Article

Baseload power production from wind turbine arrays coupled to compressed air energy storage

Authors:
To read the full-text of this research, you can request a copy directly from the author.

Abstract

An analysis is presented of compressed air energy storage (CAES) and its potential for mitigating the intermittency of wind power, facilitating access to remote wind resources and transforming wind into baseload power. Although CAES has traditionally served other grid support applications, it is also well suited for wind balancing applications due its ability to provide long duration storage, its fast ramp rates and its high part load efficiencies. In addition, geologies potentially suitable for CAES appear to be abundant in regions with high-quality wind resources. This is especially true of porous rock formations, which have the potential to be the least costly air storage option for CAES. The characteristics of formations suitable for CAES storage and the challenges associated with using air as a storage fluid are discussed. An optimization framework is developed for analyzing the cost of baseload plants comprised of wind turbine arrays backed by natural gas-fired generating capacity and/or CAES. The optimization model analyzes changes to key aspects of the system configuration such as the wind turbine rating, the relative capacities of the system components, the size of the CAES storage reservoir and the wind turbine spacing. The response of the optimal system configuration to changes in natural gas price, greenhouse gas (GHG) emissions price, capital cost, and wind resource is also considered. Wind turbine rating is given focused attention because of its substantial impact on system configuration and output behavior. The generation cost of baseload wind is compared to that of other baseload options. To highlight the carbon-mitigation potential of baseload wind, the competition with coal power (with and without CO2 capture and storage, CCS) is given prominent attention. The ability of alternative options to compete under dispatch competition is explored thereby clarifying the extent to which baseload wind can defend high capacity factors in the market. This analysis indicates that CAES might be well suited for balancing wind power output and enabling wind to achieve deep reductions in GHG emissions from power generation globally.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the author.

Article
Full-text available
This article studies the impact on CO2 emissions of electrical storage systems in power systems with high penetrations of wind generation. Using the Irish All-Island power system as a case-study, data on the observed dispatch of each large generator for the years 2008 to 2012 was used to estimate a marginal emissions factor of 0.547 kgCO2/kWh. Selected storage operation scenarios were used to estimate storage emissions factors – the carbon emissions impact associated with each unit of storage energy used. The results show that carbon emissions increase in the short-run for all storage technologies when consistently operated in ‘peak shaving and trough filling’ modes, and indicate that this should also be true for the GB and US power systems. Carbon emissions increase when storage is operated in ‘wind balancing’ mode, but reduce when storage is operated to reduce wind power curtailment, as in this case wind power operates on the margin. For power systems where wind is curtailed to maintain system stability, the results show that energy storage technologies that provide synthetic inertia achieve considerably greater carbon reductions. The results highlight a tension for policy makers and investors in storage, as scenarios based on the operation of storage for economic gains increase emissions, while those that decrease emissions are unlikely to be economically favourable. While some scenarios indicate storage increases emissions in the short-run, these should be considered alongside long-run assessments, which indicate that energy storage is essential to the secure operation of a fossil fuel-free grid.
Conference Paper
The integration of increasingly available renewable energy sources, such as wind energy, into the power grid will have the potential to reduce dependence on fossil fuels and minimize greenhouse gas emission. However, due to the stochastic nature of renewable generation, balancing of generation and load becomes difficult. Energy storage is expected to play a major role in promoting the development of renewable energy by intermittent power source balancing, storing surplus generation, and providing electricity during high demands. One of the various emerging energy storage technologies is Compressed Air Energy Storage (CAES). In this paper, we model a wind generation-CAES system which can generate, store, and sell electricity to the grid. In addition, two optimization methodologies based on particle swarm optimization (PSO) are used to optimize the short-term operation and long-term planning of the wind generation-CAES system. The goal is to determine the optimum capacities of these resources as well as the optimum day-to-day operation strategy in order to maximize profit. The variables considered in this study include electricity market price, wind speed, gas price, etc., from a local electric utility. A number of sensitivity analyses are performed to evaluate the profitability of the wind generation-CAES system and the impact of different factors on the results.
ResearchGate has not been able to resolve any references for this publication.