ArticlePDF Available

Abstract and Figures

The genus Pestalotiopsis has received consider-able attention in recent years, not only because of its role as a plant pathogen but also as a commonly isolated endophyte which has been shown to produce a wide range of chemically novel diverse metabolites. Classification in the genus has been previously based on morphology, with conidial characters being considered as important in distinguishing species and closely related genera. In this review, Pestalotia, Pestalotiopsis and some related genera are evaluated; it is concluded that the large number of described species has resulted from introductions based on host association. We suspect that many of these are probably not good biological species. Recent molecular data have shown that conidial characters can be used to distinguish taxa; however, host association and geograph-ical location is less informative. The taxonomy of the genera complex remains confused. There are only a few type cultures and, therefore, it is impossible to use gene sequences in GenBank to clarify species names reliably. It has not even been established whether Pestalotia and Pestalotiopsis are distinct genera, as no isolates of the type species of Pestalotia have been sequenced, and they are morphologically somewhat similar. When selected GenBank ITS accessions of Pestalotiopsis clavispora, P. disseminata, P. microspora, P. neglecta, P. photiniae, P. theae, P. virgatula and P. vismiae are aligned, most species cluster throughout any phylogram generated. Since there appears to be no living type strain for any of these species, it is unwise to use GenBank sequences to represent any of these names. Type cultures and sequences are available for the recently described species P. hainanensis, P. jesteri, P. kunmingensis and P. pallidotheae. It is clear that the important species in Pestalotia and Pestalotiopsis need to be epitypified so that we can begin to understand the genus/genera. There are numerous reports in the literature that various species produce taxol, while others produce newly discovered compounds with medicinal potential and still others cause disease. The names assigned to these novel compound-producing taxa lack an accurate taxo-nomic basis, since the taxonomy of the genus is markedly confused. Until the important species have been epitypi-fied with living strains that have been sequenced and deposited in public databases, researchers should refrain from providing the exact name of species.
Content may be subject to copyright.
Pestalotiopsismorphology, phylogeny, biochemistry
and diversity
Sajeewa S. N. Maharachchikumbura &
Liang-Dong Guo &Ekachai Chukeatirote &
Ali H. Bahkali &Kevin D. Hyde
Received: 8 June 2011 / Accepted: 22 July 2011 / Published online: 31 August 2011
#Kevin D. Hyde 2011
Abstract The genus Pestalotiopsis has received consider-
able attention in recent years, not only because of its role as
a plant pathogen but also as a commonly isolated
endophyte which has been shown to produce a wide range
of chemically novel diverse metabolites. Classification in
the genus has been previously based on morphology, with
conidial characters being considered as important in
distinguishing species and closely related genera. In this
review, Pestalotia,Pestalotiopsis and some related genera
are evaluated; it is concluded that the large number of
described species has resulted from introductions based on
host association. We suspect that many of these are
probably not good biological species. Recent molecular
data have shown that conidial characters can be used to
distinguish taxa; however, host association and geograph-
ical location is less informative. The taxonomy of the
genera complex remains confused. There are only a few
type cultures and, therefore, it is impossible to use gene
sequences in GenBank to clarify species names reliably. It
has not even been established whether Pestalotia and
Pestalotiopsis are distinct genera, as no isolates of the
type species of Pestalotia have been sequenced, and they
are morphologically somewhat similar. When selected
GenBank ITS accessions of Pestalotiopsis clavispora, P.
disseminata, P. microspora,P. neglecta,P. photiniae, P.
theae, P. virgatula and P. v i s m i a e are aligned, most species
cluster throughout any phylogram generated. Since there
appears to be no living type strain for any of these species,
it is unwise to use GenBank sequences to represent any of
these names. Type cultures and sequences are available for
the recently described species P. hainanensis, P. jesteri,P.
kunmingensis and P. pallidotheae. It is clear that the
important species in Pestalotia and Pestalotiopsis need to
be epitypified so that we can begin to understand the
genus/genera. There are numerous reports in the literature
that various species produce taxol, while others produce
newly discovered compounds with medicinal potential and
still others cause disease. The names assigned to these
novel compound-producing taxa lack an accurate taxo-
nomic basis, since the taxonomy of the genus is markedly
confused. Until the important species have been epitypi-
fied with living strains that have been sequenced and
deposited in public databases, researchers should refrain
from providing the exact name of species.
Keywords Epitypify .Host occurrence .Pestalotia .
Pestalosphaeria .Pigmentation .Secondary metabolites .
Taxol
Introduction
Pestalotoiopsis Steyaert is an appendage-bearing conidial
anamorphic form (coelomycetes) in the family Amphi-
sphaeriaceae (Barr 1975,1990;Kangetal.1998,1999), and
molecular studies have shown that Pestalotiopsis is mono-
phyletic (Jeewon et al. 2002,2003,2004). Species of
Pestalotiopsis are common in tropical and temperate
S. S. N. Maharachchikumbura :L.-D. Guo (*)
Key Laboratory of Systematic Mycology & Lichenology,
Institute of Microbiology, Chinese Academy of Sciences,
Beijing 100190, Peoples Republic of China
e-mail: guold@sun.im.ac.cn
S. S. N. Maharachchikumbura :E. Chukeatirote :K. D. Hyde (*)
School of Science, Mae Fah Luang University,
Thasud, Chiang Rai 57100, Thailand
e-mail: kdhyde3@gmail.com
A. H. Bahkali :K. D. Hyde
College of Science, Botany and Microbiology Department,
King Saud University,
P.O. Box: 2455, Riyadh 1145, Saudi Arabia
Fungal Diversity (2011) 50:167187
DOI 10.1007/s13225-011-0125-x
ecosystems (Bate-Smith and Metcalfe 1957)andmaycause
plant disease (Das et al. 2010), are often isolated as
endophytes (Liu et al. 2006; Wei et al. 2007; Watanabe et
al. 2010), or occur as saprobes (Wu et al. 1982; Agarwal and
Chauhan 1988; Yanna et al. 2002;Huetal.2007; Liu et al.
2008a). The genus has received much attention from the
scientific community. However, this not because of its
pathogenic nature (Hyde and Fröhlich 1995; Rivera and
Wright 2000; Yasuda et al. 2003), but rather because its
species have been shown to produce many important
secondary metabolites (Strobel et al. 1996a,2002;Ding
et al. 2008a,b; Aly et al. 2010;Xuetal.2010). The aim of
the present paper on Pestalotia, Pestalotiopsis and similar
genera is to review (1) historical aspects, (2) morpholog-
ical and molecular studies, (3) life mode of taxa, (4)
species numbers and (5) biochemical production by selected
species. The problems of understanding the genus are
discussed and the work needed to resolve these problems
elaborated. In most cases problems arise due to misidentifica-
tion of taxa and the review illustrates the importance of the
correct identification of strains before they are used in
biochemical or other studies.
History
De Notaris (1839) introduced the genus Pestalotia De Not.
based on the generic type Pestalotia pezizoides De Not.,
which occurred on the leaves of Vitis vinifera in Italy. This
species is characterized by 6-celled conidia with four
deeply olivaceous central cells, distosepta, hyaline terminal
cells and simple or branched appendages arising from the
apex (Fig. 1.). Steyaert (1949) revised Pestalotia and
divided the genus into three main groups based on the
conidial forms. Steyaert (1949) also introduced two new
genera, Truncatella Steyaert for 4-celled conidial forms and
Pestalotiopsis Steyaert for the 5-celled forms, while the 6-
celled forms remained in Pestalotia.Pestalotia was consid-
ered to be a monophyletic genus and Steyaert (1949)
suggested that the type species could be distinguished from
Pestalotiopsis by it cupulate conidiomata and distoseptate
median cells. Steyaert (1949) further divided Pestalotiopsis
into additional sections based on the number of apical
appendages. These were the Monosetulatae, Bistulatae,
Trisetulatae and Multisetulatae, which were further divided
into subdivisions. Conidia with a single setulae (apical
appendage) were included in the Monosetulatae, which was
further divided into forms with simple and branched setulae.
Conidia with two setulae or on average two setulae were
included in the Bistulatae. Conidia with three setulae or on
average three setulae were included in the Trisetulatae,
which was further divided by concolorous or versicolorous
conidia, fusiform or claviform conidia and spatulate or non-
spatulate setulae. Conidia with more than three setulae were
included in the Multisetulatae. Steyaert (1949) reduced
Monochaetia (Sacc.) Allesch. from its generic state and
placed species with single setula in section Monosetulatae of
Pestalotiopsis and Trun cat ell a. Steyaert (1949)provided
descriptions of 46 species and Pestalotiopsis guepinii
(Desm.) Steyaert was considered to be the type species of
the newly introduced genus. Pestalotiopsis guepinii is
characterized by 4-euseptate and fusiform conidia with a
hyaline basal cell. Steyaerts introduction of the genus
Pestalotiopsis was not supported by Moreau (1949),
Servazzi (1953) and Guba (1956,1961). Steyaert (1953a,
b,1961, 1963), however, published further evidence in
support of his new genus with answers to the criticisms
made by others.
Fig. 1 Pestalotia pezizoides
De Not. BPI0406483, aConidia
bconidiogenous cells. Scale
bars: ab=20 μm
168 Fungal Diversity (2011) 50:167187
The primary work on Pestalotia was carried out by Guba
(1961) in his Monograph of Monochaetia and Pestalotia.
Guba (1961) divided the genus into the sections quad-
riloculate, quinqueloculatae and sexloculatae for 4-celled
conidia, 5-celled conidia and 6-celled conidia respectively.
For his sections, Guba (1961) used a simple but very
effective system as proposed by Klebahn (1914), which was
based on the number conidial cells. Guba (1961) further
subdivided the sections into different categories, mainly on
the basis of conidial form, colour, and the position, and
character of the setulae. Monochaetia was retained as a
distinct genus based on its single apical appendage, while
Pestalotiopsis and Truncatella, the new genera proposed by
Steyaert (1949), were synonymised with Pestalotia. Guba
(1961) described 258 species of Pestalotia in his mono-
graph. Steyaert (1956) argued that the retention of Mono-
chaetia as a distinct genus based on a single character, a
single apical appendage was incorrect, while other genera
(Pestalotiopsis,Truncatella and Pestalotia) were differentiated
from each other based on a set of characters.
Sutton (1961,1980) gave more weight to conidiogenesis
when considering Pestalotia and Pestalotiopsis, and he
identified three major problems relating to their taxonomy.
According to the Steyaert system, Sutton (1980) concluded
that a large number of species that should be included in
Pestalotiopsis are still placed in Pestalotia by some authors.
In their studies, Guba (1961), Steyaert (1949,1953a,b,
1955,1956,1961) and most other workers used primarily
dried herbarium material. Sutton (1980) pointed out that
when species were grown in artificial culture, they show more
variability and species limits overlap. Therefore, identification
of species from culture and the application of names based on
herbarium taxonomy present a confusing situation.
Sutton (1980) used the investigation of Griffiths and
Swart (1974a,b), which showed the differentiation of
conidial wall development in two species of Pestalotiopsis,
P. funerea (Desm.) Steyaert and P. triseta (Moreau & V.
Moreau) Steyaert and in Pestalotia pezizoides to support
Steyaerts opinions. Griffiths and Swart (1974a,b) electron
microscopic study was carried out to establish the relation-
ship among Pestalotia and Pestalotiopsis and other allied
generic members of Monochaetia and Seimatosporium
Corda. The minute zonation in conidial wall structure of
P. pezizoides was thought to separate it from Pestalotiopsis
(Griffiths and Swart 1974a,b). Until 1990, phylogenetic
understanding of the taxonomy associated with Pestalotiopsis
and allied genera was based mainly on conidial characters
(Steyaert 1949;Guba1961; Nag Rag 1993), conidiogenesis
(Sutton 1980) and teleomorph association (Barr 1975,1990;
Metz et al. 2000; Zhu et al. 1991).
Morphological characters used to differentiate species of
Pestalotiopsis and similar genera are limited (Hu et al. 2007);
the morphological characters are plastid and morphological
markers vary between host and environment (Egger 1995).
Hu et al. (2007) showed that colony morphology (colour,
growth rate and texture) is highly variable within single
isolates of Pestalotiopsis; this phenomenon can be easily
observed through repeated subculturing. Also within a single
species, conidial morphology (shape and colour of the
median cells), growth rate and fruiting structure, may vary
(Jeewon et al. 2003). Satya and Saksena (1984)observed
Pestalotiopsis glandicola (Castagne) Steyaert and P. versi-
color var. polygoni and found that the intensity of the median
cells varied with culture and host and concluded that colour
of median cells cannot be used to judge their taxonomic
position. Dube and Bilgrami (1965)observedPestalotiopsis
darjeelingensis Dube, Bilgrami & H.P. Srivast. and showed
morphological variation of conidia in culture (dimension,
length of the setulae, shape, number of cells and the colour
of the cells). Similar observations were made by Purohit and
Bilgrami (1969) when studying more than 100 pathogenic
strains. Conidiogenesis is also confusing when used for
species separation; Watanabe et al. (1998), showed that
Pestalotiopsis neglecta (Thüm.) Steyaert and P. guepinii
having similar acervuli development.
Jeewon et al. (2003) and Tejesvi et al. (2009) compared
morphology with sequence data and showed that species of
Pestalotiopsis display considerable diversity in morphology
and that isolates grouped together based on similarities in
conidial morphology. Hu et al. (2007) found that conidial
characters such as conidial length, median cell length,
conidial width and colour of median cells were stable
characters within Pestalotiopsis; however, the length of the
apical and basal appendages varied. Jeewon et al. (2003)
evaluated the morphological characters that could be used
to differentiate species of Pestalotiopsis. He suggested that
melanin granule deposition within the cell matrix providing
pigmentation to the median cells has taxonomic value; this
agreed with the findings of Griffiths and Swart (1974a,b).
He suggested that the colour of median cells was useful
for distinguishing species of Pestalotiopsis. Tejesvietal.
(2009) also agreed that species of Pestalotiopsis can be
distinguished on the basis of morphological characters
rather than host-specificity or geographical location. Liu et
al. (2010a) proposed that instead of using concolorous
and versicoloras proposed by Steyaert (1949) and Guba
(1961), brown to olivaceousand umber to fuliginous
median cells can be a key character in distinguishing
species in Pestalotiopsis. However the pigmentation can
be effected by environmental conditions, different stages
of spore maturity and the observersexpertise(Liuetal.
2010a), hosts, medium, and even different generations
through subculturing (Purohit and Bilgrami 1969;Satya
and Saksena 1984;Huetal.2007). The pigmentation of
the median cell however, can be stable even within a
successive subculture; when using standard conditions and
Fungal Diversity (2011) 50:167187 169
culture on autoclaved carnation leaf segments (Liu et al.
2010a).
The teleomorph of a whole fungus has been traditionally
classified and named separately from their anamorphs. Each
of the morphs of anamorphosis was also given different
binomials as if they were different species. As a result, a whole
fungus finds itself in two classification and nomenclature
systems against the principle of natural classification
(Shenoy et al. 2007). The gene responsible for the
expression of teleomorph and anamorph evolve at different
rates; anamorph characters tend to be morphologically
divergent even with the monophyletic groups while
teleomorph characters are highly conserved (Chaverri et al.
2003; Dodd et al 2003). The teleomorph characters can thus
be used as a precise taxonomic marker for Pestalotiopsis.
