Article

LA CONTABILITA’ BIOFISICA PER LA VALUTAZIONE DELLA SOSTENIBILITA’ AMBIENTALE DEI COMUNI ITALIANI

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

cantabilità biofisica, comuni italiani

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Questa metodologia di contabilità ambientale è in grado di mettere in luce i rapporti di dipendenza tra ecosistema naturale ed economia umana e consente il calcolo di un set di indicatori per la valutazione della performance e della sostenibilità ambientale di un ambito territoriale o di un processo produttivo (Odum, 1988(Odum, , 1996Franzese et al., 2009Franzese et al., , 2014. ...
Technical Report
Full-text available
Il 2017 ha segnato un importante punto di svolta dell’ articolato e lungo percorso di sostenibilità del nostro Paese. Nel quadro di riferimento dettato dall’ Agenda 2030 dell’ONU sullo Sviluppo Sostenibile e dalla Strategia nazionale di Sviluppo Sostenibile (SNSvS) , l’elaborazione del Primo Rapporto sullo Stato del Capitale Naturale in Italia ha consentito di mettere in luce, per la prima volta, al complesso sistema istituzionale il fondamentale ruolo ricoperto dal Capitale Naturale italiano rispetto al sistema socio - economico collettivo del Paese. “Dov’è la ricchezza delle Nazioni?” si chiedeva un rapporto della Banca Mondiale del 2011, nel tentativo di superare l’inadeguatezza del PIL come misura di benessere. Il Comitato per il Capitale Naturale cerca, in relazione ai compiti che gli sono stati assegnati, di rispondere a questa domanda avviando la misurazione del valore fisico e monetario della dotazione di foreste, biodiversità, fiumi, mari, e della totalità degli ecosistemi di cui siamo ricchissimi. Tale valore si esplica in benefici di cui usufruiamo tutti giorni e che provengono dall’insieme di servizi ecosistemici che la natura ci fornisce, ma che spesso non percepiamo e non va lutiamo al loro giusto valore. L’obiettivo che il Comitato per il Capitale Naturale persegue è anche quello di rendere visibile a cittadini e policy makers il valore di questi benefici.Come sottolineato nelle Raccomandazioni del Primo Rapporto, la “sfida principale”, di un percorso lungo ed appena agli inizi, è quella di elaborare schemi concettuali, raccogliere dati, affinare modelli su una dimensione, quella della misurazione del Capitale Naturale e degli impatti delle politiche su esso. A tal proposito è emersa sempre più forte la necessità di coinvolgere il mondo della ricerca e delle amministrazioni locali. In questo Secondo Rapporto, importanti progressi sono fatti in termini di arricchimento dei fattori di analisi grazie ad una sempre maggiore sinergia tra esperti della materia, centri di ricerca nazionali ed internazionali, e la pubblica amministrazione.In questo Rapporto viene ancor più raffinata la valutazione biofisica degli ecosistemi terrestri a livello eco-regionale e regionale,anche con aggiornamenti sullo stato di conservazione di alcuni di essi. Inoltre, il focus sul valore biofisico degli stock di Capitale Naturale nelle ecoregioni marine mette in luce i primi risultati di un progetto sperimentale finalizzato ad un sistema di contabilità ambientale per le Aree Marine Protette italiane.Vengono approfonditi alcuni dei principali elementi di pressione sugli asset del Capitale Naturale. In particolare, vengono valutatisu scala nazionale, ed anche eco-regionale, il consumo di suolo e la frammentazione degli ecosistemi naturali e semi -naturali , che ne mettono a rischio lo stato di conservazione le funzionalità. Inoltre, ampia attenzione è dedicata all’impatto dei cambiamenti climatici sulla capacità degli ecosistemi di continuare a garantire Servizi Ecosistemici, anche attraverso dei focus su criticità ambientali di grande attualità per l’Italia, quali gli incendi e la siccità.Questo Secondo Rapporto, inoltre, inizia a delineare un percorso metodologico i mportante in merito all’attribuzione di una misurazione monetaria del flusso di Servizi Ecosistemici prodotti dal nostro Capitale Naturale. Seguendo le Raccomandazioni del Primo Rapporto, si riporta una prima applicazione, del tutto introduttiva e sperimen tale, dei sistemi di contabilità economico-ambientale di alcuni Servizi Ecosistemici come l’impollinazione agricola, i servizi ricreativi, la purificazione delle acque, oltre che valutazioni