ArticlePDF Available

New geological model of the Lagoa Real uraniferous albitites from Bahia (Brazil)

De Gruyter
Open Geosciences
Authors:

Abstract and Figures

New evidence supported by petrography (including mineral chemistry), lithogeochemistry, U-Pb geochronology by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS), and physicochemical study of fluid and melt inclusions by LA-ICP-MS and microthermometry, point to an orogenic setting of Lagoa Real (Bahia-Brazil) involving uraniferous mineralization. Unlike the previous models in which uraniferous albitites represent Na-metasomatised 1.75 Ga anorogenic granitic rocks, it is understood here that they correspond to metamorphosed sodium-rich and quartz-free 1.9 Ga late-orogenic syenitic rocks (Na-metasyenites). These syenitic rocks are rich not only in albite, but also in U-rich titanite (source of uranium). The interpretation of geochemical data points to a petrogenetic connection between alkali-diorite (local amphibolite protolith) and sodic syenite by fractional crystallization through a transalkaline series. This magmatic differentiation occurred either before or during shear processes, which in turn led to albitite and amphibolite formation. The metamorphic reactions, which include intense recrystallization of magmatic minerals, led uraninite to precipitate at 1.87 Ga under Oxidation/Reduction control. A second population of uraninites was also generated by the reactivation of shear zones during the 0.6 Ga Brasiliano Orogeny. The geotectonic implications include the importance of the Orosirian event in the Paramirim Block during paleoproterozoic Săo Francisco Craton edification and the influence of the Brasiliano event in the Paramirim Block during the West-Gondwana assembly processes. The regional microcline-gneiss, whose protolith is a 2.0 Ga syn-collisional potassic granite, represents the albitite host rock. The microcilne-gneiss has no petrogenetic association to the syenite (albitite protolith) in magmatic evolutionary terms.
Content may be subject to copyright.
Cent. Eur. J. Geosci. 5(3) 2013 354-373
DOI: 10.2478/s13533-012-0134-7
Central European Journal of Geosciences
New geological model of the Lagoa Real uraniferous
albitites from Bahia (Brazil)
Research Article
Alexandre de Oliveira Chaves
Institute of Geosciences - Minas Gerais Federal University (IGC-UFMG) - Brazil
Received 24 April 2013; accepted 8 July 2013
Abstract: New evidence supported by petrography (including mineral chemistry), lithogeochemistry, U-Pb geochronology
by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS), and physicochemical study of
fluid and melt inclusions by LA-ICP-MS and microthermometry, point to an orogenic setting of Lagoa Real (Bahia-
Brazil) involving uraniferous mineralization . Unlike the previous models in which uraniferous albitites represent
Na-metasomatised 1.75 Ga anorogenic granitic rocks, it is understood here that they correspond to metamor-
phosed sodium-rich and quartz-free 1.9 Ga late-orogenic syenitic rocks (Na-metasyenites). These syenitic rocks
are rich not only in albite, but also in U-rich titanite (source of uranium). The interpretation of geochemical data
points to a petrogenetic connection between alkali-diorite (local amphibolite protolith) and sodic syenite by frac-
tional crystallization through a transalkaline series. This magmatic differentiation occurred either before or during
shear processes, which in turn led to albitite and amphibolite formation. The metamorphic reactions, which include
intense recrystallization of magmatic minerals, led uraninite to precipitate at 1.87 Ga under Oxidation/Reduction
control. A second population of uraninites was also generated by the reactivation of shear zones during the 0.6 Ga
Brasiliano Orogeny. The geotectonic implications include the importance of the Orosirian event in the Paramirim
Block during paleoproterozoic S˘
ao Francisco Craton edification and the influence of the Brasiliano event in the
Paramirim Block during the West-Gondwana assembly processes. The regional microcline-gneiss, whose pro-
tolith is a 2.0 Ga syn-collisional potassic granite, represents the albitite host rock. The microcilne-gneiss has no
petrogenetic association to the syenite (albitite protolith) in magmatic evolutionary terms.
Keywords: Lagoa Real uraniferous albitites late-orogenic syenite LA-ICP-MS U-Pb
©Versita sp. z o.o.
1. Introduction
Currently,thereisonlyoneactiveuraniummineinLatin
AmericalocatedatLagoaRealdistrict,StateofBahia
Brazil(Figure1),whichisfoundinthecentral areaof
theSăoFranciscoCraton. TheLagoaRealUraniferous
Provinceanditssurroundingshavebeenthesubject of
E-mail:alex2010@ufmg.br
geologicalandaerogeophysicalsurveys[13]andofvari-
ousstudiesoftheoriginandcontrolofuraniumdeposits,
includingthoseof[412].Someofthesestudiesdisagree
abouttheageoftheLagoaRealuraniferousmineraliza-
tion,butusuallyitsgenesisisattributedtouraniumand
sodium-bearinghydrothermalfluids,whichmetasomatised
the1.75GaanorogenicSăoTimóteogranite(graniteage
by[7,10,13])toyieldU-richalbitites.
[14]show? thatmanyuraniumrichprovincesarerelated
toevolvedfelsicigneousrocksintrudedintothecrust,not
onlyanorogenically,butalsoduringthefinalstages of
354
Alexandre de Oliveira Chaves
orogenesis. Accordingto[15],duringthelateorogenic
stages,ductileshearfaultzonescontrolledthesiteofem-
placementoffelsicmagmaticprovinces.Pressurerelease
causedbythefaultingcanproduceapartialmeltinginthe
deepzonesofthethickened orogeniclithosphere. Fur-
thermore,thepartialmeltingofthelithosphericmantle
abovethesubductedslabisalsosupportedbythede-
hydrationofthe latter. Theinteraction between fluids
generatedduringthisdehydrationandoverlaying man-
tlematerialwouldberesponsibleforthetraceandrare
earthelements,thorium,anduraniumenrichmentinmag-
mas[16].Whensubmittedtofractionalcrystallizationpro-
cesses, such magmaseventually evolveto U-richfelsic
lithotypes.
New evidence presented here, supported by petrogra-
phy(includingmineralchemistry),lithogeochemistry,LA-
ICP-MSU-Pbgeochronology,andphysicochemicalstudy
of fluid and melt inclusions by LA-ICP-MS and mi-
crothermometry, show an orogenic setting older than
1.75 Ga involving uraniferous mineralization of Lagoa
Real. Thisraisesthequestion: aretheuraniferousal-
bititesNa-metasomatisedgraniticrocksoraretheymeta-
morphosedsodium-rich and quartz-freemagmatic rocks
(Na-metasyenites)?
Therefore,theaimofthepresentstudyistoproposeanew
geologicalmodelabletoexplaintherelationshipbetween
magmatism,shearing,subsequentmetamorphicreactions
andUmineralizationofLagoaRealaswellasthetectonic
implicationsunderanewscenario.
2. Geological setting of the Lagoa
Real Uraniferous Province
TheLagoaRealregionislocatedinthecentral-southern
partofSăoFranciscoCraton(Figure1). Thebasement
of this region is formed by Archean/Palaeoproterozoic
granulitic, migmatitic, and gneissic rocks, which be-
long to the Paramirim and Gaviăo blocks [17]. The
Ibitira-Brumadovolcanosedimentaryunitisfoundinthe
areaandcomprisesamphibolites,bandedironformations,
gneisses, metacherts, marbles, and schists. [18] inter-
pretedthisunitasaLowerPalaeoproterozoicgreenstone
belt.ThePalaeoproterozoicLagoaRealGranitic-Gneissic
Complex covers an area larger than 2,000 km2of the
ParamirimBlockandincludesgranitoidbodies,gneisses,
albititesandamphibolites.[8] attributed the genesisof
theuranium-bearingalbititestometamorphismandpro-
gressivedeformationofthe1.75GaanorogenicSăoTimó-
teoGranitealongshearzones,whereaepisyenitization
processtookplace under theinfluence of uraniumand
sodium-richhydrothermalfluids.
AnotherimportantgeologicalunitintheregionistheEs-
pinhaçoSupergroup(notshowninFigure1),comprising
sandstones,conglomerates,siltstones,shales,quartzites
and schists overlaying a sequence of 1.7 Ga rhyolites
andrhyodacites. Thissupergroupisrelatedtoabasin
developedduringUpperPalaeoproterozoicriftingevent.
TertiaryandQuaternaryalluvialsedimentscompletethe
geologicalsettingofthisregion.Accordingto[19]and[20]
thegeologicalandtectoniccontextoftheLagoaRealre-
gionispartoftheevolutionof the SăoFranciscoCra-
tonandofsuccessivegeologicalcycles: Jequié(Archean
- with orogenicevent around2.7 Ga), Transamazonian
(PalaeoproterozoicwithOrosirianorogenic event be-
tween2.05and1.8Ga),andBrasiliano(transitionNeo-
proterozoic/Phanerozoic-withorogeniceventaround0.54
+/-0.1Ga). Duringthelattercycle,Archeangneissic
basementoverthrusted metasediments of theEspinhaço
SupergroupandthereforeN-Sregionalthrustfaultsare
foundinParamirimBlock[21].
Figure 1. Geological map of the Lagoa Real uraniferous albitites,
Bahia (BA-Brazil). Modified from [11] and [1]. Cross-
section presents UO2contents in ppm for some mineral-
ized levels of the anomaly 3, which represents one of 34
mineralized albitite with high uranium content of the Lagoa
Real Uraniferous Province. In addition to surrounding
microcline-gneisses, samples of amphibolites and miner-
alized albitites from anomalies 1, 3, 7, 9, and 13 (An1,
An3, An7, An9, and An13) have been investigated in this
work.
UraniummineralizationatLagoaRealisfoundasfinely
disseminated (micro- to milimeter size) uraninite asso-
ciatedwithdiscontinuoustabularbodiesofalbititeslo-
catedalongshearzones[1,4,7,9,13,22]. Mostbodies
trendN40EtoN30Wanddip30°to90°tothesouth-
westornorthwest,withtheexceptionofthenorthernmost 355
New geological model of the Lagoa Real uraniferous albitites from Bahia (Brazil)
deposits,whichdiptotheeast,andthosesituatedinthe
centralpartoftheregion,whicharealmostvertical.Each
bodyhasmaximumlengthof3kmandaveragewidthof
10m(max. 30m). Mineralizationextendsupto850m
belowthesurfaceasshownbydrillcores.Bodiescontain
oneormoremineralizedlevels,whichmaybeinterrupted
inplaces. Thecontactsbetweenmineralizedlevelswith
hostgneissicrocksareabrupt(Figure2).Accordingto[1],
amphibolitesoftenoccuralongtabularbodiesofalbitites
withthesamestructuraltrendsandarealsoattainedby
shearzones.
Figure 2. Sharp contacts between uraniferous albitite bodies and
microcline-gneiss from Cachoeira Mine (anomaly 13).
OrereservesattheLagoaRealUraniferousProvinceare
presentlyreasonablywellestimatedat94,000tonsofUO2
and6,700tonsofUO2ofinferredreserves(CPRM/CBPM,
2003).Figure1insetshowsarepresentativealbititever-
ticalsection,whichpresentsUO2contentsinppmtosome
mineralizedlevelsoftheanomaly3. Thesecontentsare
similartothemainuraniumanomaliesoftheprovince(be-
tween1000and5000ppm).
3. Methodology
InordertounderstandthegenesisoftheLagoaRealuran-
iferousalbitites,thefollowingstepswereundertaken:
1.ageologicalsurveyandsamplecollectingfromCa-
choeiraMinepit(anomaly13)anddrill-corerocks
fromanomalies1,3,7,and9oftheLagoaReal
UraniferousProvince(Fig.1);
2.preparationofpolishedthinsectionsintheSample
LaboratoryoftheDevelopmentCenterofNuclear
Technology(CDTN)forpetrographic,microanalyt-
ical,andgeochronologicstudies;
3.interpretationofthephysicalandchemicalproper-
tiesofthefluidandmeltinclusions.
The petrography of several rock types from the Lagoa
RealregionwascarriedoutattheFluidInclusionsand
MetallogenesisLaboratory(LIF)ofCDTN.ALeicaDMR-
XPmicroscopewasused. Microanalysesofthemineral
phaseswerecarriedoutatthePhysicsDepartmentofMi-
nasGeraisFederalUniversity(UFMG-Brazil)onaJeol-
JXA-8900RLWD/EDElectronMicroprobe.Quantitative
WDSmeasurementshavebeendoneatanalyticalcon-
ditionsof15Kvand20nA,witha5µmelectronbeam
diameter,byusingSmithsonianmicrobeamstandardsand
x-raylinesdescribedin[48]. Mössbauerspectroscopyof
57FeinstalledatCDTNprovidedsupportmeasurestothe
qualitativestudyoftheIronoxidationstateinisolated
mineralphases. Thesemeasurementswereconductedat
roomtemperature,atmosphericpressureandwithoutex-
ternalmagnetic field intransmission geometry usinga
conventionalWisselspectrometeranda57Co/Rhsource.
Spectrawerefittedbytheleastsquaremethod.Abbrevia-
tionsusedfornamesofrock-formingmineralsarefrom[38].
For geochronological purposes, Pb/U isotope ratios in
uraniniteandzirconcrystalsofLagoaRealalbititeswere
determinedbyLA-ICP-MStechnique(LaserAblationIn-
ductivelyCoupledPlasmaMassSpectrometry, reported
by[23])usingzircon91500anduraniniteTSAstandards.
ThecoupledLaserAblation(Cetac/Geolas-Pro-operat-
ingwavelength193nm,energydensity40J/cm2withspot
sizeof20micrometers)andICP-MS(Thermo/Element2-
sensitivity1x109cps/ppmIn,massresolution600,8,000,
20,000FWHM,magneticscanspeedm/z7->240to7
<150ms,signalstabilitybetterthan2%over1hour)in-
strumentsusedinthisstudyareinstalledattheMemorial
UniversityofNewfoundland,St. John’s- Canada. LA-
ICP-MSanalyseswereperformed withthesameafore-
mentionedpolishedthinsections. CommonPbhasbeen
correctedafter[24]methodandU-Pbdiagramshavebeen
madewiththeIsoplotsoftware[25].