However the anamorph of Pestalotiopsis is Pestalosphaeria
M.E. Barr and only twelve species are known as compared
to the asexual state (235 species names). Pestalotiopsis has
been linked to Neobroomella Petr. one species and was
described by Petrak (1947)andPestalosphaeria (12
species), the genus being described by Barr (1975). As
such, the earliest name is Neobroomella, but this state has
rarely been recorded. Pestalotia De Not. has been linked to
Broomella Sacc. (1883) which has 20 species.
Since Pestalotiopsis is the most commonly used name,
we therefore suggest that this name be adopted for the
anamorph and teleomorph forms. However, if Pestalotia is
found to incorporate species of Pestalotiopsis in future
studies, then this name would be used to represent
Broomella, Neobroomella and Pestalosphaeria.
Morphological characters use in the differentiation
of species
Conidial morphology (Fig. 2.) is the most widely used
taxonomic character for the genus Pestalotiopsis. Most
species are divided into different groups based on the size
of the conidia. The length and width are good taxonomic
markers for the genus and stable within the different media
and the generations in most cases (Hu et al. 2007). Colour
of the median cells is still a widely used character, and all
species separate into three groups based on this- concolorous,
versicolorous umber olivaceous and versicolorous fulig-
inous olivaceous. Molecular evidence indicates that it is
more precise to group species according to concolorous
and versicolorous rather than the above three groups
(Jeewon et al. 2003). The length of the apical appendages
and the number of the apical appendages are also widely
used characters for species identification. Some species
can also be identified by the presence of knobbed apical
appendages. The apical appendages can arise from the top,
middle, bottom or different positions in the apical hyaline
cells and such characters are widely used in species
identification. Furthermore the apical appendages can be
divided into branches; in some species presence or
absence of the basal appendages is another character for
species diagnosis.
Recent molecular data
Hu et al. (2007) showed that the ITS gene is less
informative than the β-tubulin gene in differentiating
endophytic species of Pestalotiopsis in Pinus armandii
and Ribes spp. When gaps in the ITS region are treated as a
missing data, the total number of informative characters is
5% and this results in difficulty in separating taxa and low
statistical support. When β-tubulin gene data are used and
gaps are treated as missing data, the number of informative
characters is about 11%, and when gaps are treated as
newstate, it is more than 15%. Thus, Hu et al. (2007)
pointed out that the β-tubulin genes resolves Pestalotiopsis
phylogeny better than the ITS gene. A combination of both
the β-tubulin and ITS genes gave better phylogenetic
resolution, and they suggested that at least two genes
should be used to resolve the phylogeny of species of
Pestalotiopsis. However, Liu et al. (2010a) disagreed with
Hu et al. (2007) concerning the ITS region as being less
informative when compared to the β-tubulin region. They
indicated that proper analysis and alignment of the ITS
region can be a useful character in grouping Pestalotiopsis
to different types of pigmentation, which can be used as a
key character for the phylogeny of the species. Random
amplification of polymorphic DNA (RAPD) can also be
used to detect genetic diversity in species of Pestalotiopsis
(Tejesvi et al. 2007a). Tejesvi et al. (2009) showed that the
Fig. 2 Some commonly use conidial characters for Pestalotiopsis
species identification (1) colour of the median cells alight
concolorous bdark concolorous cversicolorous (2) size of the
conidia dsmall conidia elarge conidia frelatively long conidia g
relatively broad conidia (3) number of apical appendages htwo
apical appendages ithree apical appendages jfive apical appendages
(4) presence or absence of knobbed apical appendages kapical
appendages without knobbed apical appendages lapical appendages
with knobbed apical appendages (5) length of the apical appendages
mrelatively short apical appendages nrelatively large apical
appendages (6) branched or unbranched apical appendages o
branched apical appendages (7) position of the apical appendages
attached to the apical cell pattached to the top of the apical
appendages qattached to the middle of the apical appendages rsome
attached to the bottom of the apical cell (8) presence or absence of
basal appendages spresence of apical appendages tabsence of apical
appendages. Scale bars: ab=20 μm
b
170 Fungal Diversity (2011) 50:167187
Fungal Diversity (2011) 50:167187 171
ITS region is more informative than internal transcribed
spacerrestriction fragment length polymorphism (ITS-
RFLP). They used five restriction enzymes (Alu I, Hae III,
Ava II, Hpa II and Taq I) in their ITS-RFLP analysis and
showed that ITS-RFLP profiles were distinctly different in
P.virgatula (Kleb.) Steyaert and P.theae (Sawada) Steyaert
and intraspecific polymorphism highly variable in P. micro-
spora (Speg.) G.C. Zhao & N. Li. Based on the ITS
sequence, pathogenic and endophytic strains clustered into
distinct groups and these clusters were irrespective of the
host, parts of the host or location.
Life cycle in Pestalotiopsis
A disease cycle of a pathogen may be closely related to its
life cycle, and the former refers to the emergence,
development and maintenance of the disease (Agrios
2005) but is not discussed further here. Species of
Pestalotiopsis are not highly host-specific and taxa may
have the ability to infect a range of hosts (Hopkins and
McQuilken 2000; Keith et al 2006). Species of Pestalo-
tiopsis cause a variety of disease in plants, including canker
lesions, shoot dieback, leaf spots, needle blight, tip blight,
grey blight, scabby canker, severe chlorosis, fruit rots and
leaf spots (Pirone 1978; Kwee and Chong 1990; Xu et al.
1999; Tagne and Mathur 2001; Sousa et al. 2004; Espinoza
et al. 2008). Pirone (1978) considered that species of
Pestalotiopsis are weak or opportunistic pathogens and may
cause little damage to ornamental plants; however, Hopkins
and McQuilken (2000) pointed out that some species of
Pestalotiopsis may cause serious damage to pot grown
plants and the number of known infected plant species is
generally increasing.
Pathogenic species of Pestalotiopsis initially make
contact with the host where the infection occurs (inoculum),
probably by means of the conidia or fragmented spores
(Espinoza et al. 2008). These inocula may survive during
harsh weather conditions and may cause primary infections.
Secondary inoculum produced on diseased tissue may
cause secondary infections and increase the severity of the
disease. The source of the inoculum can be wild plantations
(Keith et al. 2006), flowers (Pandey 1990), crop debris,
disease stock plants, used growing media, soil and
contaminated nursery tools (McQuilken and Hopkins
2004), splashed water droplets (Hopkins and McQuilken
1997; Elliott et al. 2004) and also spores in the air (Xu et al.
1999). Species of Pestalotiopsis have constantly been
isolated as endophytes from plant tissues (Wei and Xu
2004;Liuetal.2006; Wei et al. 2005,2007; Tejesvi et al.
2009; Watanabe et al. 2010). We suspect that many
endophytic species remain as dormant symptomless
inhabitants of plants until the plant is stressed, and then
the endophytes become pathogens. This is thought to
occur in other pathogenic genera (Gehlot et al. 2008). The
pathogenic phase may be triggeredbyacombinationof
environmental factors, plant susceptibility and the viru-
lence of the pathogen. However, further research is needed
to prove the endophytic pathogenic relationship in the
genus. Pestalotiopsis is also considered to be a weak
pathogen (Madar et al. 1991), and most weak pathogens
penetrate the host through natural openings such as stoma,
lenticels and hydathodes (Agrios 2005). Wright et al. (1998)
stated that species of Pestalotiopsis only infect wounded or
stressed plants, so pruning wounds or other physical means
play important roles in disease development (Elliott et al.
2004; McQuilken and Hopkins 2004; Keith et al. 2006).
Plants may also be stressed due to insect, pesticide or sun
damage (Hopkins and McQuilken 2000). High temperature,
high rainfall and human activities may also trigger infections,
and this may lead to disease development (Tuset et al. 1999;
Hopkins and McQuilken 2000; Elliott et al. 2004). The
anamorph-teleomorph relationships and life cycles are not
well known for most species, as the sexual stage does not
often develop (Armstrong-Cho and Banniza 2006). There-
fore, conidia therefore appear to play a key role in providing
the inocula. A general disease cycle for Pestalotiopsis is
illustrated in Fig. 3.
The spore of Pestalotiopsis is considered to be a dry
spore. Watanabe et al. (2000) studied conidial adhesion and
germination of spores of P. neglecta and showed that
infection occurs in four stages. At the beginning, the lower
median cell germinates and becomes firmly attached to the
substrate. Future successive infections can be achieved by
two upper median cells. In the first stage, weak adhesion is
achieved by the mucilaginous matrix coating the conidia. A
second weak adhesion occurs at the bases of the pedicel.
The next two stages provide a strong attachment by release
of fibrillar adhesive substances. In the third stage, fibrillar
adhesive substances are produced along the length of the
pedicel to the apex of the basal cell and at times a smaller
amount of fibrillar material is released from the apical
appendages. The fourth stage involves the release of
fibrillar material at the point of germ tube emergence. Nag
Rag (1993) described conidiomata of the genus as variable,
ranging from acervuli to pycnidia. Conidiomata can be
immersed to erumpent, unilocular to irregularly pluriloc-
ular with the locules occasionally incompletely divided
and dehiscence by irregular splitting of the apical wall or
overlying host tissue (Nag Rag 1993). Conidiophores
partly or entirely develop inside the conidiomata, and they
can be reduced to conidiogenesis cells which are discrete or
integrated, cylindrical, smooth, colourless and invested in
mucus (Nag Rag 1993). Pycnidia can mostly be seen with
the unaided eye as a black or brown spore masses with
copious conidia.
172 Fungal Diversity (2011) 50:167187
Control strategies are needed for serious Pestalotiopsis
disease, and therefore, knowledge of the causal agent and
the disease cycle is important. Precise knowledge of the
plant/ pathogen interaction and its functional variation
according to the environmental factors are important for
integrated disease management using cultural, biological
and chemical methods. Elliott et al. (2004) stated that
Pestalotiopsis may produce large numbers of spores which
Fig. 3 Disease cycle of the genus Pestalotiopsis (References: revised and redrawn; Von Arx 1974; Nag Rag 1993; Kobayashi et al. 2001)
Fungal Diversity (2011) 50:167187 173
are easily dispersed in air or by water splash, thus sanitation
and disease management are critical. They suggested that
water management strategies, such as elimination of
overhead irrigation, decreasing wetness of leaves, increas-
ing the spacing of plants and increasing the air circulation,
can reduce disease in palm plantations. Different harvesting
factors also directly affected disease development in tea
plantations. Sanjay et al. (2008) showed that highest disease
incidence occurred in continuously shear-harvested fields
and least in hand-plucked plantations, and they evaluated
systemic fungicide and biocontrol agents such as a
Trichoderma, Gliocladium and Pseudomonas for use in
controlling grey blight disease in tea.
Mode of life
Species of Pestalotiopsis commonly cause disease in a
variety of plants (Hyde and Fröhlich 1995; Hopkins and
McQuilken 2000; Tagne and Mathur 2001), are commonly
isolated as endophytes (Kumar and Hyde 2004; Wei and Xu
2004; Wei et al. 2005,2007; Liu et al. 2006; Tejesvi et al.
2009; Watanabe et al. 2010) and some species likely have
endophytic and pathogenic stages in their life cycle (Wei et
al. 2007: Tejesvi et al. 2009). Species have also been
recorded as saprobes (Guba 1961; Wu et al. 1982; Agarwal
and Chauhan 1988; Yanna et al. 2002; Liu et al. 2008a)
where they are recyclers of dead plant material (Okane et al.
1998; Osono and Takeda 1999; Tokumasu and Aoiki 2002)
and even rarely cause disease in humans (Sutton 1999)
Sexual and asexual forms
One fifth of all known anamorphic fungi lack known sexual
states (Shearer et al. 2007), and out of 2,873 anamorphic
genera names, 699 genera and 94 anamorph-like genera are
linked to a sexual state (Hyde et al. 2011). The links
between sexual and asexual stage are mostly from indirect
evidence, with some links known through experimental
or molecular data (Kendrick 1979;Reynolds1993;
Shenoy et al. 2007;Hydeetal.2011). Pestalotiopsis is
a species-rich anamorphic genus with species mostly
lacking sexual morphogenesis, unlike the coelomycetous
genera Colletotrichum and Phyllosticta (Armstrong-Cho
and Banniza 2006; Wulandari et al. 2009)andPenicillium
(Cannon and Kirk 2000). The sexual states or teleo-
morphs of Pestalotiopsis species have been identified as
Pestalosphaeria (Barr 1975)andNeobroomella (Kirk et
al. 2008).
The asexual Pestalotiopsis state and ascomycetous
sexual state have rarely been recorded in the same host
plant (Barr 1975; Nag Raj 1985; Hyde 1996). However, it is
not always clear that the two stages found are definitely the
same biological species and therefore molecular evidence is
needed to link them. In the laboratory species of Pestalo-
tiopsis rarely develop sexual forms (Metz et al. 2000). Zhu
et al. (1991) induced Pestalosphaeria accidenta P.L. Zhu,
Q.X. Ge & T. Xu and P. jinggangensis P.L. Zhu, Q.X. Ge &
T. Xu to form on potato dextrose agar (PDA). However, this
took 5 to 6 months of incubation. Metz et al. (2000)
obtained the sexual state of P. microspora, an endophytic
isolate that produced taxol. The asexual stage formed after
36 weeks on water agar with dried yew needles when
incubated at 1620 C with 12 h of light per day and was
identified as Pestalosphaeria hansenii Shoemaker & J.A.
Simpson. The twelve sexual states known for species of
Pestalotiopsis are listed in Table 1.
Pestalotiopsis Steyaert as a plant pathogen
Pestalotiopsis is a relatively important plant pathogenic
genus known mostly from the tropics, where it causing leaf
blights (Guba 1961) in many plant species (Hyde and
Fröhlich 1995;Xuetal.1999; Das et al. 2010). Species
may also cause rots of fruit and other post harvest disease
(Ullasa and Rawal 1989; Korsten et al. 1995; Xu et al.
1999). It has been estimated that in southern India grey
blight disease of tea (Camellia sinensis)causedby
Pestalotiopsis has resulted in 17% production loss (Joshi
et al. 2009) and 1020% yield loss in Japan (Horikawa
1986). Five species of Pestalotiopsis - have been recorded
from tea (Agnihothrudu 1964), although P. longiseta
(Speg.) H.T. Sun & R.B. Cao and P. theae are considered
to be the major species causing grey blight (Joshi et al. 2009).
Pestalotiopsis sydowiana (Bres.) B. Sutton causes foliage,
root and stem-base browning disease in container-grown
ericaceous plants, resulting in plant losses and reduced plant
quality (McQuilken and Hopkins 2004). Antheraea assa-
mensis, a silkworm endemic to the north eastern part of India
that depends on Perseabombycina as the primary food plant,
is endangered due to grey blight disease cause by Pestalo-
tiopsis disseminata (Thüm.) Steyaert (Das et al. 2010).
Pestalotiopsis funerea was found to cause leaf spots of
Hakea sericea, a plant that is considered as an invader of
natural habitats in northern Portugal, and this may allow
its use in biological control (Sousa et al. 2004). P.
menezesiana (Bres. & Torrend) Bissett and P. uvicola
(Speg.) Bissett causes postharvest disease of grape (Xu et
al. 1999)andP. clavispora (G.F. Atk.) Steyaert, P.
disseminata and P. microspora cause scab in Guava in
Hawaii (Keith et al. 2006). The economically important
blueberry fruit from Chile is infected by pathogenic P.
clavispora and P. n e g l e c t a , which cause canker and twig
dieback (Espinoza et al. 2008).