economiche della qualità degli habitat e dell’importante servizio di mitigazione dell’erosione del suolo. I valori monetari ottenuti, seppur frutto di metodologie da perfezionare e di ipotesi da raffinare nei prossimi rapporti, aprono una prospettiva ineludibile circa la straordinaria importanza del Capitale Naturale, anche in cooperazione con altri tipi di capitale come quello Culturale, in merito alla dimensione di quella Ricchezza delle Nazioni di cui si cerca la radice. Le metodiche rappresentate in questo Rapporto sul tema delle valutazioni ex-ante ed ex-post dell’impatto delle politiche pubbliche , non solo quelle a scopo ambientale, sul Capitale Naturale sono esplorate con crescente dettaglio. Questi schemi di analisi sono presentati anche nell’ottica di aiutare i decisori politici a valutare in fase preliminare gli effetti delle decisioni politiche sul Capitale Naturale, considerato in una dimensione più ampia di benessere e di qualità della vita dei cittadini, con l’obiettivo di valutare il progresso della società non soltanto dal punto di vista economico, ma anche sociale e ambientale.Il Comitatoper il Capitale Naturale, infine, propone nuove raccomandazioni che si pongono come agenda per i prossimi rapporti, che intendono assicurare un contributo significativo alla realizzazione degli obiettivi mondiali tracciati dall’Agenda 2030 per una crescita sostenibile che l’Italia deve continuare a perseguire per le generazioni presenti e future.
... Pertanto, la solar transformity indica la convergenza di energia solare (diretta e indiretta) utilizzata per produrre un bene o un servizio (Franzese et al., 2003). La valutazione biofisica delle risorse ambientali che alimentano i sistemi economico-produttivi delle società umane risulta un elemento di fondamentale importanza per poter realizzare un modello di società che sia maggiormente compatibile con le leggi della natura (Franzese et al., 2009c). La contabilità emergetica (Odum, 1996) ha fornito le basi teoriche ed applicative per realizzare una contabilità biofisica di ecosistemi naturali ed antropizzati (human-dominated ), calcolando il valore delle risorse ambientali in funzione del lavoro svolto dalla biosfera per produrle (donor-side approach). ...
Article
Full-text available
The measure of value called emergy is used to evaluate the flows of energy and resources that sustain the biosphere including the economy of humans. A donor system of value based on solar emergy required to produce things is suggested as the only means of reversing the logic trap inherent in economic valuation, which suggests that value stems only from utilization by humans. The stocks of natural capital and flows of environmental resources are evaluated in emergy and related to Global World Product. Several emergy indices are introduced as a means of evaluating sustainability of economies and processes. The total emergy flux of the biosphere is composed of 32% renewable flows of sunlight, tidal momentum and deep heat (it was 68% in 1950), and 68% slowly-renewable and nonrenewable flows. An index of environmental loading on the biosphere is shown to have increased about 4 times since 1950, while an index of global sustainability suggests that overall, sustainability of the global economy has precipitously declined.
Article
Full-text available
We present in this article, a brief historical overview of the development of the concepts and theories of energy quality, and net energy that were the precursors to emergy. The concepts evolved over decades, beginning in the 1950s with Odum’s work on tracing energy flows in ecosystems. During the 1970s, Odum’s attention was drawn to larger scale systems that included the economies of humans and the concept of net energy. In the 1980s, Odum quantified energy quality and defined it as a “donor-based” evaluation technique. In the 1990s, energy quality was further refined and rigorous definitions for “emergy” and “transformity” were given. The units of emergy were defined as solar emjoules (abbreviated seJ) and the units of transformity were seJ/J. In addition, we provide some insights into the types of processes and systems that have been evaluated using emergy methods.
Book
Prigogine, I. (1967) Thermodynamics of Irreversible Processes. 3rd Edition, Interscience Publishers, New York.