Inordertounderstandthephysicalandchemicalproper-
tiesofthefluidandmeltinclusionsassociatedwiththe
LagoaRealalbititeminerals,thefollowinginitial steps
wereundertaken:(1)mappingoffluidandmeltinclusions
insomemineralphasesinFluidInclusionsandMetal-
logenesisLaboratory(LIF)ofCDTN.ALeicaDMR-XP
microscopewasused.(2)microthermometricstudieswere
carriedoutinLIFbyusingChaixmeca heating/freezing
systemstageadaptedtoLeicaDMR-XPmicroscope.The
equipment was previously calibrated with conventional
standardsandnaturalfluidinclusions. Thedataarere-
producibleto±0.2°Cforthefreezingrunsand±3°Cfor
theheatingruns. Fluidinclusionswereanalyzedafter
freezingthesamplesdownto-160°Candheatingthem
uptoroomtemperature.Homogenizationtemperaturesof
fluidandmeltinclusionswerenotmeasuredbutthelatter
onesdidnotmeltduringheatingupto450°C?.(3)analy-
sesofthechemicalcontentsoffluidandmeltinclusionsin
356
Alexandre de Oliveira Chaves
somemineralsoftheparagenesisassociatedtotheuran-
iferousmineralizationofLagoaRealwereperformedby
usingtheLA-ICP-MStechniquewithstandardNIST610
GlassReferenceMaterial.
TobeawareofpetrologicalevolutionoftheLagoaReal
UraniferousProvince,23representativesamples(fiveam-
phibolites,nineuraniferousalbitites,andninemicrocline-
gneisses)fromCachoeiraMinepit(anomaly13)anddrill-
corerocksfromanomalies1,3,7,and9werecomminuted
tolithogeochemistrystudiesbyusingaringmill. ?Total
abundancesofthemajoroxidesandsometraceelements
of2gofrepresentativesamplepowderwerefusedina
metaborate/tetraboratemixture,dissolvedindilutenitric
acidand analyzed atSGS Laboratories byInductively
Coupled Plasma Optical Emission Spectroscopy (major
oxides)andInductivelyCouplePlasmaMassSpectrome-
try(traceelementsZrandTh;Uwasnotanalyzedbecause
itisassumedtohavebeenmobileduringthemetamorphic
events). Thedetectionlimitsaregenerallyaround0.01%
formajoroxidesand1ppmfortraceelements. Thepre-
cisionofanalysisisusuallyinthe1-2%RSD(relative
standarddeviation)range.Lossonignition(LOI)wasde-
terminedfromtheweightdifferencebeforeandaftertem-
peringthepowdersat1000°Cfor60minutes.
4. Petrography and mineral chem-
istry
Thirtyrepresentativepolishedthinsectionsoftheamphi-
bolites,albititesandmicrocline-gneissesofLagoaReal
Granitic-GneissicComplexwereinvestigated. Thisinves-
tigationledtoabetterunderstandingofthetexturesand
mineralparagenesisrelatedtoeachtypeaswellasof
themetamorphicreactionsinthealbitites.Aplateofrep-
resentativephotomicrographsisgiveninthediscussions
andconclusionssection. Electron microprobe analyses
werecarriedouttodeterminethecompositionofthemin-
eralphases. Thefactthatsomeoftheanalysesyielded
totalsbelow100%indicatescontentsofOH,water and
Fe3+ notdetectablebythemicroprobe.
Amphibolites Exhibit a predominantly nematoblastic
texture,markedbypreferredorientationofmetamorphic
pargasitecrystals,associatedwithpolygonalizedoligo-
clase. Thesetwomineralsare responsiblefor75%of the
rockvolume.Taramitewasalsofoundsubstitutingparga-
siteandcorrespondsto3%oftherockvolume.Thecontent
ofilmeniteandtitaniteisnoticeableinthisrock.Together,
theyrepresentalmost15%ofthetotalvolume. Allanite-
(Ce),zircon,calciteandfluor-apatitecompletetheminer-
alogy.Table1showsthemicroanalysesofmineralphases
oftheamphibolites.
AlbititesThetermalbititerepresentstwodistinctpetro-
graphictypesinthiswork.Botharerichinalbite,asthe
nameindicates,andarecloselyrelatedtoductileshear
zones. Thefirstoneisametamorphosedsyenitewithout
quartzbutwithassociateduraniferousmineralization.The
second one is a U-free metamorphosed quartz-syenite.
Themineralogyisnearlythesameforbothpetrographic
types.
Micropetrographic studies indicated anisotropy in the
metamorphicfoliation.Thereareportionsoftherockthat
keepthetextureandmineralogyofthemagmaticstage,
including antiperthites. Other ones mix magmatic and
metamorphictexturesandmanyothershaveexclusively
granoblastictexture(Figure3).
Accessory minerals from magmatic portions are
dark brown U-rich titanite [formula between
(Ca0.82Fe+2
0.10Pb0.08)(Ti0.57U0.40Al0.01V0.01Th0.01)(Si0.94Al0.06)
O4.40(OH,F)0.60and(Ca0.93Fe+2
0.05Pb0.02)(Ti0.82U0.07Al0.05V0.05
Th0.01)SiO4.65(OH,F)0.35 titanitecrystalswithhighura-
niumconcentrationshavebeenreportedby[26]and[10]
andcanbeunderstoodbythereplacementbetweenTi4+
andU4+, whichhavesimilarionicradius],allanite-(Ce)
withUandTh,magnetite, fluor-apatite, zircon, fluorite,
andapophyllite. Magmaticcalciteissometimespresent,
whichcanbefoundbetweenundeformedaugitecrystals.
Table2showsthemineralmicroanalysesofthemagmatic
stage. Table 3shows the chemical analyses of the
recrystallized mineral phases and of the newly formed
phases: oligoclase, aegirine-augite, microcline, calcite,
titanite, allanite-(Ce), fluor-apatite, zircon, fluorite,
andradite, hastingsite, epidote, biotite, hematite, and
uraninite. Additionally, uraninite was found not only
scatteredthroughalbititebut also inside recrystallized
augite,hastingsite,andradite,calcite,biotiteandepidote.
Microcline-gneissesTheyvaryfrom“augen”gneisses
tolesscoarsetypesandrepresentthehostrocksofthe
mineralizedalbitites.Microclinepredominates(35to50%
of the rockvolume), followedby oligoclaseand quartz
(20to30%each). Hastingsiteandbiotitealsoappear.
Together,theyform20%oftherockvolume,bothalong
withaegirine-augite. Theopaquemineralismagnetite.
Titanite,fluor-apatite,zircon,andallanite-(Ce)appearas
accessoryminerals. Themicroanalysesoftheseminerals
arepresentedinTable4.
5. U-Pb geochronology by LA-ICP-
MS
Pb/UisotopicratiosobtainedbyLA-ICP-MS,whichhave
showntobereliable? ingeochronologicalstudies[31], 357
New geological model of the Lagoa Real uraniferous albitites from Bahia (Brazil)
Table 1. Representative chemical analyses of amphibolite minerals obtained by electron microprobe. Fe2+ and Fe3+ proportions defined by
Mössbauer Spectroscopy. Ion calculation according to [45]. Amphibole names according to [46].
MineralName Pargasite Oligoclase Titanite Ilmenite Taramite Allanite-(Ce) Zircon Fluor-Apatite Calcite
SiO243.58 60.17 29.20 1.44 43.12 35.57 31.88 0.00 0.00
TiO20.74 0.00 38.56 51.42 0.00 0.00 0.00 0.00 0.00
Al2O311.91 24.32 0.00 0.00 20.85 21.43 0.19 0.00 0.00
FeO 16.75 0.00 0.00 44.35 10.41 11.93 0.00 0.00 0.00
Fe2O30.79 0.00 0.00 0.00 5.81 0.00 0.00 0.00 0.00
V2O30.00 0.00 0.00 0.00 0.89 0.00 0.00 0.00 0.00
MnO 0.33 0.00 0.00 0.00 0.19 0.41 0.00 0.00 0.00
MgO 9.27 0.00 0.00 0.00 6.36 0.00 0.00 0.00 0.00
CaO 11.98 6.25 27.74 1.73 2.48 20.01 0.37 54.51 58.25
Na2O 1.59 8.88 0.00 0.00 6.10 0.00 0.00 0.00 0.00
K2O 0.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P2O50.00 0.00 0.00 0.00 0.00 0.00 0.00 41.55 0.00
F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.25 0.00
ZrO20.00 0.00 0.00 0.00 0.00 0.00 67.09 0.00 0.00
UO20.00 0.00 0.00 0.00 0.00 0.00 0.32 0.00 0.00
PbO 0.00 0.00 0.55 0.00 0.00 0.48 0.00 0.00 0.00
ThO20.00 0.00 0.00 0.00 0.00 0.31 0.00 0.00 0.00
Ce2O30.00 0.00 0.00 0.00 0.00 4.89 0.00 0.00 0.00
La2O30.00 0.00 0.00 0.00 0.00 3.39 0.00 0.00 0.00
Nd2O30.00 0.00 0.00 0.00 0.00 0.60 0.00 0.00 0.00
CO20.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 41.75
Total 97.91 99.62 96.05 98.94 96.21 99.02 99.85 98.31 100.00
Oxygens 23 32 20 6 23 12 16 13 6
Si6.53 Si10.78 Si3.99 Si0.07 Si6.49 Si2.93 Si3.92 Ca5.07 Ca2.12
Al1.47 Al5.13 Ti3.97 Ti1.95 Al1.51 Al2.08 Al0.03 P3.17 C1.94
Al0.64 Ca1.20 Ca4.06 Fe21.87 Al2.19 Fe20.82 Ca0.05 F1.28 -
Fe30.11 Na3.08 Pb0.02 Ca0.09 Fe30.87 Mn0.03 Zr4.02 - -
Ti0.08 K0.00 - - V0.11 Ca1.76 U0.01 - -
I Mg2.07 - - - Mg1.43 Pb0.01 - - -
O Fe22.08 - - - Fe20.40 Th0.01 - - -
N Mn0.02 - - - Mn0.01 Ce0.15 - - -
S Fe20.01 Ab75 - - Fe20.78 La0.10 - - -
Mn0.02 An25 - - Mn0.01 Nd0.02 - - -
Ca1.93 Or0 - - Ca0.40 - - - -
Na0.04 - - - Na0.81 - - - -
Na0.42 - - - Na0.97 - - - -
K0.19 - - - - - - - -
allowedtheagedeterminationofmagmaticandmetamor-
phiceventsthatresultedintheformationoftheuraninite
oftheLagoaRealGranitic-GneissicComplex.
Rimandcoreareasoftwozirconcrystalsfrommicrocline-
gneisses,hostrocksofuraniferousmetamorphosedsyen-
itesfromradioactiveanomaly13(CachoeiraMine),pro-
ducedtheU-PbdiscordiaofFigure4,anchoredto0Ma
(probablerecentPbloss).Inthisfigure,onefindstheval-
uesofPb/Uratiosofeachzircon. Theageof2,009+/-
78Macorrespondingtotheupperinterceptisinterpreted
asbeingthemagmaticcrystallizationofgranitoids,which
represent the parent rocks of the microcline-gneisses.
Palaeoproterozoicagesaround2.0Gahavebeenfound
forthemagmatismassociatedwiththeOrosirianOrogen-
358
Alexandre de Oliveira Chaves
Table 2. Representative chemical analyses of former magmatic minerals in the metamorphosed syenites, obtained by electron microprobe. Fe2+and Fe3+ proportions were measured by Mössbauer
Spectroscopy. Ion calculation according to [45]. Two uraniferous titanite represent the observed range of UO2content.
MineralName Albite Iron-richaugite Microcline Calcite Magnetite U-richTitanite U-richTitanite Allanite-(Ce) Fluor-Apatite Zircon Fluorite Apophyllite
SiO269.19 52.78 64.01 0.00 0.00 19.34 27.67 34.53 0.00 33.88 0.00 51.45
TiO20.00 0.10 0.00 0.00 0.00 16.04 29.46 0.00 0.00 0.00 0.00 0.00
Al2O319.30 0.89 18.41 0.00 0.00 2.02 1.26 13.40 0.00 0.00 0.00 0.00
FeO 0.00 10.02 0.00 0.00 30.11 1.84 1.76 12.09 0.00 0.00 0.00 0.00
Fe2O30.00 3.10 0.00 0.00 66.70 0.00 0.00 3.40 0.00 0.00 0.00 0.00
V2O30.00 0.65 0.00 0.00 2.23 0.05 1.53 0.00 0.00 0.00 0.00 0.00
MnO 0.00 0.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MgO 0.00 9.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CaO 0.26 20.83 0.06 56.34 0.00 15.79 23.80 13.23 52.49 0.00 52.39 24.78
Na2O 11.29 2.07 0.77 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
K2O 0.00 0.00 15.85 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.09
P2O50.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 40.97 0.00 0.00 0.00
F 0.00 0.00 0.00 0.00 0.00 0.20 0.59 0.25 2.22 0.00 46.94 1.13
ZrO20.00 Q1,68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 65.98 0.00 0.00
UO20.00 J0,30 0.00 0.00 0.00 38,14(UO2Max) 8,71(UO2Min) 1.30 0.00 0.12 0.00 0.00
PbO 0.00 Wo45 0.00 0.00 0.00 3.51 2.63 0.51 0.00 0.08 0.00 0.00
ThO2 0.00 En30 0.00 0.00 0.00 0.69 0.07 0.68 0.00 0.00 0.00 0.00
Ce2O30.00 Fs25 0.00 0.00 0.00 0.00 0.00 10.39 2.26 0.00 0.00 0.00
La2O30.00 WEF85 0.00 0.00 0.00 0.00 0.00 3.71 0.91 0.00 0.00 0.00
Nd2O30.00 Jd4 0.00 0.00 0.00 0.00 0.00 2.64 0.63 0.00 0.00 0.00
CO20.00 Ae11 0.00 43.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Total 100.04 100.08 99.10 100.00 99.04 97.62 97.48 96.13 99.48 100.06 99.33 82,45(+H2O)
Oxygens 32 6 32 6 4 20 20 12 13 16 - 20
Si12,05 Si1,99 Si11,94 Ca2,01 Fe20,98 Si3,75 Si4,09 Si3,05 Ca5,04 Si4,10 Ca0,95 Si7,76
Al3,96 Al0,01 Al4,05 C1,99 Fe31,95 Al0,46 Al0,22 Al1,40 Ce0,07 Zr3,90 F2,05 Ca4,00
Ca0,05 Al0,04 Ca0,01 - V0,07 V0,01 V0,18 Fe30,25 La0,03 U0,00 - K0,98
I Na3,81 Ti0,01 Na0,28 - - Ti2,34 Ti3,28 Fe20,90 Nd0,02 Pb0,00 - F1,08
O K0,00 V0,02 K3,77 - - U1,65 U0,29 U0,03 P3,11 - - -
N - Fe30,10 - - - Ca3,28 Ca3,77 Ca1,25 F1,26 - - -
S - Fe20,31 - - - Fe20,30 Fe20,22 Pb0.01 - - - -
Ab99 Mg0,52 Ab07 - - Pb0,18 Pb0,10 Th0.01 - - - -
An01 Mn0,01 An00 - - Th0,03 Th0,00 Ce0,34 - - - -
Or00 Ca0,84 Or93 - - - - La0,12 - - - -
- Na0,15 - - - - - Nd0,08 - - - -
359
New geological model of the Lagoa Real uraniferous albitites from Bahia (Brazil)
Table 3. Representative chemical analyses of metamorphic minerals from metamorphosed syenites obtained by electron microprobe. Fe2+and Fe3+ proportions defined by Mössbauer Spectroscopy. Ion
calculation according to [45]. Amphibole naming according to [46].