174 Fungal Diversity (2011) 50:167187
In Sicily, the economically important plant Laurus nobilis is
infected by P. uvicola, which causes causing leaf spots and
stem blights (Vitale and Polizzi 2005). Chlorosis and
reduction of growth were recorded in maize fields in the
Cameroons when the plants were infected by P. n e g l ec t a
(Tagne and Mathur 2001). The medicinally important
ornamental shrub Lindera obtusiloba, which grows wild in
the mountain areas of the Korean Peninsula, is infected by P.
microspora, and the affected leaves initially have grey or dark
brown lesions, surrounded by yellowish halos; these enlarge,
coalesce and become entire at a later stage, finally causing
full leaf blight (Jeon et al. 2007). Affected leaves of
Hymenaea courbaril show symptoms of leaf spots and the
pathogen was identified as a P. subcuticularis (Guba) J.G Wei
& T. Xu (Fail and Langenheim 1990). Pathogenic P. funerea
infects conifer species and causes necrosis on infected tissues
and sometimes death of the plants involved (Bajo et al.
2008). The medicinal and ornamental Carapa guianensis is
infected by P. macrochaeta (Speg.) J. Xiang Zhang & T. Xu,
and foliar blight has been observed in the lower canopy of the
plants (Halfeld-Vieira and Nechet 2006). Species of Pestalo-
tiopsis also have the potential to cause leaf and/or fruit spots
on ginger, rambutan, lychee and orchid (Keith and Zee 2010)
Pestalotiopsis glandicola is a postharvest pathogen on
mango in Bangalore; the disease can be observed on the
leaves throughout the year and it provides the inoculum for
mature fruits, which develop postharvest decay during
storage (Ullasa and Rawal 1989). Fruit rot of grapevine is
caused by P. menezesiana and P. uvicola, and the pathogens
were not only isolated from diseased and healthy fruits but
also from the airspora in grape orchards; thus, the authors
pointed out that latent infection or conidial attachment to
the barriers in the field will lead to postharvest disease in
grapes (Xu et al. 1999). Pestalotiopsis fruit rot is one of the
serious postharvest diseases of rambutan fruit in Thailand
(Sangchote et al 1998). Pestalotiopsis psidii (Pat.) Mordue
is considered to be the causal agent of scabby fruit canker
of guava in India and infection results in rapid yield loss
and affects the postharvest quality of the fruits (Kaushik
et al. 1972).
Pestalotiopsis as an endophyte
Most resent Pestalotiopsis research is based on endophytic
isolates (Liu et al. 2006; Wei et al. 2007; Watanabe et al.
2010; Aly et al. 2010) and has resulted in a four new species
being described. These are P. hainanensis A.R. Liu, T. Xu &
L.D. Guo, P. jesteri Strobel, J. Yi Li, E.J. Ford & W.M. Hess,
P. kunmingensis J.G. Wei & T. Xu and P. pallidotheae Kyoko
Watanabe & Yas. Ono. Most endophytic studies have used
morphological characters and either gene sequence data (Hu
et al. 2007; Liu et al. 2007; Wei et al 2007)orRFLP
technique (Tejesvi et al. 2007a) or a combination of gene
sequence and RFLP techniques (Tejesvi et al. 2009)to
distinguish species. The distribution of the endophytic
species of Pestalotiopsis is ubiquitous and is not largely
influenced by geographical factors (Wei et al. 2007; Tejesvi
et al. 2009). Tejesvi et al. (2005) stated that the endophytic
species of Pestalotiopsis dominant in the winter season and
their colonization are comparatively low in the monsoon
season. The colonization frequency of species of Pestalo-
tiopsis increased with the increasing the age of the host plant
and colonization frequency was variable (Wei et al. 2007).
Some endophyte studies in which species of Pestalo-
tiopsis have been recovered are listed in Table 2.
Pestalotiopsis as a saprobe
Species of Pestalotiopsis have been repeatedly isolated as
saprobes from dead leaves, bark and twigs (Guba 1961).
Table 1 List of anamorphs with known teleomorphs
Asexual form Sexual form
Pestalotiopsis baarnensis Steyaert Pestalosphaeria accidenta
Pestalotiopsis sp. Pestalosphaeria alpiniae P.K. Chi & S.Q. Chen
Pestalotiopsis sp. Pestalosphaeria austroamericana Nag Raj & DiCosmo
Pestalotiopsis guepinii var macrotricha (Kleb.) B. Sutton Pestalosphaeria concentrica M.E. Barr
Pestalotiopsis sp. Pestalosphaeria elaeidis (C. Booth & J.S. Robertson) Aa
Pestalotiopsis eugeniae (Thüm.) S. Kaneko Pestalosphaeria eugeniae P.K. Chi & S.M. Lin
Pestalotiopsis neglecta Pestalosphaeria gubae Tak. Kobay., Ishihara & Yas. Ono
Pestalotiopsis microspora Pestalosphaeria hansenii
Pestalotiopsis podocarpi (Dennis) X.A. Sun & Q.X. Ge Pestalosphaeria jinggangensis
Pestalotiopsis sp. Pestalosphaeria leucospermi Samuels, E. Müll. & Petrini
Pestalotiopsis maculiformans (Guba & Zeller) Steyaert Pestalosphaeria maculiformans Marinc., M.J. Wingf. & Crous
Pestalotiopsis besseyi (Guba) Nag Raj Pestalosphaeria varia Nag Raj
Fungal Diversity (2011) 50:167187 175
Many species have been isolated from soil, polluted stream
water or are associated with the deterioration of wood,
paper, fabrics and decay of wool (Guba 1961). For an
example, P. bicolor (Ellis & Everh.) A.R. Liu, T. Xu & L.D.
Guo, P. funerea,P. monochaetioides (Doyer) Steyaert, P.
montellica (Sacc. & Voglino) Tak. Kobay., P. disseminata,P.
foedans (Sacc. & Ellis) Steyaert, P. versicolor and P.
virgatula are common species recorded either from
decaying leaves or bark. Several saprobic species of
Pestalotiopsis arelistedinTable3.
Pestalotiopsis as a parasymbiont
Lichen symbiosis is an association between a fungus (the
mycobiont) and an alga or a cyanobacterium (the photo-
biont) (Schwendener 1868). Most lichens associate with
only one fungal species, while some have additional
species. In most cases these additional fungal species are
parasitic while few are parasymbiont. A parasymbiont is a
secondary fungus present in the lichen thallus, growing in
intimate association with the primary symbionts without
causing them any apparent harm (Sun et al. 2002).
Pestalotiopsis maculans (Corda) Nag Raj is considered to
be the dominant parasymbiont in the North American
lichen species Cladonia rangiferina, C. subtenuis, C. mitis,
C. leporina, Parmotrema perforatum and Usnea strigosa
(Sun et al. 2002).
Pestalotiopsis as potential human and animal pathogens
Species of Pestalotiopsis are also known to cause human
and animal disease. Pestalotiopsis has been isolated from
Table 2 List of endophytes and associated host
Species Host References
P.clavispora Camellia oleifera, C.sinensis, Terminalia arjuna,
Podocarpus macrophyllus
Liu et al. 2007; Tejesvi et al. 2007a,2009;
Weietal.2007
P. conigena (Lév.) G.C. Zhao & N. Li Lithocarpus glabra, C.nitidissima Wei et al. 2005,2007
P. funerea Catharanthus roseus Srinivasan and Muthumary 2009
P. hainanensis Podocarpus macrophyllus Liu et al. 2007
P.heterocornis (Guba) Y.X.Chen Camellia japonica, C.oleifera, Castanopsis
sclerophylla, Cephalotaxus fortunei, Podocarpus
macrophyllus, Lithocarpus glabra,
Wei et al. 2005,2007; Liu et al. 2007
P. jesteri Fragraea bodenii Strobel et al. 2000
P.karstenii (Sacc. & P. Syd.) Steyaert Camellia japonica, C.sasanqua Liu et al. 2007; Wei et al. 2007
P.kunmingensis Podocarpus macrophyllus Wei et al. 2007
P.mangifolia (Guba) J. Xiang Zhang
&T.Xu
Camellia japonica, C.reticulate, C.sasanqua,
Podocarpus nagi
Liu et al. 2007; Wei et al. 2007
P.microspora Azadirachta indica, Camellia sinensis, Maytenus
ilicifolia, Podocarpus macrophyllus Terminalia
arjuna, T. chebula, Taxus wallichiana,
Taxodium distichum,
Li et al. 1996; Strobel et al. 1996a,b;
Weietal.2005,2007; Gomes-Figueiredo
et al. 2007; Liu et al. 2007; Tejesvi et al.
2007a,2009
P.neglecta Camellia sinensis, C.nitidissima, Podocarpus
macrophyllus, P.nagi, Taxus chinensis,
T.yunnanensis
Liu et al. 2007; Wei et al. 2007
P.olivacea (Guba) G.C. Zhao & J. He Camellia sasanqua, Podocarpus macrophyllus, Liu et al. 2007; Wei et al. 2007
P.oxyanthi (Thüm.) Steyaert Camellia nitidissima, Podocarpus macrophyllus Liu et al. 2007; Wei et al. 2007
P.paeoniae (Servazzi) Steyaert Camellia sasanqua, Cephalotaxus fortune,
Ginkgo biloba, Podocarpus macrophyllus,
Taxus yunnanensis
Wei et al. 2005,2007 Liu et al. 2007
P. palliditheae Pieris japonica Watanabe et al. 2010
P.photiniae (Thüm.) Y.X. Chen Camellia japonica, C.sasanqua, Podocarpus
macrophyllus P.nagi, Taxus chinensis,
Acer palmatum
Wei et al. 2005,2007; Liu et al. 2007
P.subcuticularis Camellia sasanqua, Taxus yunnanensis, T.chinensis, Liu et al. 2007; Wei et al. 2007
P. submersa Sati & N. Tiwari Equisetum sp., Lyonia ovalifolia Sati and Belwal 2005
P.theae Camellia nitidissima, C.sinensis, Holarrhena
antidysenterica, Podocarpus macrophyllus,
Terminalia arjuna
Liu et al. 2007; Tejesvi et al. 2007a,2009;
Weietal.2007
P.versicolor (Speg.) Steyaert Tamarindus indica Liu et al. 2007,2010a
176 Fungal Diversity (2011) 50:167187
the human sinuses, fingernails, a bronchial biopsy, eyes,
scalp and feet with corneal abrasions (Sutton 1999). One
isolated from cotton was tested in a toxicity bioassay,
which indicated that it caused reduction in weight,
pathological abnormalities and even mortality in rats
(Diener et al. 1976)
Pestalotiopsis in extreme environments
Some species of Pestalotiopsis have also been isolated from
extreme environments and these isolates have been shown
to produce bioactive metabolites (Tejesvi et al. 2007b).
Pestalotiopsis microspora isolated from Taxu s sp. from the
foothills of Himalayas produced taxol (Strobel et al. 1996a),
P. microspora isolated from Sepik River drainage system in
Papua New Guinea produced isopestacin (Strobel et al.
2002)andPestalotiopsis sp. obtained from the gut of a grass
hopper (Chondracris rosee) produced two new phytotoxic
g-lactones, pestalotines A and B (Zhang et al. 2008).
Endophyte-pathogen relationships
Lee et al. (1995) was able to show that P. microspora has an
endophyte-pathogen relationship with the North American
endangered tree Torreya taxifolia.Theydemonstrated
that P. microspora inhabits the inner bark of the tree
without causing symptoms. However, physiological or
environmental factors trigger the fungus to become
pathogenic. Typical symptoms include needle spots,
needle death and stem cankers. The pathogenic ability
of the fungus depends upon it producing phytotoxins,
pestalopyrones, hydroxypestalopyrones and pestalosides.
At the same time antifungal activity by the fungus
produces exudates of pestaloside; this competes with
other fungi. Pestalotiopsis subcuticularis naturally
inhabits Hymenaea courbaril (Leguminosae) and remains
dormant until leaves become mature. Fail and Langenheim
(1990) stated that when leaves become mature the fungal
hyphae spread and enter in to the intracellular spaces of the
leaves. When the plant tissues are damaged due to
mechanical injury such as insect feeding, active infection
by the fungus occurs. The typical symptoms of infected
leaves included serious leaf blight.
Phylogenetic analysis of existing data in GenBank
ITS sequences of 48 species of Pestalotiopsis were down-
loaded from GenBank and aligned using Clustal X. The
alignment was optimized manually to allow maximum
alignment and maximum sequence similarity. Gaps were
treated as missing data. Phylogenetic analysis was carried
out based on the aligned dataset using PAUP* 4.0b10
(Swofford 2002). Ambiguously aligned regions were
excluded from all analyses. Trees were inferred using the
heuristic search option with TBR branch swapping and
1,000 random sequence additions. Maxtrees were unlimited,
branches of zero length were collapsed and all multiple
parsimonious trees were saved. Trees are figured in Treeview
(Page 1996).
An example of the confusion which results from
molecular data is shown in Fig. 4. In this phylogram we
downloaded 44 selected strains of eight species which have
high number of ITS sequences in GenBank plus 4
sequences from ex-type cultures available in GenBank
(Table 4).
According to Jeewon et al. (2003) and Liu et al. (2010a),
pigmentation is a highly weighted character in the lineage of
species of Pestalotiopsis and which can be differentiated into
two main groups based on the colour of the median cells.
This recent finding was previously supported in the
separation of species by Guba (1961) and Steyaert (1949),
based on versicolorous median cells as well as those species
characterized by concolorous median cells. Jeewon et al.
(2003) showed that species such as P. theae with dark
colored concolorous median cells with knobbed apical appen-
dages should be included in the versicolorous group. Jeewon et
al. (2003) argued that the arrangement of Guba (1961)that
groups the versicolorous assemblages of species into umber
olivaceous and fuliginous olivaceous depends on the color
intensity of the median cells. This statements was followed by
Liu et al. (2010a) and they proposed the use of brown to
Table 3 List of recently recorded saprobes with their host/substrata
Species Host/ substrate References
Pestalotiopsis sydowiana Dead leaves of Calluna vulgaris, Erica sp., Rhododendron ponticum,
R. hybridum,Prunus laurocerasus
Dennis 1995; Ellis and Ellis 1997
P. funerea Dead leaves of Rhododendron sp, Chamaecyparis sp., Cupressus sp.,
Pinus sp., Juniperus sp.
Dennis 1995; Ellis and Ellis 1997
P. theae Seeds of Diospyros crassiflora Douanla-Meli and Langer 2009
P. guepinii Decaying leaves of Dracaena loureiri Thongkantha et al. 2008
P. palmarum Dead culms of Schoenoplectus triqueter Wu et al. 1982
Fungal Diversity (2011) 50:167187 177
olivaceousand umber to fuliginouscolour median cells as
valid for the taxonomy of the genus instead of the use of the
concolorousand versicolormedian cells grouping system
proposed by Steyaert (1949)andGuba(1961).
