ArticleLiterature Review

NRF2-regulation in brain health and disease: Implication of cerebral inflammation

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Result from the present study showed decreases in nrf2 immunoreactivity in both stress, metals, and combined stress with metal treatments, which is contrary to previously reported evidence by (Buha et al. 2021;Ijomone et al. 2022). Insufficient nrf2 activation, which results to decreased nrf2 levels have been shown to occur in certain disease conditions (Gümüş et al. 2022) including Parkinson's and Alzheimer's diseases (Sandberg et al. 2014). A study utilizing Mn and Ni, showed the lack of nrf2 117 activation preceding cytotoxicity: In their study they suggested that these heavy metals induce cytotoxicity through a mechanism other than oxidative stress (Simmons et al. 2011). ...
... However, a more recent study revealed oxidative stress-mediated apoptotic cell death, to be one of the well-established mechanisms of Mn toxicity (Tarale et al. 2016). Another study showed that decreased levels of nrf2 could result from dysfunctional phosphorylation of nrf2 during translocation from the cytoplasm to the nucleus, leading to its breakdown (Sandberg et al. 2014). There was decreased nrf2 immunoreactivity on Mn exposure. ...
Article
Chronic exposure to stress has been linked to the perturbation of normal brain functioning. Further, metal overexposure due to their increasing applications can negatively impact brain health. Combined exposure to stressful events and metals is common but has not yet been studied. Thus, this study focused on the thalamic region for its role as a vital relay station in the brain to investigate apoptotic and microglia activation, oxidative stress regulation, and myelin damage following co-exposures to restraint stress and metals, manganese (Mn) and nickel (Ni). Thirty-six adult male rats were divided into six groups and, respectively, exposed to the following for 15 days: control group (normal saline), stress group (3 hours of restraint stress daily), Mn and Ni only groups (intraperitoneal injection of 25 mg/kg of metals), and stress + metal groups received Mn or Ni prior to being subjected to restraint stress. Following treatments, immunohistochemical procedures were used to evaluate relevant neurochemical markers. Results show significantly increased activation of caspase-3 in stressed, metal-only, and combined stress-plus-metal treatments, particularly with Mn treatments. Also, the results show a varying response to Iba1, the microglia activation marker. Furthermore, the study reports significant decreases in Nrf2 (nuclear factor erythroid 2-related factor 2) expression that is potentiated by combined stress and metal treatments as well as altered myelination-linked proteins, Olig2 (oligodendrocyte lineage transcription factor 2), and MBP (myelin basic protein). Overall, the result from this study indicates that the combination of stress and metal exposure could exacerbate the neurotoxic impact of metal toxicity or stressful events.
... Mekanisme yang dapat dijelaskan dari studi tersebut adalah AKBA memodulasi rekasi antioksidan dan antiinflamasi dengan meningkatkan ekspresi nuclear erythroid 2-related factor 2 (Nrf2) dan heme oxygenase-1 (HO-1), serta menurunkan fosforilasi dari nuclear factor-kappa B alpha (IκBα) dan p65. Nrf2 sendiri diketahui dapat meregulasi reaksi redok homeostatis dengan mengaktivasi molekul antioksidan dan anti inflamasi (Sandberg et al., 2014;Sajja et al., 2015), seperti like heme oxygenase-1 (HO-1), glutathione Stransferase (GST), superoxide dismutase (SOD), dan menghambat pembentukan IL-6 pada awal proses inflamasi (Silva-Palacios et al., 2018). Berdasarkan studi Wei et al. (2020), AKBA diketahui dapat meningkatkan molekul antioksidan berupa SOD dan GSH pada hippokampus dan kortek cerebral, sehingga dapat meningkatkan proses memori dan belajar pada tikus pada tikus APPswe/PS1dE9 (Wei et al., 2020). ...
... Pada penderita Alzemimer, aktifitas AChE diketahui meningkat dikarenakan adanya penurunan ACh dan menyebabkan terhambatnya komunikasi antar sel saraf (Syad & Devi, 2014). Studi yang menggunakan asam Boswelik pada mencit model Alzeimer, menunjukan adanya penurunan aktifitas AChE, sehingga penurunan ACh dapat diatasi (Sandberg et al., 2014). Hasil penelitian memperlihatkan adanya peningkatan aktifitas AChE dan menurunnya satu setangah kali acetylcholine neurotransmitters pada hipokampus hewan coba dengan Alzeimer dibandingkan dengan hewan kontrol. ...
Article
Full-text available
Getah kemenyan dengan genus Boswellia telah lama digunakan secara tradisional pada beberapa penyakit. Kandungan Boswellia salah satunya adalah asam boswellic. Asam boswellic memiliki aktivitas neuroprotektif dan antiinflamasi. Beberapa jenis asam boswellic yang paling banyak diteliti mengenai efek farmakologi adalah asam 11-keto-β-boswelik (KBA), asam asetil-11-keto-β-boswellik (AKBA), dan β-boswelik (βBA). βBA diteliti memiliki efektivitas permeabel terhadap Blood Brain Barrier (BBB) dibandingkan jenis asam boswellic lainnya. Oleh karena itu, βBA memiliki potensi yang lebih besar dalam pengaruhnya pada otak terutama hippocampus. Review ini bertujuan untuk memberikan informasi lengkap dan membahas mengenai pengaruh boswellic acid pada performa hippocampus di otak terutama efek pada fungsi kognitif, efek farmakologis pada studi in vivo dan invitro, serta mekanisme molekuler sehingga diharapkan dapat menjadi pengetahuan sebagai acuan dalam melakukan penelitian lanjutan. Pemberian asam boswellic memberikan efek neuroprotektif dan antiinflamasi pada hippocampus sehingga dapat bekerja menghambat apoptosis sel di hippocampus, meningkatkan viabilitas sel saraf, dan meningkatkan kemampuan learning dan memori serta kognitif melalui anti-infalamasi. Beberapa mekanisme molekuler asam boswellic yang dapat mempengaruhi performa hippocampus adalah 5-Lipoxygenase (5-LOX), peningkatan Nuclear factor erythroid 2–related factor 2 (Nrf2), penekanan aktifitas acetylcholinesterase (AChE), dan pengaturan Ca (2+/-) dan protein kinase teraktivasi mitogen (MAPK). Akan tetapi, penelitian mengenai pengaruh boswellic acid pada performa hippocampus masih sangat terbatas dan perlu dilakukan penelitian lebih lanjut terutama pada manusia.
... PGRMC1 has been found to be highly expressed in the 661 W photoreceptor cell line, RPE, and MG [52,53]. Norgestrel has been shown to exhibit antioxidant properties, preventing photoreceptor damage in a model for RP via increasing the expression of Nrf2, which in response to oxidative stress, binds to DNA anti-oxidant response elements and initiates the transcription of cytoprotective genes [54][55][56]. Huang et al. [57] suggested that it is the phosphorylation of Nrf2 by protein kinase C that induces Nrf2's nuclear translocation and anti-oxidant effects. B Norgestrel exhibits neuroprotective properties in stressed photoreceptor-like cells and retinal explants via upregulating basic fibroblast growth factor (bFGF) activity via a protein kinase A pathway-dependent mechanism. ...
... B Norgestrel exhibits neuroprotective properties in stressed photoreceptor-like cells and retinal explants via upregulating basic fibroblast growth factor (bFGF) activity via a protein kinase A pathway-dependent mechanism. bFGF phosphorylates and inactivates glycogen synthase kinase 3-beta (GSK3B), preventing the dysregulation of the Nrf2 defense system via preventing the phosphorylating FYN which induces the nuclear export and degradation of Nrf2 [56,58,59]. C Norgestrel upregulates fractalkine-CX3CR1 signaling in 661 W cells and C57 explants and fractalkine signaling which mediates norgestrel cytoprotection via reduction of inflammatory cytokine production in rd10 microglia [60]. ...
Article
Full-text available
Background The retinal pigment epithelium (RPE), a layer of pigmented cells that lies between the neurosensory retina and the underlying choroid, plays a critical role in maintaining the functional integrity of photoreceptor cells and in mediating communication between the neurosensory retina and choroid. Prior studies have demonstrated neurotrophic effects of select steroids that mitigate the development and progression of retinal degenerative diseases via an array of distinct mechanisms of action. Methods Here, we identified major steroid hormone signaling pathways and their key functional protein constituents controlling steroid hormone signaling, which are potentially involved in the mitigation or propagation of retinal degenerative processes, from human proteome datasets with respect to their relative abundances in the retinal periphery, macula, and fovea. Results Androgen, glucocorticoid, and progesterone signaling networks were identified and displayed differential distribution patterns within these three anatomically distinct regions of the choroid-retinal pigment epithelial complex. Classical and non-classical estrogen and mineralocorticoid receptors were not identified. Conclusion Identified differential distribution patterns suggest both selective susceptibility to chronic neurodegenerative disease processes, as well as potential substrates for drug target discovery and novel drug development focused on steroid signaling pathways in the choroid-RPE.
... 22) (Extended Data Fig. 2a,c). For RASGRF1, we found 61 significant shared peaks in the control groups (young and aged) and enriched motifs for NRF2 and ASCL1, which are related to brain health and neurogenesis 23,24 . These motifs were not used in PD samples (Extended Data Fig. 2b,d). ...
Article
Full-text available
Age is the primary risk factor for Parkinson’s disease (PD), but how aging changes the expression and regulatory landscape of the brain remains unclear. Here we present a single-nuclei multiomic study profiling shared gene expression and chromatin accessibility of young, aged and PD postmortem midbrain samples. Combined multiomic analysis along a pseudopathogenesis trajectory reveals that all glial cell types are affected by age, but microglia and oligodendrocytes are further altered in PD. We present evidence for a disease-associated oligodendrocyte subtype and identify genes lost over the aging and disease process, including CARNS1, that may predispose healthy cells to develop a disease-associated phenotype. Surprisingly, we found that chromatin accessibility changed little over aging or PD within the same cell types. Peak–gene association patterns, however, are substantially altered during aging and PD, identifying cell-type-specific chromosomal loci that contain PD-associated single-nucleotide polymorphisms. Our study suggests a previously undescribed role for oligodendrocytes in aging and PD.
... Our microarray data identified two pathways in the brain: Nrf2, and cytochrome P450. The nuclear factor erythroid 2-related factor 2 (Nrf2) pathway regulates the cellular antioxidant defense 47 in response to viral-replication induced oxidative stress while replicating [48][49][50] , and its' long-term downregulation has been associated with chronic neurodegenerative diseases 51,52 . The downregulated Cytochrome P450 pathway enzymes are mainly active in liver metabolism, they have also been shown to be involved in brain micro-metabolism 53,54 . ...
Article
Full-text available
Early-life adversity covers a range of physical, social and environmental stressors. Acute viral infections in early life are a major source of such adversity and have been associated with a broad spectrum of later-life effects outside the immune system or “off-target”. These include an altered hypothalamus–pituitary–adrenal (HPA) axis and metabolic reactions. Here, we used a murine post-natal day 14 (PND 14) Influenza A (H1N1) infection model and applied a semi-holistic approach including phenotypic measurements, gene expression arrays and diffusion neuroimaging techniques to investigate HPA axis dysregulation, energy metabolism and brain connectivity. By PND 56 the H1N1 infection had been resolved, and there was no residual gene expression signature of immune cell infiltration into the liver, adrenal gland or brain tissues examined nor of immune-related signalling. A resolved early-life H1N1 infection had sex-specific effects. We observed retarded growth of males and altered pre-stress (baseline) blood glucose and corticosterone levels at PND42 after the infection was resolved. Cerebral MRI scans identified reduced connectivity in the cortex, midbrain and cerebellum that were accompanied by tissue-specific gene expression signatures. Gene set enrichment analysis confirmed that these were tissue-specific changes with few common pathways. Early-life infection independently affected each of the systems and this was independent of HPA axis or immune perturbations.
... Nrf2 and NF-κβ pathways regulate the physiological homeostasis of cellular redox status and response to stress and inflammation. Previous studies have suggested that Nrf2 plays a role in counteracting NF-κβ driven inflammatory response in many experimental models (Sandberg et al., 2014). Rac1 which in turn upregulates HO-1 expression, then HO-1 reduces the NF-κβ inflammatory activity and shifts the cells to a more reducing environment that is essential for terminating the NF-κβ activation (Cuadrado et al., 2014). ...
Article
Learning and memory storage are the fundamental activities of the brain. Aberrant expression of synaptic molecular markers has been linked to memory impairment in AD. Aging is one of the risk factors linked to gradual memory loss. It is estimated that approximately 13 million people worldwide will have AD by 2050. A massive amount of oxidative stress is kept under control by a complex network of antioxidants, which occasionally fails and results in neuronal oxidative stress. Increasing evidence suggests that ROS may affect many pathological aspects of AD, including Aβ accumulation, tau hyperphosphorylation, synaptic plasticity, and mitochondrial dysfunction, which may collectively result in neurodegeneration in the brain. Further investigation into the relationship between oxidative stress and AD may provide an avenue for effective preservation and pharmacological treatment of this neurodegenerative disease. In this review, we briefly summarize the cellular mechanism underlying Aβ induced synaptic dysfunction. Since oxidative stress is common in the elderly and may contribute to the pathogenesis of AD, we also shed light on the role of antioxidant and inflammatory pathways in oxidative stress adaptation, which has a potential therapeutic target in neurodegenerative diseases.
... Nrf2 is a transcription factor that promotes immune dysregulation/inflammation, oxidative stress and mitochondrial dysfunction. Inhibition of Nrf2 activity in the human brain may increase various neurological diseases (Sandberg et al., 2014). Sulforaphane, a natural activator of Nrf2, downregulated autism-like behaviours in BTBR mice. ...
Article
Background and aims: Although the exact cause of autism spectrum disorder, which is a neurodevelopmental disorder, is not known, it is thought that environmental factors are also effective in addition to genetic risk factors. Studies are showing an increase in oxidative stress markers and a decrease in some antioxidant enzymes in individuals with autism. This study aims to try to explain the effect of nutritional interventions that reduce oxidative stress on behavioral and gastrointestinal problems in ASD based on a literature review. Methods: All relevant studies from 2000 to 2021 were identified through a systematic search in the PubMed and Web of Science databases by using key search terms. A systematic search of the electronic databases resulted in a total of 3235 potential articles, and data were extracted from 24 studies. Results: There were nine clinical trials and 15 animal studies. Most studies find statistically significant results for nutritional supplementation compared to placebo ASD symptoms. Conclusion: Most studies on the interventions of nutritional supplements that reduce oxidative stress in individuals with ASD have found improving effects on ASD symptoms, and no serious side effects have been observed. However, more interventional studies are needed to determine the precise effects of oxidative stress-reducing nutritional supplementation.
... Furthermore, Nrf2 prevents the IκB-α proteasomal degradation and inhibits nuclear translocation of NF-κB [19]. Studies suggest that Nrf2 counteracts the NF-ĸB-driven inflammatory response by competing with transcription co-activator cAMP response element (CREB) binding protein (CBP) [20,21]. Histones are acetylated by the CBP-p300 complex, which also makes DNA accessible for the construction of the transcriptional machinery. ...
Chapter
Full-text available
Inflammation is a biological reaction to oxidative stress in which cell starts producing proteins, enzymes, and other substances to restore homeostasis, while oxidative stress could be intrinsically a biochemical imbalance of the physiologically redox status of the intracellular environment. The nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway, which controls the transcription of numerous antioxidant genes that protect cellular homeostasis and detoxification genes that process and eliminate all toxic compounds and substances before they can cause damage. The Nrf2 pathway is the heart of the daily biological response to oxidative stress. Transient activation of Nrf2 by diet can upregulate antioxidant enzymes to protect cells against oxidative stress inducers. In this chapter, we summarize the effects of some novel foods in the regulation of the Nrf2/ARE pathway and its cellular mechanisms.
... coding antioxidant, anti-inflammatory, and detoxifying proteins (Pi et al., 2019). Nrf2 by neurons can be highly expressed under brain oxidative stress and inflammation injury (Sandberg et al., 2014). Compelling experimental evidence has confirmed that Nrf2 may confer brain-protective function via attenuating free radical oxidative damage in ICH (Wang et al., 2007;Zhao et al., 2007Zhao et al., , 2015a. ...
Article
Full-text available
Objective Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key transcriptional factor for antioxidant response element-regulated genes. The purpose of this study was to assess the prognostic role of serum Nrf2 in intracerebral hemorrhage (ICH).Materials and methodsIn this prospective observational study, serum Nrf2 levels of 115 acute supratentorial ICH patients and 115 controls were gaged. Early neurologic deterioration (END) was defined as an increase of four or greater points in National Institutes of Health Stroke Scale (NIHSS) score or death at post-stroke 24 h. A poor outcome was referred to as the post-stroke 90-day modified Rankin scale (mRS) score of 3–6. END and a poor outcome were considered as the two prognostic parameters.ResultsAs compared to controls, serum Nrf2 levels of patients were substantially elevated (P < 0.001), with its levels increasing during the 6-h period immediately, peaking in 12–18 h, plateauing at 18–24 h, and decreasing gradually thereafter (P < 0.05). Serum Nrf2 levels of patients were independently correlated with NIHSS score (t = 3.033; P = 0.003) and hematoma volume (t = 3.210; P = 0.002), independently predicted END (odds ratio 1.125; 95% confidence interval 1.027–1.232; P = 0.011) and poor outcome (odds ratio 1.217; 95% confidence interval 1.067–1.387; P = 0.013), as well as efficiently distinguished END (area under curve 0.771; 95% confidence interval 0.666–0.877; P < 0.001) and poor outcome (area under curve 0.803; 95% confidence interval 0.725–0.882; P < 0.001). Its predictive ability was equivalent to those of NIHSS score and hematoma volume (both P > 0.05), and it also significantly improved their predictive abilities under receiver operating characteristic (ROC) curve (all P < 0.05).Conclusion Elevated serum Nrf2 levels are closely correlated with severity, END, and 90-day poor outcome following ICH. Hence, Nrf2 may play an important role in acute brain injury after ICH, and serum Nrf2 may have the potential to serve as a prognostic biomarker of ICH.