MineralNameOligoclaseAegirine-Augite Microcline Calcite Titanite Allanite-(Ce) Fluor-Apatite Zircon FluoriteAndraditeHastingsite Epidote Biotite Uraninite Hematite
SiO265.21 52.04 65.24 0.00 30.51 38.35 1.09 34.47 0.00 37.12 41.11 37.91 38.89 1.75 0.00
TiO20.00 0.00 0.00 0.00 34.28 0.00 0.00 0.00 0.00 0.40 0.45 0.00 0.68 0.00 0.00
Al2O320.49 2.55 18.83 0.00 1.05 16.22 0.00 0.00 0.00 3.39 11.38 20.78 12.95 0.00 0.00
FeO 0.00 6.02 0.00 0.00 1.82 12.66 0.00 0.00 0.00 0.00 9.51 0.00 13.32 0.00 0.00
Fe2O30.00 9.04 0.00 0.00 0.00 2.78 0.00 0.00 0.00 23.04 10.10 16.30 3.33 0.00 98.32
V2O30.00 0.00 0.00 0.00 1.73 0.00 0.00 0.00 0.00 1.88 0.00 0.00 0.22 0.00 0.00
MnO 0.00 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.01 0.48 0.00 0.19 0.00 0.00
MgO 0.00 7.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9.12 0.00 14.86 0.00 0.00
CaO 2.63 18.10 0.35 56.53 28.42 16.75 55.28 0.00 51.27 32.78 10.41 23.35 0.00 3.98 0.00
Na2O 10.59 4.12 1.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.15 0.00 0.00 0.00 0.00
K2O 0.00 0.00 14.93 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.35 0.00 11.04 0.00 0.00
P2O50.00 0.00 0.00 0.00 0.00 0.00 39.93 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
F 0.00 0.00 0.00 0.00 0.47 0.16 2.24 0.00 48.68 0.00 0.00 0.00 1.54 0.00 0.00
ZrO20.00 Q1,35 0.00 0.00 0.00 0.00 0.00 63.24 0.00 0.00 0.00 0.00 0.00 0.00 0.00
UO20.00 J0,60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 85.60 0.00
PbO 0.00 Wo42 0.00 0.00 0.00 0.43 0.00 0.00 0.00 Alm0 0.00 0.40 0.00 6.40 0.00
ThO20.00 En28 0.00 0.00 0.00 0.50 0.00 0.00 0.00 And76 0.00 0.00 0.00 0.00 0.00
Ce2O30.00 Fs30 0.00 0.00 0.00 4.56 0.72 0.00 0.00 Gros15 0.00 0.00 0.00 0.00 0.00
La2O30.00 WEF69 0.00 0.00 0.00 1.61 0.21 0.00 0.00 Pyr0 0.00 0.00 0.00 0.00 0.00
Nd2O30.00 Jd6 0.00 0.00 0.00 1.42 0.09 0.00 0.00 Spes2 0.00 0.00 0.00 0.00 0.00
CO20.00 Ae25 0.00 43.47 0.00 0.00 0.00 0.00 0.00 Gold7 0.00 0.00 0.00 0.00 0.00
Total 98.92 99.75 100.47 100.00 98.28 95.44 99.56 97.71 99.95 99.62 98.06 98.74 97.02 97.73 98.32
Oxygens 32 6 32 6 20 12 13 16 - 12 23 12 24 2 3
Si11,61 Si1,95 Si11,95 Ca2,03 Si4,11 Si3,07 Ca4,85 Si4,22 Ca0,98 Si3,09 Si6,37 Si2,91 Si6,16 Si0,07 Fe32,00
Al4,30 Al0,05 Al4,05 C1,99 Al0,17 Al1,73 Ce0,02 Zr3,78 F2,01 Al0,00 Al1,63 Al1,88 Ti0,08 U0,80 -
Ca0,50 Al0,06 Ca0,07 - V0,18 Fe30,20 La0,01 - - AlIV0,33 Al0,45 Fe30,94 Al2,42 Ca0,18 -
Na3,66 Ti0,00 Na0,40 - Ti3,47 Fe20,90 Nd0,00 - - Fe31,44 Fe31,22 Ca1,92 V0,03 Pb0,07 -
I K0,00 V0,00 K3,49 - U1,65 U0,00 P2,77 - - Ti0,03 Ti0,05 Pb0,01 Fe30,41 - -
O - Fe30,28 - - Ca4,10 Ca1,63 F1,16 - - V0,12 Mg2,11 - Fe21,80 - -
N - Fe20,19 - - Fe20,20 Pb0.01 - - - Mn0,07 Fe21,14 - Mn0,03 - -
S Ab90 Mg0,43 Ab10 - - Th0.01 - - - Ca2,92 Mn0,03 - Mg3,51 - -
An10 Mn0,01 An02 - - Ce0,14 - - - - Fe20,10 - K2,23 - -
Or00 Ca0,73 Or88 - - La0,05 - - - - Mn0,03 - F1,54 - -
- Na0,30 - - - Nd0,04 - - - - Ca1,73 - - - -
- - - - - - - - - - Na0,14 - - - -
- - - - - - - - - - Na0,80 - - - -
- - - - - - - - - - K0,47 - - - -
360
Alexandre de Oliveira Chaves
Figure 3. Photomicrographs of the metamorphosed syenites (plane-
polarized light and crossed nicols). 1 - Igneous texture and
antiperthites show the magmatic stage, corresponding to
region 1 of the schematically displayed foliation anisotropy
in the right side of the figure. 2 - Recrystallization of a
large albite crystal, associated with recrystallized iron-rich
augite suggests the initial stages of the metamorphic re-
crystallization (region 2 in the scheme). 3 - Well devel-
oped granoblastic textures indicate the final stages of the
metamorphic recrystallization (region 3 with strongest de-
formation in the scheme). Metamorphic hastingsite ap-
pears in region 3 (Ab Magmatic albite, Aug Magmatic
augite, Mc Magmatic microcline, AbR Albite recrystal-
lized during metamorphism, AugR Augite recrystallized
during metamorphism, Hst hastingsite).
esisinseveralregionsoftheSăoFranciscoCraton[32,33].
ThePb/Uratios of rimandcore zones ofthree zircon
crystalsfrommetamorphosedsyenitesofthreedifferent
radioactiveanomalies(3,7,and13)producedtheU-Pb
discordiaofFigure5,whichalsoshowsthevaluesofthe
Pb/Uratiosofeachzirconanditscrystalzone. Zircon
datashow how thegrainshave lost variedamounts of
leadwithtime,i.e.,theclassicdiscordiafromoriginalage
toclosure. Theage of 1,904+/- 44 Ma, correspond-
ingtotheupper intercept, canbeinterpretedeitheras
magmaticcrystallizationand/orasinfluenceofOrosirian
metamorphism.Theageof483+/-100Ma,correspond-
ingtothelowerintercept,isinterpretedasimprintofthe
BrasilianometamorphismonthezirconU-Pbsystemdur-
ingthereactivationoftheshearzoneswherethemeta-
morphosedsyenitesarefound.[21]and[12]showedthe
resultoftheBrasilianoeventontheLagoaRealGranitic-
GneissicComplex.
Assuming? thattheuraninitegrainswereformedduring
metamorphicevents,thePb/Uisotopicratiostothesemin-
eralswerealsodetermined. Andradite-relateduraninite
andepidote-relateduraninitewereanalysed. 207Pb/235U
is around 0.7 for the andradite-related uraninite and
around0.3fortheepidote-relateduraninitegrains. The
Figure 4. U-Pb discordia anchored to 0 Ma to zircons of microcline-
gneisses. Analysed crystal zones are shown. Error el-
lipses are 2σ.
U-Pbdiscordiaofthesetwopopulationsofuraninitean-
choredto0MaaregiveninFigure6alongwiththevalues
ofPb/Uratiosofeachgrainanalysed.
Figure 5. U-Pb discordia to zircons of metamorphosed syenites
(uraniferous albitites) from anomalies 3, 7, and 13. Anal-
ysed crystal zones are shown. Error ellipses are 2σ.
ThefirsturaninitepopulationshowsaU-Pbsystemstart-
ingduringa1,868+/-69Mametamorphicepisode.This
Palaeoproterozoicagecouldbeattributedtothepeakof
themetamorphismthataccompaniedthedevelopmentof
theshear zones created during thefinal stages of the 361
New geological model of the Lagoa Real uraniferous albitites from Bahia (Brazil)
Table 4. Representative chemical analyses of minerals found in the microcline-gneisses, obtained by electron microprobe. Fe2+ and Fe3+ pro-
portions defined by Mössbauer Spectroscopy. Ion calculation according to [45]. Amphibole name according to [46].
Mineral Microcline Oligoclase Quartz Hastingsite Biotite Aegirine-Augite Magnetite Titanite Allanite-(Ce) Fluor-Apatite Zircon
Name
SiO263.92 65.62 99.03 38.34 34.13 50.87 0.00 30.87 38.15 0.00 32.04
TiO20.00 0.00 0.00 0.00 2.03 0.00 0.00 30.04 0.00 0.00 0.00
Al2O318.75 21.31 0.00 13.13 15.55 1.45 0.00 6.17 15.44 0.00 0.00
FeO 0.00 0.00 0.00 25.11 28.04 13.30 29.82 0.00 17.41 0.00 0.00
Fe2O30.00 0.00 0.00 5.51 4.56 10.04 69.50 1.66 0.00 0.00 0.00
V2O30.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MnO 0.00 0.00 0.00 0.86 0.79 0.32 0.00 0.00 0.00 0.00 0.00
MgO 0.00 0.00 0.00 1.77 4.23 3.65 0.00 0.00 0.00 0.00 0.00
CaO 0.00 2.16 0.00 10.79 0.00 15.77 0.00 29.01 14.80 55.01 0.00
Na2O 0.26 10.69 0.00 1.36 0.00 4.38 0.00 0.00 0.00 0.00 0.00
K2O 16.04 0.20 0.00 2.20 8.81 0.00 0.00 0.00 0.00 0.00 0.00
P2O50.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 42.06 0.00
F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.04 0.00
ZrO20.00 0.00 0.00 0.00 0.00 Q1,30 0.00 0.00 0.00 0.00 66.57
UO20.00 0.00 0.00 0.00 0.00 J0,66 0.00 0.00 0.00 0.00 0.00
PbO 0.00 0.00 0.00 0.00 0.00 Wo40 0.00 0.00 0.00 0.00 0.00
ThO20.00 0.00 0.00 0.00 0.00 En13 0.00 0.00 0.24 0.00 0.00
Ce2O30.00 0.00 0.00 0.00 0.00 Fs47 0.00 0.00 6.87 0.36 0.00
La2O30.00 0.00 0.00 0.00 0.00 WEF67 0.00 0.00 3.86 0.21 0.00
Nd2O30.00 0.00 0.00 0.00 0.00 Jd4 0.00 0.00 0.00 0.00 0.00
CO20.00 0.00 0.00 0.00 0.00 Ae30 0.00 0.00 0.00 0.00 0.00
Total 98.97 99.98 99.03 99.07 98.14 99.78 99.32 97.75 96.77 99.68 98.61
Oxygens 32 32 2 23 24 6 4 20 12 13 16
Si11,93 Si11,55 Si1,00 Si6,06 Si5,66 Si1,97 Fe20,97 Si4,09 Si3,27 Ca4,77 Si3,97
Al4,12 Al4,42 - Al1,94 Ti0,25 Al0,03 Fe32,02 Al0,97 Al1,56 Ce0,01 Zr4,03
Ca0,00 Ca0,41 - Al0,50 Al3,04 Al0,04 - Fe30,17 Fe30,00 La0,01 -
Na0,09 Na3,65 - Fe30,76 V0,0 Ti0,00 - Ti3,00 Fe21,25 Nd0,00 -
K3,82 K0,05 - Ti0,00 Fe30,62 V0,00 - Ca4,10 U0,00 P2,88 -
- - - Mg0,42 Fe23,90 Fe30,32 - - Ca1,36 F1,04 -
I - - - Fe23,26 Mn0,11 Fe20,43 - - Pb0,00 - -
O Ab02 Ab89 - Mn0,06 Mg1,05 Mg0,21 - - Th0,01 - -
N An00 An10 - Fe20,02 K1,86 Mn0,01 - - Ce0,22 - -
S Or98 Or01 - Mn0,06 - Ca0,66 - - La0,12 - -
- - - Ca1,83 - Na0,33 - - Nd0,0 - -
- - - Na0,09 - - - - - - -
- - - Na0,33 - - - - - - -
- - - K0,44 - - - - - - -
OrosirianOrogenesis,eithersimultaneouslyorimmedi-
atelyafterthecrystallizationoftheuraniferoussyenites
(consideringageerrors).Theabsenceofagedatarelated
totheBrasilianoeventisprobablycausedbyrecentPb
loss.
Withintheageerrors(605+/-170Ma),uraninitegrains
ofthesecondpopulationseemtohavebeencrystallized
duringtheBrasilianometamorphicevent,whichiswell
recordedbythelowerinterceptofthezirconU-Pbdis-
cordiaofuraniferousmetasyenites at 483 +/-100Ma
(Figure5).
Itisobvioustointerpretthetwometamorphicfoliations
with planar surfaces oblique to each other within the
microcline-gneissesoftheLagoaRealComplex[1]asbe-
362
Alexandre de Oliveira Chaves
ingofOrosirianandofBrasilianoorigin.
Figure 6. U-Pb discordias anchored to 0 Ma of two populations
of uraninites of metamorphosed syenites (uraniferous al-
bitites). Error ellipses are 2σfor the older ones and 1σfor
the younger ones.