Pestalotiopsis clavispora, P. disseminata, P. microspora,
P. neglecta,P. photiniae, P. theae,P. virgatula and P. vismiae
can be divided into two groups depending mainly on the
colour of the median cells. One group is the versicolorous
group, consisting of P. clavispora, P. photiniae and P.
virgatula, and dark concolorous median cells with knobbed
apical appendages containing the P. theae group. The other
group consists of species with concolorous median cells (i.e.,
P. disseminata, P. microspora,P. neglecta and P. vismiae.
Almost all strains that separate into two main clades depend
on the concolorous and versicolor system, and only P.
microspora strains AY924295 and FJ478120 cluster in the
wrong clade. However, within the two main groups, the
respective species distributions are scattered and most
species overlap with each other. Because of the limitation
of characters used to differentiate species (Hu et al. 2007)
and many overlapping characters (Sutton 1980), identifica-
tion to species in Pestalotiopsis is presently difficult. For an
example according to Guba (1961), P. disseminata, P.
microspora,P. neglecta and P. vismiae within the concolo-
Fig. 4 Maximum parsimony
phylogram generated from ITS
sequence analysis of selected
sequences from selected species
of Pestalotiopsis including
P. clavispora, P. disseminata,
P. microspora,P. neglecta,
P. photiniae, P. theae,P.virgatula
and P. vismiae downloaded from
GenBank with other
related taxa. Data were analyzed
with random addition sequence,
unweighted parsimony and
treating gaps as missing data.
Type sequences of Pestalotiopsis
pallidotheae,P. hainanensis,
P. jesteri and P. kunmingensis are
in black and bold
178 Fungal Diversity (2011) 50:167187
rous group have the same conidia size (1826×58μm).
Pestalotiopsis vismiae can be differentiated as it has two
apical appendages, while Pestalotiopsis microspora is
differentiated from P. neglecta and P. dissementa by the
length of the apical appendages. Pestalotiopsis neglecta and
P. dissementa can be distinguished from each other only by
the shape of the conidia. Most of above characters vary
when in culture and following successive subculturing (Hu
et al. 2007). Within the versicolorous group, P. clavispora
and P. photiniae are morphologically very similar (conidia
size 1926×68.5 μm), while P. virgatula can be differen-
tiated from P. clavispora and P. photiniae by its relatively
small conidia (1723×68μm). However, these characters
overlap and thus identification to these species is rather
difficult. For this reason, naming of species is difficult and
highly subjective and many sequences for Pestalotiopsis
deposited in GenBank are likely to be wrongly named.
Species numbers
According to Index Fungorum (http://www.indexfungorum.
org/names/names.asp; accession date, 2010.10.21) there are
235 Pestalotiopsis names, while in MycoBank (www.
mycobank.org/mycotaxo.aspx; accession date, 2010.10.21)
there are 232 names. The reason for the large number of
names is historical and may not reflect the actual number of
species (Jeewon et al. 2004). As with other pathogenic
genera such as Colletotrichum (Cai et al. 2009), species of
Pestalotiopsis were historically named according to the host
fromwhichtheywerefirstobserved.Ifanewhost
occurrence was found a new species was described. For
example, Venkatasubbaiah et al. (1991) isolated a species of
Pestalotiopsis from leaves of Oenothera laciniata and
described the new species P. oenotherae Venkatas., Grand
& Van Dyke. The new species was justified because no
species of Pestalotiopsis had been described previously
from Oenothera and its morphological characters clearly
distinguished it from other species found on any member of
the family Onagraceae (Venkatasubbaiah et al. 1991).
Kohlmeyer and Kohlmeyer (2001) described Pestalotiopsis
juncestris Kohlm & Volkm.-Kohlm which was isolated from
the host Juncus roemerianus; the taxon is morphologically
similar to P.versicolor and several other species of
Pestalotiopsis, but the taxon was described as a new species
based on the host occurrence. Similarly, Pal and Purkayastha
(1992)andSingh(1981) described the new species P.
agallochae A.K. Pal bis and Purkay and P. arborei N.I.
Singh, respectively based on host occurrence. As recently as
2002, Chen et al. (2002) described P. afinis Y.X. Chen & G.
Species GenBank accession numbers Species GenBank accession numbers
P. clavispora AY682928 P. neglecta EU342212
P. clavispora AY924263 P. neglecta FJ037759
P. clavispora DQ812921 P. neglecta GU595050
P. clavispora GU362540 P. pallidotheae AB482220
P. disseminata AY687870 P. photiniae AY682937
P. disseminata DQ001000 P. photiniae AY682943
P. disseminata DQ195782 P. photiniae AY682946
P. disseminata EF055196 P. photiniae DQ812939
P. disseminata HM535728 P. photiniae EU030345
P. disseminata HM535738 P. virgatula AY924281
P. disseminata HM535752 P. virgatula DQ812936
P. disseminata HM535759 P. virgatula DQ813436
P. hainanensis GQ869902 P. virgatula HM535725
P. jesteri AF377282 P. vismiae EF055220
P. kunmingensis AY373376 P. vismiae EF055221
P. microspora AY924278 P. vismiae EF055222
P. microspora AY924285 P. vismiae EU273510
P. microspora DQ000996 P. vismiae EU326213
P. microspora FJ459945 P. vismiae HM535710
P. microspora FJ478120 P. vismiae HM535751
P. microspora FJ487936 P. theae AY924265
P. neglecta AY682930 P. theae DQ812917
P. neglecta DQ812935 P. theae EF423551
P. neglecta EF055209 Truncatella angustata DQ093715
Table 4 Isolates and GenBank
accession numbers of taxa
used to generate the phylogram.
Type species are marked
in bold
Fungal Diversity (2011) 50:167187 179
Wei, P. alpiniae Y.X. Chen & G. Wei,P.antiarisY.X. Chen
and G. Wei,P.dilleniaeY.X. Chen & G. Wei,P.kuwang-
siensis Y.X. Chen and G. Wei,P.nelumbinisY.X. Chen & G.
Wei,P.schimaeY.X. Chen & G. Wei and P. synsepali Y. X .
Chen & G. Wei based on the host association.
More recently, some new species have been introduced
based on host occurrence, plus morphological and mole-
cular data. Wei and Xu (2004) isolated an endophytic
species of Pestalotiopsis (P. kunmingensis J.G. Wei & T.
Xu) from Podocarpus macrophyllus (Thunb.) Sweet and
described it as a new species, supported by both morpholo-
gical and molecular evidence. An endophytic species isolated
from the Japanese plant Pieris japonica Thunb. L. was
named as Pestalotiopsis pallidotheae Kyoko Watanabe and
Yas. Ono;its conidial morphology is quite similar to P. theae
but molecular data showed it to be distinct (Watanabe et al.
2010). Similarly, Strobel et al. (2000) and Liu et al. (2007)
described P. jesteri Strobel, J. Yi Li, E.J. Ford & W.M. Hess
and P. hainanensis A.R. Liu, T. Xu & L.D. Guo, respectively,
using the same considerations.
Species status and host-specificity within the genus
Pestalotiopsis has been questioned previously or investi-
gated (Zhu 1989; Jeewon et al. 2004; Wei et al. 2005,2007;
Hu et al. 2007). These authors showed that different species
isolated from the same host may not be phylogenetically
closely related (Jeewon et al. 2004; Wei et al. 2007).Weietal.
2007 investigated endophytic species of Pestalotiopsis
associated with plant species in the families Podocarpaceae,
Theaceae and Taxaceae. The endophytic species of Pestalo-
tiopsis associated with these host families were not generally
host-specific, occurring on a range of hosts. For example, P.
neglecta (Thüm.) Steyaert and P.photiniae were isolated
from all the host plants in three plant families. Tejesvi et al.
(2007a) isolated endophytic species of Pestalotiopsis asso-
ciated with the medicinal plants Azadirachta indica, Holar-
rhena antidysenterica, Terminalia arjuna and T. chebula.
They showed that isolates obtained from a single plant were
genetically diverse, while the same species occurred in most
plants. According to Guba (1961), most species of the
Pestalotia were listed from a range of hosts. For example,
Pestalotia microspora was listed from several different host
plants (i.e., Ananas comosus, Araucaria sp., Carya sp.,
Hedera helix, Juniperus bermudiana and Platanus occidenta-
lis). Hu et al. (2007) tested the relationships of endophytic
Pestalotiopsis strains from two tissues of Pinus armandii
and found that even strains isolated from the same tissue
type were not phylogenetically related. Zhu (1989)used
artificial cross inoculation studies to show that pathogenic
species of Pestalotiopsis may not be specific to the single
host. Jeewon et al. (2004) pointed out that host-specificity of
Pestalotiopsis is not supported by the large number of
species recorded on one host. They also argued that many
taxa used in literature can be misinterpretations or synonyms
of species with wide host ranges. Jeewon et al. (2004)used
analysis of ITS and 5.8S rDNA to show that isolates taken
from the same host were not phylogenetically related and
that taxa with similar morphological characters were
phylogenetically related.
Up to this time, most phylogenetic research on Pestalo-
tiopsis has shown that Pestalotiopsis is not highly host-
specific and that species are found on a range of hosts
(Jeewon et al. 2004; Wei et al. 2005,2007;Huetal.2007).
The diseases caused by species of Pestalotiopsis have been
recorded in different ecosystems and infect a diverse range
of unrelated plant taxa. Isolation of endophytic Pestalo-
tiopsis strains for bioprospecting for new biochemical
compounds have shown that the same species can be found
in a range of hosts. Therefore, most of the species recorded
in checklists and the literature may not reflect what actually
occurs. As in other related plant pathogenic genera such as
Colletotrichum, the Pestalotiopsis species concept depends
mostly on the conidial characteristics. It has been shown
that most of the key conidial characters used in species
level separation are not stable and vary with host range,
generation, culture and other environmental conditions (Hu
et al. 2007). The arrangement of species by Steyaert (1949)
and Guba (1961) in various coloured groupings is prob-
lematic because this character has been shown to be
variable within a species (Liu et al. 2010a). Thus, most
species in the above arrangements may be confused and
many species are probably synonyms. Due to the fact that
(1) species of Pestalotiopsis are generally not host-specific,
(2) conidial characters vary and species limits overlap, and
(3) species arrangements in Steyaert (1949) and Guba
(1961) are problematic, then the actual number of species in
Pestalotiopsis is likely to be much lower than presently
recorded in databases (e.g., Index Fungorum, MycoBank)
and the literature (Kirk et al. 2008).
For example, according to Guba (1961), Pestalotiopsis
breviseta (Sacc.) Steyaert, P. e u g e n i a e ,P. ilicicola T. , P.
microspora,P. podocarpi and P. sinensis (C.I. Chen) P.L. Zhu,
Q.X. Ge & T. Xu have very similar, overlapping morpholog-
ical characters and these species were justified mainly
according to the host association. Also the above six species
vary from P. carissae Guba, P. d i s s e m i n a t a ,P. neglecta,andP.
olivacea by the length of the apical appendages. We question
whether these names are synonyms of a single biological
species. Furthermore, the versicolorous umber olivaceous
group which comprises 40 species and versicolorous fuligi-
nous olivaceous group comprising 56 species. These groups
are differentiated depending on the intensities of the median
cells, while most species have similar conidial measurements
and thus are likely to be synonyms. We suspect that the actual
number of biological species may be fewer than 50. The
scientific community, however, uses many more names when
diagnosing disease and in phylogenetic studies and biochemical
180 Fungal Diversity (2011) 50:167187
studies. Therefore, modern research approaches are needed
for species of Pestalotiopsis in order to establish the
acceptable names.
Species numbers and accepted species
When species are morphologically distinct and molecular
evidence shows they are monophyletic, then such species
can be considered as a distinct and valid species in a
particular genus. Based on their distinct morphological
characters, we suggest that the 20 species listed in Table 5
can be considered as good species in the genus at this time.
Furthermore some other species (Table 6) which have
considerable value because of their economic roles (in
bioactive metabolites production, frequent pathogens, or
frequently isolated endophytes) are possibly good species.
We suggest that type material of these species should be
reexamine and epitypified with fresh collections. With the help
of ex-type living cultures and sequence data, a robust species
concept can be developed for the genus Pestalotiopsis.
Novel Pestalotiopsis biochemistry
Species of Pestalotiopsis have been well-studied because of
the diverse array of novel compounds that they have been
shown to produce. As such, they are thought to be a rich
source for bioprospecting when compared to those of other
fungal genera (Aly et al. 2010; Xu et al. 2010). Strobel and
Long (1998) described Pestalotiopsis as the E.coli of the
temperate and tropical rainforest systems.Speciesof
Pestalotiopsis may have an important role in forest
ecosystems; they have a cosmopolitan geographical distri-
bution and are found almost everywhere (Tejesvi et al.
2007a). Moreover, species of Pestalotiopsis have been
found to produce an enormous number of secondary
metabolites that may have medicinal, agricultural and
industrial applications. The majority of compounds have
been discovered from endophytic strains of Pestalotiopsis
(Lee et al. 1996; Strobel et al. 1996a,b;LiandStrobel
2001) plus some pathogenic strains (Kwon et al. 1996).
Species of Pestalotiopsis have been shown to produce
bioactive alkaloids, terpenoids, isocoumarin derivatives,
coumarins, chromones, quinones, semiquinones, peptides,
xanthones, xanthone derivatives, phenols, phenolic acids,
and lactones with a range of antifungal, antimicrobial, and
antitumor activities (Xu et al. 2010). Xu et al. (2010)
reviewed 130 different compounds isolated from species of
Pestalotiopsis. In the present review, we discuss some
selected species and their bioactive potential.
Pestalotiopsis microspora is a common species present
in tropical and subtropical plants and is a widespread
saprobe of bark and decaying plant material (Metz et al.
Table 5 Morphologically distinct Pestalotiopsis species with their host and location
Species with distinct morphological characters Host and location
P. gaurae Guba On stem of Gaura parviflora in Hays, Kansas, United States
P. multiseta (Speg.) Guba On fallen leaves of Iris germanica in Conegliano, Italy
P. trevoae Speg. On dead decaying branches of Trevoa trinervia in Santiago, Chile
Pestalotiopsis bicolor Isolated from the dead leaves of Salix sp. in Tuskegee, Alabama, United States
P. distincta (Guba) K. Yokoy. On leaves of Castanopsis cuspidate in Japan
P. funerea On dead leaves of Thuja sp. in Paris, France
P. guepinii On stem and leaves of Camellia japonica in France.
P. hughesii Steyaert On stems of Cyperus articulate in Gold Coasts in West Africa
P. karstenii On leaves of Camellia japonica in United States
P. leucopogonis Nag Raj On leaves of Leucopogan lanceolatus in Australia
P. macrospora (Ces.) Steyaert On fronds of Pteridium aquilinum in Italy
P. maculans On leaves of Camellia japonica and Camellia sp. in Czechoslovakia, France, Germany
and United States
P. monochaetioides On dead twig of Chamaecyparis lawsoniana in Naarden, Holland
P. montellica On dead leaves of Quercus rubra in Canada
P. palustris Nag Raj On Euphorbia palustris in Italy
P. perseae Nag Raj On leaves of Persea borbonea in United States
P. pseudomontellica Nag Raj On leaves of Lithocarpus densiflora in United States
P. smilacis (Schwein.) B. Sutton On stem of Smilax rotundifolia in United Sates
P. tecomicola Nag Raj On Tecoma radicans in United States
P. trichocladi (Laughton) Steyaert On leaves of Trichocladus crinitus in South Africa
Fungal Diversity (2011) 50:167187 181
2000). The species has most commonly been isolated as an
endophyte associated with rainforest plants (Strobel et al.
2002) or as a pathogen (Keith et al. 2006). Pathogen
associations include scab disease on Psidium guajava
(Keith et al. 2006), leaf blight of Lindera obtusiloba (Jeon
et al. 2007) and as an endophyte on Terminalia morobensis
(Womersley 1995). Pestalotiopsis microspora has the
potential to be a model organism for biological and
biochemical studies in the laboratory (Metz et al. 2000).
