DataPDF Available

Abstract

Cole TCH, Hilger HH, Goffinet B (2023) BRYOPHYTE Phylogeny Poster (BPP) © COLE, HILGER, GOFFINET 2023 (CC-BY) • hypothetical tree based on recent molecular phylogenetic data, following the topology in Bechteler J et al. (2023) Am J Bot, DOI: 10.1002/ajb2.16249 • branch lengths deliberate, not expressing actual time scale • some minor orders/families omitted • characters do not necessarily apply to all members of the clades >>>>>>>>> outdated 2021/2022 version (with features for the orders) also still available here
Pleuroziales
Metzgeriales
Fossombroniales
Pelliales
Marchantiales
Sphaerocarpales
Blasiales
Calobryales
Pallavicinaceae Hymenophytaceae Moerckiaceae Phyllothalliaceae Sandeothallaceae
Blasiaceae
Sphaerocarpaceae Monocarpaceae Riellaceae
Neohodgsoniaceae
Pelliaceae Noterocladaceae
Fossombroniaceae Petalophyllaceae Allisoniaceae Calyculariaceae Makinoaceae
Jungermanniales
Neohodgsoniales
Pallaviciniales
Treubiaceae Haplomitriaceae
Aytoniaceae Cleveaceae Conocephalaceae Corsiniaceae
Cyathodiaceae Dumortieraceae Exormothecaceae Lunulariaceae
Marchantiaceae Monosoleniaceae Oxymitraceae Ricciaceae Targioniaceae
Pleuroziaceae
Aneuraceae Metzgeriaceae
COLE TCH, HILGER HH, GOFFINET B (2023) BRYOPHYTE Phylogeny Poster (BPP)
• hypothetical tree based on molecular phylogenetic data
• branch lengths deliberate, not expressing actual time scale
• some minor orders/families omitted
• characters do not necessarily apply to all members of the clades
• abbreviations: G gametophyte, S sporophyte, AR archegonia, AN antheridia, CAP capsule, PS peristome
References
Bechteler J et al. (2023) American Journal of Botany DOI: 10.1002/ajb2.16249
Dong SS et al. (2021) MPE 161, https://doi.org/10.1016/j.ympev.2021.107171
Frangedakis E et al. (2021) New Phytologist 229: 735–754
Frey W et al. (2009) Syllabus of Plant Families, 13th edn., Borntraeger
Gofnet B, Shaw J (2008) Bryophyte Biology, 2nd edn. Cambridge Univ. Press
Ligrone R et al. (2012) Annals of Botany 109: 851–871
Puttick MN et al. (2018) Current Biology 28: 733–745
Zhang J et al. (2020) Nature Plants 6: 107–118
Bernard Gofnet is supported by NSF grant # DEB-1753811
Special thanks to Harald Kürschner for assistance in the early phase of compiling the data for this poster
Timmiales
Bartramiaceae
Bryales
Bartramiales
Sphagnales
Takakiales
Tetraphidaceae
Polytrichaceae
Andreaeaceae
Sphagnaceae Flatbergiaceae Ambuchananiaceae
Hookeriales
Hypnales
Hypnodendrales
Ptychomniales
Orthotrichales
Hedwigiales
Takakiaceae
Andreaeales
Andreaeobryales Andreaeobryaceae
Tetraphidales
Polytrichales
Diphysciales Diphysciaceae
Timmiaceae
Hedwigiaceae Helicophyllaceae Rhacocarpaceae
Orthotrichaceae
Bryaceae Mniaceae Plagiomniaceae
Braithwaiteaceae Hypnodendraceae Pterobryellaceae Racopilaceae
Daltoniaceae Hookeriaceae Leucomiaceae
Pilotrichaceae Saulomataceae Schimperobryaceae
Amblystegiaceae Anomodontaceae Brachytheciaceae Calliergonaceae