... CO is a known Nfkb inhibitor, which elicits reduced formation of pro-inflammatory responses. Taken together, the Nrf2/Hmox-1 pathway is directly involved in the inhibition of proinflammatory cytokines and activation of anti-inflammatory cytokines (Sandberg et al., 2014). Hence Nrf2 mediated increase in the expression of Hmox-1 is crucial for cross-talk between Nrf2 and Nfkb. ...
Article
This study evaluated the protective role of banana peel extract (BP) on heavy metal mixture (HMM) mediated hepatorenal toxicity using a rat model. Twenty-five female Wistar albino rats were weight-matched and divided into five groups of five female rats each. Group 1(control) received deionized water only. Group 2 received HMM only (20 mg·kg⁻¹ of Pb, 0.40 mg·kg⁻¹ of Hg, 0.56 mg·kg⁻¹ of Mn and 35 mg·kg⁻¹ of Al). Groups 3, 4 and 5 were co-administered with the same metal mixture with BP at 200, 400 and 800 mg·kg⁻¹, respectively. Treatments were through oral gavage for 60 days; animals were sacrificed pentobarbital anesthesia and liver and kidney harvested for test. Thereafter, metal levels, malondialdehyde (MDA) and nitric oxide (NO), catalase (CAT), glutathione content (GSH), superoxide dismutase (SOD), and glutathione peroxidase (GPx), interlukin-6 (IL-6) and tumor necrosis alpha (Tnf-α), caspase-3 (Cas-3), Nuclear factor kappa B (Nfkb), Nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (Hmox-1) were assayed. HMM group presented higher levels of metal, IL-6 and Tnf-α, MDA, NO, Nfkb and Hmox-1 in HMM group which were significantly reduced by BP. BP was protective against metal mixture induced histopathological distortions. HMM exposure significantly distorted hepatorenal functions and BP treatment reduced metal bioavailability and abrogated most of these alterations.
Article
Full-text available
Cyclic peptides represent invaluable scaffolds in biological affinity, providing diverse collections for discovering functional molecules targeting challenging biological entities and protein–protein interactions. The field increasingly focuses on developing cyclization strategies and chemically modified combinatorial libraries in conjunction with M13 phage display, to identify macrocyclic peptide inhibitors for traditionally challenging targets. Here, we introduce a cyclization strategy utilizing ortho-phthalaldehyde (OPA) for the discovery of active macrocycles characterized by asymmetric scaffolds with side-chain cyclization. Through this approach, aldehyde groups attached to free molecules sequentially attack the ε-amine of lysine and the thiol of cysteine, facilitating the rapid cyclization of genetically encoded linear precursor libraries displayed on phage particles. The construction of a 10⁹-member library and subsequent screening successfully identified cyclic peptide binders targeting three therapeutically relevant proteins: PTP1B, NEK7, and hKeap1. The results confirm the efficacy in rapidly obtaining active ligands with micromolar potency. This work provides a fast and efficient operable high-throughput platform for screening functional peptide macrocycles, which hold promise for broad application in therapeutics, chemically biological probes, and disease diagnosis.
Article
Full-text available
Sleep is a fundamental conserved physiological state across evolution, suggesting vital biological functions that are yet to be fully clarified. However, our understanding of the neural and molecular basis of sleep regulation has increased rapidly in recent years. Among various processes implicated in controlling sleep homeostasis, a bidirectional relationship between sleep and oxidative stress has recently emerged. One proposed function of sleep may be the mitigation of oxidative stress in both brain and peripheral tissues, contributing to the clearance of reactive species that accumulate during wakefulness. Conversely, reactive species, such as reactive oxygen species (ROS) and reactive nitrogen species (RNS), at physiological levels, may act as signaling agents to regulate redox-sensitive transcriptional factors, enzymes, and other effectors involved in the regulation of sleep. As a primary sensor of intracellular oxidation, the transcription factor NRF2 is emerging as an indispensable component to maintain cellular redox homeostasis during sleep. Indeed, a number of studies have revealed an association between NRF2 dysfunction and the most common sleep conditions, including sleep loss, obstructive sleep apnea, and circadian sleep disturbances. This review examines the evidence of the intricate link between oxidative stress and NRF2 function in the context of sleep, and highlights the potential of NRF2 modulators to alleviate sleep disturbances. Graphical Abstract A bidirectional relationship between sleep and oxidative stress has been shown, indicating that sleep may play a protective role against the accumulation of reactive species during wakefulness and sleep deprivation. However, reactive species might also serve as signaling molecules that influence sleep regulation mechanisms. Notably, as a sensor of cellular redox changes, the transcription factor NRF2 is emerging as a key regulator of sleep homeostasis.
Article
: Alzheimer's disease (AD) is a neurodegenerative condition characterized by progressive cognitive deterioration, including deficits in memory and other cognitive functions. Oxidative stress and free radical damage play significant roles in its pathogenesis. This study aimed to investigate the potential anti-inflammatory and neuroprotective effects of Pistacia atlantica gum (administered at doses of 50 and 100 mg/kg for 14 days) in a rat model of AD induced by aluminum chloride (AlCl3). Behavioral changes were assessed using open field, passive avoidance, and elevated plus maze tests. Additionally, nitrite levels, nuclear factor-kappa B (NF-κB), brain-derived neurotrophic factor (BDNF), and immunostaining were evaluated. Administration of P. atlantica gum significantly increased step-through latency in the passive avoidance test (P < 0.01 and P < 0.001), enhanced mobility in the open field test (P < 0.01 and P < 0.001), and reduced anxiety-like behaviors in the elevated plus maze (P < 0.001) compared to the AlCl3 group. Treatment with the gum partially normalized the elevated levels of NF-κB and the decreased levels of BDNF caused by AlCl3 exposure. Our findings suggest that P. atlantica gum administration may alleviate oxidative stress, neuroinflammation, and cognitive impairment in AD rats.
Article
Mercury-containing products, such as dental amalgam used for dental filling in dentistry, have been heavily criticised due to their associated toxicity. Nevertheless, it is still in use in low-income countries due to it being relatively affordable. Therefore, in this study, we evaluate the neurotoxic effects of mercury (Hg) and the possible ameliorative effects of polyphenol-curcumin using the fruit fly (Drosophila melanogaster) model. Male and female D. melanogaster, aged 3 to 5 days, were categorized into six groups, each consisting of 40 flies. To evaluate the impact of Hg exposure and the potential protective effects of curcumin, we conducted measurements on multiple parameters. These included assessing the survival rate, determining the memory index using an aversive phototaxis suppression assay, evaluating locomotor performance through negative geotaxis, and analysing various biochemical parameters associated with antioxidant status and neuronal function-related enzymes. Our findings indicate that dietary exposure to Hg resulted in a decreased survival rate and impaired locomotor performance in D. melanogaster. However, we observed a notable improvement in the antioxidant system among D. melanogaster exposed to Hg toxicity when they were fed a diet supplemented with curcumin. This improvement was evident through enhanced catalase activity, improved memory index, and modulation of acetylcholinesterase and monoamine oxidase activities. These effects were observed in comparison to D. melanogaster solely exposed to HgCl2 without curcumin supplementation. Collectively, these data showed that curcumin could mitigate the neurotoxicity associated with Hg and thus could serve as a substitute for Hg-containing products like dental amalgam.
Chapter
Humans now have a wide range of treatment options, thanks to plant-derived phytochemicals. In the twenty-first century, cognitive dysfunction is a significant health concern, and many neuropsychiatric and neurodegenerative disorders, including Parkinsonism, schizophrenia, depression, Alzheimer’s disease, dementia, cerebrovascular impairment, and seizure disorders, can be severely functionally disabling. Over time, several neurotransmitters and signaling molecules have been discovered that have been thought of as potential therapeutic targets. The action of the principal inhibitory neurotransmitter receptors is influenced by phytochemicals from medicinal plants, which are essential for maintaining the chemical balance of the brain. The beneficial effects of dietary phytochemicals on general health and longevity are well documented. Dietary phytochemicals are a substantial array of nonnutritive substances generated from numerous plant-derived foods and chemical subgroups. Remarkable progress has been achieved in the last 10 years in understanding the key risk factors for brain aging, chronic, low-grade inflammation, and oxidative and nitrosative stress (OS & NS). Increasing evidence indicates that phytochemicals from fruits, vegetables, herbs, and spices may have anti-O&NS and/or immunoregulatory effects that are relevant to the aging brain. Despite the translational gap between basic and clinical research, the current knowledge of the molecular interactions between phytochemicals and immune-inflammatory and O&NS (IO&NS) pathways may aid in the development of successful dietary interventions to slow down brain aging and enhance cognitive function.
Article
Background: Cerebral ischemia/reperfusion injury (CIRI) is still a complicated disease with high fatality rates worldwide. Transmembrane Protein 79 (TMEM79) regulates inflammation and oxidative stress in some other diseases. Methods: CIRI mouse model was established using C57BL/6J mice through middle cerebral artery occlusion-reperfusion (MCAO/R), and BV2 cells were subjected to oxygen and glucose deprivation/reoxygenation (OGD/R) to simulate CIRI. Brain tissue or BV2 cells were transfected or injected with lentivirus-carried TMEM79 overexpression vector. The impact of TMEM79 on CIRI-triggered oxidative stress was ascertained by dihydroethidium (DHE) staining and examination of oxidative stress indicators. Regulation of TMEM79 in neuronal apoptosis and inflammation was determined using TUNEL staining and ELISA. Results: TMEM79 overexpression mitigated neurological deficit induced by MCAO/R and decreased the extent of cerebral infarct. TMEM79 prevented neuronal death in brain tissue of MCAO/R mouse model and suppressed inflammatory response by reducing inflammatory cytokines levels. Moreover, TMEM79 significantly attenuated inflammation and oxidative stress caused by OGD/R in BV2 cells. TMEM79 facilitated the activation of Nrf2 and inhibited NLRP3 and caspase-1 expressions. Rescue experiments indicated that the Nrf2/NLRP3 signaling pathway mediated the mitigative effect of TMEM79 on CIRI in vivo and in vitro. Conclusion: Overall, TMEM79 was confirmed to attenuate CIRI via regulating the Nrf2/NLRP3 signaling pathway.
Article
Full-text available
Ferroptosis is a type of cell death that is caused by the oxidation of lipids and is dependent on the presence of iron. It was first characterized by Brent R. Stockwell in 2012, and since then, research in the field of ferroptosis has rapidly expanded. The process of ferroptosis-induced cell death is genetically, biochemically, and morphologically distinct from other forms of cellular death, such as apoptosis, necroptosis, and non-programmed cell death. Extensive research has been devoted to comprehending the intricate process of ferroptosis and the various factors that contribute to it. While the majority of these studies have focused on examining the effects of lipid metabolism and mitochondria on ferroptosis, recent findings have highlighted the significant involvement of signaling pathways and associated proteins, including Nrf2, P53, and YAP/TAZ, in this process. This review provides a concise summary of the crucial signaling pathways associated with ferroptosis based on relevant studies. It also elaborates on the drugs that have been employed in recent years to treat ferroptosis-related diseases by targeting the relevant signaling pathways. The established and potential therapeutic targets for ferroptosis-related diseases, such as cancer and ischemic heart disease, are systematically addressed.
Article
Aging is characterized by a progressive loss of cellular functions that increase the risk of developing chronic diseases, vascular dysfunction, and neurodegenerative conditions. The field of geroscience has identified cellular and molecular hallmarks of aging that may serve as targets for future interventions to reduce the risk of age-related disease and disability. These hallmarks include genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient-sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication. Several studies show that exercise may favorably impact these processes and thereby have anti-aging properties. The primary mechanisms through which exercise confers protective benefits in the brain are still incompletely understood. To better understand these effects and leverage them to help promote brain health, we present current findings supporting the notion that adaptive responses to exercise play a pivotal role in mitigating the hallmarks of aging and their effects on the aging cerebrovasculature, and ultimately contribute to the maintenance of brain function across the health span.
Article
Full-text available
There is substantial experimental and clinical interest in providing effective ways to both prevent and slow the onset of hearing loss. Auditory hair cells, which occur along the basilar membrane of the cochlea, often lose functionality due to age-related biological alterations, as well as from exposure to high decibel sounds affecting a diminished/damaged auditory sensitivity. Hearing loss is also seen to take place due to neuronal degeneration before or following hair cell destruction/loss. A strategy is necessary to protect hair cells and XIII cranial/auditory nerve cells prior to injury and throughout aging. Within this context, it was proposed that cochlea neural stem cells may be protected from such aging and environmental/noise insults via the ingestion of protective dietary supplements. Of particular importance is that these studies typically display a hormetic-like biphasic dose–response pattern that prevents the occurrence of auditory cell damage induced by various model chemical toxins, such as cisplatin. Likewise, the hormetic dose–response also enhances the occurrence of cochlear neural cell viability, proliferation, and differentiation. These findings are particularly important since they confirmed a strong dose dependency of the significant beneficial effects (which is biphasic), whilst having a low-dose beneficial response, whereas extensive exposures may become ineffective and/or potentially harmful. According to hormesis, phytochemicals including polyphenols exhibit biphasic dose–response effects activating low-dose antioxidant signaling pathways, resulting in the upregulation of vitagenes, a group of genes involved in preserving cellular homeostasis during stressful conditions. Modulation of the vitagene network through polyphenols increases cellular resilience mechanisms, thus impacting neurological disorder pathophysiology. Here, we aimed to explore polyphenols targeting the NF-E2-related factor 2 (Nrf2) pathway to neuroprotective and therapeutic strategies that can potentially reduce oxidative stress and inflammation, thus preventing auditory hair cell and XIII cranial/auditory nerve cell degeneration. Furthermore, we explored techniques to enhance their bioavailability and efficacy.
Article
Ischemic stroke is one of the leading causes of death and disability among adults worldwide. Intravenous thrombolysis is the only approved pharmacological treatment for acute ischemic stroke. However, reperfusion by thrombolysis will lead to the rapid activation of microglia cells which induces interferon-inflammatory response in the ischemic brain tissues. Panax quinquefolium saponins (PQS) has been proven to be effective in acute ischemic stroke, but there is no unified understanding about its specific mechanism. Here, we will report for the first time that PQS can significantly inhibit the activation of microglia cells in cerebral of MCAO rats via activation of Nrf2/miR-103-3p/TANK axis. Our results showed that PQS can directly bind to Nrf2 protein and inhibit its ubiquitination, which result in the indirectly enhancing the expression of TANK protein via transcriptional regulation on miR-103-3p, and finally to suppress the nuclear factor kappa-B dominated rapid activation of microglial cells induced by oxygen-glucose deprivation/reoxygenation vitro and cerebral ischemia-reperfusion injury in vivo. In conclusion, our study not only revealed the new mechanism of PQS in protecting against the inflammatory activation of microglia cells caused by cerebral ischemia-reperfusion injury, but also suggested that Nrf2 is a potential target for development of new drugs of ischemic stroke. More importantly, our study also reminded that miR-103-3p might be used as a prognostic biomarker for patients with ischemic stroke.
Article
Full-text available
An autoimmune disease is the consequence of the immune system attacking healthy cells, tissues, and organs by mistake instead of protecting them. Inflammation and oxidative stress (OS) are well-recognized processes occurring in association with acute or chronic impairment of cell homeostasis. The transcription factor Nrf2 (nuclear factor [erythroid-derived 2]-like 2) is of major importance as the defense instrument against OS and alters anti-inflammatory activities related to different pathological states. Researchers have described Nrf2 as a significant regulator of innate immunity. Growing indications suggest that the Nrf2 signaling pathway is deregulated in numerous diseases, including autoimmune disorders. The advantageous outcome of the pharmacological activation of Nrf2 is an essential part of Nrf2-based chemoprevention and intervention in other chronic illnesses, such as neurodegeneration, cardiovascular disease, autoimmune diseases, and chronic kidney and liver disease. Nevertheless, a growing number of investigations have indicated that Nrf2 is already elevated in specific cancer and disease steps, suggesting that the pharmacological agents developed to mitigate the potentially destructive or transformative results associated with the protracted activation of Nrf2 should also be evaluated. The activators of Nrf2 have revealed an improvement in the progress of OS-associated diseases, resulting in immunoregulatory and anti-inflammatory activities; by contrast, the depletion of Nrf2 worsens disease progression. These data strengthen the growing attention to the biological properties of Nrf2 and its possible healing power on diseases. The evidence supporting a correlation between Nrf2 signaling and the most common autoimmune diseases is reviewed here. We focus on the aspects related to the possible effect of Nrf2 activation in ameliorating pathologic conditions based on the role of this regulator of antioxidant genes in the control of inflammation and OS, which are processes related to the progression of autoimmune diseases. Finally, the possibility of Nrf2 activation as a new drug development strategy to target pathogenesis is proposed.