Isolates of this species (or possibly species complex) show
diverse genetic variation and thus each individual isolate is
generally unique in the substances that it produces (Harper
et al. 2003). Long et al. (1998) have shown that under
laboratory conditions it can take up heterologous DNA, add
telomeric DNA, express heterologous DNA and can
replicate independently of chromosomal DNA.
Such genetic diversity would be useful to the species in
nature, helping it adapt to a new plant by incorporating
plant DNA into its own genome (Strobel et al. 1996a;Li
et al. 1996). Bioactive compounds such as the anti-cancer
drug taxol, jesterone, ambuic acid, torreyanic acid,
pestaloside, pestalotiopsins and 2-a hydroxydimeniol
(Strobel et al. 2002), hetero-polysaccharides (Kai et al.
2003) have been obtained from P. microspora.The
multimillion dollar anti-cancer drug, taxol was obtained
from an endophytic strain of P. microspora isolated from
Taxus wallachiana (Strobel et al. 1996a)andTaxodium
distichurn (Strobel et al. 1996b).Kaietal.(2003) found
that P. microspora can metabolize various monosacchar-
ides and the composition of hetero-polysaccharides
depends on the type of monosaccharide in the media.
Harper et al. (2003) investigated the production of
pestacin, a 1,3-dihydro isobenzofuran with moderate
anti-fungal properties and high anti-oxidant activity when
compared with the vitamin E derivative trolox from
endophytic strains of P. m i c r o s p o r a . The anti-oxidant
activity works mainly by cleavage of an unusually reactive
CH bond. Lee et al. (1995) obtained several anti-fungal
compounds such as pestaloside, an aromatic glucoside,
and two pyrones (pestalopyrone and hydroxypestalopyrone)
Table 6 Economically important Pestalotiopsis species with their host and location
Economically
important species
Host and location Economically importance
Pestalotiopsis adusta
(Ellis & Everh.) Steyaert
On leaves of Prunus cerasus in
Newfield, New Jersey, United States
Bioactive metabolites Li et al. 2008b
P. clavispora On leaves of Quercus sp. in Auburn,
Alabama, United States
Plant pathogen,
Common endophyte
Keith et al. 2006; Espinoza et al. 2008;
Weietal.2007; Liu et al. 2007
P. disseminata On dead leaves of Eucalyptus globules
in Coimbra, Portugal
Plant pathogen,
Bioactive metabolites
Das et al. 2010; Keith et al. 2006;
Deyrup et al. 2006
P. fici Steyaert On Ficus sp. in Kiagwe, Uganda Bio active metabolites Liu et al. 2008a,b,2009b
P. foedan (Sacc. & Ellis)
Steyaert
On decaying bark of Thuja occidentalis
in Newfield, New Jersey, United States
Bio active metabolites Ding et al. 2008a
P. heterocornis On leaves of Anarcardium occidentale
in Cantanduva, São Paulo, Brazil
Common endophyte Wei et al. 2007; Liu et al. 2007
P. longiseta On leaves of Rubus caesius in Susegana,
Conegliano, Italy
Plant pathogen,
Bioactive metabolites
Joshi et al. 2009; Nagata and Ando 1989;
Nagata et al. 1992; Xu et al. 2010
P. microspora On leaves of Hedera helix in Botanical
garden, College of Argentina, Buenos
Aires, Argentina
Plant pathogen,
Common endophyte,
Bioactive metabolites
Strobel et al. 1996a,b,2000;Metzetal.2000;
Keith et al. 2006;Jeonetal.2007;
Wom e rsl e y (1995); Harper et al. 2003;
Lee et al. 1995; Kai et al. 2003
P. neglecta On leaves of Euonymus japonicas in
Coimbra, Portugal
Plant pathogen, Endophyte Tagne and Mathur 2001; Espinoza et al. 2008;
Weietal.2007;Liuetal.2007
P. pauciseta (Sacc.)
Y.X. Chen
On leaves of Litsea glutinosa in Mount
Makiling, near Los Banos, Laguna
province, Philippine
Bioactive metabolites Gangadevi et al. 2008
P. photiniae On leaves of Photinia serrulata in Istria,
Australia
Bioactive metabolites Ding et al. 2009
P. theae On leaves of Camellia sinensis in Japan Plant pathogen, Endopyte,
Bioactive metabolites
Li et al 2008a; Nagata et al. 1992;
Shimada et al. 2001; Tuset et al. 1999;
Worapong et al. 2003; Joshi et al. 2009;
Muraleedharan and Chen 1997;
Ding et al. 2008b; Shimada et al. 2001
P. uvicola On Gaura parviflora and Vitis vinifera
in Italy
Plant pathogen Vitale and Polizzi 2005; Xu et al. 1999
182 Fungal Diversity (2011) 50:167187
from a strain of P. microspora isolated from the endangered
North American tree Torreya taxifolia.WhenPestalotiopsis
microspora is cultured on media containing various mono-
saccharides as a carbon source, different polysaccharides are
produced and this mainly depends on the monosaccharide
used as the carbon source (Kai et al. 2003). Whether all these
strains were in fact P. microspora is yet to be determined,
since the identifications were based on morphology or
comparison with GenBank sequence data, which itself
may be erroneously named. This species is in need of
epitypification.
Pestalotiopsis theae is an economically important spe-
cies that has been reported from all major tea growing
countries of the world (Muraleedharan and Chen 1997) and
also as an endophyte (Worapong et al. 2003). Pestalotheols
AD, four new metabolites isolated from endophytic
Pestalotiopsis theae, and pestalotheol C showed an inhib-
itory effect against HIV-1
LAI
replication in C8166 cells (Li
et al. 2008a). Three new compounds, pestalamides AC
and two known metabolites, aspernigrin A and carbonarone
A, were obtained from the same fungus isolated from the
branches of tea (Ding et al. 2008b). The newly isolated
pestalamide B inhibited HIV-1 replication in C8166 cells
with EC
50
of 64.2 μM and antifungal activity against
Aspergillus fumigatus. Chloroisosulochrin and chloroisosu-
lochrin dehydrate were obtained from the culture filtrate of
Pestalotiopsis theae, and these compounds can be used as
plant growth regulators (Shimada et al. 2001). This species
is obviously important as a producer of novel medicinal
metabolites.
The generic type of Pestalotiopsis is P. g u e p i n i i ,a
plant pathogen that causes disease in important crop plants
(Karaca and Erper 2001). Strains of Pestalotiopsis
guepinii isolated as an endophyte from the plant families
Anacardiaceae, Apocynaceae, Leguminosae and Palmae
were tested for their in vitro acetylcholinesterase (AChE)
and butyrylcholinesterase (BuChE) inhibitory activity,
using Ellmans colorimetric method adapted for thin layer
chromatography (Rodrigues et al. 2005). Pestalotiopsis
guepinii from Anacardium giganteum inhibited both
enzymes in the TLC polar region and a strain isolated
from Myracroduon urundeuva and Spondias mombin
showed selective inhibition of AChE. Parshikov et al.
(2001) suggested that P. guepinii may be a useful model
for the mammalian transformation of fluoroquinolones.
They obtained the metabolites N-acetylciprofloxacin
(52%), desethylene- N-acetylciprofloxacin (9.2%), N-
formylciprofloxacin (4.2%), and 7-amino-1-cyclopropyl-
6-fluoro- 4-oxo-1,4-dihydroquinoline-3-carboxylic acid
(2.3%) by specific culture of P. guepinii dosed with
ciprofloxacin (300 μM). In addition, by dosing with
norfloxacin (313 μM) and the metabolites N-acetylnor-
floxacin (55.4%), desethylene-N-acetylnorfloxacin (8.8%),
N-formylnorfloxacin (3.6%), and 7-amino-1-ethyl-6-
fluoro- 4-oxo-1,4-dihydroquinoline-3-carboxylic acid
(2.1%) were obtained.
Liu et al. (2008b) isolated five new cyclohexanone
derivatives, pestalofones AE, with the known compounds
isosulochrin, isosulochrin dehydrate, and iso-A82775C,
from cultures of the plant endophytic fungus Pestalotiopsis
fici. Pestalofones A and B were inhibitory against HIV-1
replication in C8166 cells, pestalofones C showed anti-
fungal activity against Aspergillus fumigatus while pestalo-
fones E showed both the above effects. Chloropestolide A
extracted from the scale-up fermentation extract of Pesta-
lotiopsis fici showed significant inhibitory effects on
growth of two human cancer cell lines, HeLa and HT29
(Liu et al. 2009). Liu et al. (2010b) obtained chloropupu-
keanolides A and B (unprecedented spiroketal peroxide)
and chloropupukeanone A (three highly functionalized
metabolites featuring a chlorinated pupukeanane core) from
an endophytic strain of Pestalotiopsis fici. The compound
chloropupukeanolide A showed significant anti-HIV-1 and
cytotoxic effects.
These findings will most likely trigger further studies on
total synthesis. Whether Pestalotiopsis is unique amongst
endophytes or coelomycetes in producing large numbers of
secondary metabolites with medicinal and pathogenic
control significance has yet to be established.
Taxonomic confusion and way forward
Pestalotiopsis is taxonomically poorly understood both at
the inter- as well as the intraspecific level. It is not clear
whether Pestalotia is really distinct from Pestalotiopsis,
since stains of the type of the former have not been
sequenced. Nomenclature of the genus is confusing and
most host based names in databases may be synonyms.
Molecular data have still not been successfully applied for
species-level differentiation and names applied to data in
GenBank are doubtful, as they are not linked to any type
materials. Epitypification with molecular work is therefore
needed to understand the species and what distinguishes
them. Re-examination of type materials and establishment
of epitypes with living cultures is essential for real progress
(Hyde and Zhang 2008), and sequence data are needed to
develop a strong species-based taxonomic system for the
genus Pestalotiopsis. It is only then that plant pathologists
can confidently name disease causal agents, quarantine can
put in effective measures to prevent entry of unwanted
species of Pestalotiopsis, plant breeders can breed resis-
tance against pathogenic species and biochemists can
confidently put names to species producing novel chem-
icals and use an understanding of species relationships to
aid in bioprospecting.
Fungal Diversity (2011) 50:167187 183
Acknowledgments This project was supported by the Global
Research Network for Fungal Biology, King Saud University and the
Key Lab of Systematic Mycology and Lichenology, Institute of
Microbiology, Chinese Academy of Sciences. Sajeewa Maharachchi-
kumbura thanks the Key Lab of Systematic Mycology and
Lichenology, Institute of Microbiology, Chinese Academy of
Sciences, Beijing and the Mushroom Research Foundation, Chiang
Mai, Thailand, for a postgraduate scholarship.
References
Agarwal AK, Chauhan S (1988) A new species of the genus
Pestalotiopsis from Indian soil. Indian Phytopathol 41:625627
Agnihothrudu V (1964) A world list of fungi reported on tea. J Madras
University 34:155271
Agrios GN (2005) Plant pathology, 5th edn. Elsevier Academic, USA
Aly AH, Debbab A, Kjer J, Proksch P (2010) Fungal endophytes from
higher plants: a prolific source of phytochemicals and other
bioactive natural products. Fungal Divers 41(1):116
Armstrong-Cho CL, Banniza S (2006) Glomerella truncata sp. nov.,
the teleomorph of Colletotrichum truncatum. Mycol Res
110:951956
Bajo J, Santamaria O, Diez J (2008) Cultural characteristics and
pathogenicity of Pestalotiopsis funerea on Cupressus arizonica.
For Pathol 38:263274
Barr ME (1975) Pestalosphaeria, a new genus in the Amphisphaer-
iaceae. Mycologia 67:187194
Barr ME (1990) Prodromus to nonlichenized, pyrenomycetous
members of class Hymenoascomycetes. Mycotaxon 39:43184
Bate-Smith EC, Metcalfe CR (1957) Leucanthocyanins .3. The nature
and systematic distribution of tannin in dicotyledonous plants. J
Linn Soc (Bot) 55:669705
Cai L, Hyde KD, Taylor PWJ, Weir BS, Waller J, Abang MM, Zhang
JZ, Yang YL, Phoulivong S, Liu ZY, Prihastuti H, Shivas RG,
McKenzie EHC, Johnston PR (2009) A polyphasic approach for
studying Colletotrichum. Fungal Divers 39:183204
Cannon PF, Kirk PM (2000) The philosophy and practicalities of
amalgamating anamorph and teleomorph concepts. Stud Mycol
45:1925
Chaverri P, Castlebury LA, Overton BE, Samuels GJ (2003)
Hypocrea/Trichoderma: species with conidiophore elongations
and green conidia. Mycologia 95:11001140
Chen YX, Wei G, Chen WP (2002) New species of Pestalotiopsis.
Mycosystema 21:316323
Das Ranjana, Chutia M, Das K, Jha DK (2010) Factors affecting
sporulation of Pestalotiopsis disseminata causing grey blight
disease of Persea bombycina Kost., the primary food plant of
muga silkworm. Crop Prot 29:963968
De Notaris G (1839) Micromycetes italiei Dec II. Mere R Acad Sci
Torino II 3:8081
Dennis RWG (1995) Fungi of the South East England. Royal Botanic
Gardens, Kew
Deyrup ST, Swenson DC, Gloer JB, Wicklow DT (2006) Caryophyl-
lene sesquiterpenoids from a fungicolous isolate of Pestalotiopsis
disseminata. J Nat Prod 69:608611
Diener UL, Wagener RE, Morgan-Jones G, Davis ND (1976)
Toxigenic fungi from cotton. Phytopathology 66:514516
Ding G, Liu S, Guo L, Zhou Y, Che Y (2008a) Antifungal metabolites
from the plant endophytic fungus Pestalotiopsis foedan. J Nat
Prod 71(4):615618
Ding G, Jiang L, Guo L, Chen X, Zhang H, Che Y (2008b)
Pestalazines and pestalamides, bioactive metabolites from the
plant pathogenic fungus Pestalotiopsis theae. J Nat Prod 71
(11):18611865
Ding G, Zheng Z, Liu S, Zheng H, Guo L, Che Y (2009) Photinides
A-F, cytotoxic benzofuranone-derived γ-lactones from the plant
endophytic fungus Pestalotiopsis photiniae. J Nat Prod 72:942
945
Dodd SL, Lieckfeldt E, Samuels GJ (2003) Hypocrea atroviridis sp.