6. Fluid and melt inclusions by LA-
ICP-MS and microthermometry
Chemicalcontentoffluidandmeltinclusionsinsomemin-
eralsoftheparagenesisrelatedtotheuraniferousminer-
alizationofLagoaRealwerequalitatively analysed by
LA-ICP-MS(LaserAblationInductivelyCoupledPlasma
MassSpectrometry).Thistechniquehasproventobeex-
tremelyeffectiveinchemicalstudiesoffluidandmeltin-
clusionsinminerals[34].Thegraphicinterpretationofthe
ICP-MSsignalswasdoneasfollows:backgroundmeans
standardsignalintensity,whichincreaseswhenthelaser
ablatedthehostmineral.Thenextchangeinsignalinten-
sitymeansthatthelaserablatedameltorfluidinclusion.
Thepresenceofiron-richaugite inthemagmaticstage
ofmetamorphosedsyenites(uraniferousalbitites)iscon-
firmedbyitsmeltinclusionsaswellasbyzonedstruc-
turesfoundinsomeaugitecrystals.Meltinclusionscon-
tainapalebrownmonophasesolid.TheICP-MSsignals
showthatmeltinclusionsarericherinNa,AlandTithan
augiteitself(Figure7).Themagmacontainedtheseele-
mentswhenaugitecrystallizedandtheywereconsumed
byalbite(NaandAl)anduraniferoustitanite(Ti)dur-
ingsyenitecrystallizationprocesses.Themeltinclusions
alsocontainNb,Rb,andBa,whichareincompatiblein
themainsilicatemineralsoftherock.Itisinterestingto
notethatthecontentofCaandSrissmallerinmeltin-
clusionsthaninaugiteitselfbecausetheseelementsare
compatiblewiththe augite structure. Some radiogenic
leadinaugitereveals thepresenceofUinthesyenite
magma.
In order to get some ideas about the magmatic fluids,
theprimarythree-phasefluid inclusionsinaugitecrys-
talsofthemagmaticstageofthemetamorphosedurani-
feroussyenite(uraniferousalbitite)wereanalysed(solid
crystallinephase-S,vapourphase-V,andaqueousphase-
L).ThediagraminFigure8showsthattheprimaryfluid
inclusioninmagmaticiron-richaugiteofthealbititecon-
tainsNa,Rb,andBa(RbandBaareincompatibletothe
syenitemineralsandremainedinthefluidphase). Mi-
crothermometricstudiespointtoaverylowinitialmelt-
ingtemperature,between-69.7°Cand-62.6°C(Table5),
whichisprobablycausedbythepresenceofRbandBain
thiscomplexsalinesystem,certainlyofmagmaticorigin.
Fluorine(inferredfromthepresenceoffluoriteinrock),
rubidiumandbariumlowerthestabilityofthefluidphase
downtoveryloweutecticmeltingtemperatures.
Fluidinclusionsingarnetandrecrystallizedapatitewere
alsoanalysedinordertodeterminethefluidswithinthe
metamorphosedsyenitesandandraditewithuraninitein-
clusions. Thefluid inclusions ingarnet normallyhave
eitherfourphases(L,V,andtwoSdark-orangeand
colorless)orthreephases(L,V,andeithercolorlessSor
dark-orangeS)andrecrystallizedapatitecontainseither
twophases(V-L)oronephase(L)inclusions. Itisworth
pointingoutthatapparentsolid(remnantmelt?) inclu-
sionswereidentifiedinrecrystallizedapatite.
Theformationofandraditefromiron-richaugiteduring
sheareventscontemporarywiththemetamorphosedsyen-
itesiscertifiedbytheICP-MSsignalspresentedinFig-
ure9.TheelementsSi,Ca,Ti,V,Fe,Na,Mg,Al,andSr
thatcanenterthestructureofthemagmaticaugitewere
foundingarnet,withtheexceptionofMgandNa,which 363
New geological model of the Lagoa Real uraniferous albitites from Bahia (Brazil)
Figure 7. ICP-MS signals of magmatic iron-rich augite from syenite
(uraniferous albitite) and of its pale brown solid monopha-
sic melt (m) inclusions (photomicrograph inset; px =augite
pyroxene). Logarithmic intensity scale.
Figure 8. ICP-MS signals of magmatic iron-rich augite from syenite
(uraniferous albitite) and of its primary three-phase fluid
inclusion (photomicrograph inset). Logarithmic intensity
scale.
preferentiallywentintothefluidphase.BesidesMgand
Na,Rb,Ba,U(235Uand238U)andassociatedradiogenic
Pbwerealsofound.
Uranium released from magmatic titanite during the
1.9Ga metamorphismwas recordedin thefluid inclu-
sionsinandradite,whichprobablyformedsimultaneously
withtherecrystallizedtitanite. Thisalsocausedthedis-
seminateduraniniteinsideandradite. Furthermore,the
dark-orangecrystalinsidethefluidinclusionsofandra-
dite(Figure9)probablycontainsradiogenicPb.
Thematerialreleasedduringoneofthelaserablationsof
recrystallizedapatiteproducedtheICP-MSsignalspre-
sentedinFigure10. Thelaserablatedtheapatite,two
Figure 9. ICP-MS signals of andradite garnet of the metamorphic
stage, which generated metamorphosed syenites (uranif-
erous albitites) and two of its fluid inclusions. One repre-
sentative four-phase fluid inclusion (2 solid phases one
of them is dark-orange and the other one is colorless, 1
liquid phase, and 1 vapour phase, see photomicrograph
inset) in andradite is shown in photo. Logarithmic inten-
sity scale.
fluidinclusions,andaprobableremnantsolidinclusion.
P,Ca,Sr,V,andtherareearthelements(La,Ce, Nd,
Sm)resultfromapatite.Therareearthelementsandtho-
riumarethemainconstituentsofthesolidinclusion.The
contentofthefluidinclusionsinrecrystallizedapatiteis
thesameasthoseofthegarnetfluidinclusions.Together
withinitialmeltingtemperaturesbetween-53.7°Cand-
49.5°C(Table5)thissuggeststhatandraditecrystallized
togetherwithrecrystallizedapatiteinthesamemetamor-
phicevent.
Figure 10. ICP-MS signals of recrystallized apatite of the metamor-
phic stage, which generated metamorphosed syenites
(uraniferous albitites). The ICP-MS signals of two of
its fluid inclusions and of a solid inclusion are also pre-
sented. Monophase and two-phase fluid inclusions in
recrystallized apatite from a metamorphosed syenite be-
fore (left) and after (right) laser ablation are shown (pho-
tomicrograph inset). Logarithmic intensity scale.
364
Alexandre de Oliveira Chaves
Table 5. Microthermometric data of fluid inclusions (FI) in augite, andradite and apatite from Lagoa Real metamorphosed syenite (uraniferous
albitite).
FI AUGITE ANDRADITE APATITE
Primaryfluidinclusions
(yieldedduring
magmaticstage) Secondaryfluidinclusions
(yieldedduring
metamorphicstage) Fluidinclusionsyielded
during
metamorphicstage Fluidinclusionsyielded
during
metamorphicstage
Initial
ice-melting
temperature
(°C) Final
ice-melting
temperature
(°C) Initial
ice-melting
temperature
(°C) Final
ice-melting
temperature
(°C) Initial
ice-melting
temperature
(°C) Final
ice-melting
temperature
(°C) Initial
ice-melting
temperature
(°C) Final
ice-melting
temperature
(°C)
1 -64.0 -12.0 -52.5 -12.2 -53.0 -12.0 -49.5 -9.0
2 -65.4 -11.5 -52.3 -15.0 -52.1 -11.6 -51.4 -8.4
3 -63.8 -11.7 -52.7 -11.5 -52.0 -11.9 -51.7 -10.7
4 -62.6 -11.4 -55.0 -11.0 -52.1 -11.6 -50.0 -10.1
5 -64.4 -11.1 -50.9 -11.2 -53.5 -9.3 -49.9 -11.6
6 -65.5 -13.1 -52.2 -11.5 -53.1 -11.7 -52.4 -9.5
7 -64.2 -12.1 -52.0 -12.0 -51.7 -13.3 -51.0 -8.9
8 -66.2 -12.1 -55.0 -11.2 -52.5 -13.0 -53.7 -9.2
9 -69.7 -11.4 -54.9 -13.0 -51.6 -9.6 -50.2 -10.0
7. Lithogeochemistry
Contentsofmajor(weight%)andtraceelements(ppm)of
thethreedifferentrocktypes arepresentedinTable6.
CIPWnormativemineralcontentwascalculatedbythe
Minpetsoftware[35]. Althoughtheanalysedrocksare
metamorphic,CIPWdataarepresentedinTable6inorder
todrawsomeconclusionsabouttheigneousprotoliths.
NotethatthehigherLOIofsamplesAb1,Ab2andAb18
isduetothepresenceofuranophane(hydratedmineral).
A/XversusB/XPearcediagrams[36]areusefultoolsto
provewhethersupposedlymobileelementssuch as Na
andKfromalbititesandmicrocline-gneisswere immo-
bileduringmetamorphism. InthediagramsXrepresents
Zr(immobilenormalizingelement),BsilicaandAalka-
lis(Na2OandK2O).Irregularpatternsandlineartrends
indicateelementmobilizationorimmobilityduringmeta-
morphismrespectively. Thelineartrends in Figure 11
show that both Na and K were not mobilized during
metamorphism of albitites and microcline-gneiss. An-
otherway to test elementmobilization is thechemical
indexofalteration(CIA[47]),whichiscalculatedasCIA
=Al2O3/(Al2O3+CaO*+Na2O+K2O)]*100;theelemental
abundancesareexpressedasmolarproportions,andCaO*
representstheCaOcontentofthesilicatefraction. Only
calcite-free, low CaO albititesamplesAb23, Ab30 and
Ab31havebeenusedforCIAcalculations, resultingin
valuesaround47,whichisintherangeofigneousrocks
(45-55).CIAvaluesofallMgn#samplesinTable6range
between45and55.
Wehaveshownthatthereisnoimportantmobilizationof
Figure 11. Linear trends for Na and K in the Pearce diagrams [36]
suggest no representative alkalis mobilization during
metamorphism of albitites (circles) and microcline-
gneiss (triangle) during metamorphism.
alkalis. Thereforethemetamorphicrockscanbetreated
astheirigneousprotoliths. Inthetotalalkaliversussil-
icadiagram(TAS,Figure12[37]),amphiboliteprotolith
isanalkali-dioriteandalbititeprotolithis an alkaline
rockrangingfromsyenodioritetosyenite. Furthermore,
inS1,S2,S3,andTfieldsfromFigure12,rocksbelong-
ingtotransalkalisuiteof[39]mustbeclassifiedas“sodic”
ifNa2O2.0>K2Oor“potassic”ifNa2O2.0<K2O
after[40]. Threeoffivealkali-dioritesamplesaresodic
aswellasalloftheninesyenodiorite(albititeprotolith)
samples. TheMicrocline-gneissprotolith, however,isa
potassicsubalkalinesyenogranite.
Harker diagrams with silica versus major oxides (Fig-
ure 13) and silica versus trace elements (Figure 14)
showthepetrogeneticrelationbetweenalkali-dioriteand
syenitic rocks. Increasing silica content is accompa-
nied by decreasingamountsof Ti, Fe, Mg, Ca, P, and
increasing of Al, Na (hence albite, not K-feldspar, is 365
New geological model of the Lagoa Real uraniferous albitites from Bahia (Brazil)
Table 6. Chemical analyses results of major oxides (weight %; total iron expressed as FeOT)and trace elements Th and Zr (ppm) of amphibolites
(samples amp#), albitites (samples alb#), and microcline-gneisses (samples mgn#). CIPW normative mineral contents are also shown.