Article
Full-text available
There is accumulating evidence that vitamin A (VA) deficiency contributes to the pathogenesis and progression of Alzheimer’s disease (AD). All-trans retinoic acid (ATRA), a metabolite of VA in the brain, serves distinct roles in the human hippocampus. Agonists of retinoic acid receptors (RAR), including ATRA, promote activation of the non-amyloidogenic pathway by enhancing expression of α-secretases, providing a mechanistic basis for delaying/preventing amyloid beta (Aβ) toxicity. However, whether ATRA is actually deficient in the hippocampi of patients with AD is not clear. Here, using a publicly available human transcriptomic dataset, we evaluated the extent to which ATRA-sensitive genes are dysregulated in hippocampal tissue from post-mortem AD brains, relative to age-matched controls. Consistent with ATRA deficiency, we found significant dysregulation of many ATRA-sensitive genes and significant upregulation of RAR co-repressors, supporting the idea of transcriptional repression of ATRA-mediated signaling. Consistent with oxidative stress and neuroinflammation, Nrf2 and NfkB transcripts were upregulated, respectively. Interestingly, transcriptional targets of Nrf2 were not upregulated, accompanied by upregulation of several histone deacetylases. Overall, our investigation of ATRA-sensitive genes in the human hippocampus bolsters the scientific premise of ATRA depletion in AD and that epigenetic factors should be considered and addressed as part of VA supplementation.
Article
Full-text available
Intracortical microelectrode arrays (MEAs) can be used in a range of applications, from basic neuroscience research to providing an intimate interface with the brain as part of a brain-computer interface (BCI) system aimed at restoring function for people living with neurological disorders or injuries. Unfortunately, MEAs tend to fail prematurely, leading to a loss in functionality for many applications. An important contributing factor in MEA failure is oxidative stress resulting from chronically inflammatory-activated microglia and macrophages releasing reactive oxygen species (ROS) around the implant site. Antioxidants offer a means for mitigating oxidative stress and improving tissue health and MEA performance. Here, we investigate using the clinically available antioxidant dimethyl fumarate (DMF) to reduce the neuroinflammatory response and improve MEA performance in a rat MEA model. Daily treatment of DMF for 16 weeks resulted in a significant improvement in the recording capabilities of MEA devices during the sub-chronic (Weeks 5–11) phase (42% active electrode yield vs. 35% for control). However, these sub-chronic improvements were lost in the chronic implantation phase, as a more exacerbated neuroinflammatory response occurs in DMF-treated animals by 16 weeks post-implantation. Yet, neuroinflammation was indiscriminate between treatment and control groups during the sub-chronic phase. Although worse for chronic use, a temporary improvement (<12 weeks) in MEA performance is meaningful. Providing short-term improvement to MEA devices using DMF can allow for improved use for limited-duration studies. Further efforts should be taken to explore the mechanism behind a worsened neuroinflammatory response at the 16-week time point for DMF-treated animals and assess its usefulness for specific applications.
Article
Full-text available
Aims We investigated whether human umbilical cord mesenchymal stem cell (hUC‐MSC)‐derived exosomes bear therapeutic potential against lipopolysaccharide (LPS)‐induced neuroinflammation. Methods Exosomes were isolated from hUC‐MSC supernatant by ultra‐high‐speed centrifugation and characterized by transmission electron microscopy and western blotting. Inflammatory responses were induced by LPS in BV‐2 cells, primary microglial cultures, and C57BL/6J mice. H2O2 was also used to induce inflammation and oxidative stress in BV‐2 cells. The effects of hUC‐MSC‐derived exosomes on inflammatory cytokine expression, oxidative stress, and microglia polarization were studied by immunofluorescence and western blotting. Results Treatment with hUC‐MSC‐derived exosomes significantly decreased the LPS‐ or H2O2‐induced oxidative stress and expression of pro‐inflammatory cytokines (IL‐6 and TNF‐α) in vitro, while promoting an anti‐inflammatory (classical M2) phenotype in an LPS‐treated mouse model. Mechanistically, the exosomes increased the NRF2 levels and inhibited the LPS‐induced NF‐κB p65 phosphorylation and NLRP3 inflammasome activation. In contrast, the reactive oxygen species scavenger NAC and NF‐κB inhibitor BAY 11–7082 also inhibited the LPS‐induced NLRP3 inflammasome activation and switched to the classical M2 phenotype. Treatment with the NRF2 inhibitor ML385 abolished the anti‐inflammatory and anti‐oxidative effects of the exosomes. Conclusion hUC‐MSC‐derived exosomes ameliorated LPS/H2O2‐induced neuroinflammation and oxidative stress by inhibiting the microglial NRF2/NF‐κB/NLRP3 signaling pathway.
Article
Physical activity (PA) is linked to better cognitive and brain health, though its mechanisms are unknown. While brain iron is essential for normal function, levels increase with age and, when excessive, can cause detrimental neural effects. We examined how objectively measured PA relates to cerebral iron deposition and memory functioning in normal older adults. Sixty-eight cognitively unimpaired older adults from the UCSF Memory and Aging Center completed neuropsychological testing and brain magnetic resonance imaging, followed by 30-day Fitbit monitoring. Magnetic resonance imaging quantitative susceptibility mapping (QSM) quantified iron deposition. PA was operationalized as average daily steps. Linear regression models examined memory as a function of hippocampal QSM, PA, and their interaction. Higher bilateral hippocampal iron deposition correlated with worse memory but was not strongly related to PA. Covarying for demographics, PA moderated the relationship between bilateral hippocampal iron deposition and memory such that the negative effect of hippocampal QSM on memory performances was no longer significant above 9120 daily steps. PA may mitigate adverse iron-related pathways for memory health.
Article
Full-text available
The Euterpe genus (mainly Euterpe oleracea Martius, Euterpe precatoria Martius, and Euterpe edulis Martius) has recently gained commercial and scientific notoriety due to the high nutritional value of its fruits, which are rich in polyphenols (phenolic acids and anthocyanins) and have potent antioxidant activity. These characteristics have contributed to the increased number of neuropharmacological evaluations of the three species over the last 10 years, especially açaí of the species Euterpe oleracea Martius. The fruits of the three species exert neuroprotective effects through the modulation of inflammatory and oxidative pathways and other mechanisms, including the inhibition of the mTOR pathway and protection of the blood-brain barrier, all of them intimately involved in several neuropathologies. Thus, a better understanding of the neuropharmacological properties of these three species may open new paths for the development of therapeutic tools aimed at preventing and treating a variety of neurological conditions.
Article
This study aimed to examine the effects of luteolin (LUT) on chronic neuropathic pain (NP)-induced mood disorders (i.e., anxiety and depression) by regulating oxidative stress, neurotrophic factors (NFs), and neuroinflammation. Chronic constrictive injury (CCI) was used to induce NP in the animals. Animals in the treatment groups received LUT in three doses of 10, 25, and 50 mg/kg for 21 days. The severity of pain and mood disorders were examined. Finally, animals were sacrificed, and their brain tissue was used for molecular and histopathological studies. CCI led to cold allodynia and thermal hyperalgesia. Mood alterations were proven in the CCI group, according to the behavioral tests. Levels of glial cell-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), B-cell lymphoma-2 (Bcl2), superoxide dismutase (SOD), catalase (CAT), and nuclear factor erythroid-2-related factor 2 (Nrf2) were reduced in the hippocampus (HPC) and prefrontal cortex (PFC). Furthermore, the levels of MDA, Bcl-2-associated X protein (Bax), and inflammatory markers, including nuclear factor kappa B (NF-κB), NLR family pyrin domain containing 3 (NLRP3), interleukin-1β (IL-1β), IL-18, IL-6, and tumor necrosis factor-α (TNF-α) significantly increased in the HPC and PFC following CCI induction. LUT treatment reversed the behavioral alterations via regulation of oxidative stress, neurotrophines, and inflammatory mediators in the HPC and PFC. Findings confirmed the potency of LUT in the improvement of chronic pain-induced anxiety- and depressive-like symptoms, probably through antioxidant, anti-inflammatory, and neuroprotective properties in the HPC and PFC.
Article
Full-text available
Betulin is a natural triterpene, usually from birch bark, known for its potential wound-healing properties. Despite having a wide range of pharmacological targets, no studies have proposed betulin as a multitarget compound. Betulin has protective effects against cardiovascular and liver diseases, cancer, diabetes, oxidative stress, and inflammation. It reduces postprandial hyperglycemia by inhibiting α-amylase and α-glucosidase activity, combats tumor cells by inducing apoptosis and inhibiting metastatic proteins, and modulates chronic inflammation by blocking the expression of proinflammatory cytokines via modulation of the NFκB and MAPKs pathways. Given its potential to influence diverse biological networks with high target specificity, it can be hypothesized that betulin may eventually become a new lead for drug development because it can modify a variety of pharmacological targets. The summarized research revealed that the diverse beneficial effects of betulin in various diseases can be attributed, at least in part, to its multitarget anti-inflammatory activity. This review focuses on the natural sources, pharmacokinetics, pharmacological activity of betulin, and the multi-target effects of betulin on signaling pathways such as MAPK, NF-κB, and Nrf2, which are important regulators of the response to oxidative stress and inflammation in the body.
Article
Full-text available
The SARS-CoV-2 spike S1 subunit (S1) can cross the blood–brain barrier and elicit neuroinflammatory response independent of viral infection. Here we examined whether S1 influences blood pressure (BP) and sensitizes the hypertensive response to angiotensin (ANG) II by enhancing neuroinflammation and oxidative stress in hypothalamic paraventricular nucleus (PVN), a key brain cardiovascular regulatory center. Rats received central S1 or vehicle (VEH) injection for 5 days. One week after injection, ANG II or saline (control) was subcutaneously delivered for 2 weeks. S1 injection induced greater increases in BP, PVN neuronal excitation and sympathetic drive in ANG II rats but had no effects in control rats. One week after S1 injection, mRNA for proinflammatory cytokines and oxidative stress marker were higher but mRNA of Nrf2, the master regulator of inducible antioxidant and anti-inflammatory responses, was lower in the PVN in S1-injected rats than in VEH-injected rats. Three weeks after S1 injection, mRNA for proinflammatory cytokines and oxidative stress marker, microglia activation and reactive oxygen species in the PVN were comparable between S1 and VEH treated control rats but were elevated in two groups of ANG II rats. Notably, ANG II-induced elevations in these parameters were exaggerated by S1. Interestingly, ANG II increased PVN Nrf2 mRNA in VEH-treated rats but not in S1-treated rats. These data suggest that S1 exposure has no effect on BP, but post-S1 exposure increases susceptibility to ANG II-induced hypertension by downregulating PVN Nrf2 to promote neuroinflammation and oxidative stress and augment sympathetic excitation.
Article
Full-text available
Parkinson’s disease (PD) is a disorder that is characterized by progressive and selective neuronal injury and cell death. Recent studies have provided accumulating evidence for a significant role of the immune system and neuroinflammation in PD pathogenesis. On this basis, many scientific articles have highlighted the anti-inflammatory and neuroprotective properties of Antrodia camphorata (AC), an edible fungus containing various bioactive compounds. This study aimed to evaluate the inhibitory effect of AC administration on neuroinflammation and oxidative stress in a murine model of MPTP-induced dopaminergic degeneration. AC (10, 30, 100 mg/kg) was administered daily by oral gavage starting 24 h after the first administration of MPTP, and mice were sacrificed 7 days after MPTP induction. In this study, treatment with AC significantly reduced the alteration of PD hallmarks, increasing tyrosine hydroxylase expression and reducing the number of alpha-synuclein-positive neurons. In addition, AC treatment restored the myelination process of neurons associated with PD and attenuated the neuroinflammatory state. Furthermore, our study demonstrated that AC was able to reduce the oxidative stress induced by MPTP injection. In conclusion, this study highlighted that AC could be a potential therapeutic agent for the treatment of neurodegenerative disorders such as PD.
Article
Liraglutide has been recently discovered to penetrate the blood-brain barrier to exert neuroprotective effects. However, relevant mechanisms of the protective effects of liraglutide on ischaemic stroke remain to be elucidated. This study examined the mechanism of GLP-1R in regulating the protective effect of liraglutide against ischaemic stroke. Middle cerebral artery occlusion (MCAO) male Sprague-Dawley rat model with/without GLP-1R or Nrf2 knockdown was established and subjected to liraglutide treatment. Then neurological deficit and brain oedema of rats was evaluated and brain tissues were subjected to TTC, Nissl, TUNEL and immunofluorescence staining. Rat primary microglial cells firstly underwent lipopolysaccharide (LPS) treatment, then GLP-1R or Nrf2 knockdown treatment, and finally Liraglutide treatment to research the NLRP3 activation. As a result, Liraglutide protected rats' brain tissues after MCAO, which attenuated brain oedema, infarct volume, neurological deficit score, neuronal apoptosis and Iba1 expression but enhanced live neurons. However, GLP-1R knockdown abrogated these protective effects of liraglutide on MCAO rats. According to in vitro experiments, Liraglutide promoted M2 polarisation, activated Nrf2 and inhibited NLRP3 activation in LPS-induced microglial cells, but GLP-1R or Nrf2 knockdown reversed these effects of Liraglutide on LPS-induced microglial cells. Further, Nrf2 knockdown counteracted the protection of liraglutide on MCAO rats, whereas sulforaphane (agonist of Nrf2) counteracted the effect of Nrf2 knockdown on liraglutide-treated MCAO rats. Collectively, GLP-1R knockdown abrogated the protection of liraglutide on MCAO rats by activating NLRP3 via inactivating Nrf2.
Article
Full-text available
[INLINE:1] Alzheimer’s disease is a progressive neurological disorder characterized by cognitive decline and chronic inflammation within the brain. The ketogenic diet, a widely recognized therapeutic intervention for refractory epilepsy, has recently been proposed as a potential treatment for a variety of neurological diseases, including Alzheimer’s disease. However, the efficacy of ketogenic diet in treating Alzheimer’s disease and the underlying mechanism remains unclear. The current investigation aimed to explore the effect of ketogenic diet on cognitive function and the underlying biological mechanisms in a mouse model of Alzheimer’s disease. Male amyloid precursor protein/presenilin 1 (APP/PS1) mice were randomly assigned to either a ketogenic diet or control diet group, and received their respective diets for a duration of 3 months. The findings show that ketogenic diet administration enhanced cognitive function, attenuated amyloid plaque formation and proinflammatory cytokine levels in APP/PS1 mice, and augmented the nuclear factor-erythroid 2-p45 derived factor 2/heme oxygenase-1 signaling pathway while suppressing the nuclear factor-kappa B pathway. Collectively, these data suggest that ketogenic diet may have a therapeutic potential in treating Alzheimer’s disease by ameliorating the neurotoxicity associated with Aβ-induced inflammation. This study highlights the urgent need for further research into the use of ketogenic diet as a potential therapy for Alzheimer’s disease.
Article
Full-text available
Iron is essential for life. Many enzymes require iron for appropriate function. However, dysregulation of intracellular iron homeostasis produces excessive reactive oxygen species (ROS) via the Fenton reaction and causes devastating effects on cells, leading to ferroptosis, an iron-dependent cell death. In order to protect against harmful effects, the intracellular system regulates cellular iron levels through iron regulatory mechanisms, including hepcidin–ferroportin, divalent metal transporter 1 (DMT1)–transferrin, and ferritin–nuclear receptor coactivator 4 (NCOA4). During iron deficiency, DMT1–transferrin and ferritin–NCOA4 systems increase intracellular iron levels via endosomes and ferritinophagy, respectively. In contrast, repleting extracellular iron promotes cellular iron absorption through the hepcidin–ferroportin axis. These processes are regulated by the iron-regulatory protein (IRP)/iron-responsive element (IRE) system and nuclear factor erythroid 2-related factor 2 (Nrf2). Meanwhile, excessive ROS also promotes neuroinflammation by activating the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). NF-κB forms inflammasomes, inhibits silent information regulator 2-related enzyme 1 (SIRT1), and induces pro-inflammatory cytokines (IL-6, TNF-α, and IL-1β). Furthermore, 4-hydroxy-2,3-trans-nonenal (4-HNE), the end-product of ferroptosis, promotes the inflammatory response by producing amyloid-beta (Aβ) fibrils and neurofibrillary tangles in Alzheimer’s disease, and alpha-synuclein aggregation in Parkinson’s disease. This interplay shows that intracellular iron homeostasis is vital to maintain inflammatory homeostasis. Here, we review the role of iron homeostasis in inflammation based on recent findings.
Article
Full-text available
Alzheimer’s disease (AD) is a progressive neurodegenerative condition characterized by tau pathology and accumulations of neurofibrillary tangles (NFTs) along with amyloid-beta (Aβ). It has been associated with neuronal damage, synaptic dysfunction, and cognitive deficits. The current review explained the molecular mechanisms behind the implications of Aβ aggregation in AD via multiple events. Beta (β) and gamma (γ) secretases hydrolyzed amyloid precursor protein (APP) to produce Aβ, which then clumps together to form Aβ fibrils. The fibrils increase oxidative stress, inflammatory cascade, and caspase activation to cause hyperphosphorylation of tau protein into neurofibrillary tangles (NFTs), which ultimately lead to neuronal damage. Acetylcholine (Ach) degradation is accelerated by upstream regulation of the acetylcholinesterase (AChE) enzyme, which leads to a deficiency in neurotransmitters and cognitive impairment. There are presently no efficient or disease-modifying medications for AD. It is necessary to advance AD research to suggest novel compounds for treatment and prevention. Prospectively, it might be reasonable to conduct clinical trials with unclean medicines that have a range of effects, including anti-amyloid and anti-tau, neurotransmitter modulation, anti-neuroinflammatory, neuroprotective, and cognitive enhancement.