nov., the teleomorph of Trichoderma atroviride. Mycologia
95:2740
Douanla-Meli C, Langer E (2009) Pestalotiopsis theae (Ascomycota,
Amphisphaeriaceae) on seeds of Diospyros crassiflora (Ebena-
ceae). Mycotaxon 107:441448
Dube HC, Bilgrami KS (1965) Variations in the conidial morphology
of Pestalotiopsis darjeelingensis in culture. Curr Sci 34:487
Egger KN (1995) Molecular analysis of ectomycorrhizal fungal
communities. Can J Bot 73:14151422
Elliott ML, Broschat TK, Uchida JY, Simone GW (eds) (2004)
Diseases and disorders of ornamental palms. American Phyto-
pathological Society, St. Paul
Ellis MB, Ellis JP (1997) Microfungi on land plants: an identification
handbook, 2nd edn (New Enlarged). The Richmond Publishing
Co. Ltd
Espinoza JG, Briceno EX, Keith LM, Latorre BA (2008) Canker and
Twig Dieback of blueberry caused by Pestalotiopsis spp. and a
Truncatella sp. in Chile. Plant Dis 92:14071414
Fail GL, Langenheim JH (1990) Infection process of Pestalotia
subcuticularis on leaves of Hymenaea courbaril. Phytopathology
80:12591265
Gangadevi V, Murugan M, Muthumary J (2008) Taxol determination
from Pestalotiopsis pauciseta, a fungal endophyte of a medicinal
plant. Chin J Biotechnol 24(8):14331438
Gehlot P, Bohra NK, Purohit DK (2008) Endophytic mycoflora of
inner bark of Prosopis cinerariaa key stone tree species of
Indian desert. Am-Eur J Bot 1(1):0104
Gomes-Figueiredo J, Pimentel IC, Vicente VA, Pie MR, Kava-
Cordeiro V, Galli-Terasawa L, Pereira JO, de Souza AQ,
Glienke C (2007) Bioprospecting highly diverse endophytic
Pestalotiopsis spp. with antibacterial properties from Maytenus
ilicifolia, a medicinal plant from Brazil. Can J Microbiol 53
(10):11231132
Griffiths DA, Swart HJ (1974a) Conidial structure in two species of
Pestalotiopsis. Trans Br Mycol Soc 62:295304
Griffiths DA, Swart HJ (1974b) Conidial structure in Pestalotia
pezizoides. Trans Br Mycol Soc 63:169173
Guba EF (1956) Monochaetia and Pestalotia vs. Truncatella,Pestalo-
tiopsis and Pestalotia. Ann Microb Enzymol Milan 7:7476
Guba EF (1961) Monograph of Pestalotia and Monochaetia. Harvard
University Press, Cambridge
Halfeld-Vieira BA, Nechet KA (2006) First report of Pestalotiopsis
macrochaeta on Carapa guianensis. Plant Pathol 55:304
Harper JK, Barich DH, Hu JZ, Strobel GA, Grant DM (2003)
Stereochemical analysis by solid-state NMR: structural predic-
tions in ambuic acid. J Org Chem 68:46094614
Hopkins KE, McQuilken MP (1997) Pestalotiopsis on nursery stock,
in HDC Project News No 39. Horticultural Development
Council, East Malling
Hopkins KE, McQuilken MP (2000) Characteristics of Pestalotiopsis
associated with hardy ornamental plants in the UK. Eur J Plant
Pathol 106:7785
Horikawa T (1986) Yield loss of new tea shoots due to grey blight
caused by Pestalotia longiseta Spegazzini. Bull Shizuoka Tea
Exp Stn 12:18
Hu HL, Jeewon R, Zhou DQ, Zhou TX, Hyde KD (2007)
Phylogenetic diversity of endophytic Pestalotiopsis species in
Pinus armandii and Ribes spp.: evidence from rDNA and β-
tubulin gene phylogenies. Fungal Divers 24:122
Hyde KD (1996) Fungi from palms. XXV. Pestalosphaeria elaeidis.
Mycotaxon 57:353357
184 Fungal Diversity (2011) 50:167187
Hyde KD, Fröhlich J (1995) Mycosphaerella palmicola associated
with leaf spots of Cocos nucifera in Australia Iran Jaya and
Papua New Guinea. Mycol Res 99:704706
Hyde KD, Zhang Y (2008) Epitypification: should we epitypify?.
Journal of Zhejiang University Science B 9:842846.
Hyde KD, McKenzie EHC, KoKo TW (2011) Towards incorporating
anamorphic fungi in a natural classificationchecklist and notes
for 2010. Mycosphere 2(1):188
Jeewon R, Liew ECY, Hyde KD (2002) Phylogenetic relationships of
Pestalotiopsis and allied genera inferred from ribosomal DNA
sequences and morphological characters. Mol Phylogenet Evol
25:378392
Jeewon R, Liew ECY, Simpson JA, Hodgkiss IJ, Hyde KD (2003)
Phylogenetic significance of morphological characters in the
taxonomy of Pestalotiopsis species. Mol Phylogenet Evol
27:372383
Jeewon R, Liew ECY, Hyde KD (2004) Phylogenetic evaluation of
species nomenclature of Pestalotiopsis in relation to host
association. Fungal Divers 17:3955
Jeon YH, Kim SG, Kim YH (2007) First report on leaf blight of
Lindera obtusiloba caused by Pestalotiopsis microspora in
Korea. Plant Pathol 56:349
Joshi SD, Sanjay R, Baby UI, Mandal AKA (2009) Molecular
characterization of Pestalotiopsis spp. associated with tea
(Camellia sinensis) in southern India using RAPD and ISSR
markers. Indian J Biotechnol 8(4):377383
Kai A, Kikawa M, Hatanaka K, Matsuzaki K, Mimura T, Kaneko Y
(2003) Biosynthesis of hetero-polysaccharides by Pestalotiopsis
microspora from various monosaccharides as carbon source.
Carbohydr Polym 54:381383
Kang JC, Kong RYC, Hyde KD (1998) Studies on the Amphi-
sphaeriales I. Amphisphaeriaceae (sensu stricto) and its phyloge-
netic relationships inferred from 5.8S rDNA and ITS2 sequences.
Fungal Divers 1:147157
Kang JC, Hyde KD, Kong RYC (1999) Studies on the Amphi-
sphaeriales. The Amphisphaeriaceae (sensu stricto). Mycol Res
103:5364
Karaca GH, Erper I (2001) First report of Pestalotiopsis guepinii
causing twig blight on hazelnut and walnut in Turkey. Plant
Pathol 50:415
Kaushik CD, Thakur DP, Chand JN (1972) Parasitism and control of
Pestalotia psidii causing cankerous disease of ripe guava fruits.
Indian Phytopathol 25:6164
Keith LM, Zee FT (2010) Guava disease in Hawaii and the
characterization of Pestalotiopsis spp. affecting guava. Acta
Horticulturae (ISHS) 849:269276
Keith LM, Velasquez ME, Zee FT (2006) Identification and
characterization of Pestalotiopsis spp. causing scab disease of
guava, Psidium guajava in Hawaii. Plant Dis 90:1623
Kendrick B (ed) (1979) The whole fungus: the sexual-asexual
synthesis. Volume 12. National Museums of Canada,
Ottawa
Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Dictionary of
the fungi, 10th edn. CABI, Wallingford
Klebahn H (1914) Beitrage zur Kenntnis der Fungi Imperfecti. Zur
Kritik einiger Pestalozzia-Arten. Mykol Zbl 4:119
Kobayashi T, Ishihara M, Ono Y (2001) A new species of
Pestalosphaeria, the telomorph of Pestalotiopsis neglecta.
Mycoscience 42:211216
Kohlmeyer J, Kohlmeyer VB (2001) Fungi on Juncus roemerianus
16. More new coelomycetes, including Tetranacriella gen. nov.
Bot Mar 44:147156
Korsten L, De Jager ES, De Villers EE, Lourens A, Kotze JM, Wehner
FC (1995) Evaluation of bacterial epiphytes isolated from
avocado leaf and fruit surfaces for biocontrol of avocado
postharvest diseases. Plant Dis 79:1149
Kumar DSS, Hyde KD (2004) Biodiversity and tissue-recurrence
of endophytic fungi in Tripterygium wilfordii. Fungal Divers
17:6990
Kwee LT, Chong KK (1990) Guava in Malaysia: production, pests and
diseases. Tropical Press SDN. BHD, Kuala Lumpur
Kwon GS, Moon SH, Hong SD, Lee HM, Kim HS, Oh HM, Yoon BD
(1996) A novel flocculant biopolymer produced by Pestalotiopsis
sp. KCTC 8637P. Biotechnol Lett 18(12):14591464
Lee JC, Yang X, Schwartz M, Strobel G, Clardy J (1995) The
relationship between an endangered North American tree and an
endophytic fungus. Chem Biol 2:721727
Lee JC, Strobel GA, Lobkovsky E, Clardy JC (1996) Torreyanic acid:
a selectively cytotoxic quinone dimer from the endophytic fungus
Pestalotiopsis microspora. J Org Chem 61:32323233
Li JY, Strobel GA (2001) Jesterone and hydroxy-jesterone antioomy-
cetcyclohexenenone epoxides from the endophytic fungus
Pestalotiopsis jesteri. Phytochemistry 57:261265
Li JY, Strobel GA, Sidhu RS, Hess WM, Ford EJ (1996) Endophytic
taxol-producing fungi from bald cypress, Taxodium distichum.
Microbiology 142:22232226
Li E, Tian R, Liu S, Chen X, Guo L, Che Y (2008a) Pestalotheols A
D, bioactive metabolites from the plant endophytic fungus
Pestalotiopsis theae. J Nat Prod 71(4):664668
Li E, Jiang L, Guo L, Zhang H, Che Y (2008b) Pestalachlorides AC,
antifungal metabolites from the plant endophytic fungus Pesta-
lotiopsis adusta. Bioorg Med Chem 16:78947899
Liu AR, Wu XP, Xu T, Guo LD, Wei JG (2006) Notes on endophytic
Pestalotiopsis from Hainan, China. Mycosystema 25:389397
Liu AR, Xu T, Guo LD (2007) Molecular and morphological
description of Pestalotiopsis hainanensis sp. nov., a new
endophyte from a tropical region of China. Fungal Divers
24:2336
Liu L, Liu S, Jiang L, Chen X, Guo L, Che Y (2008a) Chloropupu-
keananin, the first chlorinated pupukeanane derivative, and its
precursors from Pestalotiopsis fici. Org Lett 10:13971400
Liu L, Tian RR, Liu SC, Chen XL, Guo LD, Che YS (2008b)
Pestaloficiols AE, bioactive cyclopropane derivatives from the
plant endophytic fungus Pestalotiopsis fici. Bioorg Med Chem
16:60216026
Liu L, Li Y, Liu SC, Zheng ZH, Chen XL, Zhang H, Guo LD, Che YS
(2009) Chloropestolide A, an antitumor metabolite with an
unprecedented spiroketal skeleton from Pestalotiopsis fici. Org
Lett 11:28362839
Liu AR, Chen SC, Wu SY, Xu T, Guo LD, Jeewon R, Wei JG (2010a)
Cultural studies coupled with DNA based sequence analyses and
its implication on pigmentation as a phylogenetic marker in
Pestalotiopsis taxonomy. Mol Phylogenet Evol 57:528535
Liu L, Niu S, Lu X, Chen X, Zhang H, Guo L, Che Y (2010b) Unique
metabolites of Pestalotiopsis fici suggest a biosynthetic hypothesis
involving a Diels-Alder reaction and then mechanistic diversifica-
tion. Chem Comm 46:460462
Long DM, Smidansky ED, Archer A, Strobel GA (1998) In vivo
addition of telomeric repeats to foreign DNA generates extra-
chromosomal DNAs in the taxol-producing fungus Pestalotiopsis
microspora. Fungal Genet Biol 24:335344
Madar Z, Solel Z, Kimchi M (1991) Pestalotiopsis canker of Cypress
in Israel. Phytoparasitica 19(1):7981
McQuilken MP, Hopkins KE (2004) Biology and integrated control of
Pestalotiopsis on container-grown ericaceous crops. Pest Manag
Sci 60:135142
Metz AM, Haddad A, Worapong J, Long DM, Ford EJ, Hess WM,
Strobel GA (2000) Induction of the sexual stage of Pestalotiopsis
microspora, a taxol-producing fungus. Microbiology 146:2079
2089
Moreau C (1949) Micomycetes africains. I. Rev Mycol, Suppl Colon
(Paris) 14:1522
Fungal Diversity (2011) 50:167187 185
Muraleedharan N, Chen ZM (1997) Pests and diseases of tea and their
management. J Plant Crop 25:1543
Nag Rag TR (1993) Coelomycetous anamorphs with appendage
bearing conidia. Mycologue, Waterloo
Nag Raj TR (1985) Redisposals and redescriptions in the Mono-
chaetia.Seiridium,PestalotiaPestalotiopsis complexes. II.
Pestalotiopsis besseyii (Guba) comb. nov. and Pestalosphaeria
varia sp. nov. Mycotaxon 22:5263
Nagata T, Ando Y (1989) Oxysporone, a phytotoxin isolated from the
tea gray blight fungus Pestalotia longiseta. Agric Biol Chem
53:2811
Nagata T, Ando Y, Hirota A (1992) Phytotoxins from tea gray blight
fungi, Pestalotiopsis longiseta and Pestalotiopsis theae. Biosci
Biotechnol Biochem 56:810811
Okane I, Nagagiri A, Ito T (1998) Endophytic fungi in leaves of
ericaceous plants. Can J Bot 76:657663
Osono T, Takeda H (1999) Decomposing ability of interior and surface
fungal colonizers of beech leaves with reference to lignin
decomposition. Eur J Soil Biol 35:5156
Page RDM (1996) TREEVIEW: an application to display phylogenetic
trees on personal computers. Comput Appl Biosci 12:357358
Pal AK, Purkayastha RP (1992) New parasitic fungi from Indian
mangrove. J Mycopathol Res 30:173176
Pandey RR (1990) Mycoflora associated with floral parts of guava
(Psidium guajava L.). Acta Bot Sin 18:5963
Parshikov IA, Heinze TM, Moody JD, Freeman JP, Williams AF,
Sutherland JB (2001) The fungus Pestalotiopsis guepinii as a
model for biotransformation of ciprofloxacin and norfloxacin.
Appl Microbiol Biotechnol 56:474477
Petrak VF (1947) Neobroomella n. gen., eine neue Gattung der
Sphaeriales. Sydowia 1(13):5
Pirone PP (1978) Diseases and pests of ornamental plants. Wiley
Interscience, New York
Purohit DK, Bilgrami KS (1969) Variations in the conidial morphology
of genus Pestalotiopsis. Indian Phytopathology 22:275279
Reynolds DR (1993) The fungal holomorph: an overview. In:
Reynolds DR, Taylor JW (eds) The fungal holomorph: mitotic,
meiotic and pleomorphic speciation in fungal systematics. CAB
International, Oxon, pp 1525
Rivera MC, Wright ER (2000) First report of azalea petal blight
caused by Pestalotiopsis guepinii in Argentina. Plant Dis 84:100
Rodrigues KF, Costa GL, Carvalho MP, Epifanio RA (2005)
Evaluation of extracts produced by some tropical fungi as
potential cholinesterase inhibitors. World J Microbiol Biotechnol
21:16171621
Sangchote S, Farungsang U, Farungsang N (1998) Pre and postharvest
infection of rambutan by pathogens and effect on postharvest
treatments. In: Coates LM, Hofman PJ, Johnson GI (eds) Disease
control and storage life extension in fruits. Proceeding of an
international workshop held at Chaing Mai, Thailand May 22
23, 1997. ACIAR Proceeding No. 81: 8791
Sanjay R, Ponmurugan P, Baby UI (2008) Evaluation of fungicides
and biocontrol agents against grey blight disease of tea in the
field. Crop Prot 27:689694
Sati SC, Belwal M (2005) Aquatic hyphomycetes as endophytes of
riparian plant roots. Mycologia 97:4549
Satya HN, Saksena SB (1984) Some aspects of taxonomy of the genus
Pestalotia I-Color intensities of intermediate cells of spores. In:
Subramanian CV (ed) Proceedings of the International Sympo-
sium on Taxonomy of Fungi
Schwendener S (1868) Ueber die Beziehungen zwischen Algen und
Flechtengonidien. Bot Zeitung 26:289292
Servazzi O (1953) Nuovo Giorn. Bot. Ital. 60 (n.s.) 4:943947
Shearer CA, Raja HA, Schmit JP (2007) Freshwater ascomycetes and
their anamorphswebsite available online at http://www.life.
uiuc.edu/fungi/
Shenoy BD, Jeewon R, Hyde KD (2007) Impact of DNA sequence-
data on the taxonomy of anamorphic fungi. Fungal Divers 26:1
54
Shimada A, Takahashi I, Kawano T, Kimura YZ (2001) Chloroisosu-
lochrin, chloroisosulochrin dehydrate, and pestheic acid, plant
growth regulators, produced by Pestalotiopsis theae. J Biosci (Z
Naturforsch) 56b:797803
Singh NI (1981) Some new host records for India. Indian Phytopa-
thology 34:233234
Sousa MF, Tavares RM, Gerós H, Lino-Neto T (2004) First report of
Hakea sericea leaf infection caused by Pestalotiopsis funerea in
Portugal. Plant Pathol 53:535
Srinivasan K, Muthumary J (2009) Taxol production from Pestalo-
tiopsis sp an endophytic fungus isolated from Catharanthus
roseus. J Ecobiotechnology 1(1):2831
Steyaert RL (1949) Contributions à létude monographique de
Pestalotia de Not. et Monochaetia Sacc. (Truncatella gen. nov.
et Pestalotiopsis gen. nov.). Bull. Jard. Bot. Bruxelles 19:285354
Steyaert RL (1953a) New and old species of Pestalotiopsis. Trans Br
Mycol Soc 36:8189
Steyaert RL (1953b) Pestalotiopsis from the Gold Coast and
Togoland. Trans Br Mycol Soc 36:235242
Steyaert RL (1955) Pestalotia,Pestalotiopsis et Truncatella. Bull.
