop), the methodological approach in (Pothof and Karney 2012) with respect to hydraulics and control design can be adopted for the design of district heating networks. The hydraulic design of 5GDHC and drinking water networks is determined by maximum and minimum incidental pressures. ...
Article
Full-text available
This paper presents challenges in the control of 5GDHC networks and proposes an approach for the robust control design of these networks. Temperatures are low and temperature differences are small in 5GDHC networks, in order to minimise heat losses in the distribution network and directly utilise low-temperature heat sources. Therefore, the robust control design of substations is crucial for stable and efficient operation of 5GDHC networks. We proposed the key steps to obtain a consistent control design that can be verified and tested prior to commissioning of the building substations and network. The design approach was elaborated in a case study in an existing neighbourhood in Haarlem, the Netherlands, constructed in the 1930s to 1970s. This neighbourhood will become independent of natural gas using PVT-rooftop panels, individual heat pumps (HP), a 2-pipe, bi-directional energy flow network operating at ultra-low temperatures and ATES system as a seasonal and daily storage facility.
... The typical procedure for solving the E-1D-WH Eqs within a multiple pipe framework is based on the method of characteristics established upon a fixed grid (MOC-FG). Briefly, the discretization of the equations set (1) using the MOC-FG leads to the following compatibility equations, along the characteristic lines (Wylie & Streeter 1993;Kaveh et al. 2010;Pothof & Karney 2012;Triki 2017Triki , 2018aTriki , 2018b: ...
Article
Full-text available
Recent studies have proved that the utilization of polyethylene (PE) short-section or penstock is a promising water hammer control tool. However, the interplay between the magnitude attenuation and the phase offset of pressure-wave oscillations remains challenging. This study aimed at inspecting the capacity of a dual PE penstock/short-section-based control technique, with regard to the aforementioned interplay. In this technique, a PE penstock was lumped to the transient initiating zone of the main pipe and a short-section of the counter extremity of the pipe was replaced with PE. The transient pressure-wave behavior in a gravitational viscoelastic pipe involving cavitation was described by the extended 1D water hammer equations embedding the Vitkovsky and Kelvin–Voigt add-ons. The numerical solution was performed by the fixed grid method of characteristics. The high- (HDPE) and low-density (LDPE) were demonstrated in this study. Analysis revealed that upgrading techniques based on LDPE enabled a desirable tradeoff between the magnitude attenuation and the phase offset of pressure-wave oscillations. Particularly, the dual penstock/short-section specific upgrading technique allowed a more important attenuation magnitude of pressure peak (or crest), and led to a similar expansion of the wave oscillation period. Furthermore, results evidenced that the proposed technique outperformed the renewal of the original piping system.
... The network consists of = 1,507 nodes and = 1,795 pipes, of which 844 are IVs, for a total of = 289 loops. In the numerical simulations, a constant head of 30 m was imposed at the reservoir (i.e., node 1) and a constant value of the pressure wave speed, , was assumed for cast-iron (c = 900 m/s) and steel (c = 1,000 m/s) pipes (Pothof & Karney, 2012). With reference to the pressure wave speed, constant values were assumed irrespectively of the diameter and the wall thickness. ...
Article
Full-text available
Water distribution networks (WDNs) are complex combinations of nodes and links, and the current tendency is to modify their topological structure through the closure of isolation valves for monitoring and water quality reasons. For their analysis, several approaches based on graph theory have recently been proposed, mainly considering steady‐state flow conditions. However, in their real functioning, WDNs are continuously subjected to pressure transients generated by manoeuvres on regulation devices or by users’ activity. This study investigates the application of some metrics from graph theory, already used in the context of steady‐state analysis, for assessing the effects of changes in the topological structure of a network ‒ due for example to sectorization or branching operations ‒ on its transient response when subjected to manoeuvres on devices such as hydrants, pumps, etc. or users’ activity. The analysis shows that some connectivity metrics can effectively reflect the dynamic pressure behaviour of the network and, thus, provide useful indications for design and management operations taking into account unsteady flow features. This article is protected by copyright. All rights reserved.