Article
Full-text available
Introduction The etiology of Parkinson's disease (PD) is still unknown. Until now, oxidative stress and neuroinflammation play a crucial role in the pathogenesis of PD. However, the specific synergistic role of oxidative stress and neuroinflammation in the occurrence and development of PD remains unclear. Methods The changes in motor behavior, dopamine (DA) neurons quantification and their mitochondrial respiratory chain, glial cells activation and secreted cytokines, Nrf2 signaling pathway, and redox balance in the brain of rats were evaluated. Results Lipopolysaccharide (LPS)‐induced neuroinflammation and rotenone (ROT)‐induced oxidative stress synergistically aggravated motor dysfunction, DA neuron damage, activation of glial cells, and release of related mediators, activation of Nrf2 signaling and destruction of oxidative balance. In addition, further studies indicated that after ROT‐induced oxidative stress caused direct damage to DA neurons, LPS‐induced inflammatory effects had stronger promoting neurotoxic effects on the above aspects. Conclusions Neuroinflammation and oxidative stress synergistically aggravated DA neuronal loss. Furtherly, oxidative stress followed by neuroinflammation caused more DA neuronal loss than neuroinflammation followed by oxidative stress.
Article
Full-text available
Depression is a major public health concern. Unfortunately, the present antidepressants often are insufficiently effective, whilst the discovery of more effective antidepressants has been extremely sluggish. The objective of this review was to combine the literature on depression with the pharmacology of antidepressant compounds, in order to formulate a conceivable pathophysiological process, allowing proposals how to accelerate the discovery process. Risk factors for depression initiate an infection-like inflammation in the brain that involves activation microglial Toll-like receptors and glycogen synthase kinase-3β (GSK3β). GSK3β activity alters the balance between two competing transcription factors, the pro-inflammatory/pro-oxidative transcription factor NFκB and the neuroprotective, anti-inflammatory and anti-oxidative transcription factor NRF2. The antidepressant activity of tricyclic antidepressants is assumed to involve activation of GS-coupled microglial receptors, raising intracellular cAMP levels and activation of protein kinase A (PKA). PKA and similar kinases inhibit the enzyme activity of GSK3β. Experimental antidepressant principles, including cannabinoid receptor-2 activation, opioid μ receptor agonists, 5HT2 agonists, valproate, ketamine and electrical stimulation of the Vagus nerve, all activate microglial pathways that result in GSK3β-inhibition. An in vitro screen for NRF2-activation in microglial cells with TLR-activated GSK3β activity, might therefore lead to the detection of totally novel antidepressant principles with, hopefully, an improved therapeutic efficacy.
Article
Full-text available
Aim Ferroptosis is increasingly becoming to be considered as an important mechanism of pathological cell death during stroke, and specific exogenous ferroptosis inhibitors have the ability to reverse cerebral ischemia/reperfusion injury. However, research on Srs11‐92 (AA9), a ferrostatin‐1 (Fer‐1) analog, in preclinical studies is limited. Methods In the middle cerebral artery occlusion‐reperfusion (MCAO/R) mice model or oxygen–glucose deprivation/reperfusion (OGD/R) cell model, Fer‐1, AA9, and/or ML385 were administered, and brain infarct size, neurological deficits, neuronal damage, oxidative stress, and neuroinflammation were determined after the damage, in vitro and in vivo. Results Fer‐1 and AA9 improved brain infarct size, neuronal damage, and neurological deficits in mice model of MCAO/R, and inhibited the overloaded iron deposition, ROS accumulation, and neuroinflammation response: it also increased the expression of GPx4, Nrf2, and HO‐1 and suppressed the expression of HMGB1 and NF‐κB p65 in the epicenter of injured hippocampal formation. However, Nrf2 inhibitor ML385 reversed the neuroprotective effect of AA9, including the oxidative stress and neuroinflammation. In vitro studies showed that AA9 relieved OGD/R‐induced neuronal oxidative stress and neuroinflammation via the Nrf2 pathway, which was impaired by ML385 in primary neurons. Conclusion The findings imply that Fer‐1 analog AA9 may be suitable for further translational studies for the protection of neuronal damage via Nrf2 signal pathway‐mediated oxidative stress and neuroinflammation in stroke and others neurological diseases.
Article
Full-text available
Postoperative cognitive dysfunction (POCD) is a recognized clinical complication defined by a new cognitive impairment arising after a surgical procedure. Elderly patients are especially vulnerable to cognitive impairment after surgical operations, but the underlying mechanisms remain elusive. Oxidative stress and neuroinflammation in the hippocampus, a brain region involved in memory formation, are considered as major contributors to the development of POCD. Activation of nuclear factor erythroid 2-related factor 2 (Nrf2), a master regulator of endogenous inducible defense system, plays a crucial role in protecting cells against oxidative stress and inflammation by enhancing transcription of antioxidant and anti-inflammatory target genes. Here, we examined whether aging downregulates Nrf2 in the hippocampus and, if so, whether downregulation of hippocampal Nrf2 contributes to POCD in aging. Young and aged rats underwent abdominal surgery or sham operation. One week later, cognitive function was assessed, and brains were collected for molecular studies. Compared with young sham rats, aged sham rats exhibited a significant reduction in expression of Nrf2 in the hippocampus. Interestingly, the expression of Nrf2 downstream target genes and levels of reactive oxygen species (ROS) and proinflammatory cytokines in the hippocampus as well as cognitive function were comparable between aged sham and young sham rats. After abdominal surgery, young rats showed significant upregulation of Nrf2 and its target genes in the hippocampus. However, aged rats did not show changes in expression of Nrf2 and its target genes but had increased levels of ROS and proinflammatory cytokines in the hippocampus, along with cognitive impairment as indicated by reduced contextual freezing time. Moreover, upregulation of hippocampal Nrf2 in aged rats with intracerebroventricular infusion of a Nrf2 activator reduced levels of ROS and proinflammatory cytokines in the hippocampus, ameliorating cognitive dysfunction after surgery. The results suggest that aging-induced downregulation of Nrf2 in the hippocampus causes the failure to activate Nrf2-regulated antioxidant defense system in response to surgical insult, which contributes to POCD by sensitizing oxidative stress and neuroinflammation. Nrf2 activation in the brain may be a novel strategy to prevent the cognitive decline in elderly patients after surgery.
Article
Full-text available
The current study aimed to investigate the neuroprotective effect of 3-acetyl-11-keto-β-boswellic acid (AKBA) in combination with bioenhancer piperine in lateral fluid percussion injury-induced TBI in experimental rats. Fluid percussion injury was introduced in the rat brain by delivering 50 mmHg of pressure for 3 min to the exposed brain. AKBA 25 mg/kg, 50 mg/kg orally, and AKBA (25 mg/kg, p.o.) in combination with piperine (2.5 mg/kg, p.o.) were administered from day 1 to day 14 to the assigned groups. On the 1st, 7th, and 14th day, behavioral parameters were checked. On the 15th day, animals were euthanized. In TBI rat model, AKBA-piperine combination significantly restored the altered performance of grip strength, rotarod test, open field task, narrow beam task (beam crossing time and no. of foot slips), and Morris water maze (escape latency and time spent in target quadrant) (p < 0.001 vs TBI control). Furthermore, the AKBA-piperine combination significantly reduced pro-inflammatory cytokine level in TBI rat model (&p < 0.001 vs TBI control). The combined effect of AKBA and piperine significantly restored oxidative stress parameters level, catecholamines level, and neurotransmitters level (p < 0.001 vs TBI control). Further findings showed that the AKBA-piperine combination prevented histopathological changes (p < 0.001), and the immunohistological study confirmed increased Nrf2-positive cells (p < 0.001 vs TBI control) and reduced nuclear factor kappa B (NFkB) expression (p < 0.001 vs TBI control, p < 0.01 vs TBI + AKBA 50 mg/kg) in the cortical region following AKBA-piperine administration. The present study concluded that AKBA along with piperine achieved anti-oxidant, and anti-inflammatory effects, and also prevented neuronal injury via targeting Nrf2 and NFkB expressions.
Article
Full-text available
Cerebral ischemic stroke is characterized by acute ischemia in a certain part of the brain, which leads to brain cells necrosis, apoptosis, ferroptosis, pyroptosis, etc. At present, there are limited effective clinical treatments for cerebral ischemic stroke, and the recovery of cerebral blood circulation will lead to cerebral ischemia-reperfusion injury (CIRI). Cerebral ischemic stroke involves many pathological processes such as oxidative stress, inflammation, and mitochondrial dysfunction. Nuclear factor erythroid 2-related factor 2 (Nrf2), as one of the most critical antioxidant transcription factors in cells, can coordinate various cytoprotective factors to inhibit oxidative stress. Targeting Nrf2 is considered as a potential strategy to prevent and treat cerebral ischemia injury. During cerebral ischemia, Nrf2 participates in signaling pathways such as Keap1, PI3K/AKT, MAPK, NF-κB, and HO-1, and then alleviates cerebral ischemia injury or CIRI by inhibiting oxidative stress, anti-inflammation, maintaining mitochondrial homeostasis, protecting the blood–brain barrier, and inhibiting ferroptosis. In this review, we have discussed the structure of Nrf2, the mechanisms of Nrf2 in cerebral ischemic stroke, the related research on the treatment of cerebral ischemia through the Nrf2 signaling pathway in recent years, and expounded the important role and future potential of the Nrf2 pathway in cerebral ischemic stroke.
Article
Full-text available
Background Osteoarthritis (OA) is a chronic disease that may cause articular cartilage degeneration, and synovial inflammation, resulting in considerable pain, poor quality of life, and functional limitations. Previous research has shown that ECM degradation and inflammation are involved in the progression of OA. Stevioside (STE), a naturally diterpenoid glycoside, is isolated from the Stevia rebaudiana (Bertoni), which has been exerted a variety of pharmacological activities, involving anti-inflammatory, anti-oxidative, and neuroprotective effects. However, STE's effects on OA and its mechanism still need further research. Methods In the present study, we examined the anti-inflammatory effects of STE (STE) in both mouse chondrocytes and OA model induced by destabilization of the medial meniscus (DMM). In vitro, the mouse chondrocytes were treated with STE (0, 10, 20, 40 M, 24 h) after stimulated with IL-1β (10 ng/mL, 24 h). The expression of ant-inflammation-relative mediators iNOS and Cox-2 were detected by Western blot and RT-PCR. The catabolic factors (MMP-13, ADAMTS-4) and cartilage matrix constituent (Aggrecan, Collagen II) were measured by Western blot and Immunofluorescence staining. The Nrf2/HO-1/NF-κB signaling molecules were detected by Western blot. In vivo, histological analysis was used to evaluate the severity of mouse OA models. Results STE remarkably inhibited the IL-1β-induced expression of iNOS and Cox-2, generation of MMP-13, ADAMTS-4 and degradation of Aggrecan and Collagen II. Furthermore, we found that the chondroprotective effect of STE via Nrf2/HO-1/NF-κB signaling pathway. In vivo, the cartilage treated with STE displayed attenuated degeneration, low OARIS scores compared with DMM group. In conclusion, we considered that STE might be a promising therapeutic agent for the treatment of OA in future. Conclusions Our findings indicated that STE can ameliorate the development of OA via inhibiting the inflammation. The underlying mechanism may be related to the Nrf2/HO-1/NF-κB signaling pathway. Moreover, the treatment of STE significantly relieves the progression in the mouse DMM model. All of the results demonstrated the therapeutic of STE in OA treatment. The translational potential of this article This study demonstrates a more efficient and safe application of STE in treating osteoarthritis, provide a new concept for the cartilage targeted application of natural compounds.
Article
Full-text available
Neurodegenerative diseases are growing to become one of humanity’s biggest health problems, given the number of individuals affected by them. They cause enough mortalities and severe economic impact to rival cancers and infections. With the current diversity of pathophysiological mechanisms involved in neurodegenerative diseases, on the one hand, and scarcity of efficient prevention and treatment strategies, on the other, all possible sources for novel drug discovery must be employed. Marine pharmacology represents a relatively uncharted territory to seek promising compounds, despite the enormous chemodiversity it offers. The current work discusses one vast marine region—the Northwestern or Russian Pacific—as the treasure chest for marine-based drug discovery targeting neurodegenerative diseases. We overview the natural products of neurological properties already discovered from its waters and survey the existing molecular and cellular targets for pharmacological modulation of the disease. We further provide a general assessment of the drug discovery potential of the Russian Pacific in case of its systematic development to tackle neurodegenerative diseases.
Article
Cognitive impairment is one of the major complications of chronic kidney disease (CKD). The present study aims to evaluate the protective effects of carbon monoxide (CO) and hydrogen sulfide (H2S) and their interactions on CKD-induced cognitive deficits by considering the Nrf2/HO-1 signaling pathway. Sixty rats were divided into six experimental groups: sham, five-sixth (5/6) nephrectomy (CKD), CKD + H2S donor (NaHS), CKD + CO-releasing molecule (CORM3), CKD + NaHS and zinc protoporphyrin IX (Znpp), CKD + CORM3 and amino-oxy acetic acid (AOAA). Eleven weeks after 5/6Nx, behavioral tests (Novel object recognition test, Passive avoidance test and Barnes maze test) were performed to evaluate the cognitive level. At the end of the twelfth week, blood urea nitrogen (BUN) and serum creatinine (sCr) levels, as well as the expression levels of nuclear factor-erythroid factor 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1), and neuronal loss in the hippocampus and prefrontal cortex were evaluated. CKD caused enhancement of BUN and sCr, reduction of Nrf2 and HO-1 proteins and enhancement of neuronal loss in the hippocampus and prefrontal cortex. In addition, CKD led to cognitive disturbances and memory impairment. CORM3 and NaHS returned all above indices to the levels measured in the control group. However, improving effects of CORM3 on cognitive impairment and Nrf2/HO-1 signaling pathway were prevented by AOAA and decreased H2S level as well as reciprocally improving effects of NaHS on cognitive disturbances and Nrf2/HO-1 signaling pathway were prevented by Znpp and decreased CO level. In conclusion, this study demonstrated that formation of CO and H2S were interdependently improved CKD-induced cognitive dysfunctions, through interaction with Nrf2/HO-1 signaling pathway.
Article
Full-text available
Coronavirus disease (COVID-19) remains rampant worldwide and poses a serious threat to human health. Tea is a medicinal and edible homologous plant that exhibits potential anti-SARS-CoV-2 properties via the prevention of virus entry into host cells, inhibition of virus replication, and enhancement of the innate and cellular immune responses. In this review, the properties of six major types of tea were systematically summarized, including green tea, yellow tea, white tea, oolong tea, black tea, and dark tea. We focused on the primary components of tea exhibiting antiviral activities, which included (–)-epigallocatechin-3-gallate, (–)-gallocatechin gallate, tannic acid, oolonghomobisflavan A, theaflavins, and white-tip silver needle flavonoids. Among them, (–)-epigallocatechin-3-gallate is proposed to be an antiviral compound that interferes with the entire life cycle of SARS-CoV-2 by balancing inflammation and immunity. Thus, this compound can serve as a promising lead structure for the development of SARS-CoV-2 inhibitors. Graphical abstract http://links.lww.com/AHM/A39.
Article
Designing of multiple-target directed ligands (MTDLs) has emerged as an attractive strategy for Alzheimer's disease (AD). Fusing the benzylpiperidine motif from AChE inhibitor donepezil and the 1,2,4-oxadiazole core from the Nrf2 activator 25 that was previously reported, we designed and synthesized a series of multifunctional anti-AD hybrids. The optimal hybrid 15a exhibited excellent AChE inhibitory (eeAChE IC50 = 0.07 ± 0.01 μM; hAChE IC50 = 0.38 ± 0.04 μM) and significant Nrf2 inductivity. It upregulated the protein and transcription level of Nrf2 and its downstream proteins HO-1, NQO1, and GCLM and promoted Nrf2 translocation from cytoplasm into nuclei. Additionally, 15a exhibited important neuroprotective function in protecting the cells from being damaged by H2O2 and Aβ1-42 aggregation and exerted antioxidant stress and anti-inflammatory activities in reducing the production of ROS and pro-inflammatory cytokines. Moreover, 15a effectively shortened the latency time and escape distance to the target, increased the arrival times, and simplified the tracks in Morris water maze test induced by scopolamine and Aβ1-42. At the same time, it significantly reduced the levels of proinflammatory factors in the mice model brains. These effects of 15a in improving cognition and alleviating inflammation were even better than the combination of AChE inhibitor and Nrf2 activator, suggesting a remarkable benefit for AD treatment. 15a could serve as a novel hit compound with Nrf2 inductive activity and AChE inhibitory activity for further research.
Article
Cyclic peptides are among the most diverse architectures for current drug discovery efforts. Their size, stability, and ease of synthesis provide attractive scaffolds to engage and modulate some of the most challenging targets, including protein-protein interactions and those considered to be "undruggable". With a variety of sophisticated screening technologies to produce libraries of cyclic peptides, including phage display, mRNA display, split intein circular ligation of peptides, and in silico screening, a new era of cyclic peptide drug discovery is at the forefront of modern medicine. In this perspective, we begin by discussing cyclic peptides approved for clinical use in the past two decades. Particular focus is placed around synthetic chemistries to generate de novo libraries of cyclic peptides and novel methods to screen them. The perspective culminates with future prospects for generating cyclic peptides as viable therapeutic options and discusses the advantages and disadvantages currently being faced with bringing them to market.