Article
In order to improve environmental management and policy making based on the principles of sustainable development it is necessary to explore both ecological and economic dynamics interacting in human-dominated ecosystems. A way to perform such an integrated assessment is provided by the Emergy Synthesis method that allows to account for mass, energy and money flows supporting a given ecosystem. In this paper Geographical Information System and Emergy Synthesis methods were combined to model the interplay of environment, economy, and resources in the Site of Community Interest named Parco Marino di S. Maria di Castellabate and located in Southern Italy. The GIS allowed to organize and explore data dealing with several environmental features while the emergy modelling and accounting provided a characterization of the energy metabolism of the study area. The solar transformity of the net primary production of the marine system resulted in 4.86·10⁴ seJ Joule⁻¹. The emergy cost for fish and mollusk (two of the main products of the fishing sector) resulted in 1.05·10⁷ seJ Joule⁻¹ and 2.43·10⁷ seJ Joule⁻¹, respectively. These emergy-based indicators provided information about the environmental performance of the marine ecosystem and its fishing economic sector by relating the input emergy invested into the processes with the generated outputs. The solar transformities calculated in this case study (one of the first ever performed in Italy by adopting this methodological approach) will provide a benchmark for future comparison with similar marine systems in Italy and abroad. In conclusion, the combined use of GIS and Emergy Synthesis methods resulted a promising approach able to provide a deeper understanding of human-managed ecosystems and their dynamics.
Chapter
A preliminary assessment of the construction and operation costs of the municipal landfill of Potenza (Southern Italy) is presented. Such an assessment provides a reference for future planned investigations of other existing landfills, in order to quantify the energy, material, and financial investments needed as well as to compare them with improvement or alternative strategies, also taking into account scale factors and waste composition. Geographical Information System (GIS) and Emergy Synthesis (ES) methods are jointly used for the description and evaluation of a managed landfill system in the Province of Potenza (Southern Italy). Focus is placed on the municipal landfill of the town of Potenza, identified as the largest waste management site in the Region. Data about land use, geomorphological structure, existing ground and surface water bodies, and environmental services, were organized within a GIS framework in order to obtain a detailed description of the area and its environmental constraints, providing at the same time suitable data for the emergy evaluation. Results of ES provide a comprehensive understanding of the demand for environmental support to the whole process and may serve as a reference case for GIS-Emergy evaluation of other small and large landfill sites in Italy as well as for needed alternative strategies of waste management.
Article
In this paper two methods for energy analysis and environmental accounting (Gross Energy Requirement and Emergy Synthesis) are critically discussed in order to explore their ability to provide a comprehensive evaluation of the performance and environmental sustainability of human-dominated production processes. In order to allow a quantitative comparison, two cropping systems, namely 1 ha of corn production in Italy, and 1 ha of willow production in Sweden, are investigated by means of the parallel application of both methods. The case studies are carried out by performing a quantitative inventory of both natural and economic input flows to the investigated cropping systems. Such input flows are then converted into embodied energy (MJ) as well as emergy (seJ) units. Finally, performance indicators representative for each method are calculated. Results provided by the two methods and their respective theoretical features are compared and discussed in order to point out limits and potentialities of both approaches. The study shows that the two methods account for different – although complementary – categories of input flows, use different conversion factors, and answer to different questions and concerns. Gross Energy Requirement focuses on fossil fuel use and is capable to support the development of more efficient use of commercial energy. Emergy Synthesis uses broader spatial and time frames and accounts for both natural and economic resources. In so doing, it takes into consideration different forms of energy, materials, human labor and economic services on a common basis, offering larger potentiality to explore the sustainable interplay of environment and economy.
Article
In order to compare aspects of systems ecology theory, this paper is one of a group by different authors arranged by Sven Jorgensen to explain the quantitative relationships in the same set of recently published papers. Energy concepts were used to identify and explain the results as systems designs and hierarchical structures self organized for maximum empower. To clarify the discussion, each explanation includes an energy systems diagram of the main parts and processes related in the paper, required by the theory, including connections with the controls from the surrounding system—the next larger scale. Whereas most of the papers explain mechanisms and relationships of parts, energy systems diagramming and synthesis shows how these designs are adaptations to increase function on several scales. Human understanding of phenomena is aided by simplified overview models that include the phenomena of special interest and their empower interactions on smaller and larger scales.