... If these surge waves are not correctly anticipated, the hydraulic installation may face severe damage (e.g. pipe-wall stretch or collapse (Figure 1)), service disruption and/or dangerous operations for operators Bergant et al. 2006;Chen et al. 2015;Besharat et al. , 2017Martins et al. 2015;Kaveh et al. 2010;Pothof and Karney 2012;Mery et al. 2021). These surges, also known as flow shocks, are closely associated with either normal operations or accidental events, such as pump startup or shutdowns or the rapid changes in control valve settings. ...
... An interesting practical example can be drawn using the dependency graph for pressure wave speeds in water flows presented in Pothof and Karney's Chapter 1 of Guidelines for Transient Analysis in Water Transmission and Distribution Systems [1]. It is shown that a typical pressure wave speed in a steel pipe with elasticity modulus = 2 • 10 11 N/m 2 and inner diameter to wall thickness ratio (D/e) equal to 2 • 10 2 is about 1300 m/s, while for the same ratio of D/e in a PVC pipe ( = 3.5 • 10 10 N/m 2 ) c is about 400 m/s and in a HDPE pipe ( = 8 • 10 9 N/m 2 ) c is just about 200 m/s. ...
Article
Full-text available
Omission of frequency-dependent hydraulic resistance (skin friction) during modelling of the water hammer phenomenon is unacceptable. This resistance plays a major role when the transient liquid flow occurs in rigid-walled pipes (steel, copper, etc.). In the literature, there are at least two different modelling approaches to skin friction. The first group consists of models based on instantaneous changes in local and convective velocity derivatives, and the second group are models based on the convolution integral and full history of the flow. To date, more popular models are those from the first group, but their use requires empirical coefficients. The second group is still undervalued, even if based on good theoretical foundations and does not require any empirical coefficients. This is undoubtedly related to the calculation complexity of the convolution integral. In this work, a new improved effective solution of this integral is further validated, which is characterised with the use of a simplified weighting function consisting of just two exponential terms. This approach speeds the numerical calculations of the basic flow parameters (pressure and velocity) significantly. Presented comparisons of calculations using the new procedure with experimental pressure runs show the usefulness of the proposed solution and prove that it maintains sufficient accuracy.
... Such events are a common occurrence in pumping and gravity water pipelines, hydraulic circuits of hydropower plants, irrigation systems, refrigeration circuits, and lines for the conveyance of fuel or chemical products [5]. Exceedingly high pressures can cause the rupture of pipes or appurtenances, while sub-atmospheric pressures can lead to the collapse of thin-walled pipes, inflow of pollutants in potable water systems, release of previously dissolved air, and formation of vapour cavities [6,7]. Air pockets influence the dynamics of unsteady pipe flows in several circumstances of pipeline operation: filling, draining, water hammer events, and pipe bursts [8][9][10][11]. ...
Article
Full-text available
The risks associated with unsteady two-phase flows in pressurized pipe systems must be considered both in system design and operation. To this end, this paper summarizes experimental tests and numerical analyses that highlight key aspects of unsteady two-phase flows in water pipelines. The essential dynamics of air–water interactions in unvented lines are first considered, followed by a summary of how system dynamics change when air venting is provided. System behaviour during unsteady two-phase flows is shown to be counter-intuitive, surprising, and complex. The role of air valves as protection devices is considered as is the reasonableness of the usual assumptions regarding air valve behaviour. The paper then numerically clarifies the relevance of cavitation and air valve performance to both the predicted air exchanges through any installed air valves and their role in modifying system behaviour during unsteady flows.
... The network consists of = 1,507 nodes and = 1,795 pipes, of which 844 are IVs, for a total of = 289 loops. In the numerical simulations, a constant head of 30 m was imposed at the reservoir (i.e., node 1) and a constant value of the pressure wave speed, , was assumed for cast-iron (c = 900 m/s) and steel (c = 1,000 m/s) pipes (Pothof & Karney, 2012). With reference to the pressure wave speed, constant values were assumed irrespectively of the diameter and the wall thickness. ...