Article
Full-text available
Primary objective: p62/ZIP as the autophagy receptor can transport the misfolded proteins to a macroautophagy-lysosome system for degradation and also create a positive feedback loop between p62/ZIP and Nrf2. However, the role of p62/ZIP on cerebral ischaemia is unclear. The aim of this study was to evaluate the role of p62/ZIP in the regulation of endoplasmic reticulum(ER) stress induced by cerebral ischaemia/reperfusion. Research design: Different ischemic periods were designed by transient middle cerebral artery occlusion (tMCAO) using the suture method. Methods and procedures: At 24 hours after reperfusion, the ischaemic brain tissue was studied histologically and biochemically for autophagic, ER stress and Keap1-Nrf2-ARE signalling pathway markers. Main outcomes and results: Prolongation of ischaemia significantly increased the cortical injury observed in rats and was associated with a gradual increase in the protein expression of ubiquitin-aggregates, Grp78, GADD153/CHOP and p62/ZIP. Autophagy marker Atg12-Atg5 and LC3-PE increased and then decreased. Moreover, p62/ZIP mRNA expression increased and then decreased and was consistent with Nrf2 activation. Conclusions: p62/ZIP not only plays a key role in scavenging protein aggregates during autophagy, but it may also be involved in preventing oxidative injury and alleviating ER stress through the Keap1-Nrf2-ARE signalling pathway during cerebral ischaemia/reperfusion injury.
Article
Full-text available
Background/aims: Both excitotoxicity and neuroinflammation are associated with oxidative stress. One transcription factor, nuclear factor E2-related factor 2 (Nrf2), and one transcription cofactor, peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), increase the endogenous antioxidant defence and can thus modulate neuronal cell death. Here, we investigated the temporal effects (after 24 and 72 h) of systemic (i.p.) administration of lipopolysaccharide (LPS) on the cerebral Nrf2 and PGC-1α systems. Methods and results: Seven-day-old rat pups were injected with LPS (0.3 mg/kg). After 24 h, the protein levels of γ-glutamylcysteine ligase modulatory subunit, γ-glutamylcysteine ligase catalytic subunit, Nrf2, PGC-1α and manganese superoxide dismutase (MnSOD) were increased in parallel with decreased levels of Keap1. These effects were correlated with an increased level of phosphorylated Akt and elevated acetylation of histone 4. In contrast, 72 h following LPS, a decrease in the components of the Nrf2 system in parallel with an increase in Keap1 was observed. The down-regulation after 72 h correlated with phosphorylation of p38 mitogen-activated protein kinase, while there were no changes in PGC-1α and MnSOD protein levels or the acetylation/methylation pattern of histones. Conclusion: Systemic LPS in neonatal rats induced time-dependent changes in brain Nrf2 and PGC-1α that correlated well with the protective effect observed after 24 h (pre-conditioning) and the deleterious effects observed after 72 h (sensitizing) of systemic LPS reported earlier. Collectively, the results point towards Nrf2 and PGC-1α as a possible mechanism behind these effects.
Article
Full-text available
Huntington disease (HD) is an inherited neurodegenerative disease resulting from an abnormal expansion of polyglutamine in huntingtin (Htt). Compromised oxidative stress defense systems have emerged as a contributing factor to the pathogenesis of HD. Indeed activation of the Nrf2 pathway, which plays a prominent role in mediating antioxidant responses, has been considered as a therapeutic strategy for the treatment of HD. Given the fact that there is an interrelationship between impairments in mitochondrial dynamics and increased oxidative stress, in this present study we examined the effect of mutant Htt (mHtt) on these two parameters. STHdh cells, striatal cells expressing mHtt, display more fragmented mitochondria compared to STHdh cells, striatal cells expressing wild type Htt, concurrent with alterations in the expression levels of Drp1 and Opa1, key regulators of mitochondrial fission and fusion, respectively. Studies of mitochondrial dynamics using cell fusion and mitochondrial targeted photo-switchable Dendra revealed that mitochondrial fusion is significantly decreased in STHdh cells. Oxidative stress leads to dramatic increases in the number of STHdh cells containing swollen mitochondria, while STHdh cells just show increases in the number of fragmented mitochondria. mHtt expression results in reduced activity of Nrf2, and activation of the Nrf2 pathway by the oxidant tBHQ is significantly impaired in STHdh cells. Nrf2 expression does not differ between the two cell types, but STHdh cells show reduced expression of Keap1 and p62, key modulators of Nrf2 signaling. In addition, STHdh cells exhibit increases in autophagy, whereas the basal level of autophagy activation is low in STHdh cells. These results suggest that mHtt disrupts Nrf2 signaling which contributes to impaired mitochondrial dynamics and may enhance susceptibility to oxidative stress in STHdh cells.
Article
Full-text available
Nuclear factor-erythroid 2-related factor 2 (Nrf2/NFE2L2), a redox-sensitive transcription factor plays a critical role in adaptation to cellular stress and affords cellular defense by initiating transcription of antioxidative and detoxification genes. While a protein can be regulated at multiple levels, control of Nrf2 has been largely studied at post-translational regulation points by Keap1. Importantly, post-transcriptional/translational based regulation of Nrf2 is less understood and to date there are no reports on such mechanisms in neuronal systems. In this context, studies involving the role of microRNAs (miRs) which are normally considered as fine tuning regulators of protein production through translation repression and/or post-transcriptional alterations, are in place. In the current study, based on in-silico analysis followed by immunoblotting and real time analysis, we have identified and validated for the first time that human NFE2L2 could be targeted by miR153/miR27a/miR142-5p/miR144 in neuronal, SH-SY5Y cells. Co-transfection studies with individual miR mimics along with either WT 3' UTR of human Nrf2 or mutated miRNA targeting seed sequence within Nrf2 3' UTR, demonstrated that Nrf2 is a direct regulatory target of these miRs. In addition, ectopic expression of miR153/miR27a/miR142-5p/miR144 affected Nrf2 mRNA abundance and nucleo-cytoplasmic concentration of Nrf2 in a Keap1 independent manner resulting in inefficient transactivating ability of Nrf2. Furthermore, forced expression of miRs diminished GCLC and GSR expression resulting in alteration of Nrf2 dependent redox homeostasis. Finally, bioinformatics based miRNA-disease network analysis (MDN) along with extended computational network analysis of Nrf2 associated pathologic processes suggests that if in a particular cellular scenario where any of these miR153/miR27a/miR142-5p/miR144 either individually or as a group is altered, it could affect Nrf2 thus triggering and/or determining the fate of wide range of disease outcomes.
Article
Full-text available
Alpha synuclein (SYN) is a central player in the pathogenesis of sporadic and familial Parkinson's disease (PD). SYN aggregation and oxidative stress are associated and enhance each other's toxicity. It is unknown whether the redox-sensitive transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) plays a role against the toxicity of SYN. To examine this, mice selectively overexpressing Nrf2 in astrocytes (GFAP-Nrf2) were crossed with mice selectively expressing human mutant SYN (hSYN(A53T)) in neurons. Increased astrocytic Nrf2 delayed the onset and extended the life span of the hSYN(A53T) mice. This correlated with increased motor neuron survival, reduced oxidative stress, and attenuated gliosis in the spinal cord, as well as a dramatic decrease in total hSYN(A53T) and phosphorylated (Ser129) hSYN(A53T) in Triton-insoluble aggregates. Furthermore, Nrf2 in astrocytes delayed chaperone-mediated autophagy and macroautophagy dysfunction observed in the hSYN(A53T) mice. Our data suggest that Nrf2 in astrocytes provides neuroprotection against hSYN(A53T)-mediated toxicity by promoting the degradation of hSYN(A53T) through the autophagy-lysosome pathway in vivo. Thus, activation of the Nrf2 pathway in astrocytes is a potential target to develop therapeutic strategies for treating pathologic synucleinopathies including PD.
Article
Full-text available
Transcription factor NF-E2-related factor-2 (Nrf2) is a key regulator of endogenous anti-oxidant systems shown to play a neuroprotective role in the adult by preserving blood-brain barrier function. The choroid plexus, site for the blood-CSF barrier, has been suggested to be particularly important in maintaining brain barrier function in development. We investigated the expression of Nrf2- and detoxification-system genes in choroid plexus following systemic LPS injections, unilateral cerebral hypoxia-ischemia (HI) as well as the combination of LPS and HI (LPS/HI). Plexuses were collected at different time points after LPS, HI and LPS/HI in 9-day old mice. mRNA levels of Nrf2 and many of its target genes were analyzed by quantitative PCR. Cell death was analyzed by caspase-3 immunostaining and TUNEL. LPS caused down-regulation of the Nrf2-system genes while HI increased expression at earlier time points. LPS exposure prior to HI prevented many of the HI-induced gene increases. None of the insults resulted in any apparent cell death to choroidal epithelium. These data imply that the function of the inducible anti-oxidant system in the choroid plexus is down-regulated by inflammation, even if choroid cells are not structurally damaged. Further, LPS prevented the endogenous antioxidant response following HI, suggesting the possibility that the choroid plexus may be at risk if LPS is united with an insult that increases oxidative stress such as hypoxia-ischemia.
Article
Full-text available
Introduction Rheumatoid arthritis (RA) is characterized by progressive inflammation associated with rampantly proliferating synoviocytes and joint destruction due to oxidative stress. Recently, we described nuclear factor erythroid 2-related factor 2 (Nrf2) as a major requirement for limiting cartilage destruction. NF-κB and AP-1 are the main transcription factors triggering the inflammatory progression in RA. We used sulforaphane, an isothiocyanate, which is both an Nrf2 inducer and a NF-κB and AP-1 inhibitor. Methods Cultured synoviocytes were stimulated with sulforaphane (SFN) with or without TNF-α pre-treatment. NF-κB, AP-1, and Nrf2 activation was investigated via dual luciferase reporter gene assays. Matrix metalloproteinases (MMPs) were measured via zymography and luminex technique. Cytokine levels were detected using ELISA. Cell viability, apoptosis and caspase activity were studied. Cell proliferation was analysed by real-time cell analysis. Results SFN treatment decreased inflammation and proliferation dose-dependently in TNF-α-stimulated synoviocytes. SFN did not reduce MMP-3 and MMP-9 activity or expression significantly. Interestingly, we demonstrated that SFN has opposing effects on naïve and TNF-α-stimulated synoviocytes. In naïve cells, SFN activated the cytoprotective transcription factor Nrf2. In marked contrast to this, SFN induced apoptosis in TNF-α-pre-stimulated synoviocytes. Conclusions We were able to show that SFN treatment acts contrary on naïve and inflammatory synoviocytes. SFN induces the cytoprotective transcription factor Nrf2 in naïve synoviocytes, whereas it induces apoptosis in inflamed synoviocytes. These findings indicate that the use of sulforaphane might be considered as an adjunctive therapeutic strategy to combat inflammation, pannus formation, and cartilage destruction in RA.
Article
Full-text available
Aging promotes accumulation of reactive oxygen/nitrogen species (ROS/RNS) in cardiomyocytes, which leads to contractile dysfunction and cardiac abnormalities. These changes may contribute to increased cardiovascular disease in the elderly. Inducible antioxidant pathways are regulated by nuclear erythroid 2 p45-related factor 2 (Nrf2) through antioxidant response cis-elements (AREs) and are impaired in the aging heart. Whereas acute exercise stress (AES) activates Nrf2 signaling and promotes myocardial antioxidant function in young mice (∼2 months), aging mouse (>23 months) hearts exhibit significant oxidative stress as compared to those of the young. The purpose of this study was to investigate age-dependent regulation of Nrf2-antioxidant mechanisms and redox homeostasis in mouse hearts and the impact of exercise. Old mice were highly susceptible to oxidative stress following high endurance exercise stress (EES), but demonstrated increased adaptive redox homeostasis after moderate exercise training (MET; 10m/min, for 45 min/day) for ∼6 weeks. Following EES, transcription and protein levels for most of the ARE-antioxidants were increased in young mice but their induction was blunted in aging mice. In contrast, 6-weeks of chronic MET promoted nuclear levels of Nrf2 along with its target antioxidants in the aging heart to near normal levels as seen in young mice. These observations suggest that enhancing Nrf2 function and endogenous cytoprotective mechanisms by MET, may combat age-induced ROS/RNS and protect the myocardium from oxidative stress diseases.
Article
Full-text available
BG-12 (dimethyl fumarate) was shown to have antiinflammatory and cytoprotective properties in preclinical experiments and to result in significant reductions in disease activity on magnetic resonance imaging (MRI) in a phase 2, placebo-controlled study involving patients with relapsing-remitting multiple sclerosis. We conducted a randomized, double-blind, placebo-controlled phase 3 study involving patients with relapsing-remitting multiple sclerosis. Patients were randomly assigned to receive oral BG-12 at a dose of 240 mg twice daily, BG-12 at a dose of 240 mg three times daily, or placebo. The primary end point was the proportion of patients who had a relapse by 2 years. Other end points included the annualized relapse rate, the time to confirmed progression of disability, and findings on MRI. The estimated proportion of patients who had a relapse was significantly lower in the two BG-12 groups than in the placebo group (27% with BG-12 twice daily and 26% with BG-12 thrice daily vs. 46% with placebo, P<0.001 for both comparisons). The annualized relapse rate at 2 years was 0.17 in the twice-daily BG-12 group and 0.19 in the thrice-daily BG-12 group, as compared with 0.36 in the placebo group, representing relative reductions of 53% and 48% with the two BG-12 regimens, respectively (P<0.001 for the comparison of each BG-12 regimen with placebo). The estimated proportion of patients with confirmed progression of disability was 16% in the twice-daily BG-12 group, 18% in the thrice-daily BG-12 group, and 27% in the placebo group, with significant relative risk reductions of 38% with BG-12 twice daily (P=0.005) and 34% with BG-12 thrice daily (P=0.01). BG-12 also significantly reduced the number of gadolinium-enhancing lesions and of new or enlarging T(2)-weighted hyperintense lesions (P<0.001 for the comparison of each BG-12 regimen with placebo). Adverse events associated with BG-12 included flushing and gastrointestinal events, such as diarrhea, nausea, and upper abdominal pain, as well as decreased lymphocyte counts and elevated liver aminotransferase levels. In patients with relapsing-remitting multiple sclerosis, both BG-12 regimens, as compared with placebo, significantly reduced the proportion of patients who had a relapse, the annualized relapse rate, the rate of disability progression, and the number of lesions on MRI. (Funded by Biogen Idec; DEFINE ClinicalTrials.gov number, NCT00420212.).
Article
Full-text available
Identification of regulatable mechanisms by which transcription factor NF-E2 p45-related factor 2 (Nrf2) is repressed will allow strategies to be designed that counter drug resistance associated with its upregulation in tumours that harbour somatic mutations in Kelch-like ECH-associated protein-1 (Keap1), a gene that encodes a joint adaptor and substrate receptor for the Cul3-Rbx1/Roc1 ubiquitin ligase. We now show that mouse Nrf2 contains two binding sites for β-transducin repeat-containing protein (β-TrCP), which acts as a substrate receptor for the Skp1-Cul1-Rbx1/Roc1 ubiquitin ligase complex. Deletion of either binding site in Nrf2 decreased β-TrCP-mediated ubiquitylation of the transcription factor. The ability of one of the two β-TrCP-binding sites to serve as a degron could be both increased and decreased by manipulation of glycogen synthase kinase-3 (GSK-3) activity. Biotinylated-peptide pull-down assays identified DSGIS(338) and DSAPGS(378) as the two β-TrCP-binding motifs in Nrf2. Significantly, our pull-down assays indicated that β-TrCP binds a phosphorylated version of DSGIS more tightly than its non-phosphorylated counterpart, whereas this was not the case for DSAPGS. These data suggest that DSGIS, but not DSAPGS, contains a functional GSK-3 phosphorylation site. Activation of GSK-3 in Keap1-null mouse embryonic fibroblasts (MEFs), or in human lung A549 cells that contain mutant Keap1, by inhibition of the phosphoinositide 3-kinase (PI3K)-protein kinase B (PKB)/Akt pathway markedly reduced endogenous Nrf2 protein and decreased to 10-50% of normal the levels of mRNA for prototypic Nrf2-regulated enzymes, including the glutamate-cysteine ligase catalytic and modifier subunits, glutathione S-transferases Alpha-1 and Mu-1, haem oxygenase-1 and NAD(P)H:quinone oxidoreductase-1. Pre-treatment of Keap1(-/-) MEFs or A549 cells with the LY294002 PI3K inhibitor or the MK-2206 PKB/Akt inhibitor increased their sensitivity to acrolein, chlorambucil and cisplatin between 1.9-fold and 3.1-fold, and this was substantially attenuated by simultaneous pre-treatment with the GSK-3 inhibitor CT99021.Oncogene advance online publication, 10 September 2012; doi:10.1038/onc.2012.388.
Article
Full-text available
The transcription factor NF-E2-related factor 2 (Nrf2) is a master regulator of a genetic program, termed the phase 2 response, that controls redox homeostasis and participates in multiple aspects of physiology and pathology. Nrf2 protein stability is regulated by two E3 ubiquitin ligase adaptors, Keap1 and β-TrCP, the latter of which was only recently reported. Here, two-dimensional (2D) gel electrophoresis and site-directed mutagenesis allowed us to identify two serines of Nrf2 that are phosphorylated by glycogen synthase kinase 3β (GSK-3β) in the sequence DSGISL. Nuclear magnetic resonance studies defined key residues of this phosphosequence involved in docking to the WD40 propeller of β-TrCP, through electrostatic and hydrophobic interactions. We also identified three arginine residues of β-TrCP that participate in Nrf2 docking. Intraperitoneal injection of the GSK-3 inhibitor SB216763 led to increased Nrf2 and heme oxygenase-1 levels in liver and hippocampus. Moreover, mice with hippocampal absence of GSK-3β exhibited increased levels of Nrf2 and phase 2 gene products, reduced glutathione, and decreased levels of carbonylated proteins and malondialdehyde. This study establishes the structural parameters of the interaction of Nrf2 with the GSK-3/β-TrCP axis and its functional relevance in the regulation of Nrf2 by the signaling pathways that impinge on GSK-3.