Article
Emergy (spelled with an m) is the energy required to make a service or product expressed in energy of one form. The emergy used in the life cycles of major building materials as well as the emergy inputs to waste disposal and recycle systems were evaluated. Emergy per mass (expressed as solar emergy per gram [sej/g]) for building materials varied from a low of 0.88 E9 sej/g for wood to a high of 12.53 E9 sej/g for aluminum. Generally, emergy per mass is a good indicator of recycle-ability, where materials with high emergy per mass are more recyclable. Recycling added between 1 (cement) and 234% (wood) to the emergy inputs per gram of building materials. The analysis of materials suggested that recycle of wood may not be advantages on a large scale, but metals, plastic, and glass have very positive benefits. Two types of solid waste disposal systems were evaluated: municipal solid wastes (MSW), and construction and demolition wastes (C&D wastes). Expressed as emergy, the costs of collecting, sorting and landfilling (for 25 years) MSW were 251.0 E6, 8.2 E6 and 37.9 E6 sej/g, respectively. The costs of demolition, collection, sorting and landfilling C&D wastes were 49.0 E6, 21.7 E6, 6.7 E6, and 11.7 E6 sej/g, respectively. Three different recycle trajectories were identified and analyzed: (1) material recycle (the ‘standard’ recycle of a material where it is used again as the same material [i.e. glass bottles recycled and made again into glass bottles]); (2) by-product use (where a by-product from some process is used to make something entirely different [i.e. flay ash in concrete]); and (3) adaptive reuse (where a material after recycle is reused for an entirely different purpose [i.e. plastic milk cartons are converted into plastic lumber]). Three recycle indices measuring the benefits of various recycle systems suggested that materials that have large refining costs have greatest potential for high recycle benefits and that highest benefits appear to accrue from material recycle systems, followed by adaptive reuse systems and then by byproduct reuse systems.
Article
Six electricity production systems are evaluated using energy and emergy (Environmental Accounting. Emergy and Environmental Decision Making. New York:Wiley, 1996. 370pp.) accounting techniques, in order to rank their relative thermodynamic and environmental efficiencies. The output/input energy ratio as well as the emergy-based emergy yield ratio (EYR) and environmental loading ratio (ELR) have been jointly used to explore and compare system performances. Generation of CO2 has also been accounted for in order to compare renewable and nonrenewable energy sources. The production systems include both plants using nonrenewable energy sources (natural gas, oil, and coal thermal plants) and the so-called renewable energy sources (geothermal, hydroelectric, and wind plants). A method for evaluating the environmental contribution to electric production is shown to provide important information that can be used to support the environmentally sound public policy. Renewable power plants were characterized by high energy return on investment, while fossil fueled plants exhibited average energy efficiency in the 25–36% range. EYR varied from a high of 7.6/1 for hydroelectric generation to about 4.2/1 for the oil thermal plant. The renewable energy plants required the highest environmental inputs per unit of output while fossil fuel plants required relatively small environmental inputs for cooling and to support fuel combustion. Environmental loading was highest with thermal plants. Using an emergy index of sustainability, it is quantitatively shown how renewable energy source plants like wind, hydroelectric, and geothermal had higher sustainability compared to thermal plants.
Article
By means of a systemic analysis of the relationships among components of a system's web, the flows of energy and other resources converging to produce the output (biomass, biodiversity, assets, industrial products) can be evaluated on a common basis, i.e. the content of solar equivalent energy (hereafter, emergy; Odum, H.T., 1996. Environmental Accounting. Emergy and Environmental Decision-Making. Wiley, New York). Indices and ratios based on emergy flows can be calculated and used to evaluate the behavior of the whole system. Their dependence upon the fraction of renewable and nonrenewable inputs as well as locally available versus purchased inputs from outside is stressed. A new index of sustainability is also defined and applied to case studies. The trends of these indices provide useful information about the dynamics of economic systems within the carrying capacity of the environment in which they develop. When a particular sector or production process is focused on, instead of a national economy, emergy based indices provide insights into the thermodynamic efficiency of the process, the quality of its output, and the interaction between the process and its surrounding environment.