Jard. Bot. Bruxelles 25:191199
Steyaert RL (1956) A reply and an appeal to Professor Guba.
Mycologia 48:767768
Steyaert RL (1961) Type specimens of Spegazzinis collections in the
Pestalotiopsis and related genera (Fungi Imperfecti: Melanco-
niales). Darwinia (Buenos Aires) 12:157190
Strobel GA, Long DM (1998) Endophytic microbes embody
pharmaceutical potential. Am Soc Microbiol News 64:263
268
Strobel G, Yang XS, Sears J, Kramer R, Sidhu RS, Hess WM (1996a)
Taxol from Pestalotiopsis microspora of Taxus wallachiana.
Microbiology 142:435440
Strobel GA, Hess WM, Ford EJ, Siduhu RS, Yang XJ (1996b) Taxol
from fungal endophytes and the issue of biodiversity. Indian
Microbiol 17:417423
Strobel G, Li JY, Ford E, Worapong J, Gary IB, Hess WM (2000)
Pestalotiopsis jesteri, sp. nov. an endophyte from Fragraea
bodenii Wernh, a common plant in the southern highlands of
Papua New Guinea. Mycotaxon 76:257266
Strobel G, Ford E, Worapong J, Harper JK, Arif AM, Grant DM, Fung
PC, Chau MW (2002) Isopestacin, an isobenzofuranone from
Pestalotiopsis microspora, possessing antifungal and antioxidant
activities. Phytochemistry 60:179183
Sun HJ, Depriest PT, Gargas A, Rossman AY, Friedmann EI (2002)
Pestalotiopsis maculans: a dominant parasymbiont in North
American lichens. Symbiosis 33:215226
Sutton BC (1961) Coelomycetes. I. Mycol. Pap. 80:116
Sutton BC (1980) The coelomycetes: fungi imperfecti with pycnidia,
acervular and stromata. Commonwealth Mycological Institute,
Kew
Sutton DA (1999) Coelomycetous fungi in human disease. A review:
clinical entities, pathogenesis, identification and therapy. Rev
Iberoam Mycol 16:171179
Swofford DL (2002) PAUP* 4.0: phylogenetic analysis using parsimony
(* and other methods). Sinauer Associates, Sunderland
Tagne A, Mathur SB (2001) First report of chlorotic spot of maize
caused by Pestalotiopsis neglecta. Plant Pathol 50:791
Tejesvi MV, Mahesh B, Nalini MS, Prakash HS, Kini KR, Subbiah V,
Shetty HS (2005) Endophytic fungal assemblages from inner
bark and twig of Terminalia arjuna W and A. (Combretaceae).
World J Microbiol Biotechnol 21:15351540
Tejesvi MV, Kini KR, Prakash HS, Subbiah V, Shetty HS (2007a)
Genetic diversity and antifungal activity of species of Pestalo-
186 Fungal Diversity (2011) 50:167187
tiopsis isolated as endophytes from medicinal plants. Fungal
Divers 24:3754
Tejesvi MV, Nalini MS, Mahesh B, Prakash HS, Kini KR, Shetty
HS, Subbiah V (2007b) New hopes from endophytic fungal
secondary metabolites. Bol Soc Quím de Méx 1(1):1926
Tejesvi MV, Tamhankar SA, Kini KR, Rao VS, Prakash HS (2009)
Phylogenetic analysis of endophytic Pestalotiopsis species from
ethnopharmaceutically important medicinal trees. Fungal Divers
38:167183
Thongkantha S, Lumyong S, McKenzie EHC, Hyde KD (2008) Fungal
saprobes and pathogens occurring on tissues of Dracaena lourieri
and Pandanus spp. in Thailand. Fungal Divers 30:149169
Tokumasu S, Aoiki T (2002) A new approach to studying microfungal
succession on decaying pine needles in an oceanic subtropical
region in Japan. Fungal Divers 10:167183
Tuset JJ, Hinarejos C, Mira JL (1999) First report of leaf blight on sweet
persimmon tree by Pestalotiopsis theae in Spain. Plant Dis 83:1070
Ullasa BA, Rawal RD (1989) Occurrence of a new post-harvest
disease of mango due to Pestalotiopsis glandicola.Acta
Horticulturae (ISHS) 231:540543
Venkatasubbaiah P, Grand LF, Dyke CGV (1991) A new species of
Pestalotiopsis on Oenothera. Mycologia 83(4):511513
Vitale A, Polizzi G (2005) Occurrence of Pestalotiopsis uvicola
causing leaf spots and stem blight on bay laurel (Laurus nobilis)
in Sicily. Plant Dis 89(12):1362
Von Arx JA (1974) The genera of fungi sporulating in pure culture. In:
Cramer J (ed) The genera of fungi sporulating in pure culture. A.
R.Gantner Veriag Kommanditgesellschaft, Vaduz
Watanabe K, Doi Y, Kobayashi T (1998) Conidiomatal development of
Pestalotiopsis guepinii and P. neglecta on leaves of Gardenia
jasminoides. Mycoscience 39:7175
Watanabe K, Parbery DG, Kobayashi T, Doi Y (2000) Conidial
adhesion and germination of Pestalotiopsis neglecta. Mycol Res
104(8):962968
Watanabe K, Motohashi K, Ono Y (2010) Description of Pestalo-
tiopsis pallidotheae: a new species from Japan. Mycoscience
51:182188
Wei JG, Xu T (2004) Pestalotiopsis kunmingensis, sp. nov., an endophyte
from Podocarpus macrophyllus. Fungal Divers 15:247254
Wei JG, Xu T, Guo LD, Pan XH (2005) Endophytic Pestalotiopsis
species from southern China. Mycosystema 24:481493
Wei JG, Xu T, Guo LD, Liu AR, Zhang Y, Pan XH (2007) Endophytic
Pestalotiopsis species associated with plants of Podocarpaceae,
Theaceae and Taxaceae in southern China. Fungal Divers 24:55
74
Womersley JS (1995) Handbooks of the flora of Papua New Guinea.
Melbourne University Press, Melbourne
Worapong J, Inthararaungsom S, Stroble GA, Hess WM (2003) A new
record of Pestalotiopsis theae, existing as an endophyte on
Cinnamomum iners in Thailand. Mycotaxon 88:365372
Wright ER, Rivera MC, Flynn MJ (1998) First report of Pestalotiopsis
guepinii and Glomerella cingulata on blueberry in Buenos Aires
(Argentina). Boletín 28:219220
Wu CG, Tseng HY, Chen ZC (1982) Fungi inhabiting on Schoeno-
plectus triqueter (L.) Palla (I). Taiwania 27:3538
Wulandari NF, To-anun C, Hyde KD, Duong LM, de Gruyter J,
Meffert JP, Groenewald JZ, Crous PW (2009) Phyllosticta
citriasiana sp. nov., the cause of Citrus tan spot of Citrus
maxima in Asia. Fungal Divers 34:2339
Xu L, Kusakari S, Hosomi A, Toyoda H, Ouchi A (1999) Postharvest
disease of grape caused by Pestalotiopsis species. Ann
Phytopathol Soc Jpn 65:305311
Xu J, Ebada SS, Proksch P (2010) Pestalotiopsis a highly creative
genus: chemistry and bioactivity of secondary metabolites.
Fungal Divers 44(1):1531
Yanna, Ho WH, Hyde KD (2002) Fungal succession on fronds of
Phoenix hanceana in Hong Kong. Fungal Divers 10:185211
Yasuda F, Kobayashi T, Watanabe H, Izawa H (2003) Addition of
Pestalotiopsis spp. to leaf spot pathogens of Japanese persimmon.
J Gen Plant Pathol 69:2932
Zhang YL, Ge HM, Li F, Song YC, Tan RX (2008) New phytotoxic
metabolites from Pestalotiopsis sp. HC02, a fungus residing in
chondracris rosee gut. Chem Biodivers 5(11):24022407
Zhu PL (1989) Study on identification and taxonomy of Pestalotiopsis
spp. from common ornamental plants. Ms. Thesis. Zhejiang
Agricultural University, China
Zhu P, Ge Q, Xu T (1991) The perfect stage of Pestalosphaeria from
China. Mycotaxon 40:129140
Fungal Diversity (2011) 50:167187 187
... Pestalotiopsis species are widely distributed in the world as endophytes, plant pathogens, or saprobes [12][13][14][15][16][17], mainly in tropical and temperate regions and have a wide range of host plants [15,18,19]. Initially, the characteristics of conidia, such as color, size, and appendages, are the key to the identification of Pestalotiopsis and related genera [20,21]. ...
... Those taxonomic groups related to the genus Pestalotiopsis are also called pestalotioid fungi. Afterwards according to the relationship between conidial morphology and multi-locus phylogeny [14,19,22,23], Pestalotiopsis sensu lato was divided into three genera by Maharachchikumbura et al. (2014) [15]-Pestalotiopsis sensu stricto, Neopestalotiopsis, and Pseudopestalotiopsis. Three genera correspond to three types of conidia, conidia with light brown or olivaceous concolorous median cells (Pestalotiopsis sensu stricto), conidia with versicolorous median cells (Neopestalotiopsis), and conidia with dark-colored concolorous median cells (Pseudopestalotiopsis) [14,19,22,24]. Pestalotioid species identification remains a major challenge because of the conidia of overlap, and the classification is complex [22,25,26]. ...
... Those taxonomic groups related to the genus Pestalotiopsis are also called pestalotioid fungi. Afterwards according to the relationship between conidial morphology and multi-locus phylogeny [14,19,22,23], Pestalotiopsis sensu lato was divided into three genera by Maharachchikumbura et al. (2014) [15]-Pestalotiopsis sensu stricto, Neopestalotiopsis, and Pseudopestalotiopsis. Three genera correspond to three types of conidia, conidia with light brown or olivaceous concolorous median cells (Pestalotiopsis sensu stricto), conidia with versicolorous median cells (Neopestalotiopsis), and conidia with dark-colored concolorous median cells (Pseudopestalotiopsis) [14,19,22,24]. Pestalotioid species identification remains a major challenge because of the conidia of overlap, and the classification is complex [22,25,26]. ...
Article
Full-text available
Pinus massoniana Lamb. is an important, common afforestation and timber tree species in China. Species of Pestalotiopsis are well-known pathogens of needle blight. In this study, the five representative strains were isolated from needle blight from needles of Pi. massoniana in Nanjing, Jiangsu, China. Based on multi-locus phylogenetic analyses of the three genomic loci (ITS, TEF1, and TUB2), in conjunction with morphological characteristics, a new species, namely Pestalotiopsis jiangsuensis sp. nov., was described and reported. Pathogenicity tests revealed that the five representative strains of the species described above were pathogenic to Pi. massoniana. The study revealed the diversity of pathogenic species of needle blight on Pi. massoniana. This is the first report of needle blight caused by P. jiangsuensis on Pi. massoniana in China and worldwide. This provides useful information for future research on management strategies of this disease.
... These species are widely distributed in tropical and temperate regions (Maharachchikumbura et al. 2014). Pestalotiopsis-like fungi commonly occur on living plants as pathogens and endophytes or are saprobic on dead plant materials (Maharachchikumbura et al. 2011). Some species of pestalotiopsis-like fungi have been reported as mycoparasites (Xie et al. 2014;Li et al. 2017), while several taxa have been identified as human and insect pathogens (Lv et al. 2011;Monden et al. 2013). ...
... Species of Pestalotiopsis sensu lato comprise a ubiquitous group of fungi that have been reported from various ecological niches. They have been identified as plant pathogens (Tsai et al. 2018(Tsai et al. , 2021Fiorenza et al. 2022;Xiong et al. 2022;Zhang et al. 2022;Sun et al. 2023), human pathogens (Monden et al. 2013), saprobes Sun et al. 2023) and endophytes (Maharachchikumbura et al. 2011;Sun et al. 2023). Neopestalotiopsis species have recently been identified as a group of emerging plant pathogens, causing severe diseases on economically important crops and fruits, such as strawberry (Baggio et al. 2021), guava (Solarte et al. 2018;Bhogal et al. 2022), grape (Huanaluek et al. 2021), mangosteen (Huanaluek et al. 2021), avocado (Fiorenza et al. 2022), blueberry (Santos et al. 2022), jabuticaba ) and persimmon (Qin et al. 2023). ...
... The highest diversity of pestalotiopsis-like fungi is recorded in tropical and subtropical countries (Jiang et al. 2022a;Peng et al. 2022;Xiong et al. 2022;Seifollahi et al. 2023;Sun et al. 2023). While most pestalotiopsis-like taxa are associated with plants (Maharachchikumbura et al. 2011), investigations regarding their biodiversity and occurrence in unusual habitats are rare (Liu et al. 2021;Rajulu et al. 2022). ...
Article
Full-text available
Pestalotiopsis sensu lato, commonly referred to as pestalotiopsis-like fungi, exhibit a broad distribution and are frequently found as endophytes, saprobes and pathogens across various plant hosts. The taxa within pestalotiopsis-like fungi are classified into three genera viz. Pestalotiopsis, Pseudopestalotiopsis and Neopestalotiopsis, based on the conidial colour of their median cells and multi-locus molecular phylogenies. In the course of a biodiversity investigation focusing on pestalotiopsis-like fungi, a total of 12 fungal strains were identified. These strains were found to be associated with stromata of Beauveria, Ophiocordyceps and Tolypocladium in various regions of Taiwan from 2018 to 2021. These strains were evaluated morphologically and multi-locus phylogenetic analyses of the ITS (internal transcribed spacer), tef1-α (translation elongation factor 1-α) and tub2 (beta-tubulin) gene regions were conducted for genotyping. The results revealed seven well-classified taxa and one tentative clade in Pestalotiopsis and Neopestalotiopsis. One novel species, Pestalotiopsis manyueyuanani and four new records, N. camelliae-oleiferae, N. haikouensis, P. chamaeropis and P. hispanica, were reported for the first time in Taiwan. In addition, P. formosana and an unclassified strain of Neopestalotiopsis were identified, based on similarities of phylogeny and morphology. However, the data obtained in the present study suggest that the currently recommended loci for species delimitation of pestalotiopsis-like fungi do not deliver reliable or adequate resolution of tree topologies. The in-vitro mycelial growth rates of selected strains from these taxa had an optimum temperature of 25 °C, but growth ceased at 5 °C and 35 °C, while all the strains grew faster under alkaline than acidic or neutral pH conditions. This study provides the first assessment of pestalotiopsis-like fungi, associated with entomopathogenic taxa.