Article
Full-text available
Unlabelled: Although the etiology of Parkinson's disease (PD) remains unclear, ample empirical evidence suggests that oxidative stress is a major player in the development of PD and in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxicity. Nuclear factor E2-related factor 2 (Nrf2) is a redox-sensitive transcription factor that upregulates a battery of antioxidant response element (ARE)-driven antioxidative and cytoprotective genes that defend against oxidative stress. Aims: We evaluated whether the strategy of activation of Nrf2 and its downstream network of cytoprotective genes with small molecule synthetic triterpenoids (TP) attenuate MPTP-induced PD in mice. Results: We show that synthetic TP are thus far the most potent and direct activators of the Nrf2 pathway using a novel Neh2-luciferase reporter. They upregulate several cytoprotective genes, including those involved in glutathione biosynthesis in vitro. Oral administration of TP that were structurally modified to penetrate the brain-induced messenger RNA and protein levels for a battery of Nrf2-dependent cytoprotective genes reduced MPTP-induced oxidative stress and inflammation, and ameliorated dopaminergic neurotoxicity in mice. The neuroprotective effect of these TP against MPTP neurotoxicity was dependent on Nrf2, since treatment with TP in Nrf2 knockout mice failed to block against MPTP neurotoxicity and induce Nrf2-dependent cytoprotective genes. Innovation: Extremely potent synthetic TP that are direct activators of the Nrf2 pathway block dopaminergic neurodegeneration in the MPTP mouse model of PD. Conclusion: Our results indicate that activation of Nrf2/antioxidant response element (ARE) signaling by synthetic TP is directly associated with their neuroprotective effects against MPTP neurotoxicity and suggest that targeting the Nrf2/ARE pathway is a promising approach for therapeutic intervention in PD.
Article
Full-text available
Although α-synuclein (α-SYN) aggregation is a hallmark of sporadic and familial Parkinson's disease (PD), it is not known how it contributes to early events of PD pathogenesis such as oxidative and inflammatory stress. Here, we addressed this question in a new animal model based on stereotaxic delivery of an adeno-associated viral vector (rAAV) for expression of human α-SYN in the ventral midbrain of mice lacking the transcription factor Nrf2 (Nrf2(-/-)). Two months after surgery, Nrf2(-/-) mice exhibited exacerbated degeneration of nigral dopaminergic neurons and increased dystrophic dendrites, reminiscent of Lewy neurites, which correlated with impaired proteasome gene expression and activity. Dopaminergic neuron loss was associated with an increase in neuroinflammation and gliosis that were intensified in Nrf2(-/-) mice. In response to exogenously added α-SYN, Nrf2(-/-) microglia failed to activate the expression of two anti-inflammatory genes, heme oxygenase-1 (HO-1) and nicotinamide adenine dinucleotide phosphate quinone oxidorreductase-1 (NQO1). This impaired Nrf2 response correlated with a shift in the microglial activation profile, towards increased production of proinflammatory markers, IL-6, IL-1β and iNOS and reduced phagocytic capacity of fluorescent beads, and lower messenger RNA levels for TAM receptors Axl and Mer. Postmortem brain tissue samples from patients in early- to middle-stage progression of PD showed increased HO-1 expression in astrocytes and microglia, suggesting an attempt of the diseased brain to compensate these hallmarks of PD through activation of the Nrf2 pathway. This study demonstrates that α-SYN and Nrf2 deficiency cooperate on protein aggregation, neuroinflammation and neuronal death and provides a bifactorial animal model to study early-stage PD.
Article
Full-text available
The ability to adapt to acute oxidative stress (e.g. H(2)O(2), peroxynitrite, menadione, and paraquat) through transient alterations in gene expression is an important component of cellular defense mechanisms. We show that such adaptation includes Nrf2-dependent increases in cellular capacity to degrade oxidized proteins that are attributable to increased expression of the 20 S proteasome and the Pa28αβ (11 S) proteasome regulator. Increased cellular levels of Nrf2, translocation of Nrf2 from the cytoplasm to the nucleus, and increased binding of Nrf2 to antioxidant response elements (AREs) or electrophile response elements (EpREs) in the 5'-untranslated region of the proteasome β5 subunit gene (demonstrated by chromatin immunoprecipitation (or ChIP) assay) are shown to be necessary requirements for increased proteasome/Pa28αβ levels, and for maximal increases in proteolytic capacity and stress resistance; Nrf2 siRNA and the Nrf2 inhibitor retinoic acid both block these adaptive changes and the Nrf2 inducers DL-sulforaphane, lipoic acid, and curcumin all replicate them without oxidant exposure. The immunoproteasome is also induced during oxidative stress adaptation, contributing to overall capacity to degrade oxidized proteins and stress resistance. Two of the three immunoproteasome subunit genes, however, contain no ARE/EpRE elements, and Nrf2 inducers, inhibitors, and siRNA all have minimal effects on immunoproteasome expression during adaptation to oxidative stress. Thus, immunoproteasome appears to be (at most) minimally regulated by the Nrf2 signal transduction pathway.
Article
Full-text available
Nuclear transcription factor Nrf2 regulates the expression and coordinated induction of a battery of genes encoding cytoprotective and drug transporter proteins in response to chemical and radiation stress. This leads to reduced apoptosis, enhanced cell survival, and increased drug resistance. In this study, we investigated the role of Nrf2 in up-regulation of antiapoptotic protein Bcl-2 and its contribution to stress-induced apoptosis and cell survival. Exposure of mouse hepatoma (Hepa-1) and human hepatoblastoma (HepG2) cells to antioxidant tert-butylhydroquinone led to induction of Bcl-2. Mutagenesis and transfection assays identified an antioxidant response element between nucleotides -3148 and -3140 on the reverse strand of the Bcl-2 gene promoter that was essential for activation of Bcl-2 gene expression. Band/supershift and ChIP assays demonstrated binding of Nrf2 to Bcl-2 antioxidant response element. Alterations in Nrf2 led to altered Bcl-2 induction and cellular apoptosis. Moreover, dysfunctional/mutant inhibitor of Nrf2 (INrf2) in human lung cancer cells failed to degrade Nrf2, resulting in an increased Bcl-2 level and decreased etoposide- and UV/γ radiation-mediated DNA fragmentation. In addition, siRNA-mediated down-regulation of Nrf2 also led to decreased apoptosis and increased cell survival. Furthermore, the specific knockdown of Bcl-2 in Nrf2-activated tumor cells led to increased etoposide-induced apoptosis and decreased cell survival and growth/proliferation. These data provide the first evidence of Nrf2 in control of Bcl-2 expression and apoptotic cell death with implications in antioxidant protection, survival of cancer cells, and drug resistance.
Article
Full-text available
Transplantation of neural stem cells (NSCs) offers a novel therapeutic strategy for stroke; however, massive grafted cell death following transplantation, possibly due to a hostile host brain environment, lessens the effectiveness of this approach. Here, we have investigated whether reprogramming NSCs with minocycline, a broadly used antibiotic also known to possess cytoprotective properties, enhances survival of grafted cells and promotes neuroprotection in ischemic stroke. NSCs harvested from the subventricular zone of fetal rats were preconditioned with minocycline in vitro and transplanted into rat brains 6 h after transient middle cerebral artery occlusion. Histological and behavioral tests were examined from days 0-28 after stroke. For in vitro experiments, NSCs were subjected to oxygen-glucose deprivation and reoxygenation. Cell viability and antioxidant gene expression were analyzed. Minocycline preconditioning protected the grafted NSCs from ischemic reperfusion injury via upregulation of Nrf2 and Nrf2-regulated antioxidant genes. Additionally, preconditioning with minocycline induced the NSCs to release paracrine factors, including brain-derived neurotrophic factor, nerve growth factor, glial cell-derived neurotrophic factor, and vascular endothelial growth factor. Moreover, transplantation of the minocycline-preconditioned NSCs significantly attenuated infarct size and improved neurological performance, compared with non-preconditioned NSCs. Minocycline-induced neuroprotection was abolished by transfecting the NSCs with Nrf2-small interfering RNA before transplantation. Thus, preconditioning with minocycline, which reprograms NSCs to tolerate oxidative stress after ischemic reperfusion injury and express higher levels of paracrine factors through Nrf2 up-regulation, is a simple and safe approach to enhance the effectiveness of transplantation therapy in ischemic stroke.
Article
Full-text available
A central mechanism in cellular defence against oxidative or electrophilic stress is mediated by transcriptional induction of genes via the ARE (antioxidant-response element), a cis-acting sequence present in the regulatory regions of genes involved in the detoxification and elimination of reactive oxidants and electrophiles. The ARE binds different bZIP (basic-region leucine zipper) transcription factors, most notably Nrf2 (nuclear factor-erythroid 2-related factor 2) that functions as a transcriptional activator via heterodimerization with small Maf proteins. Although ARE activation by Nrf2 is relatively well understood, the mechanisms by which ARE-mediated signalling is down-regulated are poorly known. Transcription factor BACH1 [BTB (broad-complex, tramtrack and bric-a-brac) and CNC (cap'n'collar protein) homology 1] binds to ARE-like sequences, functioning as a transcriptional repressor in a subset of ARE-regulated genes, thus antagonizing the activator function of Nrf2. In the present study, we have demonstrated that BACH1 itself is regulated by Nrf2 as it is induced by Nrf2 overexpression and by Nrf2-activating agents in an Nrf2-dependent manner. Furthermore, a functional ARE site was identified at +1411 from the transcription start site of transcript variant 2 of BACH1. We conclude that BACH1 is a bona fide Nrf2 target gene and that induction of BACH1 by Nrf2 may serve as a feedback-inhibitory mechanism for ARE-mediated gene regulation.
Article
Full-text available
Background: Without appropriate cellular models the etiology of idiopathic Parkinson's disease remains unknown. We recently reported a novel patient-derived cellular model generated from biopsies of the olfactory mucosa (termed olfactory neurosphere-derived (hONS) cells) which express functional and genetic differences in a disease-specific manner. Transcriptomic analysis of Patient and Control hONS cells identified the NRF2 transcription factor signalling pathway as the most differentially expressed in Parkinson's disease. Results: We tested the robustness of our initial findings by including additional cell lines and confirmed that hONS cells from Patients had 20% reductions in reduced glutathione levels and MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt] metabolism compared to cultures from healthy Control donors. We also confirmed that Patient hONS cells are in a state of oxidative stress due to higher production of H(2)O(2) than Control cultures. siRNA-mediated ablation of NRF2 in Control donor cells decreased both total glutathione content and MTS metabolism to levels detected in cells from Parkinson's Disease patients. Conversely, and more importantly, we showed that activation of the NRF2 pathway in Parkinson's disease hONS cultures restored glutathione levels and MTS metabolism to Control levels. Paradoxically, transcriptomic analysis after NRF2 pathway activation revealed an increased number of differentially expressed mRNAs within the NRF2 pathway in L-SUL treated Patient-derived hONS cells compared to L-SUL treated Controls, even though their metabolism was restored to normal. We also identified differential expression of the PI3K/AKT signalling pathway, but only post-treatment. Conclusions: Our results confirmed NRF2 as a potential therapeutic target for Parkinson's disease and provided the first demonstration that NRF2 function was inducible in Patient-derived cells from donors with uniquely varied genetic backgrounds. However, our results also demonstrated that the response of PD patient-derived cells was not co-ordinated in the same way as in Control cells. This may be an important factor when developing new therapeutics.
Article
Full-text available
NF-E2-related factor 2 (Nrf2) regulates expression and coordinated induction of a battery of chemoprotective genes in response to oxidative and electrophilic stress. This leads to protection against oxidative stress and neoplastic diseases. Nuclear import and export of Nrf2 play a significant role in control of nuclear levels of Nrf2 and thus the expression of Nrf2 down-stream genes. Tyrosine kinase Fyn phosphorylates tyrosine 568 of Nrf2 that leads to the nuclear export of Nrf2. In this study, we investigated the upstream factor(s) in regulation of Fyn and Fyn-mediated nuclear export of Nrf2. The investigations shed light on a novel mechanism of Nrf2 regulation in response to oxidative stress. We demonstrate that GSK-3beta acts upstream of Fyn kinase in control of nuclear export of Nrf2. Chemical and short interfering RNA-mediated inhibition of GSK-3beta led to nuclear accumulation of Nrf2 and transcriptional activation of the Nrf2 downstream gene nqo1. Chemical and short interfering RNA inhibition of GSK-3beta and Fyn individually and in combination revealed that both kinases follow the same pathway to regulate nuclear export of Nrf2. We further demonstrate that hydrogen peroxide phosphorylates tyrosine 216 of GSK-3beta. This leads to activation of GSK-3beta. The activated GSK-3beta phosphorylates Fyn at threonine residue(s). Phosphorylated Fyn accumulates in the nucleus and phosphorylates Nrf2 at tyrosine 568. This leads to nuclear export, ubiquitination, and degradation of Nrf2.
Article
Full-text available
Chronic kidney disease (CKD) associated with type 2 diabetes is the leading cause of kidney failure, with both inflammation and oxidative stress contributing to disease progression. Bardoxolone methyl, an oral antioxidant inflammation modulator, has shown efficacy in patients with CKD and type 2 diabetes in short-term studies, but longer-term effects and dose response have not been determined. In this phase 2, double-blind, randomized, placebo-controlled trial, we assigned 227 adults with CKD (defined as an estimated glomerular filtration rate [GFR] of 20 to 45 ml per minute per 1.73 m(2) of body-surface area) in a 1:1:1:1 ratio to receive placebo or bardoxolone methyl at a target dose of 25, 75, or 150 mg once daily. The primary outcome was the change from baseline in the estimated GFR with bardoxolone methyl, as compared with placebo, at 24 weeks; a secondary outcome was the change at 52 weeks. Patients receiving bardoxolone methyl had significant increases in the mean (±SD) estimated GFR, as compared with placebo, at 24 weeks (with between-group differences per minute per 1.73 m(2) of 8.2±1.5 ml in the 25-mg group, 11.4±1.5 ml in the 75-mg group, and 10.4±1.5 ml in the 150-mg group; P<0.001). The increases were maintained through week 52, with significant differences per minute per 1.73 m(2) of 5.8±1.8 ml, 10.5±1.8 ml, and 9.3±1.9 ml, respectively. Muscle spasms, the most frequent adverse event in the bardoxolone methyl groups, were generally mild and dose-related. Hypomagnesemia, mild increases in alanine aminotransferase levels, and gastrointestinal effects were more common among patients receiving bardoxolone methyl. Bardoxolone methyl was associated with improvement in the estimated GFR in patients with advanced CKD and type 2 diabetes at 24 weeks. The improvement persisted at 52 weeks, suggesting that bardoxolone methyl may have promise for the treatment of CKD. (Funded by Reata Pharmaceuticals; BEAM ClinicalTrials.gov number, NCT00811889.).
Article
Full-text available
Nrf2 (NF-E2-related factor 2) is a nuclear transcription factor that in response to chemical and radiation stress regulates coordinated induction of a battery of cytoprotective gene expressions leading to cellular protection. In this study, we investigated the role of Src kinases in the regulation of Nrf2 and downstream signaling. siRNA-mediated inhibition of Fyn, Src, Yes, and Fgr, but not Lyn, in mouse hepatoma Hepa-1 cells, led to nuclear accumulation of Nrf2 and up-regulation of Nrf2 downstream gene expression. Mouse embryonic fibroblasts with combined deficiency of Fyn/Src/Yes/Fgr supported results from siRNA. In addition, steady-state overexpression of Fyn, Src, and Yes phosphorylated Nrf2Tyr568 that triggered nuclear export and degradation of Nrf2 and down-regulation of Nrf2 downstream gene expression. Exposure of cells to antioxidant, oxidant, or UV radiation increased nuclear import of Fyn, Src, and Yes kinases, which phosphorylated Nrf2Tyr568 resulting in nuclear export and degradation of Nrf2. Further analysis revealed that stress-activated GSK3β acted upstream to the Src kinases and phosphorylated the Src kinases, leading to their nuclear localization and Nrf2 phosphorylation. The overexpression of Src kinases in Hepa-1 cells led to decreased Nrf2, increased apoptosis, and decreased cell survival. Mouse embryonic fibroblasts deficient in Src kinases showed nuclear accumulation of Nrf2, induction of Nrf2 and downstream gene expression, reduced apoptosis, and increased cell survival. The studies together demonstrate that Src kinases play a critical role in nuclear export and degradation of Nrf2, thereby providing a negative feedback mechanism to switch off Nrf2 activation and restore normal cellular homeostasis.
Article
Full-text available
Specific regions of the Alzheimer's disease (AD) brain are burdened with extracellular protein deposits, the accumulation of which is concomitant with a complex cascade of overlapping events. Many of these pathological processes produce oxidative stress. Under normal conditions, oxidative stress leads to the activation of defensive gene expression that promotes cell survival. At the forefront of defence is the nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor that regulates a broad spectrum of protective genes. Glycogen synthase kinase-3β (GSK-3β) regulates Nrf2, thus making this kinase a potential target for therapeutic intervention aiming to boost the protective activation of Nrf2. This paper aims to review the neuroprotective role of Nrf2 in AD, with special emphasis on the role of GSK-3β in the regulation of the Nrf2 pathway. We also examine the potential of inducing GSK-3β by small-molecule activators, dithiocarbamates, which potentially exert their beneficial therapeutic effects via the activation of the Nrf2 pathway.