Article
By using blocks programmed for each symbol, models using energy systems language can now be computer-simulated directly, by-passing the mathematics, which is done automatically. Energy systems methodology was introduced in 1967 to help aggregate systems overview and connect human verbal thinking to quantitative models constrained by principles of energy and hierarchy. The GENSYS library of symbol blocks for the simulation program EXTEND, when connected on screen, sets up a system of equations and generates output graphs by sending information back and forth between the blocks. The process of programming helped define EMERGY (spelled with an ‘m’), empower and transformity mathematically so that the simulations can plot quantity, flow, EMERGY, empower and transformity. Examples include ecological and economic systems. Blocks and models for elementary teaching use pictorial icons, which help bring systems modeling and simulation to general education without the necessity of writing equations. This paper explains the modeling concepts and how to prepare and use blocks.
Article
Methods of EMergy analysis (a scientifically based measure of wealth with units of solar emjoules [sej]) are explained and illustrated, using the economy of Thailand and two proposed dams on the Mekong River. Thailand's EMergy/$ ratio is near the world average (3.46 · 1012 sej/$), its EMergy per capita ratio (2.98 · 1015 sej/capita) is low compared to developed economies (that of the United States is 29.3 · 1015 sej/capita), and its EMergy balance of payments is negative (the EMergy in exports is almost twice the EMergy in imports). The calculated net yield ratios of the proposed dams were sensitive to the treatment of sediments. The analysis yielded high net yield ratios (12.3/1 and 20.3/1) if sediments were not included, but yielded ratios of only 1.4/1 and 1.3/1 if sediments were included. If the two dams were constructed as a cascade, the combined net yield ratio was 2.5/1 (sediments included). If compared to conventional fossil fuels as a primary source of energy to the economy, the net yield ratio of the electricity generated from the two-dam cascade expressed as fossil fuels was 7.4/1.
Article
Ecosystems and other self-organizing systems develop system designs and mathematics that reinforce energy use, characteristically with alternate pulsing of production and consumption, increasingly recognized as the new paradigm. Insights from the energetics of ecological food chains suggest the need to redefine work, distinguishing kinds of energy with a new quantity, the transformity (energy of one type required per unit of another). Transformities may be used as an energy-scaling factor for the hierarchies of the universe including information. Solar transformities in the biosphere, expressed as solar emjoules per joule, range from one for solar insolation to trillions for categories of shared information. Resource contributions multiplied by their transformities provide a scientifically based value system for human service, environmental mitigation, foreign trade equity, public policy alternatives, and economic vitality.
Il principio della massima potenza energetica come base per una termodinamica della qualità
  • C Giannantoni
Giannantoni, C., 2006. Il principio della massima potenza energetica come base per una termodinamica della qualità. Sigraf.
Energy Analysis Overview of Nations. WP-83-82; International Institute for Applied Systems Analysis
  • H T Odum
  • E C Odum
Odum, H.T., Odum, E.C., 1983. Energy Analysis Overview of Nations. WP-83-82; International Institute for Applied Systems Analysis, Laxenburg, Austria.
Valutazione Energetica ed Emergetica " presso il Corso di Laurea in Scienze Ambientali dell'Università degli Studi di Napoli " Parthenope " . E-mail: pierpaolo.franzese@uniparthenope.it http
  • Docente Di
Docente di " Valutazione Energetica ed Emergetica " presso il Corso di Laurea in Scienze Ambientali dell'Università degli Studi di Napoli " Parthenope ". E-mail: pierpaolo.franzese@uniparthenope.it http://scienzeambientali.uniparthenope.it/pierpaolo.franzese/default.htm
Sustainable architecture and its relationship to industrialized building
  • D S Haukoss
Haukoss, D.S. 1995. Sustainable architecture and its relationship to industrialized building. Ph. D. Thesis. University of Florida. Gainesville. FL. USA.
Environment, Power and Society for the Twenty-First Century: The Hierarchy of Energy, Columbia
  • H T Odum
Odum, H.T., 2007, Environment, Power and Society for the Twenty-First Century: The Hierarchy of Energy, Columbia University Press, USA, 432 pp.
Energia e miti economici. Bollati Boringhieri
  • N Georgescu-Roegen
Georgescu-Roegen N., 1998. Energia e miti economici. Bollati Boringhieri, pp. 240.
  • H Odum
Odum, H.T., 1994, Ecological and General Systems, University Press of Colorado, USA, 644 pp.