... RLB is an important disease in the cultivation process of A. oxyphylla, according to previous reports. Its pathogen was reported as Pestalotia palmarum in 1986 [11], now classified as Pestalotiopsis palmarum, while the RBS disease, with similar symptoms to RLB disease, was caused by Pestalosphaeria alpinia, the sexual morph of pestalotioid, as reported in 1994 [15]. Perhaps due to the differences in the classification method and limitations in the sample size, P. palmarum and P. alpinia were not isolated in this study, which explained the potential diversity of pestalotioid fungi in this host that need to be further explored. ...
Article
Full-text available
Alpinia oxyphylla is a traditional Chinese medicinal plant with a medicinal history of more than 1700 years. Ring leaf blight (RLB) disease, caused by pestalotioid species, is an important disease of A. oxyphylla, seriously affecting the yield and quality of its fruits. The causal agent of RLB disease has not been systematically identified or characterized yet. In this study, thirty-six pestalotioid strains were isolated from the leaves and stems of A. oxyphylla that was collected from six cities of Hainan province, China. Based on the multi-locus phylogeny (ITS, tef-1α and tub2) and morphological characteristic analyses, seventeen species belonging to three genera (Neopestalotiopsis, Pestalotiopsis and Pseudopestalotiopsis) were identified, and six new species (N. baotingensis, N. oblatespora, N. olivaceous, N. oxyphylla, N. wuzhishanensis and N. yongxunensis) were described. Pathogenicity tests revealed that strains of Neopestalotiopsis species caused more severe ring leaf blight on A. oxyphylla than strains of Pestalotiopsis and Pseudopestalotiopsis under wounded inoculation conditions.
... The taxonomic investigations of microfungi have been conducted by various researchers, with an emphasis on their respective habitats, such as marine habitats [64], freshwater habitats [56], or an emphasis on their hosts, such as mangrove fungi [65], teak fungi [66], grass fungi [67], and entomopathogenic fungi [68]. Alternatively, researchers may focus on particular fungal groups, such as annulatascaceae-like taxa [57,69], tubeufialike taxa [55], pestalotiopsis-like taxa [70,71]. However, the taxonomic studies on fungal groups, simultaneously providing valuable insights into their hosts and habitats, have been rarely investigated. ...
Article
Full-text available
Species within Tetraplosphaeriaceae have been frequently documented in recent years with the extensive investigations of microfungi along a latitudinal gradient from north to south in the Asian/Australian region. Both bamboo substrates and freshwater habitats serve as extensive reservoirs, hosting a rich diversity of fungi that exhibit broad geographical distributions. The most common fungi in these two environments are generally distributed in distinct families. However, our statistics have revealed an intriguingly distinct preference of Tetraplosphaeriaceae species for inhabiting both bamboo substrates and freshwater habitats. The genera Pseudotetraploa (100%) and Triplosphaeria (100%) exhibit a strong preference, followed by Shrungabeeja (71%) and Quadricrura (67%). Our taxonomic and phylogenetic study of microfungi in southern China have identified four additional novel species, viz., Aquatisphaeria bambusae sp. nov., Pseudotetraploa phyllostachydis sp. nov., Pseudotetraploa yangjiangensis sp. nov., and Tetraploa submersa sp. nov. from bamboo substrates and freshwater habitats. In addition, Aquatisphaeria thailandica has previously been documented from freshwater habitats in Thailand; however, we have once again isolated this species from decaying bamboo substrates in Guangdong, China. The new findings substantiate our hypothesis that the preference of Tetraplosphaeriaceae species for colonizing bamboo substrates and freshwater habitats will be more evident through more extensive investigations conducted in such environments.
... Conidium morphology is an extensively used taxonomic character in fungi (Maharachchikumbura et al. 2011). However, phenotypic characteristics overlap which makes it di cult to segregate morphologically equivocal taxa. ...
Preprint
Full-text available
Background Zedoary turmeric (Curcuma phaeocaulis), a cornerstone of traditional Chinese medicines in Guangxi Province, holds immense significance. Regrettably, the emergence of a novel leaf wilt in October 2017 has cast a pall over its production, leading to detrimental impacts on both yield and quality. Results By meticulous single-conidial isolation, this new pathogen was successfully extracted from ten diseased leaves. Subsequent confirmation of pathogenicity was achieved via the meticulous execution of Koch's postulates. In pursuit of accurate identification, morphological data were harmonized with a concatenated sequence analysis of the rDNA internal transcribed spacer (ITS), translation elongation factor 1 (TEF), and β-tubulin (TUB) regions. This rigorous approach unveiled the pathogen as an Neopestalotiopsis asiatica, warranting the nomenclature Neopestalotiopsis asiatica strain CP. Conclusions This is the first description on Neopestalotiopsis asiatica as causal agent for leaf blight on zedoary turmeric. The ramifications of this pathogen's definitive identification and ongoing surveillance cannot be overstated, signifying a pivotal alert to zedoary turmeric cultivators in confronting this newfound peril.
Article
Hundreds of new woody ornamental plant cultivars are introduced into the nursery industry each year which have many desirable aesthetic traits. However, in recent years growers have reported a higher level of herbicide sensitivity with certain cultivars compared with older cultivars that have been in the trade for multiple years. The objective of this research was to determine the tolerance of 12 different cultivars of five ornamental species including four cultivars of Loropetalum chinense [‘Ruby’, ‘Shang-hi’ PP18331 (Purple Diamond®), ‘Irodori’ USPP 27713 (Jazz Hands®), and ‘PIILC-I’ (Crimson Fire™), and two cultivars of Gardenia jasminoides (‘Frostproof’ and ‘Buttons’), Lagerstroemia indica [‘JM7’ PP34092 (Thunderstruck™ Ruby) and ‘Tuscarora’], Rhododendron [‘Conlet’ PP12111 (Autumn Carnival Encore®) and ‘Fashion’], and Ligustrum sinense Sunshine (‘Sunshine’ PP20379 and ‘Variegatum’) to spray-applied applications of dimethenamid-P or isoxaben + prodiamine and granular applications of dimethenamid-P + pendimethalin and indaziflam. While little to no injury was observed in gardenia or crape myrtles, significant injury and differences among cultivars of the same species were observed in azalea, loropetalum, and ligustrum. Results indicate that all new cultivars should be evaluated for herbicide tolerance by growers prior to wide scale application as significant differences in both growth and injury ratings were observed between different cultivars of the same species. Species used in this study: Ruby Loropetalum (Loropetalum chinense (R.Br.) Oliv. ‘Ruby’); Purple Diamond® loropetalum (Loropetalum chinense ‘Shang-hi’ PP18331); Jazz Hands loropetalum (Loropetalum chinense ‘Irodori’ USPP 27713); Crimson Fire™ loropetalum (Loropetalum chinense var. rubrum ‘PIILC-I’); Frostproof gardenia (Gardenia jasminoides J.Ellis ‘Frostproof’); Buttons gardenia (Gardenia jasminoides ‘Buttons’); Thunderstruck™ Ruby crape myrtle (Lagerstroemia × ‘JM7’ PP34092); Tuscarora crape myrtle (Lagerstroemia indica L. ‘Tuscarora’); Autumn Carnival Encore® azalea (Rhododendron ‘Conlet’ PP12111); Fashion azalea (Rhododendron × ‘Fashion’); Sunshine ligustrum (Ligustrum sinense Lour. ‘Sunshine’ PP20379); Variegated ligustrum (Ligustrum sinense ‘Variegatum’). Chemicals used in this study: dimethenamid-P (Tower®), (S)-2-chloro-N-(2,4-dimethyl-3-thienyl)-N-(2-methoxy-1-methylethyl)-acetamide; dimethenamid-P+ pendimethalin (FreeHand®) (S)-2-chloro-N-[(1-methyl-2-methoxy)ethyl]-N-(2,4-dimethyl-thien-3-yl)-acetamide + N-(1-ethylpropyl)-3,4-dimethyl-2,6-dinitrobenzenam; indaziflam (Marengo®G) N-[(1R,2S)-2,3-dihydro-2,6-dimethyl-1H-inden-1-yl]-6-[(1RS)-1 fluoroethyl]-1,3,5-triazine-2,4-diamine; prodiamine + isoxaben (Gemini® SC) 2,6-Dinitro-N1,N1-dipropyl-4-(trifluoromethyl)benzene-1,3-diamine + 2,6-Dimethoxy-N-[3-(3-methylpentan-3-yl)-1,2-oxazol-5-yl]benzamide.
Research
Full-text available
Esta pesquisa teve como objetivo isolar e identificar espécies de microfungos endofíticos e epifíticos que vivem em associação com bromélias encontradas no fragmento de Mata Atlântica localizadas em Teixeira de Freitas-BA, além de fornecer novos espécimes de microfungos à coleção da Micoteca (Coleção de Fungos) do Laboratório de Biologia dos Fungos do Campus X da Universidade do Estado da Bahia (UNEB). Neste trabalho foi realizado cinco coletas realizadas nos meses de janeiro, março, maio, agosto e setembro de 2019, coletando de forma aleatória folhas superiores (mais jovens) e inferiores (mais velhas) de duas espécies de bromélias, Aechmea alba Mez e Vriesea procera var. debilis Mez encontradas no fragmento de Mata Atlântica Floresta Ombrófila Densa, em uma fazenda particular (Fazenda Sayonara), localizado em Teixeira de Freitas-BA. Com objetivo de isolar e identificar espécies de microfungos endofíticos e epifíticos que vivem em associação com bromélias encontradas no fragmento de Mata Atlântica localizadas em Teixeira de Freitas-BA Os novos espécimes de microfungos encontrados foram adicionados à coleção da Micoteca do Laboratório de Biologia dos Fungos do Campus X da UNEB. Os dados obtidos forneceram a ocorrência de espécies de microfugos dos gêneros Acremonium; Colletotrichum; Curvularia; Fusarium; Nigrospora; Penicilium e Pestalotiopsis. Embora alguns apresentem histórico de serem parasitos, podendo, em algum momento, causar malefícios ao desenvolvimento da planta, tais danos não foram perceptíveis, a interação entre bromélias e microfungos é importante contribuindo para o desenvolvimento e sobrevivência de ambas as espécies.
Article
Full-text available
Two new caryophyllene-type sesquiterpenes pestalotiopsins U and V (1 and 2) and three known compounds pestalotiopsin B (7), pestaloporinate B (8), and pestalotiopsin C (9) were isolated by the cultivation of the endophytic fungus Pestalotiopsis lespedezae on solid rice medium, while four additional new caryophyllene pestalotiopsins W–Z (3–6) were obtained when 3.5% NaI was added to the fungal culture medium. The structures of the new compounds were determined by HRESIMS and 1D/2D nuclear magnetic resonance data. Compounds 1–9 were tested for cytotoxicity against the mouse lymphoma cell line L5178Y, but only 6 displayed significant activity with an IC50 value of 2.4 μM.
Article
Full-text available
This is the tenth of the series Mycosphere Notes, wherein we present newly discovered saprobic and endophytic fungi isolated from various hosts in China, Thailand, and Uzbekistan. In this compilation, we introduce three new genera, viz., Conicotenuis (Phomatosporaceae), Irregularispora (Stictidaceae) and Minimispora (Phomatosporaceae), and 14 new species, viz., Clonostachys artemisiae (Bionectriaceae), Conicotenuis fusiformis (Phomatosporaceae), Irregularispora olivacea (Stictidaceae), Melomastia loropetalicola (Pleurotremataceae), Minimispora superficialis (Phomatosporaceae), Montagnula agaves (Didymosphaeriaceae), Neodendryphiella brassaiopsidis (Dictyosporiaceae), Paramicrosphaeropsis sexualis (Didymellaceae), Pestalotiopsis camelliae-japonicae (Sporocadaceae), Pestalotiopsis pyrrosiae-linguae (Sporocadaceae), Pestalotiopsis zhaoqingensis (Sporocadaceae), Pseudocoleophoma heteropanacicola (Dictyosporiaceae), Pseudopaucispora heteropanacis (Lophiostomataceae) and Torula longan (Torulaceae). In addition, two species Melomastia phetchaburiensis and M. sinensis are reviewed, and their illustrations are provided based on the holotype. A new host record of Torula phytolaccae is described from Phytolacca americana. We describe the sexual morph of Paramicrosphaeropsis for the first time and revise its generic concept herein.
Article
Full-text available
The diversity of endophytes associated with bark and needles of Pinus armandii and leaves of Ribes species was investigated and resulted in 132 isolates being identified as Pestalotiopsis species. Isolates were grouped into morphospecies based on morphology and cultural characteristics and named based on morphological characters. To supplement identifications, ribosomal DNA (ITS and 5.8S) and beta-tubulin gene sequences from 37 isolates representing diverse morphological and cultural characteristics were analyzed phylogenetically (maximum parsimony and Bayesian criteria). Phylogenies corroborated with morphologies and are largely congruent with previously established taxonomic schemes. Phylogenetic comparison of the two genes reveals that ITS based phylogenies alone were not suitable to infer phylogenetic relationships among Pestalotiopsis species as most of the clades did not receive adequate statistical support. P-tubulin phylogenies were better resolved but a combined dataset was found to be more appropriate. Although results are generally concordant with published studies, there seems to be several inconsistencies in grouping taxa at the species level. The phylogenetic relationships of species in relation to culture morphology, as well as to host and tissue association are discussed.
Article
Eighteen species of aquatic hyphomycetes were recorded as root endophytes in roots of living plants including grasses and pteridophytes from wet fields near ravine areas. Alatospora acuminata, A. pulchella, Acaulopage tetraceros, Anguillospora crassa, Campylospora chaetocladia, Lemonniera cornuta, L. pseudofloscula, L. terrestris, Pestalotiopsis submersus and Tetrachaetum elegans were found for the first time as root endophytes. A. longissima, Campylospora purvula, Clavariopsis aquatica, Cylindrocarpon aquaticum, Heliscus lugdunensis, Lunulospora curvula, Tetracladium marchalianum and T. setigerum, which were known previously as root endophytes, are reported here on new hosts. Maximum occurrence was found in November and December.
Article
Pestaliotiopsis jesteri, sp. nov. is described as a coelomycetous endophytic species. It was isolated from the inner bark of Fragraea bodenii Wernh. (Gentianaceae) at the singsing grounds of the Aluakambe village in the Southern Highlands of Papua New Guinea. Limb samples taken in the crown, mid-tree and lower levels each yielded P. jesteri. This fungus is characterized by the three relatively long appendages arising near the juncture of the conical apical cell and the penultimate cell in the conidium. Each appendage is terminated by a spheroid-like extension. The conidium resembles that of Pestaliotiopsis distincta Guba in some respects except for the apices of the three appendages being spheroidal, the long length of the appendages relative to the spore itself and the general fusiform shape of the conidium. Of many plant species studied for their respective endophytes in several locations in the highlands and coastal areas of Papua New Guinea, P. jesteri only appeared in one location and in one tree. This finding suggests the host selective nature of this fungus, although it could be readily grown in culture.