Article
Full-text available
The induction of heme oxygenase-1 (HO-1; Hmox1) by inflammation, for instance in sepsis, is associated both with an anti-inflammatory response and with mitochondrial biogenesis. Here, we tested the idea that HO-1, acting through the Nfe2l2 (Nrf2) transcription factor, links anti-inflammatory cytokine expression to activation of mitochondrial biogenesis. HO-1 induction after LPS stimulated anti-inflammatory IL-10 and IL-1 receptor antagonist (IL-1Ra) expression in mouse liver, human HepG2 cells, and mouse J774.1 macrophages but blunted tumor necrosis factor-α expression. This was accompanied by nuclear Nfe2l2 accumulation and led us to identify abundant Nfe2l2 and other mitochondrial biogenesis transcription factor binding sites in the promoter regions of IL10 and IL1Ra compared with pro-inflammatory genes regulated by NF-κΒ. Mechanistically, HO-1, through its CO product, enabled these transcription factors to bind the core IL10 and IL1Ra promoters, which for IL10 included Nfe2l2, nuclear respiratory factor (NRF)-2 (Gabpa), and MEF2, and for IL1Ra, included NRF-1 and MEF2. In cells, Hmox1 or Nfe2l2 RNA silencing prevented IL-10 and IL-1Ra up-regulation, and HO-1 induction failed post-LPS in Nfe2l2-silenced cells and post-sepsis in Nfe2l2−/− mice. Nfe2l2−/− mice compared with WT mice, showed more liver damage, higher mortality, and ineffective CO rescue in sepsis. Nfe2l2−/− mice in sepsis also generated higher hepatic TNF-α mRNA levels, lower NRF-1 and PGC-1α mRNA levels, and no enhancement of anti-inflammatory Il10, Socs3, or bcl-xL gene expression. These findings disclose a highly structured transcriptional network that couples mitochondrial biogenesis to counter-inflammation with major implications for immune suppression in sepsis.
Article
Problems of sleep initiation and maintenance occur in 15% to 25% of children and adolescents. Studies of the benefits of melatonin for sleep disorders have been published for healthy populations, for children and adolescents with attention-deficit hyperactivity disorder, for children and youth with autism, and for several other special populations. These studies demonstrate benefit with minimal side effects. However, all studies have involved small numbers of subjects and address only short-term use of melatonin. There are no good data concerning the safety and efficacy of long-term melatonin use. Further studies are needed to confirm the usefulness and safety of melatonin for sleep disorders in children and adolescents.
Article
Epigenetic alterations correspond to changes in DNA methylation, covalent modifications of histones, or altered miRNA expression patterns. These three mechanisms are interconnected and appear to be key players in tumor progression and failure of conventional chemotherapy. Dietary components emerged as a promising source of new epigenetically active compounds able to reverse these alterations and to actively regulate gene expression as well as molecular targets implicated in tumorigenesis. The polyphenolic compound curcumin (diferuloylmethane), a yellow spice that enters into the composition of curry, already described for its diverse and broad biological activities, is nowadays well described as an inhibitor of DNA methyltransferase so that it is considered as a DNA hypomethylating agent. It reestablishes the balance between histone acetyl transferase and histone deacetylase (HDAC 1, 3, 4, 5, 8) activity to selectively activate or inactivate the expression of genes implicated in cancer death and progression, respectively. Finally curcumin modulates miRNAs (miR-15a, miR-16, miR-21, miR-22, miR-26, miR-101, miR-146, miR-200, miR-203, and let-7) and their multiple target genes. In conclusion, this dietary compound is able to restore the epigenetic regulation balance and appears as an attractive preventive and/or therapeutic approach against human cancer.
Article
Objective: This meta-analysis aims to quantitatively synthesize all studies that examine the association between adherence to a Mediterranean diet and risk of stroke, depression, cognitive impairment, and Parkinson disease. Methods: Potentially eligible publications were those providing effect estimates of relative risk (RR) for the association between Mediterranean diet and the aforementioned outcomes. Studies were sought in PubMed up to October 31, 2012. Maximally adjusted effect estimates were extracted; separate analyses were performed for high and moderate adherence. Results: Twenty-two eligible studies were included (11 covered stroke, 9 covered depression, and 8 covered cognitive impairment; only 1 pertained to Parkinson's disease). High adherence to Mediterranean diet was consistently associated with reduced risk for stroke (RR = 0.71, 95% confidence interval [CI] = 0.57-0.89), depression (RR = 0.68, 95% CI = 0.54-0.86), and cognitive impairment (RR = 0.60, 95% CI = 0.43-0.83). Moderate adherence was similarly associated with reduced risk for depression and cognitive impairment, whereas the protective trend concerning stroke was only marginal. Subgroup analyses highlighted the protective actions of high adherence in terms of reduced risk for ischemic stroke, mild cognitive impairment, dementia, and particularly Alzheimer disease. Meta-regression analysis indicated that the protective effects of Mediterranean diet in stroke prevention seemed more sizeable among males. Concerning depression, the protective effects of high adherence seemed independent of age, whereas the favorable actions of moderate adherence seemed to fade away with more advanced age. Interpretation: Adherence to a Mediterranean diet may contribute to the prevention of a series of brain diseases; this may be of special value given the aging of Western societies.
Article
Background: Adherence to a Mediterranean diet has been associated with lower risk of various age-related diseases including dementia. Although narrative reviews have been published, no systematic review has synthesized studies on the association between Mediterranean diet adherence and cognitive function or dementia. Methods: We conducted a systematic review of 11 electronic databases (including Medline) of published articles up to January 2012. Reference lists, selected journal contents, and relevant websites were also searched. Study selection, data extraction, and quality assessment were performed independently by two reviewers using predefined criteria. Studies were included if they examined the association between a Mediterranean diet adherence score and cognitive function or dementia. Results: Twelve eligible papers (11 observational studies and one randomized controlled trial) were identified, describing seven unique cohorts. Despite methodological heterogeneity and limited statistical power in some studies, there was a reasonably consistent pattern of associations. Higher adherence to Mediterranean diet was associated with better cognitive function, lower rates of cognitive decline, and reduced risk of Alzheimer disease in nine out of 12 studies, whereas results for mild cognitive impairment were inconsistent. Conclusions: Published studies suggest that greater adherence to Mediterranean diet is associated with slower cognitive decline and lower risk of developing Alzheimer disease. Further studies would be useful to clarify the association with mild cognitive impairment and vascular dementia. Long-term randomized controlled trials promoting a Mediterranean diet may help establish whether improved adherence helps to prevent or delay the onset of Alzheimer disease and dementia.
Article
Background: Berries are known to be rich in anthocyanins. These compounds give berries their distinctive colors and, more importantly, have several health benefits, such as contributing to the prevention of heart disease, cancer and inflammatory disease. In this study, anthocyanin-rich extracts from 12 colored berries found in northern China were analyzed by high-performance liquid chromatography coupled with diode array detection and electrospray ionization mass spectrometry (HPLC-DAD/ESI-MS). Total polyphenol content (TPC), total flavonoid content (TFC), total anthocyanin content (TAC) and antioxidant capacity (AOC) of the berries were assayed. The contribution of anthocyanins in the berries to their antioxidant capacity and bioactivity was also investigated. Results: The 12 berries analyzed had typical profiles with different anthocyanin compositions, which can be considered as an indicator for differentiating berries. Cyanidin-3-xylosyl-galactoside and cyanidin-3-xylosyl-rutinoside were identified for the first time in Acanthopanax S. and Chinese dwarf cherry respectively. All berry extracts showed potent antioxidant activity, and TPC correlated well with AOC. Blue honeysuckle, blackcurrant and blueberry had higher TAC/TPC ratio, with anthocyanins contributing more to AOC. The higher flavonoid content in yellow raspberry and sea buckthorn might increase their antioxidant activity. In addition, wild raspberry had higher antioxidant activity than cultivated raspberries, but they all had lower anthocyanin content with less contribution to AOC. Conclusion: There is great potential to improve human health through consumption of these colored berries, especially those high in AOC.
Article
Brain inflammation via intracerebral injection with lipopolysaccharide (LPS) in early life has been shown to increase risks for the development of neurodegenerative disorders in adult rats. To determine if neonatal systemic LPS exposure has the same effects on enhancement of adult dopaminergic neuron susceptibility to rotenone neurotoxicity as centrally injected LPS does, LPS (2 μg/g body weight) was administered intraperitoneally into postnatal day 5 (P5) rats and when grown to P70, rats were challenged with rotenone, a commonly used pesticide, through subcutaneous minipump infusion at a dose of 1.25 mg/kg/day for 14 days. Systemically administered LPS can penetrate into the neonatal rat brain and cause acute and chronic brain inflammation, as evidenced by persistent increases in IL-1β levels, cyclooxygenase-2 expression and microglial activation in the substantia nigra (SN) of P70 rats. Neonatal LPS exposure resulted in suppression of tyrosine hydroxylase (TH) expression, but not actual death of dopaminergic neurons in the SN, as indicated by the reduced number of TH+ cells and unchanged total number of neurons (NeuN+) in the SN. Neonatal LPS exposure also caused motor function deficits, which were spontaneously recoverable by P70. A small dose of rotenone at P70 induced loss of dopaminergic neurons, as indicated by reduced numbers of both TH+ and NeuN+ cells in the SN, and Parkinson's disease (PD)-like motor impairment in P98 rats that had experienced neonatal LPS exposure, but not in those without the LPS exposure. These results indicate that although neonatal systemic LPS exposure may not necessarily lead to death of dopaminergic neurons in the SN, such an exposure could cause persistent functional alterations in the dopaminergic system and indirectly predispose the nigro-striatal system in the adult brain to be damaged by environmental toxins at an ordinarily nontoxic or subtoxic dose and develop PD-like pathological features and motor dysfunction.
Article
Cancer development has been linked to mepigenetic modifications of cancer oncogenes and tumor suppressor genes; in advanced metastatic cancers, severe epigenetic modifications are present. We previously demonstrated that the progression of prostate tumors in TRAMP mice is associated with methylation silencing of the Nrf2 promoter and reduced transcription of Nrf2 and Nrf2-target genes. Radix Angelicae sinensis (RAS; Danggui) is a medicinal herb and health food supplement that has been widely used in Asia for centuries. Z-Ligustilide (Lig) is one of the bioactive components of RAS. We investigated the potential of Lig and RAS to restore Nrf2 gene expression through epigenetic modification in TRAMP C1 cells. Lig and RAS induced the mRNA and protein expression of endogenous Nrf2 and Nrf2 downstream target genes, such as HO-1, NQO1, and UGT1A1. Bisulfite genomic sequencing revealed that Lig and RAS treatment decreased methylation of the first 5 CpGs of the Nrf2 promoter. A methylation DNA immunoprecipitation (MeDIP) assay demonstrated that Lig and RAS significantly decreased the relative amount of methylated DNA in the Nrf2 gene promoter region. Lig and RAS also inhibited DNA methyltransferase activity in vitro. Collectively, these results suggest that Lig and RAS are able to demethylate the Nrf2 promoter CpGs, resulting in the re-expression of Nrf2 and Nrf2-target genes. Epigenetic modifications of genes, including Nrf2, may therefore contribute to the overall health benefits of RAS, including the anti-cancer effect of RAS and its bioactive component Lig.
Article
The present review discusses and summarizes the up-to-date body of knowledge concerning human nutrigenomic studies with Mediterranean diet (MedDiet) and olive oil (OO) interventions, at real-life doses and conditions. A literature review was carried out until March 2012. Original articles assessing the nutrigenomic effect of the MedDiet and its main source of fat, OO, on gene expression were selected. State-of-the-art data in this field, although scarce, are promising. Despite a great diversity among studies, the attributed health benefits of the MedDiet and its components, such as OO, could be explained by a transcriptomic effect on atherosclerosis, inflammation, and oxidative stress-related genes (i.e. ADRB2, IL7R, IFNγ, MCP1, TNFα). Gene expression changes toward a protective mode were often associated with an improvement in systemic markers for oxidation and inflammation. The suggested underlying molecular pathways responsible for these changes, and the extent to which evidence exists of a MedDiet and OO nutrigenomic effect, are also discussed.
Article
Background: Chronic inflammation contributes to the development of pathological disorders including insulin resistance and atherosclerosis. Identification of anti-inflammatory natural products can prevent the inflammatory diseases. Methods: Anti-inflammatory effects of blue-green algae (BGA), i.e., Nostoc commune var. sphaeroides Kützing (NO) and Spirulina platensis (SP), were compared in RAW 264.7 and mouse bone marrow-derived macrophages (BMM) as well as splenocytes from apolipoprotein E knockout (apoE(-/-)) mice fed BGA. Results: When macrophages pretreated with 100μg/ml NO lipid extract (NOE) or SP lipid extract (SPE) were activated by lipopolysaccharide (LPS), expression and secretion of pro-inflammatory cytokines, such as tumor necrosis factor α (TNFα), interleukin 1β (IL-1β), and IL-6, were significantly repressed. NOE and SPE also significantly repressed the expression of TNFα and IL-1β in BMM. LPS-induced secretion of IL-6 was lower in splenocytes from apoE(-/-) fed an atherogenic diet containing 5% NO or SP for 12weeks. In RAW 264.7 macrophages, NOE and SPE markedly decreased nuclear translocation of NF-κB. The degree of repression of pro-inflammatory gene expression by algal extracts was much stronger than that of SN50, an inhibitor of NF-κB nuclear translocation. Trichostatin A, a pan histone deacetylase inhibitor, increased basal expression of IL-1β and attenuated the repression of the gene expression by SPE. SPE significantly down-regulated mRNA abundance of 11 HDAC isoforms, consequently increasing acetylated histone 3 levels. Conclusion: NOE and SPE repress pro-inflammatory cytokine expression and secretion in macrophages and splenocytes via inhibition of NF-κB pathway. Histone acetylation state is likely involved in the inhibition. General significance: This study underscores natural products can exert anti-inflammatory effects by epigenetic modifications such as histone acetylation.
Article
A hallmark of Alzheimer's disease (AD) is the aggressive appearance of plaques of amyloid beta (Aβ) peptides, which result from the sequential cleavage of amyloid precursor protein (APP) by the β- and γ-secretases. Aβ production is evaded by alternate cleavage of APP by the α- and γ-secretases. Carnosic acid (CA) has been proven to activate the transcription factor Nrf2, a main regulator of the antioxidant response. We investigated the effects of CA on the production of Aβ 1-42 peptide (Aβ42) and on the expressions of the related genes in SH-SY5Y human neuroblastoma cells. The treatment of cells with CA suppressed Aβ42 secretion (61% suppression at 30μM). CA treatment enhanced the mRNA expressions of an α-secretase TACE (tumor necrosis factor-α-converting enzyme, also called a disintegrin and metalloproteinase-17, ADAM17) significantly and another α-secretase ADAM10 marginally; however, the β-secretase BACE1 (β-site APP-cleaving enzyme-1) was not increased by CA. Knockdown of TACE by siRNA reduced soluble-APPα secretion enhanced by CA and partially recovered the CA-suppressed Aβ42 secretion. These results suggest that CA reduces Aβ42 production by activating TACE without promoting BACE1 in human neuroblastoma cells. The use of CA may have a potential in the prevention of Aβ-mediated diseases, particularly AD.
Article
Oxidative stress has been proposed as a potential mechanism for neurodegenerative diseases, such as Alzheimer disease (AD), Parkinson disease (PD), and amyotrophic lateral sclerosis (ALS). In response to oxidative stress, the levels of numerous cytoprotective products are increased via alteration of the Kelch-like ECH-associated protein 1 (Keap1) and NF-E2-related factor 2 (Nrf2) system. One of the Nrf2 targets, p62, has been known to be incorporated into a wide spectrum of cytoplasmic inclusions in neurodegenerative diseases and interact with Keap1. However, it remains unclear whether Keap1 is associated with the pathogenesis of neurodegenerative diseases. In this study, we investigated the relationship between p62 and Keap1 in the brains of patients with AD, PD, dementia with Lewy bodies (DLB), and ALS. Biochemical analyses showed that p62 and Keap1 interacted with each other in AD and DLB brains and were extracted into similar detergent-soluble and -insoluble fractions. Pathologic examination demonstrated that anti-Keap1 antibodies immunostained Lewy bodies in PD and DLB, neurofibrillary tangles in AD, and skeinlike inclusions in ALS. Further analysis showed that the levels of common Nrf2 target genes were increased in AD compared with those in controls. However, there were no statistical significances in the levels of Nrf2 target genes in DLB relative to controls. Our pathologic and biochemical results suggest a molecular basis for stress response to be involved in the formation of cytoplasmic inclusions observed in several neurodegenerative diseases.
Article
The targeted activation of nuclear factor erythroid-derived-2-like 2 (Nrf2) to alleviate symptoms of chronic kidney disease has recently garnered much attention. Unfortunately, the greatest clinical success to date, bardoxolone, failed in phase III clinical trial for unspecified safety reasons. The present letter to the editor discusses the clinical development of bardoxolone and explores potential reasons for the ultimate withdrawal from clinical trials. In particular, was the correct clinical indication pursued and would improved specificity have mitigated the safety concerns? Ultimately, it is concluded that the right clinical indication and heightened specificity will lead to successful Nrf2-based therapies. Therefore, the bardoxolone clinical results do not dampen enthusiasm for Nrf2-based therapies; rather it illuminates the clinical potential of the Nrf2 pathway as a drug target.