Cryphaeaceae Hypnaceae Hylocomiaceae Lembophyllaceae
Leskeaceae Meteoriaceae Miyabeaceae Neckeraceae
Plagiotheciaceae Pterobryaceae Pylaisiaceae Pylaisiadelphaceae
Sematophyllaceae Thuidiaceae Trachylomataceae
Aulacomniales
Orthodontiales Orthodontiaceae
Aulacomniaceae
Buxbaumiales
Gigaspermales
Buxbaumiaceae
Gigaspermaceae
Pottiaceae (incl. Ephemeraceae)
Dicranales
Pottiales
Oedipodiales Oedipodiaceae
Meesiaceae Splachnaceae
Splachnales
Grimmiaceae Seligeriaceae Ptychomitriaceae
Rhizogoniales Cyrtopodaceae Mitteniaceae Rhizogoniaceae Spiridentaceae
Hypopterygiales Hypopterygiaceae
Garovagliaceae Ptychomniaceae Orthorrhynchiaceae Rhabdodontiaceae
Acrobolbaceae Anastrophyllaceae Balantiopsaceae Calypogeiaceae
Cephaloziaceae Cephaloziellaceae Geocalycaceae Gymnomitriaceae
Jungermanniaceae Lophocoleaceae Plagiochilaceae Scapaniaceae Trichocoleaceae
Lepidolaenaceae Porellaceae
Ptilidiaceae Herzogianthaceae Neotrichocoleaceae
Ptilidiales
Radulales
Frullaniales
Lejeuneales
Porellales
Perssoniellales/Schistochilales
Myliales
Lophoziales
Lepidoziales
Radulaceae
Frullaniaceae
Lejeuneaceae
Perssoniellaceae Schistochilaceae
Myliaceae
Lophoziaceae
Lepidoziaceae
Jubulales Jubulaceae
Disceliales
Encalyptales
Distichiales
Catoscopiales
Scouleriales
Flexitrichales
Archidiales
Grimmiales
Pleurophascales
Amphidiales
Eustichiales
Rhabdoweisiales
Bruchiales
Erpodiales
Sorapillales
Ditrichales
Leiosporocerotales
Dendrocerotales
Phymatocerotales
Notothyladales
Leiosporocerotaceae (Leiosporoceros)
Anthocerotales Anthocerotaceae (Anthoceros s.l., incl. Sphaerosporoceros and Folioceros)
Dendrocerotaceae (Dendroceros, Megaceros, Nothoceros, Phaeomegaceros)
Phymatocerotaceae (Phymatoceros)
Notothyladaceae (Notothylas, Mesoceros, Phaeoceros, Paraphymatoceros)
Disceliaceae
Encalyptaceae
Bryophyte Phylogeny Poster
Hornworts, Liverworts, Mosses
Catoscopiaceae
Distichiaceae Timmiellaceae
Flexitrichaceae
Scouleriaceae Drummondiaceae Hymenolomataceae
Archidiaceae Leucobryaceae Micromitriaceae
Pleurophascaceae
Eustichiaceae
Rhabdoweisiaceae Rhachitheciaceae Schistostegaceae
Sorapillaceae
Erpodiaceae
Bruchiaceae
Ditrichaceae
Dicranaceae Calymperaceae Fissidentaceae Dicranellaceae Aongstroemiaceae
Amphidiaceae
Funariales Funariaceae
Marchantiophyta
S
e
t
a
p
h
y
t
a
anthocerotophyta
B
r
y
o
p
h
y
t
a
Liverworts
Hornworts
Mosses
thallose or foliose
rhizoids
oil bodies
perforated water-conducting cells
mycothallus with endophytic Glomeromycota
gametangia protective structures
CAP without columella
elaters (unicellular)
stomata lacking
lunularic acid
~5000 spp.
thallus orbicular or strap-like, often rosettes
Nostoc in schizogenous slime cavities (mostly ventral via mucilage clefts)
chloroplast usu. 1 per cell, with pyrenoid
oil droplets; water-conducting cells lacking
protonema thallose
plant foliose
leaf cells parenchymatous
rhizoids multicellular
mycorrhiza lacking
CAP with PS and columella
no elaters
stomata on S
~13,000 spp.