Sample SiO2TiO2Al2O3FeOTMnO MgO CaO Na2O K2O P2O5LOI Total Zr Th
Amp2 45.98 2.07 14.66 14.94 0.20 6.15 8.65 4.23 0.81 0.17 0.50 98.36 180 0
Amp4 46.70 2.73 13.99 13.80 0.22 5.65 8.60 3.64 1.92 0.28 0.55 98.08 204 2
Amp1 47.33 2.09 13.77 13.77 0.20 5.89 10.17 2.80 1.35 0.16 0.60 98.13 140 1
Amp5 48.71 2.38 12.94 14.50 0.24 5.31 9.00 2.61 0.32 0.22 2.64 98.87 196 1
Amp6 48.32 1.92 14.63 11.42 0.15 7.29 8.90 4.33 1.54 0.22 0.83 99.55 143 1
Alb18 55.12 0.58 16.19 6.25 0.13 1.22 6.33 8.04 0.64 0.15 5.60 100.25 940 18
Alb2 55.98 0.58 16.26 6.45 0.15 1.90 5.48 7.90 1.03 0.00 5.90 101.63 862 17
Alb1 57.34 0.44 17.13 6.23 0.11 0.77 5.20 8.96 0.46 0.01 4.57 101.22 809 16
Alb8 59.06 0.73 15.24 6.75 0.11 0.57 7.93 7.89 0.20 0.02 0.55 99.05 1389 19
Alb11 59.72 0.55 16.25 5.72 0.14 0.34 7.17 7.65 0.20 0.00 0.31 98.05 990 32
Alb6 61.33 0.47 16.59 6.52 0.11 0.21 6.04 8.35 0.27 0.00 0.39 100.28 982 36
Alb31 62.88 0.58 18.35 5.50 0.03 0.69 2.90 9.11 0.49 0.00 0.26 100.79 1570 21
Alb30 64.49 0.35 17.78 4.65 0.06 0.00 3.01 8.38 0.67 0.00 0.37 99.76 1500 21
Alb23 65.24 0.35 16.79 4.54 0.11 0.18 2.63 9.26 0.24 0.00 0.31 99.65 1590 24
Mgn42 67.40 0.53 14.89 4.34 0.06 0.00 2.15 3.56 5.29 0.00 0.54 98.76 490 7
Mgn23 68.18 0.32 14.63 4.29 0.06 0.27 2.31 3.45 5.25 0.04 0.15 98.95 649 9
Mgn30 68.54 0.32 14.23 5.20 0.07 0.15 1.70 4.03 5.16 0.00 0.20 99.60 555 29
Mgn64 69.60 0.41 13.78 4.90 0.07 0.15 1.96 3.58 5.23 0.00 0.45 100.13 570 14
Mgn52 70.09 0.23 13.79 4.08 0.04 0.00 1.26 4.30 4.38 0.01 0.34 98.52 568 25
Mgn68 72.31 0.24 12.65 3.01 0.05 0.00 1.28 2.62 6.72 0.00 0.87 99.75 474 37
Mgn58 72.50 0.19 13.43 2.65 0.04 0.21 0.85 3.19 6.24 0.00 0.46 99.76 570 80
Mgn62 73.20 0.12 12.46 2.01 0.04 0.00 0.85 2.87 6.20 0.00 0.57 98.32 647 20
Mgn13 73.58 0.22 12.46 2.77 0.02 0.00 0.82 3.02 5.90 0.00 0.34 99.13 516 35
CIPWNorm Q Or Ab An Ne C Ac DiWo DiEn DiFsHyEn HyFs OlFoOlFa Mt He Ilm Total
amp1 0.00 8.20 19.4521.55 2.63 0.000.00 12.64 5.09 7.67 0.00 0.00 7.02 11.67 0.00 0.00 4.08100.00
amp2 0.00 4.90 19.3019.03 9.37 0.000.00 10.40 4.08 6.45 0.00 0.00 8.16 14.27 0.00 0.00 4.03100.00
amp4 0.00 11.68 17.2516.59 7.80 0.00 0.00 11.40 4.60 6.90 0.00 0.00 6.95 11.52 0.00 0.005.33 100.00
amp5 0.00 14.00 20.6617.04 1.00 0.00 0.00 11.91 4.43 7.71 0.00 0.00 6.38 12.26 0.00 0.004.61 100.00
amp6 0.00 9.25 18.7416.15 9.98 0.000.00 11.98 5.90 5.84 0.00 0.00 8.82 9.64 0.00 0.00 3.70100.00
alb1 0.00 2.82 59.35 5.33 10.300.000.00 8.92 1.45 8.23 0.00 0.00 0.38 2.35 0.00 0.00 0.87 100.00
alb11 0.53 1.21 66.15 9.61 0.00 0.00 0.00 9.86 0.87 10.07 0.00 0.00 0.00 0.00 0.00 0.001.07 99.36
alb18 0.00 4.01 52.93 6.54 10.280.000.00 11.15 2.62 9.23 0.00 0.00 0.43 1.66 0.00 0.00 1.17 100.00
alb2 0.00 6.36 53.25 6.11 8.94 0.00 0.00 9.31 2.89 6.78 0.00 0.00 1.45 3.76 0.00 0.00 1.15 100.00
alb23 3.11 1.43 78.78 3.55 0.00 0.00 0.00 4.00 0.24 4.24 0.21 3.77 0.00 0.00 0.00 0.00 0.67100.00
alb30 4.48 3.99 71.26 8.96 0.00 0.00 0.00 2.54 0.00 2.89 0.00 5.22 0.00 0.00 0.00 0.00 0.67100.00
alb31 0.00 2.88 76.59 7.67 0.00 0.00 0.00 2.77 0.48 2.53 0.01 0.03 0.86 5.08 0.00 0.00 1.10100.00
alb6 0.00 1.60 67.61 6.98 1.65 0.00 0.00 9.61 0.48 10.31 0.00 0.00 0.04 0.84 0.000.000.89100.00
alb8 0.00 1.20 63.34 5.65 2.37 0.00 0.00 11.83 1.45 11.55 0.00 0.00 0.00 0.00 0.000.001.41 98.80
mgn13 30.13 35.33 25.84 3.01 0.00 0.00 0.00 0.47 0.00 0.53 0.00 4.28 0.00 0.00 0.00 0.00 0.42100.00
mgn23 20.11 31.44 29.52 8.99 0.00 0.00 0.00 1.09 0.10 1.11 0.58 6.43 0.00 0.00 0.00 0.00 0.62100.00
mgn30 18.11 30.71 34.27 5.49 0.00 0.00 0.00 1.25 0.06 1.35 0.32 7.84 0.00 0.00 0.00 0.00 0.61100.00
mgn42 19.30 31.86 30.63 9.14 0.00 0.00 0.00 0.72 0.00 0.82 0.00 6.50 0.00 0.00 0.00 0.00 1.03100.00
mgn52 23.00 26.39 37.02 5.45 0.00 0.00 0.00 0.38 0.00 0.44 0.00 6.87 0.00 0.00 0.00 0.00 0.45100.00
mgn58 26.11 37.17 27.15 3.87 0.00 0.00 0.00 0.16 0.02 0.16 0.51 4.50 0.00 0.00 0.00 0.00 0.36100.00
mgn62 30.35 37.52 24.81 2.82 0.00 0.00 0.00 0.63 0.00 0.71 0.00 2.93 0.00 0.00 0.00 0.00 0.23100.00
mgn64 21.39 31.03 30.35 6.06 0.00 0.00 0.00 1.55 0.07 1.66 0.30 6.80 0.00 0.00 0.00 0.00 0.78100.00
mgn68 27.31 40.20 22.39 2.89 0.00 0.00 0.00 1.48 0.00 1.68 0.00 3.59 0.00 0.00 0.00 0.00 0.46100.00
366
Alexandre de Oliveira Chaves
Figure 12. Total alkali-silica TAS diagram [37,40]. Dashed line
after [41] separates alkaline and subalkaline rocks. Am-
phibolite (cross) protolith is a sodic alkali-diorite (S1) and
albitite (circle) protolith is a sodic alkaline rock ranging
from syenodiorite (S3) to syenite (T). Microcline-gneiss
(triangle) protolith is a potassic syenogranite (T and R),
however, classified as subalkaline.
formed in sodicsyenite, thealbitite protolith), Zr, and
Th(immobile\incompatibleHFSelements)contents. In
otherwords,reasonabletrendssuggestdifferentiationof
analkali-dioriticbasicmagmaby fractionalcrystalliza-
tiontoanintermediatesyeniticmagmaeitherbeforeor
during metamorphism along shear zones. Both alkali-
diorite and syenite belong to the same transalkaline
series(also named transalkali suite -Figure 12; [39]),
whichis silica-saturated and characterizedby absence
ofmodalnephelineandpresenceofnormativenepheline
(see CIPW norm, samplesamp#and somealb#-Ta-
ble6). Quartz-syenites(non-uraniferousquartz-albitite
protolith)arelithostructurallyrelatedtouraniferousal-
bitites(seecross-sectionoftheFigure1)and certainly
representthelast magmatic evolutionarystepof syen-
itesin the transalkalineseries. Although the absence
ofnormativecorundumandacmiteinsyeniteandgran-
iteallowsustoclassifythemasmetaluminous rocksin
terms of aluminasaturation, Harkerdiagrams withsil-
ica versus major and minor elements reveal trends for
Ti,Fe,Mg, CaandPbutAl,Na, K,Zr,andTh(Fig-
ures13and14)suggestthatthereisnopetrogeneticrela-
tionbetweenalbitites(metamorphosedsodicsyenites)and
microcline-gneiss(metamorphosedgranites). Nepheline-
normativeandsodictransalkalineseries(orsuite)mag-
masdonotevolvetohighquartz-normativesubalkaline
potassic graniticrocks. Furthermore, abrupt geological
contactsinFigure2indicatethatsodicsyeniticmagma
intrudedinpreviouslycrystallizedpotassicgranite. This
fieldfeatureisconfirmedbyR1versusR2diagram[42],
afterwhichthegeotectonicsettingsduringgraniticand
syeniticintrusionsweresyn-collisionalandlate-orogenic,
respectively.Inagreementwiththesesettings,U-Pbages
byLA-ICP-MSat2,009+/-78Matomicrocline-gneiss
(olderpotassicgranite)representsyn-collisionalepisode
oftheOrosirianOrogeny,andat1,904+/-44Matouran-
iferous albitites (younger sodic syenite) represent next
late-orogenicshearing.
Figure 13. Binary (Harker) diagrams with silica versus major oxides.
Cross =amphibolite (protolith =alkali-diorite), circle =
uraniferous albitites (protolith =syenitic rocks), triangle
=microcline-gneiss (protolith =syenogranite). Curves
illustrate the trend between alkali-diorite and syenite.
Figure 14. Binary (Harker) diagrams with silica versus trace el-
ements Zr and Th. Cross =amphibolite (protolith =
alkali-diorite), circle =uraniferous albitites (protolith =
syenitic rocks), triangle =microcline-gneiss (protolith =
syenogranite). Curves illustratethe trend between alkali-
diorite and syenite.
367
New geological model of the Lagoa Real uraniferous albitites from Bahia (Brazil)
Figure 15. R1 [4Si-11(Na+K)-2(Fe+Ti)] versus R2 [6Ca+2Mg+Al]
multicationic diagram [42] of the geotectonic setting dis-
crimination of granitoid rocks, after which syenites (al-
bitite protolith; circles) belong to late-orogenic setting
and potassic granites (microcline-gneiss protolith; trian-
gles) belong to syn-collisional setting. Some circles were
omitted because they plot outside the field of the dia-
gram.
8. Discussions and conclusions
Theinitialreason why uraniferousalbitites are classi-
fiedassyenitesinthispaperandnothydrothermalal-
bititesaspreviouslysuggestedby[8]and[9]wasfound
duringmicropetrographicstudies,whichrevealedoriginal
magmatictexture(inaddition,antiperthitesdemonstrated
moresodicthanpotassiccompositionofthefeldsparsbe-
foreexsolution). Mixedmagmaticandmetamorphictex-
turesandfrequentexclusivelygranoblastictexturewere
generated during shearing. Therefore, the transforma-
tionofthemagmaticmineralsduringmetamorphismup
tocompleterecrystallizationisevident(Figure 3). Be-
sidestherecrystallizedminerals,newmineralsalsore-
sultedfromthemetamorphicreactions.Furthermore,there
isnoquartzpreservedintheU-bearingsyeniteandfea-
turesresemblingsilicadissolutionwerenotfound. This
contradictssodicmetasomatismoftheSăoTimóteoGran-
itetogeneratealbitites.Albite,iron-richaugitewithmelt
inclusions,andsomemicroclinearefoundinpartsthat
preservedthemagmaticstage,supportingclassificationof
theserocksassodicsyenites.
Inafirsthigh-gradeamphibolitefaciesmetamorphicstage
not only hastingsite, but also andradite resulting from
iron-rich augite transformation appeared (Figure 16A).
Simultaneoustotherecrystallizationofiron-richaugite,
albite, microcline (+/- calcite) the accessory minerals
formed. During recrystallization, iron-rich augite be-
camemoresodic-richaegirine-augiteandalbitebecame
slightlymorecalcicoligoclase. Theassociationbetween
oligoclaseandandraditerevealsthehighpressuremeta-
morphismcommontoductileshearzones[27].Magnetite
wasreplacedbyhematite,consistentwithoxidizingcon-
ditionsduringmetamorphism(e.g. garnetcontainsonly
Fe3+).
Figure 16. Plate of representative photomicrographs. A: Formation
of andradite edge (garnet-Adr) from magmatic iron-rich
augite (Aug) in the presence of albite (Ab). B: U-rich
magmatic dark brown titanite (TtnU) that released ura-
nium to form uraninite (black - Urn). Augite (Aug) and
albite (Ab) also appear in picture. C: U-rich magmatic
titanite (TtnU - dark) that released uranium during meta-
morphism to form uraninite (in black - Urn). Beside it,
the recrystallized and fractured uranium-free titanite (Ttn
- light) but with uraninite in its fractures also appears.
D: Uraninite (in black, metamictic - Urn) inside andradite
(Adr - on the left). Aug =augite, Ab =albite. E: Zir-
con (Zrn white) and uraninite (in black, metamictic -
Urn) inside andradite (Adr). F: Channels (CH) that con-
tain uraninite (in black - Urn) inside recrystallized augite
(Aug). Uraninite precipitated in the channels from a so-
lution containing U6+that reacted with the Fe2+of augite.
Ab =albite. G: Recrystallized calcite (Cal) with uraninite
(Urn) inside augite (Aug; under crossed nichols). Ab =
albite. H: Uraninite (black - Urn) inside epidote (Ep).
Uraninite,whoseuraniumderivesessentiallyfromU-rich
magmatictitanite(Figure16B),wasalsoformedduring
thisprocess.Itisusuallylocatednearthelightcoloured
recrystallizedtitanite,insideandradite,hastingsite,and
recrystallizedaugiteandcalcite(Figure16C,DandE).
368
Alexandre de Oliveira Chaves
DuringshearingofU-richtitaniteandallanite,aqueous
fluidsreleaseduraniumintheformofU+4 andthemore
mobileoxidizedform(uranylionsUO+2
2),leadingtothe
formationofuraninite.
Thesuggestedchemicalmechanismoftheprecipitation
ofuraniniteinmetamorphosedsyeniteswithor without
calciteisdescribednext:
-STEP1: TheU4+ ionsreleasedfromU-richtitanite
andallaniteduringthesheareventstogetherwithOH
ionsreleasedfromthe partialhydrolysisofalbite,form
uraniniteinanon-Oxidation/Reductionprocess
U4++4OHUO2+2H2O[orU(OH)4](step1)
-STEP2: Inmetamorphosed syenites without calcite,
uraniniteinteractedcompletelyorpartiallywiththefree
oxygencirculatingthroughtheaqueousfluidsduringthe
shearingprocess.U4+ oxidizedtoaqueousuranylhydrox-
idecomplexes(withU6+),whicharestableundertemper-
atureandpressureconditionsoftheshearprocess[28].
2UO2+2H2O+O22UO2+
2+4OH
(step2withoutcalciteOxidation/Reduction)
Inmetamorphosedsyeniteswithcalcite,calciumcarbonate
hydrolyzedandformeduranyltricarbonatecomplex,which
isverystableinthealkalineaqueousenvironmentgen-
erated.[29]showthatrelativeabundancesoftheuranyl
tricarbonatecomplexinsolutionincreasewithincreasing
temperature,underrelativelyoxidizingandslightlyalka-
lineconditions.
2UO2+2H2O+O2+6CaCO3
2[UO2(CO3)3]4+4OH+6Ca2+
(step2withcalciteOxidation/Reduction)
Theaqueousalkalineenvironmentcertainlyfacilitatedthe
dissolutionofsilicafromsilicatesoftherock,andeventu-
allyuranylhydroxisilicatecomplexeswereformed,which
alsohelpedinthemobilizationofuranium.