Article
Concentrations of acetyl–coenzyme A and nicotinamide adenine dinucleotide (NAD+) affect histone acetylation and thereby couple cellular metabolic status and transcriptional regulation. We report that the ketone body d-β-hydroxybutyrate (βOHB) is an endogenous and specific inhibitor of class I histone deacetylases (HDACs). Administration of exogenous βOHB, or fasting or calorie restriction, two conditions associated with increased βOHB abundance, all increased global histone acetylation in mouse tissues. Inhibition of HDAC by βOHB was correlated with global changes in transcription, including that of the genes encoding oxidative stress resistance factors FOXO3A and MT2. Treatment of cells with βOHB increased histone acetylation at the Foxo3a and Mt2 promoters, and both genes were activated by selective depletion of HDAC1 and HDAC2. Consistent with increased FOXO3A and MT2 activity, treatment of mice with βOHB conferred substantial protection against oxidative stress.
Article
Tumor necrosis factor-α (TNFα) is a pleiotropic molecule that can have both protective and detrimental effects in neurodegeneration. Here we have investigated the temporal effects of TNFα on the inducible Nrf2 system in astrocyte-rich cultures by determination of glutathione (GSH) levels, γglutamylcysteine ligase (γGCL) activity, the protein levels of Nrf2, Keap1, the catalytic and modulatory subunit of γGCL (γGCL-C and γGCL-M respectively). Astrocyte-rich cultures were exposed for 24 or 72 h to different concentrations of TNFα. Acute exposure (24 h) of astrocyte-rich cultures to 10 ng/mL of TNFα increased GSH, γGCL activity, the protein levels of γGCL-M, γGCL-C and Nrf2 in parallel with decreased levels of Keap1. Antioxidant responsive element (ARE)-mediated transcription was blocked by inhibitors of ERK1/2, JNK and Akt whereas inactivation of p38 and GSK3β further enhanced transcription. In contrast treatment with TNFα for 72 h decreased components of the Nrf2 system in parallel with an increase of Keap1. Stimulation of the Nrf2 system by tBHQ was intact after 24 h but blocked after 72 h treatment with TNFα. This down-regulation after 72 h correlated with activation of p38 MAPK and GSK3β, since inhibition of these signalling pathways reversed this effect. The upregulation of the Nrf2 system by TNFα (24 h treatment) protected the cells from oxidative stress through elevated γGCL activity whereas the down-regulation (72 h treatment) caused pronounced oxidative toxicity. One of the important implications of the results is that in a situation where Nrf2 is decreased, such as in Alzheimer's disease, the effect of TNFα is detrimental.
Article
The deposition of amyloid-β (Aβ) peptides in senile plaques is one of pathological hallmarks of Alzheimer's disease (AD). Mitochondrial dysfunction is an early event of cell apoptosis. Increasing evidence indicates that Aβ induces neuronal apoptosis through mitochondrial dysfunction. Curcumin, an anti-oxidative component of turmeric (Curcuma longa), has shown anti-tumor, anti-inflammatory, and anti-oxidative properties. In this study, we investigated the protective effects of curcumin against mitochondrial dysfunction induced by Aβ. Based on the assay results of mitochondrial metabolic markers, we found that curcumin protects human neuroblastoma SH-SY5Y cells against the Aβ-induced damage of mitochondrial energy metabolism. Curcumin inhibits Aβ-induced mitochondrial depolarization of membrane potential (Δψm) and suppresses mitochondrial apoptosis-related proteins including cytochrome c, caspase-3, and Bax, which are activated by Aβ. Aβ-induced disturbances of redox state are linked to mitochondrial dysfunction. Curcumin normalizes cellular antioxidant enzymes (including SOD and catalase) in both protein expression and activity and decreases oxidative stress level in Aβ-treated cells. Both total GSK-3β expression and phospho-Ser9 GSK-3β (pSer9-GSK-3β) are down-regulated in the cells pre-treated with curcumin. This study demonstrates curcumin-mediated neuroprotection against Aβ-induced mitochondrial metabolic deficiency and abnormal alteration of oxidative stress. Inhibition of GSK-3β is involved in the protection of curcumin against Aβ-induced mitochondrial dysfunction.
Article
Many studies of chemopreventive drugs have suggested that their beneficial effects on suppression of carcinogenesis and many other chronic diseases are mediated through activation of the transcription factor NFE2-related factor 2 (NRF2). More recently, genetic analyses of human tumours have indicated that NRF2 may conversely be oncogenic and cause resistance to chemotherapy. It is therefore controversial whether the activation, or alternatively the inhibition, of NRF2 is a useful strategy for the prevention or treatment of cancer. This Opinion article aims to rationalize these conflicting perspectives by critiquing the context dependence of NRF2 functions and the experimental methods behind these conflicting data.
Article
The induction of phase II detoxifying enzymes is an important defense mechanism against intake of xenobiotics. While this group of enzymes is believed to be under the transcriptional control of antioxidant response elements (AREs), this contention is experimentally unconfirmed. Since the ARE resembles the binding sequence of erythroid transcription factor NF-E2, we investigated the possibility that the phase II enzyme genes might be regulated by transcription factors that also bind to the NF-E2 sequence. The expression profiles of a number of transcription factors suggest that an Nrf2/small Maf heterodimer is the most likely candidate to fulfill this rolein vivo.To directly test these questions, we disrupted the murinenrf2 genein vivo.While the expression of phase II enzymes (e.g., glutathione S-transferase and NAD(P)H: quinone oxidoreductase) was markedly induced by a phenolic antioxidantin vivoin both wild type and heterozygous mutant mice, the induction was largely eliminated in the liver and intestine of homozygousnrf2-mutant mice. Nrf2 was found to bind to the ARE with high affinity only as a heterodimer with a small Maf protein, suggesting that Nrf2/small Maf activates gene expression directly through the ARE. These results demonstrate that Nrf2 is essential for the transcriptional induction of phase II enzymes and the presence of a coordinate transcriptional regulatory mechanism for phase II enzyme genes. Thenrf2-deficient mice may prove to be a very useful model for thein vivoanalysis of chemical carcinogenesis and resistance to anti-cancer drugs.
Article
Calorie restriction (CR) induces enhanced insulin-stimulated glucose uptake in fast-twitch (type II) muscle from old rats, but the effect of CR on slow-twitch (type I) muscle from old rats is unknown. The purpose of this study was to assess insulin-stimulated glucose uptake and phosphorylation of key insulin signaling proteins in isolated epitrochlearis (fast-twitch) and soleus (slow-twitch) muscles from 24-month-old ad libitum fed and CR (consuming 65% of ad libitum, intake) rats. Muscles were incubated with and without 1.2 nM insulin. CR versus ad libitum rats had greater insulin-stimulated glucose uptake and Akt phosphorylation (pAkt) on T308 and S473 for both muscles incubated with insulin. GLUT4 protein abundance and phosphorylation of the insulin receptor (Y1162/1163) and AS160 (T642) were unaltered by CR in both muscles. These results implicate enhanced pAkt as a potential mechanism for the CR-induced increase in insulin-stimulated glucose uptake by the fast-twitch epitrochlearis and slow-twitch soleus of old rats.
Article
Melatonin has beneficial effects against early brain injury (EBI) by modulating cerebral oxidative stress after experimental subarachnoid hemorrhage (SAH); however, few investigations relate to the precise underlying molecular mechanisms. To date, the relation between melatonin and nuclear factor erythroid 2-related factor 2 and antioxidant responsive element (Nrf2-ARE) pathway has not been studied in SAH models. This study was undertaken to evaluate the influence of melatonin on Nrf2-ARE pathway in rats after SAH. Adult male SD rats were divided into four groups: (i) control group (n=18); (ii) SAH group (n=18); (iii) SAH+vehicle group (n=18); and (iv) SAH+melatonin group (n=18). The rat SAH model was induced by injection of 0.3mL fresh arterial, nonheparinized blood into the prechiasmatic cistern in 20s. In SAH+melatonin group, melatonin was administered i.p. at 150mg/kg at 2 and 24hr after the induction of SAH. Brain samples were extracted at 48hr after SAH. Treatment with melatonin markedly increased the expressions of Nrf2-ARE pathway-related agents, such as Nrf2, heme oxygenase-1, NAD(P)H:quinone oxidoreductase 1, and glutathione S-transferase α-1. Administration of melatonin following SAH significantly ameliorated EBI, including brain edema, blood-brain barrier (BBB) impairment, cortical apoptosis, and neurological deficits. In conclusion, post-SAH melatonin administration may attenuate EBI in this SAH model, possibly through activating Nrf2-ARE pathway and modulating cerebral oxidative stress by inducing antioxidant and detoxifying enzymes.
Article
Oxidative stress is central to the pathology of several neurodegenerative diseases, including multiple sclerosis, and therapeutics designed to enhance antioxidant potential could have clinical value. The objective of this study was to characterize the potential direct neuroprotective effects of dimethyl fumarate (DMF) and its primary metabolite monomethyl fumarate (MMF) on cellular resistance to oxidative damage in primary cultures of central nervous system (CNS) cells and further explore the dependence and function of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway in this process. Treatment of animals or primary cultures of CNS cells with DMF or MMF resulted in increased nuclear levels of active Nrf2, with subsequent up-regulation of canonical antioxidant target genes. DMF-dependent up-regulation of antioxidant genes in vivo was lost in mice lacking Nrf2 [Nrf2(-/-)]. DMF or MMF treatment increased cellular redox potential, glutathione, ATP levels, and mitochondrial membrane potential in a concentration-dependent manner. Treating astrocytes or neurons with DMF or MMF also significantly improved cell viability after toxic oxidative challenge in a concentration-dependent manner. This effect on viability was lost in cells that had eliminated or reduced Nrf2. These data suggest that DMF and MMF are cytoprotective for neurons and astrocytes against oxidative stress-induced cellular injury and loss, potentially via up-regulation of an Nrf2-dependent antioxidant response. These data also suggest DMF and MMF may function through improving mitochondrial function. The clinical utility of DMF in multiple sclerosis is being explored through phase III trials with BG-12, which is an oral therapeutic containing DMF as the active ingredient.
Article
Interest in histone deacetylase (HDAC)-based therapeutics as a potential treatment for stroke has grown dramatically. The neuroprotection of HDAC inhibition may involve multiple mechanisms, including modulation of transcription factor acetylation independent of histones. The transcription factor Nrf2 has been shown to be protective in stroke as a key regulator of antioxidant-responsive genes. Here, we hypothesized that HDAC inhibition might provide neuroprotection against mouse cerebral ischemia by activating the Nrf2 pathway. We determined that the classic HDAC inhibitor trichostatin A increased neuronal cell viability after oxygen-glucose deprivation (from an OD value of 0.10±0.01 to 0.25±0.08) and reduced infarct volume in wild-type mice with stroke (from 49.1±3.8 to 21.3±4.6%). In vitro studies showed that HDAC inhibition reduced Nrf2 suppressor Keap1 expression, induced Keap1/Nrf2 dissociation, Nrf2 nuclear translocation, and Nrf2 binding to antioxidant response elements in heme oxygenase 1 (HO1), and caused HO1 transcription. Furthermore, we demonstrated that HDAC inhibition upregulated proteins downstream of Nrf2, including HO1, NAD(P)H:quinone oxidoreductase 1, and glutamate-cysteine ligase catalytic subunit in neuron cultures and brain tissue. Finally, unlike wild-type mice, Nrf2-deficient mice were not protected by pharmacologic inhibition of HDAC after cerebral ischemia. Our studies suggest that activation of Nrf2 might be an important mechanism by which HDAC inhibition provides neuroprotection.
Article
The p62/sequestosome-1 is a multifunctional protein containing several protein-protein interaction domains. Through these interactions p62 is involved in the regulation of cellular signaling and protein trafficking, aggregation and degradation. p62 protein can bind through its UBA motif to ubiquitinated proteins and control their aggregation and degradation via either autophagy or proteasomes. p62 protein has been reported to be seen in association with the intracellular inclusions in primary and secondary tauopathies, α-synucleinopathies and other neurodegenerative brain disorders displaying inclusions with misfolded proteins. In Alzheimer's disease (AD), p62 protein is associated with neurofibrillary tangles composed primarily of hyperphosphorylated tau protein and ubiquitin. Increasing evidence indicates that p62 has an important role in the degradation of tau protein. The lack of p62 protein expression provokes the tau pathology in mice. Recent studies have demonstrated that the p62 gene expression and cytoplasmic p62 protein levels are significantly reduced in the frontal cortex of AD patients. Decline in the level of p62 protein can disturb the signaling pathways of Nrf2, cyclic AMP and NF-κB and in that way increase oxidative stress and impair neuronal survival. We will review here the molecular and functional characteristics of p62 protein and outline its potential role in the regulation of Alzheimer's pathogenesis.
Article
Histone deacetylase (HDAC) inhibitors have promising neuroprotective and anti-inflammatory properties although the exact mechanisms are unclear. We have earlier showed that factors from lipopolysaccharide (LPS)-activated microglia can down-regulate the astroglial nuclear factor-erythroid 2-related factor 2 (Nrf2)-inducible anti-oxidant defence. Here we have evaluated whether histone modification and activation of GSK3β are involved in these negative effects of microglia. Microglia were cultured for 24 h in serum-free culture medium to achieve microglia-conditioned medium from non-activated cells (MCM(0)) or activated with 10 ng/mL of LPS to produce MCM(10). Astrocyte-rich cultures treated with MCM(10) showed a time-dependent (0-72 h) increase in astroglial HDAC activity that correlated with lower levels of acetylation of histones H3 and H4 and decreased levels of the transcription factor Nrf2 and γ-glutamyl cysteine ligase modulatory subunit (γGCL-M) protein levels. The HDAC inhibitors valproic acid (VPA) and trichostatin-A (TSA) elevated the histone acetylation levels, restored the Nrf2-inducible anti-oxidant defence and conferred protection from oxidative stress-induced (H(2)O(2)) death in astrocyte-rich cultures exposed to MCM(10). Inhibitors of GSK3β (lithium) and p38 MAPK (SB203580) signaling pathways restored the depressed histone acetylation and Nrf2-related transcription whereas an inhibitor of Akt (Ly294002) caused a further decrease in Nrf2-related transcription. In conclusion, the study shows that well tolerated drugs such as VPA and lithium can restore an inflammatory induced depression in the Nrf2-inducible antioxidant defence, possibly via normalised histone acetylation levels.
Article
The effects of microglia-conditioned medium (MCM) on the inducible Nrf2 system in astrocyte-rich cultures were investigated by determination of glutathione (GSH) levels, γglutamylcysteine ligase (γGCL) activity, the protein levels of Nrf2, Keap1, the modulatory subunit of γGCL (γGCL-M) and activated MAP kinases (ERK1/2, JNK and p38). Microglia were either cultured for 24 h in serum-free culture medium to achieve microglia-conditioned medium from non-activated cells (MCM(0) ), used as control condition, or activated with different concentrations (0.1-1,000 ng mL(-1) ) of lipopolysaccharide (LPS) to produce MCM(0.1-1,000) . Acute exposure (24 h) to MCM(100) increased GSH, γGCL activity, the protein levels of γGCL-M, Nrf2, and activated JNK and ERK1/2 in astrocyte-rich cultures. In contrast, treatment with MCM(10) for 24 h decreased components of the Nrf2 system in parallel with activation of p38 MAPK. Stimulation of the Nrf2 system by tBHQ was partly intact after 24 h but blocked after 72 h treatment with MCM(10) and MCM(100) . This down-regulation after 72 h correlated with activation of p38 MAPK and lack of ERK1/2 and JNK activation. The negative effects were partly reversed by an inhibitor of p38 which restored tBHQ mediated protection against oxidative stress. In conclusion, the study showed a negative effect of MCM(10) on the inducible anti-oxidant defense in astrocyte-rich cultures at both 24 and 72 h that correlated with activation of p38 and was partly reversed by a p38 inhibitor. A transient protective effect of MCM(100) on astrocyte-rich cultures against H(2)O(2) toxicity was observed at 24 h which coincided with activation of JNK and ERK1/2.
Article
Iron is an essential element of hemoglobin, and efficient iron recycling from senescent erythrocytes by splenic macrophages is required for erythrocyte hemoglobin synthesis during erythropoiesis. Ferroportin 1 (Fpn1) is the sole iron exporter in mammals, and it also regulates iron reutilization. In this study, we demonstrated genetically that a redox-sensitive transcription factor, Nrf2, regulates Fpn1 mRNA expression in macrophages. Nrf2 activation by several electrophilic compounds commonly resulted in the upregulation of Fpn1 mRNA in bone marrow-derived and peritoneal macrophages obtained from wild-type mice but not from Nrf2 knockout mice. Further, Nrf2 activation enhanced iron release from the J774.1 murine macrophage cell line. Previous studies showed that inflammatory stimuli, such as LPS, downregulates macrophage Fpn1 by transcriptional and hepcidin-mediated post-translational mechanisms leading to iron sequestration by macrophages. We showed that two Nrf2 activators, diethyl maleate and sulforaphane (SFN; a natural Nrf2 activator found in broccoli), restored the LPS-induced suppression of Fpn1 mRNA in human and mouse macrophages, respectively. Furthermore, SFN counteracted the LPS-induced increase of Hepcidin mRNA by an Nrf2-independent mechanism in mouse peritoneal macrophages. These results demonstrate that Nrf2 regulates iron efflux from macrophages through Fpn1 gene transcription and suggest that Nrf2 may control iron metabolism during inflammation.