AN 1–many, of endogenous origin; AR single, embedded on dorsal thallus surface
seta lacking; S chlorophyllous, mostly horn-like, growing from basal foot by indeterminate, intercalary meristematic activity
columella well or poorly dened; stomata on S; pseudoelaters (mostly multicellular); spore production continuous
lignans, no avonoids
~200 spp.
Theodor C. H. Cole, Dipl. Biol.
Prof. Dr. Hartmut H. Hilger
Institute of Biology, Botany Dept.
Freie Universität Berlin
Altensteinstr. 6
D-14195 Berlin, Germany
Bernard Gofnet, Ph.D.
Dept. of Ecology and
Evolutionary Biology
University of Connecticut
75 North Eagleville Road
Storrs CT, 06269-3043, USA
cycadS
GinkGo
e
phedra
W
elWitSchia
GnetuM
c
oniferS
fernS
(incl.
horSetailS
)
Seed
plantS
lycophyteS
ana Grade
aSteridS
MaGnoliidS
MonocotS
GyMnoSperMS
anGioSperMS
faBidS
MalvidS
laMiidS
caMpanulidS
hornWortS
MoSSeS
liverWortS
roSidS
t
racheophyteS
BryophyteS
SetaphyteS
© COLE, HILGER, GOFFINET 2023 (CC-BY)
Pseudoditrichales Pseudoditrichaceae
Bryoxiphiales Bryoxiphiaceae
Plant
Phylogeny
Posters
on
ResearchGate

Files (2)

Content uploaded by Theodor C. H. Cole
Author content
... En este estudio se reporta por primera vez la actividad antioxidante para los musgos Breutelia subdisticha, Leptodontium viticulosoides y Pylaisia falcata, especies terrestres comunes en las zonas andinas de Colombia y con amplia distribución al menos en el Neotrópico. Con este trabajo, también se logró la comparación directa entre diferentes grupos filogenéticos (Bartramiales, Pottiales e Hypnales) [13,14,87,88,89], diferentes métodos de extracción (CH 2 Cl 2 y EtOH) y diferentes métodos de medición de la actividad antioxidante (DPPH * , ABTS * + ). Esto permite conclusiones sobre posibles relaciones de la actividad antioxidante con la filogenia y los factores asociados (morfología, ecología) y, a partir de los métodos de extracción y medición de actividad antioxidante, sobre los posibles metabolitos secundarios que pueden ser involucrados en la actividad antioxidante. ...
... Loeske (Scorpidiaceae, Hypnales) [52], Leucobryum aduncum (Leucobryaceae, Dicranales) y Campylopus schmidii (Leucobryaceae, Dicranales) [91]. Como mencionamos anteriormente, el patrón observado parece ser independiente de la relación filogenética entre los géneros y las especies [14,88,89]. Sin embargo, se reconoce que miembros de las familias Polytrichaceae y Pottiaceae presentan niveles de actividad antioxidante mediana a alta, mientras que en miembros de la familia Leucobryaceae es más ...
... [74,75]; para Breutelia subdisticha [este trabajo] y Thuidium tamariscellum [92] no se encontraron diferencias sustanciales (Tabla 3). Notablemente, estas diferencias no se relacionan con la filogenia de estas especies [87,88,89]. ...