Conference Paper
Water distribution networks (WDNs) are complex combinations of nodes and links and their structure has an impact on their behaviour, considering both quantitative (i.e. related to pipe flows and nodal pressures) and qualitative (i.e. related to water age and quality) aspects. The complexity of WDNs has been the basis of several studies that have resorted to the graph theory to relate connectivity properties to system behaviour (e.g. its reliability and water age/quality), evaluated under the assumption of steady-state conditions. Within this framework, in recent years the tendency toward reducing network interconnection through the closure of isolation valves has emerged, mainly to (i) facilitate its monitoring and management, and (ii) increase flow velocity and reduce water age. However, changes in the topology of a network can affect not only aspects evaluated under the assumption of steady-state conditions, but also its dynamic behaviour. Based on these considerations, the present study investigates whether some metrics derived from graph theory, already applied in the context of networks’ steady-state analyses, can also provide useful indications for assessing the effects of changes in the topological structure, which could be consequences of branching operations, on the dynamic response of a network subjected to users’ activity. The analyses highlight that connectivity metrics can reflect the pressure dynamic behaviour of the hydraulic systems and support in their macroscopic understanding during design and management operations. Thus, their application can be effectively extended from the steady-state to the dynamic framework.
... Two measuring instruments were used during the measurement due to synchronous measurement. 1 h method was applied. The number of occurrences of transient was evaluated during an hour [6][7][8][9]. Table 2 shows the TRAREC® calibration data of measuring instrument. ...
Article
Full-text available
The deteriorative processes occurring in the environment, the growth of population, the water demand of industry and agriculture, point out day after day the increasing role of water management. The economical use of drinking-water consumption as well as the cost reduction is becoming more and more important. In this research, the measure of a water supplier of Győr was examined in terms of implementing the purposes above.
... (i) When using a combined devices method to control water hammer, changing the location or parameters of each device influences the location and parameters of other devices. Especially, emergency and improper closure of the valve results in a positive pressure wave upstream and a negative pressure wave downstream of the valve location, which will again negatively affect the protective performance of the complex pipeline system (Pothof & Karney 2011). Therefore, how to make each protective device work in coordination is an important study. ...
Article
Full-text available
An air vessel, as an effective and reliable water hammer protective device, is widely used in long-distance water supply systems. However, the volume of the air vessel must be extra-large to guarantee security of the system, especially in a system with a high head and large flow. In this paper, to reduce the volume of the air vessel, a novel protective method combining an air vessel and over pressure relief valve was proposed and verified using a numerical simulation based on a practical project. In addition, the protection performance under the combined protective method was compared with the traditional method. The results show that the combined protective method can significantly reduce the volume of air vessel and exhibit a better protection performance. Furthermore, after analysis and optimization of the rule of opening and closing over the pressure relief valve, the valve should be opened in a short time to produce fast discharge so as to eliminate the large pressure rise rapidly. The duration of opening the over pressure relief valve has little effect on the maximum pressure. The closing time of the over pressure valve should be slow, as much as possible, to avoid producing large pressure wave. HIGHLIGHTS An optimized protective method by combining air vessel and over pressure relief valve is proposed to reduce the volume of the air vessel.; The sensitive analysis of operating valve and total cost anaysis are compared, which can make this combined method more effective and reliable.; The method was verified by comparing with the traditional protective method, and the results can provide a reference for similar situations.;
Conference Paper
Air is present in pressurized water systems for a variety of reasons, including incomplete removal during filling, air entrainment at intakes or entrances, air admission during draining operations, or air exchanges due to transient events such as power failure or pipe burst. Each of these sources or events creates specific design and operational challenges, issues that often require thoughtful and sometimes expensive approaches to avoid serious upsets or accidents. Indeed, the design and operational challenges must collectively be blended to produce a robust and economical design that is valid for all foreseeable operational and emergency actions that might involve the presence of air, whether the air is admitted, expelled, or merely present in the flow system. This paper summarizes the key findings that relate to the presence of air in pressurized flow systems. The focus is on the available research and operational experience regarding the challenges and strategies for coping with residual air, for removing air, or for admitting air into the conveyance system. The emphasis is on practical recommendations but also highlights some of the key uncertainties that remain when dealing with the full range of design and operational challenges confronting those seeking to safeguard the long-term performance of pressurized water conveyance systems. One of the persistent challenges is to select suitable design events since the conditions a pipeline will experience over life are inevitably both highly varied and somewhat uncertain.