Magnetitealsointeractedwithfreeoxygenandbecame
hematite.Theincreaseinthepartialpressureoffreeoxy-
genprobablyfavoredhematitebythereaction
4Fe3O4+O26Fe2O3
-STEP3:Althoughuraniumbecameextremelymobilein
theformofuranyltricarbonate,theFe2+ ofthemagmatic
augiteledtothereductionofU6+ toU4+ anduraninite
toprecipitate. Theprecipitateduraninitewasretained
insidetherecrystallizedaugiteandcalciteaswellasin-
sidethesimultaneouslyformedandradite. Inthinsec-
tions,wecanclearlynoticechannelsorsurfacescontain-
inguraninite,whichprecipitatedwhentheU6+ containing
fluidpassedthroughtheaugiteandreactedwithitsFe2+
(Figure16F).Uraninitealsoco-precipitatedrecrystallized
calcitefromauranyl-tricarbonatecontainingfluid,after
reactionwithFe+2 oftheaugite(Figure16G):
3Ca2++[UO2(CO3)3]4+2Fe2+UO2+2Fe3++
3CaCO3
(step3withcalciteOxidation/Reduction)
Inmetamorphosedsyeniteswithoutcalcite,thefollowing
reactionissuggestedforprecipitationofuraninite:
UO2+
2+2Fe2+UO2+2Fe3+ (step3withoutcalcite
Oxidation/Reduction)
SimilarOxidation/Reductionprocesseshavealreadybeen
experimentallydescribedby[30]forhydrothermalcondi-
tions.[9]previouslysuggestedthaturaniniteprecipitation
inLagoaRealwascontrolledbythereductionofanuran-
iferousfluidphase,viaprogressiveoxidationofmaficmin-
erals.
Epidoteandbiotiteappearedduringanewmetamorphic
stage.Theypartiallyreplacedthemineralsformedduring
theinitialmetamorphism.Thisparagenesisindicatesare-
equilibriumestablishedundernewtemperatureandpres-
sureconditions,lessintensethantheoneswhichformed
garnetduringtheinitialmetamorphism. Itisinteresting
tonotethaturaninitecrystalsarealsofoundinsideepi-
dote(Figure16H)andbiotitesuggestingasimilarpre-
cipitationreactionasthatdescribedinsteps2and3.Bi-
otitecontainsbothFe2+ andFe3+ whileinepidoteonly
Fe3+ occurs. Uraniniteprecipitationinsidetheseminer-
als,eventuallywithinvolvementofcalcite,wouldhaveoc-
curredunderthesenewmetamorphicconditions,between
greenschistandamphibolitefacies.
Thegenerationofmagmasinsubductionzonesisthought
tobethemostimportantmechanismtothegrowthofcon-
tinentalcrustsincetheProterozoic. Mostofthesemag-
masderivefromthemeltingofthemantlewedgeabove
thesubductedslab driven by itsdehydration. Thein-
teractionbetweenfluidsgeneratedduringthisdehydra-
tionandoverlayingmantlematerialwouldberesponsi-
bleforthetraceandrareearth elements, thorium,and
uranium enrichment in magmas [16]. During the late
Orosirianorogenicstages,ductileshearfaultzonesprob-
ablycontrolledthesiteofemplacementofalkali-diorite
andsyenitestudiedhere. TheLagoaRealsyenitescer-
tainlyhaveformedbycrystalfractionationofferromagne-
siansilicatesandcalcicplagioclasefromdioriticparent
magmas,currentlyrepresentedbycloselyassociatedlo-
calamphibolites.Therefore,thesyeniticrockshavelower
abundancesofCa,MgandFethandiorites,butgenerally 369
New geological model of the Lagoa Real uraniferous albitites from Bahia (Brazil)
higherabundancesofNa,whichissupportedbythepre-
dominantoccurrence of sodic plagioclasetogether with
augite. Thisexplanationdiffersfromthesodicmetaso-
matismproposedby[8,9]and[12]generatinganageof
attaining1,750MafortheSăoTimóteoGranite.Accord-
ingto[8,9]and[12],augitesfrommetamorphosedsyen-
ites(uraniferousalbitites)would have derived fromthe
dehydrationofamphiboles during metamorphismofthe
1,750MaSăoTimóteoGranite. Accordingtothisstudy,
however,augitesareofmagmaticoriginaround1,900Ma
ago.
Meltinclusionsfoundin magmatic augite are richerin
Na,AlandTithantheaugitehost. Theseelementsbe-
longedtothemagmawhenaugitecrystallizedandwere
furtherincorporatedbyalbite(NaandAl)anduranifer-
oustitanite(Ti)duringsyenitecrystallizationprocesses.
ThereissomeradiogenicPbintheaugitestructure,which
revealsthepresenceofUinthesyenitemagma.Primary
fluidinclusions in magmatic iron-richaugite of the al-
bititesuggestasodium-richoriginalmagma,makingsodic
metasomatismobsolete. Therefore,amagmaticmodelfor
theLagoaRealuraniferousalbititesisreasonable;how-
ever,metasomaticalterationofmicroclinegneisscannot
betotallyexcluded: ThesharpcontactsinFig.2might
becausedbyfluidinfiltration.TrendsbetweenSiO2and
majorandminorelementsarepartlycontradictoryandage
dataofthesetworocktypesoverlapwithinerrorrange.
Accessorymineralslikezircon,titanite,allanite,andap-
atiteaccompanyuraniferoussyenites.Theypreferentially
incorporateU,Thandrareearthelements,incompatible
tothestructureofthemajorsilicatesintheserocks. Due
totheresemblanceoftheionicpotentialsofUandTi,ti-
taniteisthemostprobableprimaryuranium-bearingmin-
eral(figures16BandC).Uranium wasreleasedduring
themetamorphicepisodestoformuraniniteinanalmost
closedsystem. Inthisway,thedataofthepresentwork
deviatefromthemodelsuggestedby[8].[8]proposedthat
desilicificationanduranium-richfluidsderivedfromac-
cessorymineralsofthequartz-richSăoTimóteoGranite
generatedtheuraniferousalbititesbymetasomaticpro-
cesses.
PartsofthegeneticmodeloftheUraniferousProvince
proposedby[4],whichassociatesuraniumto“polycyclic
diapiricprocesses”,isinagreementwiththepresentwork.
However,accordingtothisauthor,thediapirismoccurred
duringtheBrasilianoevent,whichdoesnotconcurwith
theOrosiriangeochronologicaldataofthemagmatismde-
scribedhere.
[14]pointedoutthatmanyimportanturaniferousprovinces
intheworldareultimatelyrelatedtoevolvedfelsicig-
neousrocksintrudedatshallowlevelsofthecrust,ei-
theranorogenicallyorduringthefinalstagesoforogene-
sis.Thepresentinvestigationssuggestthaturaniumfrom
LagoaRealalbititesisrelatedtothesyeniticmagmatism
belongingtomafic/felsic association linked to thefinal
stagesoftheOrosirianOrogenyintheParamirimBlock
around1,900Ma.Theductileshearingthataffected?the
uraniferoussyenites(albitites)formeduraniniteinthese
rocksnotonlyduringtheOrosirianmetamorphism,when
theserocksbecamemetasyenitesduetointenserecrys-
tallizationofitsminerals,butalsointhelaterBrasiliano
metamorphism.
Therearetwogeotectonicimplicationsresultingfromthe
presentstudy. Thefirstoneisthe confirmation of the
OrosirianorogeneticeventintheParamirimBlock that
culminatedinthetectonicstructuringoftheSăoFran-
cisco/Congo Craton in the Palaeoproterozoic, probably
throughcollisionbetweenWestSăoFranciscoandEast
SăoFrancisco/Congocontinentalmasses.TheN-Strend-
ingsuturesinParamirimBlock,visibleintheGeologic
MapofBahia[43],werepresumablyreactivatedfromthe
PalaeoproterozoicorogenyaftertheOrosirianevent.The
secondimplicationistheconfirmationofthe Brasiliano
eventintheregion as proposed by[21]and[12]. The
reactivationofOrosirianshearzonesandmetamorphism
inParamirimBlockduringProterozoic/Phanerozoictran-
sitionwouldhavebeenpromotedbycontinentalaggre-
gationprocesses,which led to the appearance of West
Gondwana.
Accordingtothelithogeochemicaldatathemagmaticcom-
positioncanberecognizedinallstudiedsamples. This
observation implies surprisingly isochemical processes
duringthemetamorphism,whichcreatedtheLagoaReal
albitites. Thisisquitedifferentfromthepreviousmeta-
somaticmodels. Thedata pointtowardsapetrogenetic
associationbetweenalkali-diorite(amphiboliteprotolith)
andsodicsyenite(albititeprotolith)byfractionalcrys-
tallization through transalkaline series developed in a
Palaeoproterozoiclate-orogenictectonicscenario. This
magmaticdifferentiationoccurredeitherbeforeorduring
shearing,whichinturnledtothealbititeandamphibo-
liteformation. Themicrocline-gneiss,whoseprotolithis
asyn-collisionalpotassicgranite,representsthealbitite
hostrockandisapparentlynotpetrogeneticallyassoci-
atedtothelate-orogenicsodicsyenite(albititeprotolith).
Areviewstudyofmaficandfelsicmagmasinwithin-plate
regimesworlwide[44]identifiednotonlythatlate-topos-
torogenicigneousassociationsyieldedlesspotassicand
moresodiccompositions,butalsothattheigneoussuites,
comprisingmaficandfelsicrocks,rangefromalkali-calcic
metaluminoustoalkaline,whicharepreciselythechar-
acteristicsoftheLagoaReal alkali-diorite(amphibolite
protolith)andsodicsyenite(albititeprotolith). Further-
more,[44]proposedthatsuchigneousassociationsevolve
370
Alexandre de Oliveira Chaves
progressively into more markedly alkaline within-plate
suites,suggestingthatthe 1.75Gaanorogenicalkaline
SăoTimóteoGraniterepresentstheclosingwithin-plate
stageoftheaforementionedtectonicscenario.
Acknowledgments
ThanksgotoCNPq for the author’sPost-Doctoralre-
search support, to the Development Center of Nuclear
Technology(CDTN-CNEN),to theMemorialUniversity
ofNewfoundland(Canada),wheregeochronologicalstud-
iesbyLA-ICP-MSwerecarriedout,andtotheBrazilian
NuclearIndustries(INB)forfieldworkandsamplingsup-
port.
References
[1]Costa P.H.O., Andrade A.R.F., Lopes G.A., Souza
S.L.. Projeto Lagoa Real: Mapeamento Geológico,
1:25.000.Salvador:CBPM,1985
[2]CPRM.Catálogogeraldeprodutoseserviços.Ge-
ologia.LevantamentosAerogeofísicos.Basededados
Aerogeofísicos,RiodeJaneiro,GeologiaeRecursos
Hídricos,1995
[3]GarridoI.A.A.,SilvaR.W.S.,MascarenhasJ.F.,Inter-
pretaçăointegradadedados magnéticos e gamae-
spectrométricosÁreaIbitiara-RiodasContas,Bahia
Brasil [Integrated interpretation of gammaspectro-
metricandmagneticdata-Ibitiara-RiodasContas
Area, Bahia - Brazil]. Programade Levantamentos
AerogeofísicosCBPM.2002
[4]GeiselSobrinhoE.,Apresentaçăodeumahipótese
genética para o Distrito Uranífero de Lagoa Real
[PresentationofagenetichypothesisfortheUranifer-
ousDistrictofLagoaReal].NotaTécnicaEBHO.PM
No.3,Nuclebrás,1981
[5]AlvesJ.V.,FuzikawaK.,Oestudodeinclusőesflu-
idasdajazidauraníferadeCachoeira-Caetité,BA:
resultados preliminares [The study of fluid inclu-
sionsoftheCachoeiraUraniferousdeposit-CaetitÃľ,
BA:preliminary results]. In: Anais do Congresso
BrasileirodeGeologia,33,RiodeJaneiro.Sociedade
BrasileiradeGeologia,V.3,1984,1503-1517.
[6]OliveiraA.G.,FuzikawaK.,MouraL.A.M.,RaposoC.,
ProvínciauraníferadeLagoaRealBA[LagoaReal
UraniferousProvince],PrincipaisDepósitosMinerais
doBrasilDNPM(NationalDepartmentofMineral
Production)5,1985,105-120.
[7]TurpinL.,MaruejolP.,CuneyM.,U-Pb,Rb-Srand
Sm-Nd chronologyof graniticbasement, hydroter-
malalbititesanduraniummineralization(LagoaReal,
South-Bahia, Brazil). Contributions to Mineralogy
andPetrology,98,1988,139-147
[8]Maruejol P., Métasomatose alcalineet minéralisa-
tionsuranifčres: lesalbititesdugisementdeLagoa
Real(Bahia,Brésil)etexemplescomplémentairesde
Xihuashan(SEChine),Zheltorechensk (Ukraine)et
ChhulingKhola(Népalcentral)[Alkalinemetasoma-
tismanduraniferousmineralization: albititesofthe
LagoaReal(Bahia,Brazil)andadditionalexamples
Xihuashan(SEChina)Zheltorechensk(Ukraine)and
ChhulingKhola(CentralNepal)].TheseDocteur.-
CentredeRecherchessurlaGéologiedel’Uranium,
Nancy,France,1989
[9]LobatoL.M.,FyfeW.S.,Metamorphism,Metasoma-
tism,andMineralizationatLagoaReal,Bahia,Brazil.
EconomicGeology,85,1990,968-989
[10]Pimentel M.M., Machado N., Lobato L.M.,
GeocronologiaU-Pbde rochas graníticas e gnáis-
sicasdaregiăode Lagoa Real (BA)eimplicaçőes
para a idade da mineralizaçăo de Urânio [U-Pb
geochronologyofgraniticand gneissicrocksofthe
Lagoa Real (BA) region and implications for the
age of uranium mineralization]. Anais do XXXVIII
CongressoBrasileirode Geologia, Camboriú, 1994,
389-390
[11]PascolathiE.M.,SilvaC.L.,CostaS.S., OsakoL.S.,
Amaral G., Rodriguez I.P., Novas ocorręncias de
urânionaregiăodeLagoaReal,apartirdasuper-
posiçăo dedados geofísicos, geológicos ede sen-
soriamentoremoto[New occurrences of uraniumin
theregionofLagoa Real from thesuperimposition
ofgeophysical,geologicalandremotesensingdata].
RevistaBrasileiraGeocięncias,33,2003,91-98
[12]Cruz S.C.P., A interaçăo entre o Aulacógeno
do Paramirim e o Orógeno Araçuaí-Oeste Congo
[TheinteractionbetweenParamirimaulacogenand
theAraçuaí-WestCongoOrogen].TeseDoutorado-
UFOP,ContribuiçőesŕsCięnciadaTerraSérieD,
2004
[13]Cordani U.G., Iyer S.S., Taylor K., Kawashita K.,
SatoK.,McReathI.,Pb-Pb,Rb-Sr,andK-Arsys-
tematicsoftheLagoaRealuraniumprovince(south-
centralBahia,Brazil)andtheEspinhaçoCycle(ca.