Emergy-based evaluation of natural capital and ecosystem services: the case study of Astroni Wildlife Reserve, Italy Accepted for publication
  • M T Brown
  • D Campbell
  • V Comar
  • S L Haung
  • T Rydberg
  • D Tilley
  • S Ulgiati
Emergy-based evaluation of natural capital and ecosystem services: the case study of Astroni Wildlife Reserve, Italy. In: Brown M.T., Campbell D., Comar V., Haung S.L., Rydberg T., Tilley D., Ulgiati S. (Eds.), EMERGY SYNTHESIS 5. Theory and Applications of the Emergy Methodology. Center for Environmental Policy, University of Florida, Gainesville, USA, January 31, 2008. Accepted for publication. In press.
Bioeconomia. Verso un'altra economia ecologicamente e socialmente sostenibile. Bollati Boringhieri
  • N Georgescu-Roegen
Georgescu-Roegen N., 2003. Bioeconomia. Verso un'altra economia ecologicamente e socialmente sostenibile. Bollati Boringhieri, pp. 256. A cura di M. Bonaiuti.
Emergy and Life-Cycle Assessment of Steel Production in Europe
  • S Bargigli
  • S Ulgiati
Bargigli, S., Ulgiati, S., 2003. Emergy and Life-Cycle Assessment of Steel Production in Europe. In: Brown, M.T., Odum, H.T., Tilley, D., Ulgiati, S. (Eds.), Emergy Synthesis, vol. 2, pp. 141-155.
Investigating a 20-year national economic dynamics by means of emergy-based indicators
  • C Cialani
  • D Russi
  • S Ulgiati
  • M T Brown
  • D Campbell
  • V Comar
  • S L Haung
  • T Rydberg
Cialani, C., Russi, D., Ulgiati, S., 2005. Investigating a 20-year national economic dynamics by means of emergy-based indicators. In: Brown, M.T., Campbell, D., Comar, V., Haung, S.L., Rydberg, T., Tilley, D., Ulgiati, S. (Eds.), Emergy Synthesis, vol. 3, pp. 401-416.
Lo stato stazionario
  • H E Daly
Daly, H.E., 1981. Lo stato stazionario. Sansoni.
L'analisi emergetica: una metodica termodinamica per la valutazione della sostenibilità ambientale
  • P P Franzese
  • S Dumontet
  • A Scopa
Franzese, P.P., Dumontet S., Scopa, A., 2003a. L'analisi emergetica: una metodica termodinamica per la valutazione della sostenibilità ambientale. In: Dumontet S., Landi E., Pastoni F. (Eds.), Biologia Clinica, Ambiente, Sicurezza e Qualità: obiettivi di una professione che evolve. Proceedings of the XVI International Conference of the Association of Italian biologists, Abano Terme, Italy, vol. 1: 273-278.
Combined Use of Emergy Synthesis and GIS for Environmental Sustainability Assessment: The Case of the Roccamonfina Natural Park, Italy
  • P P Franzese
  • S Dumontet
  • A Scopa
  • S Ulgiati
Franzese P.P., Dumontet, S., Scopa, A., Ulgiati, S., 2005a. Combined Use of Emergy Synthesis and GIS for Environmental Sustainability Assessment: The Case of the Roccamonfina Natural Park, Italy. In: Brown M.T., Campbell D., Comar V., Haung S.L., Rydberg T., Tilley D., Ulgiati S. (Eds.), EMERGY SYNTHESIS 3. Theory and Applications of the Emergy Methodology. Center for Environmental Policy, University of Florida, Gainesville, USA, pp. 311-327. (ISBN: 0-9707325-2-X).
La struttura delle rivoluzioni scientifiche
  • T Kuhn
Kuhn T., 1969. La struttura delle rivoluzioni scientifiche. Einaudi.
Valutazione Energetica ed Emergetica" presso il Corso di Laurea in Scienze Ambientali dell'Università degli Studi di Napoli "Parthenope". E-mail: pierpaolo
  • Docente Di
Docente di "Valutazione Energetica ed Emergetica" presso il Corso di Laurea in Scienze Ambientali dell'Università degli Studi di Napoli "Parthenope". E-mail: pierpaolo.franzese@uniparthenope.it http://scienzeambientali.uniparthenope.it/pierpaolo.franzese/default.htm