Book
Full-text available
This book is aimed at engineers with expertise in the design, exploitation, investigation or maintenance of pumping systems and auxiliary hydraulic systems of hydro, thermal or nuclear power plants and also to users and manufacturers of systems. The importance of transients, for example waterhammer and vibrations, and their effects on safety and construction are highlighted. Pumping systems used in a variety of applications and parameters affecting transients and their regulation are assessed in the first three chapters. Data required for computations and their simulation and the design of systems and hydraulic machines are the subject of the next three chapters. The last three chapters deal with measurements to test safety aspects, leading to a recommended range of values for parameters which are then analysed. Appendex 1 discusses some advanced research studies of transient regimes, the second describes common regimes of pumping systems. (P.J.B.)
Article
Full-text available
Transients can introduce large pressure forces and rapid fluid accelerations into a water distribution system. These disturbances may result in pump and device failures, system fatigue or pipe ruptures, and even the backflow/intrusion of dirty water. Many transient events can lead to water column separation, which can result in catastrophic pipeline failures. Thus, transient events cause health risks and can lead to increased leakage or decreased reliability. Transient flow simulation has become an essential requirement for ensuring safety and the safe operation of drinking water distribution systems. This article provides a basic understanding of the physical phenomena and context of transient conditions, presents practical guidelines for their suppression and control, and compares the formulation and computational performance of widely used hydraulic transient simulation schemes. Such capabilities greatly enhance the ability of water utilities to conceive and evaluate cost-effective and reliable water supply protection and management strategies and safeguard public health.
Article
Full-text available
Estimating appropriate water demands for the design of a distribution system is itself difficult, but the continuously fluctuating nature of these demands has the added potential of creating water hammer problems that might result in catastrophic pipeline or system failure. To first identify and then avoid these eventualities, this paper searches a predefined set of possible water hammer events in water distribution systems to identify the most severe transient loadings and then conducts a search for suitable surge protection strategies. Genetic algorithms and particle swarm optimization are combined with transient analysis first to identify a set of worst-case loads and then to seek an optimal protection strategy to cope with them. Case studies show that the worst case is not always obvious and cannot always be assumed a priori to correspond with high or low demand scenarios. Both the search for the worst-case loading and its associated optimal protection strategies are strongly sensitive to the characteristics of both the pipe system and the candidate transient events.
Article
The book is intended as a handbook for engineers engaged in the design of large and small scale hydroelectric power station systems and pumping systems. Chapter 1 studies the dangers of transient regimes and outlines the principles of surge protection. Chapter 2 considers the design elements of hydroelectric power stations and Chapter 3 discusses the parameters associated with transient regimes. Chapters 4 and 5 study the control system and data for transient computations respectively. Chapter 6 examines the classification of transient regimes and describes normal operating conditions, emergency operating conditions and catastrophic cases. Discusses the selection of parameters and expected results from an analysis of transients in Chapter 7. Measurement and investigations are covered in Chapter 8 and the recommended range of parameters is given in Chapter 9. Permitted deviations are presented in Chapter 10. Additional data and information of typical transient regimes are given in appendices. (C.J.U.)
Fluid Transients in Pipeline Systems
  • A R D Thorley
Thorley, A. R. D. (2004). Fluid Transients in Pipeline Systems. London, UK, Professional Engineering Publishing Ltd.
Review of standards and groud-rules on transients and leak detection. Computing and Control for the Water Industry
  • I W M Pothof
Pothof, I. W. M. (1999). Review of standards and groud-rules on transients and leak detection. Computing and Control for the Water Industry. Exeter, RSP Ltd, England.
Requirements for pipeline systems
  • Nen
NEN (2012). Requirements for pipeline systems, Part 1 General. NEN, NEN. 3650-1:2012.
Ground-rules proposal on pressure transients. Computing and Control for the Water Industry
  • I W M Pothof
  • G Mcnulty
Pothof, I. W. M. and G. McNulty (2001). Ground-rules proposal on pressure transients. Computing and Control for the Water Industry. Leicester, RSP Ltd, England.