1.5-1.0Ga).Journalof South American EarthSci-
ences,5,1992,33-46
[14]PlantJ.A.,SimpsonP.R.,SmithB.,WindleyB.,Ura-
niumoredepositsproductsoftheradioactiveEarth.
In:Burns,P.C.andFinch,R.(Eds.)-Uranium:Min-
eralogy,GeochemistryandtheEnvironment.Reviews
inMineralogy,33,1999,255-307
[15]BoninB.,Fromorogenictoanorogenicmagmatism:
371
New geological model of the Lagoa Real uraniferous albitites from Bahia (Brazil)
apetrologicalmodelforthetransitioncalc-alkaline
alkalinecomplexes.RevistaBrasileiraGeocięncias,
17,1987,366-371
[16]KepplerH.,Constraintsfrompartitioningexperiments
onthecompositionofsubduction-zonefluids.Nature,
380,1996,237-240
[17]IndaH.V.A.,BarbosaJ.S.F.,Textoexplicativoparao
mapageológicodoEstadodaBahia(1:1.000.000).In:
J.S.L.Barbosa,DominguezJ.M.S.,GeologiadaBahia
(textoexplicativo).Salvador,SecretariadaIndustria,
ComércioeMineraçăo,SuperintendęnciadeGeolo-
giaeRecursosMinerais,1996
[18]Mascarenhas J.F., A geologia do centro-leste do
Estado da Bahia [The geology of central-east of
the Bahia State]. In: Anais do XXVII Congresso
BrasileirodeGeologia,Aracaju,1973,2,35-66
[19] Almeida F.F., O Cráton do Săo Francisco. Revista
BrasileiraGeocięncias,7,1977,349-364
[20]CordaniU.G.,BritoNevesB.B.,Thegeologicevolu-
tionofSouthAmericaduringtheArchaeanandEarly
Proterozoic.RevistaBrasileiraGeocięncias,12,1982,
78-88
[21]CabyR.,ArthaudM.,Petrostructuralevolutionofthe
LagoaRealsubalkalinemetaplutoniccomplex(Bahia,
Brazil).RevistaBrasileiraGeocięncias,17,1987,636
[22]RibeiroC.I.,CarvalhoFilhoC.A.,HashizumeS.,As
jazidasdeurâniodeLagoaReal[Theuraniumde-
posits of Lagoa Real]. Anais do XXXIII Congresso
BrasileirodeGeologia,1984,1463-1474
[23]Sylvester P., Laser Ablation-ICP-MS Principles
andApplications.ShortCoursesSeries,29,Miner-
alogicalAssociationofCanada,2001
[24]StaceyJ.S.,KramersJ.D.,Approximationofterrestrial
leadisotopeevolutionbyatwo-stagemodel.Earth
andPlanetaryScienceLetters,26,1975,207-221
[25]Ludwig K.R., Isoplot/Ex 3.00: A geochronological
toolkitforMicrosoftExcel.BerkeleyGeochronology
Center,SpecialPublication,2003,4
[26]GregoryM.J.,WildeA.R.,JonesP.,Uraniumdeposits
of the Mount Isa region and their relationship to
deformation,metamorphismandCudeposition.Eco-
nomicGeology,100,2005,537-546
[27]YardleyB.W.D.,IntroduçăoŕPetrologiaMetamórfica.
EDUNB(translatededition).1989
[28]FinchR.,MurakamiT.,SystematicsandParagene-
sis of uranium minerals. In: Burns P.C., Finch R.J.
(Eds),Uranium: Mineralogy,Geochemistryandthe
Environment.ReviewsinMineralogy.Mineralogical
SocietyofAmerica,38,1999,91-166
[29]KojimaS.,TakedaS.,KogitaS.,Chemicalfactorscon-
trollingthesolubilityofuraniniteandtheirsignifi-
canceinthegenesisofunconformity-relateduranium
deposits.MineraliumDeposita,29,1994,353-360
[30]RafalskiiR.P.,KudunovaK.F.,Experimentalinvesti-
gationoftheconditionsofthereductionandprecip-
itationofuraniumbyminerals.AtomicEnergy,1961,
7,815-818.
[31] Pickhardt C., Dietze HJ., Becker J.S., Laser Abla-
tionInductively Coupled PlasmaMassSpectrome-
try for direct isotope ratio measurements on solid
samples.InternationalJournalofMassSpectrometry,
242,2005,273-280
[32]Guimarăes J.T., Teixeira L.R., Silva M.G., Martins
A.A.M, Filho E.L.A., Loureiro H.S.C., Arcanjo J.B.,
Dalton de Souza J., Neves J.P., Mascarenhas J.F.,
Melo R.C., Bento R.V., Dataçőes U-Pb em rochas
magmáticasintrusivasnoComplexoParamirimeno
Rifte Espinhaço: uma contribuiçăo ao estudo da
evoluçăo geocronológica da Chapada Diamantina
[U-Pb dating on magmatic intrusive rocks of the
Paramirimcomplexand Espinhaço rift: a contribu-
tiontothestudyofthegeochronologicalevolutionof
theChapadaDiamantina].In: AnaisdoIIISimpósio
doCrátonSăoFrancisco.Salvador,Bahia,2005
[33]Alkmin F.F., Marshak S., Transamazonian orogeny
inthesouthernSăoFranciscoCratonregion(MG),
Brazil: EvidenceforPalaeoproterozoiccollision and
collapseintheQuadrilátero Ferrífero.Precambrian
Research,90,1998,29–58
[34]HeinrichC.A.,PettkeT.,HalterW.E.,Aigner-Torres
M.,AudetatA., Gunther D., Hattendorf B., Bleiner
D.,GuillongM.,HornI.,Quantitativemulti-element
analysis of minerals, fluid and melt inclusions by
Laser Ablation Inductively Coupled Plasma Mass
Spectrometry. Geochimica Cosmochimica Acta, 67,
2003,3473-3496
[35]RichardL.R..Minpetversion2.02-Mineralogicaland
petrological data processing system for Windows.,
QuebecCanada,1996
[36]PearceT.H.,Acontributiontothetheoryofvariation
diagrams.ContributionstoMineralogyandPetrolol-
ogy,19,1968,142-157
[37]LeBasM.J.,LeMaitreR.W.,StreckeisenA.Zanettin
B.,Achemicalclassificationofvolcanicrocksbased
onthetotalalkalisilicadiagram.JournalofPetrol-
ogy,27,1986,745–750
[38]WhitneyD.L.,EvansB.W.,Abbreviationsfornames
ofrock-formingminerals.AmericanMineralogist,95,
2009,185-187
[39]MiddlemostE.A.K.,Towardsacomprehensiveclassi-
ficationofigneousrocksandmagmas.EarthScience
Reviews,31,1991,73-87
[40]LeMaitreR.W.,IgneousRocks-Aclassificationand
GlossaryofTerms.RecommendationsoftheInterna-
372
Alexandre de Oliveira Chaves
tionalUnionofGeologicalSciences,Subcommission
oftheSystematicsofIgneousRocks.CambridgeUni-
versityPress,Cambridge,2002
[41]IrvineT.N.,BaragarW.R.A.,Aguidetothechemical
classificationofthecommonvolcanicrocks.Canadian
JournalEarthSciences,8,1971,523-548
[42]BatchelorR.A.,BowdenP.,Petrogeneticinterpreta-
tionofgranitoidrockseriesusingmulticationicpa-
rameters.ChemicalGeology,48,1985,43-65
[43]CPRM/CBPM.GeologiaeRecursosMineraisdoEs-
tadodaBahiaSistemadeInformaçőesGeográficas,
2003,CD-ROM
[44]BoninB.Docoevalmaficandfelsicmagmasinpost-
collisionaltowithin-plateregimesnecessarilyimply
twocontrasting,mantleandcrustal,sources? Are-
view.Lithos,78,2004,1-24
[45]DeerW.A.,HowieR.A.,ZussmanJ.,Anintroduction
totherock forming minerals.LongmanGroupLtd.,
London,1966
[46]Hawthorne F.C, Oberti R., On theclassificationof
amphiboles.CanadianMineralogist,44,2006,1-21
[47]NesbittH.W.,YoungG.M.,EarlyProterozoicclimates
andplatemotionsinferredfrommajorelementchem-
istryoflutites.Nature,299,1982,715-717
[48]GarciaL.R.A.,IntroduçăoŕMicroscopiaEletrônicade
VarreduraeŕMicroanálise.CentrodeDesenvolvi-
mentodaTecnologiaNuclearCDTN[Introduction
toScanningElectronMicroscopyandMicroanalysis].
BeloHorizonte,2001
373
... Most genetic models have proposed that albitite is the product of metasomatic alteration of the São Timóteo granite, by Na enrichment and silica depletion (Maruejol, 1988;Lobato and Fyfe, 1990). Alternatively, Chaves (2013) proposed that albitite rocks were emplaced during the Orosirian, at ca. 1.8 Ga, as Na-rich, quartz-free syenitic rocks as a result of the collision between the São Francisco and Congo landmasses. ...
... Albitite pods have gradational or abrupt contacts with the LRIS granitoid rocks and, in general, are interpreted as the product of metasomatic alteration of the granite-gneiss country rock by Na enrichment and silica depletion (Maruejol, 1988;Lobato and Fyfe, 1990). However, Chaves (2013) favored a magmatic origin for the albitite bodies, and interpreted the albitites as intrusive Na-rich, quartz-free syenitic rocks (Chaves, 2013). Such contrasting views exemplify the lack of consensus regarding the origin of the Lagoa Real albitite, despite numerous studies (Geisel Sobrinho et al., 1980;Lobato, 1985;Fuzikawa et al., 1988;Maruejol, 1988;Lobato and Fyfe, 1990;Cruz, 2004;Chaves, 2013). ...
... However, Chaves (2013) favored a magmatic origin for the albitite bodies, and interpreted the albitites as intrusive Na-rich, quartz-free syenitic rocks (Chaves, 2013). Such contrasting views exemplify the lack of consensus regarding the origin of the Lagoa Real albitite, despite numerous studies (Geisel Sobrinho et al., 1980;Lobato, 1985;Fuzikawa et al., 1988;Maruejol, 1988;Lobato and Fyfe, 1990;Cruz, 2004;Chaves, 2013). ...
... The metasomatic overprint mainly led to Na enrichment and silica depletion (Lobato and Fyfe, 1990;Maruejol, 1989). However, there has been a recent attempt to explain their genesis through a magmatic model in which albitite rocks would be derived from sodic syenitic magmatism (Chaves, 2013) . Such contrasting views exemplify the lack of consensus regarding the origin of the Lagoa Real albitite rocks, notwithstanding numerous studies (Geisel Sobrinho et al., 1980;Lobato, 1985;Fuzikawa et al., 1988;Maruejol, 1989;Lobato and Fyfe, 1990;Cruz, 2004;Chaves, 2013;Lobato et al., 2015). ...
... However, there has been a recent attempt to explain their genesis through a magmatic model in which albitite rocks would be derived from sodic syenitic magmatism (Chaves, 2013) . Such contrasting views exemplify the lack of consensus regarding the origin of the Lagoa Real albitite rocks, notwithstanding numerous studies (Geisel Sobrinho et al., 1980;Lobato, 1985;Fuzikawa et al., 1988;Maruejol, 1989;Lobato and Fyfe, 1990;Cruz, 2004;Chaves, 2013;Lobato et al., 2015). ...
... Geochemical modelling by Chaves (2013), involving the São Timóteo granite and albitite rocks, considers Zr as an immobile element to build Pearce diagrams, which show two distinct linear trends: one is albitite vs. amphibolite, the other is albitite vs. the São Timóteo granitic-gneissic rocks. The latter is taken by Chaves (2013) as evidence against alkali-metal mobilisation, while the former is considered to depict albitite and amphibolite as comagmatic in origin. ...
Article
The Lagoa Real uranium (U) province, referred to as Lagoa Real, is located in the state of Bahia, north-eastern Brazil. Lagoa Real has ∼112,000 metric tonnes and average grade of 2700 ppm of U3O8, being one of the largest U deposits in the world and the largest in Brazil. Despite its economic and strategic importance, there are gaps in the geological knowledge of the Lagoa Real U deposits. One of them is the lack of extensive whole-rock chemical data sets. Here, we present whole-rock chemical analyses for major and trace elements, including the rare-earth elements (REE), from barren country rocks to uraniferous ore shoot, systematically sampled from an exploratory drill hole. The chemical data indicate that albitite rocks, with and without uraniferous mineralisation, cannot result from sodic syenitic magmatism, as proposed by recent studies. Petrographical and geochemical evidence supports the previously suggested concept that the Lagoa Real albitite rocks resulted from sodic metasomatism of the granitic country rock, known as the São Timóteo granite. Their ore-mineral assemblages and geochemical characteristics are similar to albitite-hosted U deposits worldwide.
... Os termos magmáticos da suíte alcalina sódica, denominada suíte Lagoa Real, aparecem indiscriminados nesta Figura 2 e são compostos por lamprófiros melanocráticos, monzonitos, sienitos e quartzo-sienitos meso/leucocráticos, todos eles deformados e metamorfizados ao longo de zonas de cisalhamento transcorrentes, formadas pela reativação extensional dos transempurrões sinistrais colisionais prévios de alto ângulo. Justamente nas porções transtensionais destas transcorrências, os respectivos magmas cristalizaram (Chaves, 2013). Eles ocorrem juntos, como corpos lenticulares e diques subverticalizados no interior de um microclina gnaisse datado em 2,0 Ga (U-Pb em zircão; Chaves, 2013). ...
... Justamente nas porções transtensionais destas transcorrências, os respectivos magmas cristalizaram (Chaves, 2013). Eles ocorrem juntos, como corpos lenticulares e diques subverticalizados no interior de um microclina gnaisse datado em 2,0 Ga (U-Pb em zircão; Chaves, 2013). A idade U-Pb em zircões dos (meta)sienitos uraníferos é de 1,9 Ga (Chaves, 2013), idade correspondente à fase pós-colisional orosiriana local do cinturão Urandi-Guanambi. ...
... Eles ocorrem juntos, como corpos lenticulares e diques subverticalizados no interior de um microclina gnaisse datado em 2,0 Ga (U-Pb em zircão; Chaves, 2013). A idade U-Pb em zircões dos (meta)sienitos uraníferos é de 1,9 Ga (Chaves, 2013), idade correspondente à fase pós-colisional orosiriana local do cinturão Urandi-Guanambi. Granitos anorogênicos, denominados genericamente de Granito São Timóteo (1,72 Ga; Turpin et al., 1988), compõem a geologia do chamado Complexo Lagoa Real, apresentado na Figura 2, e mostram-se parcialmente foliados em função da imposição metamórfico-deformacional brasiliana, que também afetou os demais litotipos deste complexo. ...
Article
Full-text available
A começar pela idade, há inúmeras semelhanças entre as suítes magmáticas alcalinas Lagoa Real sódica (1,90 Ga, Bahia) e Gouveana potássica (1,95 Ga, Minas Gerais). Ambas apresentam desde lamprófiros e monzonitos até sienitos e quartzo-sienitos metaluminosos, pertencentes à série magmática alcalina saturada em sílica. Sugere-se que a fusão parcial do manto litosférico, que havia sido metassomatizado por fluidos derivados de uma placa subductada antes da colisão, teria inicialmente gerado um magma lamprofírico. A cristalização fracionada deste magma teria levado ao surgimento de magmas monzoníticos que, por sua vez, evoluíram para os sieníticos e quartzo-sieníticos. Ambas suítes alcalinas fazem parte de um domínio estrutural alinhado na direção N-S, com mais de 1.000 km de comprimento, dentro do qual ocorrem outras associações alcalinas, como a sienítica de 2,0 Ga na borda sul do Cráton São Francisco (Minas Gerais), o batólito Guanambi (2,05 Ga, Bahia) e seus termos lamprofíricos, monzoníticos e sieníticos, de gênese associada à dos lamprófiros e sienitos da Suíte Paciência (norte de Minas Gerais) e, ainda, o complexo sienítico-lamprofírico-carbonatítico Angico dos Dias de 2,0 Ga (norte da Bahia). Aparentemente, todas estas associações representam os fragmentos de uma província alcalina orosiriana pós-colisional Minas-Bahia, de idade entre 1,90 e 2,05 Ga.
... Only a few of them such as Kirovograd, Ukraine [1,3], Valhalla, Australia [6], Michelin, Canada [7,8], Elkon [9], Lianshanguan, China [10,11], show copper and molybdenum concentration associated with uranium despite variation in the geochemistry of the host rocks. Uranium deposits in similar geological environments are reported in Lagoa Real [12,13], Aricheng, Guyana [14,15], Kitongo [16], Coles Hill, USA [1], Espinharas, Brazil [17], and Itataia [18] (Table 1). ...
... Minerals 2023,13, 555 ...
Article
Full-text available
Geological and radiometric studies of outcrops aided by extensive subsurface exploration through drill holes in an otherwise soil-covered terrain revealed the existence of low grades, medium tonnage, and metasomatite types of polymetallic uranium deposits at Rohil in India. Microscopic studies, electronprobe micro analyses, and geochemical analyses of samples from lodes indicate the polymetallic nature of mineralisation involving copper and molybdenum, in addition to uranium. Wide variations in the composition of fluid (S-, F-, P-, and O-rich) led to the formation of sulphides, fluorite, U-phosphosilicate, quartz, and magnetite, respectively, and are associated with uraninite. Litho-geochemical analyses from the Rohil deposit indicate multifarious metasomatic alterations associated with polymetallic mineralisation occurring in veins. The major mineralogical and metasomatic controls on rock compositions and the extent of material transfer processes that influenced the host rocks and mineralisati on are quantified by molar element ratio studies and alteration plots. General element ratio (GER) diagrams on chemical analyses of rock samples reveal albitisation and chloritisation as major and microclinisation, sericitisation, carbonatisation, and silicification as minor wall rock alterations associated with ore mineralisation. The alteration box plot between the chlorite–carbonate–pyrite index (CCPI) and the Ishikawa alteration index (AI) indicates the influence of hydrothermal activity and dominance of both albitisation and chloritisation. The ore zone is controlled by meso- and microstructures and the geometry of the soda- and potash-metasomatised zone around hydrothermal veins. This zone contains several anastomosing mineralised veins defined by a prominent joint that is set in quartzite that strikes subparallel to the axial surface of the F2 isoclinal folds and the pervasive schistosity S1 in the quartz–feldspar–biotite schist. Aventurisation of albite and microcline, established through electron probe micro analyses, can be considered as a pathfinder for uranium mineralisation. The close association of uranium and metallic sulphide mineralisation with microstructural, mineralogical (albitisation, chloritisation, and microclinisation), and geochemical variations can be applied as suitable exploration guides in a similar geological set-up worldwide.
... For different views, see for instance Chaves (2013), who attempt to explain the genesis of Lagoa Real albitites through a magmatic model in which these rocks would be derived from sodic syenitic magmatism. However, it is a consensus that the U-rich occurrences in Lagoa Real form a discontinuous albitite-type deposit (Bruneton and Cuney, 2016;Cuney, 2009;Wilde, 2013), hosted in granitic-gneiss bodies of the Lagoa Real Igneous-Metamorphic Complex (Ribeiro et al., 1984;Turpin et al., 1988;Lobato et al., 2015;Marques et al., 2021). ...
Article
Rare-earth-element (REE) bearing minerals have been recognized for the first time within rare-element granitic pegmatite pockets from Lagoa Real Uranium Province (LRUP), Bahia state, NE Brazil. The Province is one of the chief U deposits in the world and the largest in South America. Notwithstanding its economic and strategic importance, there are gaps in the geological knowledge about other mineral resources which could occur in the area. One of them, is the lack of petrographic and chemical data sets on its REE content, especially in pegmatite pockets which occur in the contact between Juazeirinho (1755 ± 6Ma) and São Timóteo (1741 ± 4Ma) granites. In this paper, it is reported a petrographic description and geochemical characterization of allanite, bastnäsite, monazite, xenotime, cheralite, and parisite recognized in three spongy mineral assemblages within unzoned granitic pegmatite pockets from Lagoa Real Uranium Province. The REE-bearing minerals present moderate-to-high REE content with significant amounts of Ce, La, Y, and critical REE such as Nd, Er, and Yb, totalling to up to 49wt%. Petrographical and geochemical evidence arguably indicate that the REE-enrichment in granitic pegmatite pockets of Lagoa Real Uranium Province is a result of late-magmatic and hydrothermal events involving F⁻, OH⁻, CO3²⁻ and PO4³⁻ REE-bearing fluids. The report and characterization of these recently recognised minerals indicate that the Lagoa Real Uranium Province, might hold important REE mineralization as U by-product.
Chapter
Uraniferous Province of Lagoa Real is the most important monomineralic province in Brazil, located in the Center‐South Region of the State of Bahia and covering the municipalities of Caculé, Caetité, Lagoa Real, and Paramirim. Uranium is normally found in very low concentrations in rocks, soils, waters, and the atmosphere, but can occur in concentrations that pose a risk to human health. The dispersion of radionuclides in the environment is complex and occurs due to natural (leaching, erosion, and soil–plant–animal transfer) and anthropogenic factors, such as minings. The chapter discusses the importance of understanding biogeochemical processes, migration trajectories, and exposure routes of uranium and other radionuclides to plants, animals, and human populations, contextualizing regional radiometric anomalies and monitoring locus. A critical review of research carried out in the uranium province is carried out, proposing a conceptual map for carrying out integrated studies.
Book
Full-text available
This book (535 p.), comprising 9 chapters and subject index, presents a comprehensive and systematic account of diverse types of Uranium (U-) deposits in India. It deals with the discovery and establishment of U-resources in a deposit by field- and laboratory-based geological, geophysical, petro-mineralogical and geo-chemical exploration, besides drilling, mining and mineral processing of U-ore, its co- and by-products, and creation of wealth from waste. The U-deposits discussed here are the granitoid-hosted and -sourced hydrothermal, unconformity-proximal, albitisation-related, palaeo-placer, sandstone and rare giant-size sedimentary carbonate-hosted types..
Article
The Lagoa Real Complex, in the Lagoa Real Uranium Province, is a manifestation of extensive intraplate A-type magmatism that occurred in the São Francisco Craton during the Paleoproterozoic. U–Pb dating of zircon by LA-MC-ICP-MS shows that granites were emplaced during a Statherian, rift-related, 1.76–1.72 Ga magmatic episode, coeval with emplacement of the A-type Borrachudos suite and felsic metavolcanic rocks from the southeastern, central and northern Espinhaço Igneous Province of the São Francisco Craton. The Lagoa Real Complex involves at least three co-genetic pulses, starting with the initial emplacement of the alkali-feldspar-bearing Lagoa do Barro granite, which crystallized at 1762 ± 9 Ma. This was followed by emplacement of the Juazeirinho granite at 1755 ± 6 Ma, and finally the intrusion of the São Timóteo granite, which represents the main magmatic peak of the Lagoa Real Uranium Province, at 1741 ± 4 Ma. Although the São Timóteo granite has some characteristics that suggest it may be a rapakivi granite, there is no classical cogenetic association with basic rocks. This study confirms that the charnockites of the Lagoa Real Complex have an age of 2047 ± 5 Ma. They are therefore not part of the evolution of the 1.76–1.74 Ga magmatic episode. Also, rocks within the Lagoa Real Uranium Province that were previously mapped as leucodiorites are, in fact, albite-gneiss with ages of 1743–1740 Ma, which originated through the gneissification processes that affected the São Timóteo granite and can also be classified as albitites. The highly negative values of ɛNd(0) from −27 to −33 and high initial Sr ratio are compatible with the Lu–Hf isotopic data of previous studies. These results suggest the Lagoa Real Complex has a crustal derivation with minimum mantle involvement. The formation of the Lagoa Real Complex granites is inferred to be a result of fractional crystallization. All studied granites have a similar geochemical signature in terms of trace elements including REEs, which indicates that the granites come from the same magmatic source and are related to rifting and the initial stages of the Espinhaço Supergroup evolution. The source of the Lagoa Real Complex would be reworked Archean crustal material, probably in the mid to deep crust. Finally, the studied granites, although predominantly metaluminous, have U contents (maximum 12 ppm) below the world average for A-type granites (20 ppm). The fractionation values of Th in relation to U, and the absence of metamictization of the minerals (mostly allanite) that potentially host uranium confirms this observation. Therefore, the granites of the Lagoa Real Complex, despite being the protolith of bodies that host U mineralization, should not be considered as the principal source of U in the U mineralization found in the Lagoa Real albitites. However, the provenance of an important part of the uranium could be associated with Statherian meta-rhyolites and meta-rhyodacites, contemporaneous with the São Timóteo granite, and occurring to the west of the Lagoa Real Complex.
Article
Full-text available
Major issues involved in the classification of the amphiboles are examined: (1) the role of (OH), Li and Fe3+, (2) the formal definition of a root name, (3) irreducible charge-arrangements and distinct species, (4) the use of prefixes, (5) the principal chemical variables used in a classification procedure, and (6) the use of the dominant-constituent principle. The current IMA-approved classification scheme is based on the A, B and T groups of cations in the amphibole formula: AB2C5T8O22 W2. We argue here that classification should be based on the A, B and C groups of cations as (i) it is in these groups of cations that the maximum variation in chemical composition occurs, and (ii) as a result of (i), the scheme is more in accord with the IMA-sanctioned dominant-constituent principle, which governs the recognition (and approval) of distinct mineral species. Two new classifications are presented here; one is based on the A, B and C groups of cations, and another on the dominant-constituent principle. These two schemes were produced to illustrate (i) the problems inherent in the classification of a group of minerals as complicated as the amphiboles, and (ii) the sometimes disparate needs of crystallographer, mineralogist, petrologist and geochemist. Scheme 1 conserves current formulae and names as much as possible, whereas scheme 2 minimizes the number of formulae and names as much as possible. The differences between the current classification and the two schemes presented here are discussed, and we highlight the problems associated with each scheme.
Article
Full-text available
Major issues involved in the classifi cation of the amphiboles are examined: (1) the role of (OH), Li and Fe3+, (2) the formal defi nition of a root name, (3) irreducible charge-arrangements and distinct species, (4) the use of prefi xes, (5) the principal chemical variables used in a classifi cation procedure, and (6) the use of the dominant-constituent principle. The current IMA- approved classifi cation scheme is based on the A, B and T groups of cations in the amphibole formula: AB2C5T8O22W2. We argue here that classifi cation should be based on the A, B and C groups of cations as (i) it is in these groups of cations that the maximum variation in chemical composition occurs, and (ii) as a result of (i), the scheme is more in accord with the IMA-sanctioned domi- nant-constituent principle, which governs the recognition (and approval) of distinct mineral species. Two new classifi cations are presented here; one is based on the A, B and C groups of cations, and another on the dominant-constituent principle. These two schemes were produced to illustrate (i) the problems inherent in the classifi cation of a group of minerals as complicated as the amphiboles, and (ii) the sometimes disparate needs of crystallographer, mineralogist, petrologist and geochemist. Scheme 1 conserves current formulae and names as much as possible, whereas scheme 2 minimizes the number of formulae and names as much as possible. The differences between the current classifi cation and the two schemes presented here are discussed, and we highlight the problems associated with each scheme.
Article
Approximately five percent of all known minerals contain U as an essential structural constituent. Uranium minerals display a remarkable structural and chemical diversity. The chemical diversity, especially at the Earth's surface, results from different chemical conditions under which U minerals are formed. U minerals are therefore excellent indicators of geochemical environments, which are closely related to geochemical element cycles. The oxidation and dissolution of U minerals contributes U to geochemical fluids, both hydrothermal and meteoric. Under reducing conditions, U transport is likely to be measured in fractions of a centimeter, although F and CI complexes can stabilize U(IV) in solution (Keppler and Wyllie 1990). Where conditions are sufficiently oxidizing to stabilize the uranyl ion, UO/+, and its complexes, U can migrate many kilometers from its source in altered rocks, until changes in solution chemistry lead to precipitation of U minerals. Where oxidized U contacts more reducing conditions, U can be reduced to form uraninite, coffinite, or brannerite. The precipitation of U(VI) minerals can occur in a wide variety of environments, resulting in an impressive variety of uranyl minerals. Because uraninite dissolution can be rapid in oxidizing, aqueous environments, the oxidative dissolution of uraninite caused by weathering commonly leads to the development of a complex array of uranyl minerals in close association with uraninite. This chapter focuses on U-mineral paragenesis and chemistries (see Burns 1999 in this volume for a review of U-mineral structures). Some detailed descriptions are provided for U minerals reported since the review by Smith (1984). Minerals containing reduced U are discussed first, followed by uranyl minerals, in which U occurs as U6+. Minerals are further divided chemically according to the major anionic component (e.g. silicate, phosphate, etc.), with some chemical groups listed together because of structural similarities. Tables list minerals in alphabetical order within each chemical group. Mineral names, formulae, and references are provided, together with comments pertaining to recent work reported for these minerals.