Article
Full-text available
Los musgos son utilizados por muchas culturas para tratar diferentes enfermedades, probablemente por sus compuestos bioactivos, algunos de los cuales pueden presentar actividad antioxidante. Esta investigación evaluó la actividad antioxidante (AA) de Breutelia subdisticha (Hampe) A. Jaeger, Leptodontium viticulosoides (P. Beauv.) Wijk & Margad. y Pylaisia falcata Schimp., a partir de extractos de diclorometano y etanólicos, mediante los métodos 2,2-difenil-1-picrilhidracilo (DPPH*) y ácido 2,2′-azino-bis-3-etilbenzotiazolin-6-sulfónico (ABTS*+). A los extractos obtenidos mediante la técnica Soxhlet se les determinó la concentración inhibitoria (IC50) y la actividad antioxidante relativa (%AAR), con posteriores análisis estadísticos de ANOVA y post-hoc de Tukey. Los extractos etanólicos presentaron mayor capacidad antioxidante que los de diclorometano. Por el método DPPH* los extractos etanólicos mostraron una %AAR respecto al ácido ascórbico de 3.06 para L. viticulosoides, 177.00 para B. subdisticha y 141.66 para P. falcata; mientras que con el método ABTS*+ la %AAR con respecto al ácido ascórbico fue de 1.75 para L. viticulosoides, 139.17 para B. subdisticha y 120.22 para P. falcata. Como conclusión, L. viticulosoides exhibió la mejor actividad antioxidante, por lo cual se sugiere continuar con su investigación y lograr una aplicación farmacológica de origen natural.
... Bryophyte is a non-vascular plant, small in size, undergoing a life cycle that alternates between haploid and diploid generations with a more dominant gametophyte phase (Gradstein, S. R., Churchcill and Salazar, 2009). Taxonomically, it are divided into three groups namely Marchantiophyta (liverworts), Briophyta (true mosses), and Anthocerotophyta (hornworts) (Cole and Hilger, 2016). ...
... It spreads throughout the world, from the poles and alpine to the tropics with a number of species ranges from 18000 (Cole and Hilger, 2016). The greatest diversity of bryophytes exists in tropical and subtropical latitudes, such as the Malesia region which is a biogeographic region stretching across the Equator along with the boundaries of the Indomalaya and Australasian ecozones included Malaysia, Indonesia, Timor Leste, Papua New Guinea, the Philippines, as well as Brunei. ...
... Liverwort has a number of species ranges from 5000 species included in 141 genera and 59 tribes (Singh, 2001;(Cole and Hilger, 2016). It is divided into leafy and breathless liverwort. ...
Article
Full-text available
Bryophyte is a division of plants that lives on land, generally it is green and reproduces through spores, has ecological and economic functions, and plays an important role in forest ecosystems. It spreads out almost in all parts of the earth with different characters in each group. It is divided into 3 groups, namely liverwort, true moss, and hornwort, which are phylogeny and true liverwort is in the same lineage. The number of bryophytes species is around 18000 with the largest distribution area of bryophyte diversity in tropical and subtropical latitudes, such as the Malesia region which includes Malaysia, Indonesia, Timor Leste, Papua New Guinea, the Philippines, and Brunei. Various studies were carried out related to the diversity of bryophyte, especially in the Malesia region, and found various types including new species, new records, and new characters.
Article
Full-text available
Encalypta sylvatica F.J.Shen & J.C.Zhao is a new species found in northern China. This new species is distinguished from other species of the genus Encalypta Hedw. by 1) leaves oblong-ovate to oblong-ligulate, obtuse at the apex, with cells of the upper and median leaf having stellate papillae on the cell walls; 2) calyptra having a smooth surface with basal margins that are somewhat irregular; 3) peristome comprised of a single layer, and an absent preperistome. The distinctiveness of E. sylvatica was assessed by molecular phylogenetic analysis of the rps4 gene sequences. Encalypta sylvatica constitutes a new species under the Gen-Morph species concept and phylogenetic species concept based on its distinctive morphology and phylogenetic isolation.
Article
DNA-based analyses as well as the fossil record indicate that liverworts date back to the early Paleozoic, but diverse specimens of lifelike three-dimensional fossils only occur as amber inclusions from the mid-Cretaceous onwards. Some Albian–Cenomanian ambers preserve elements of a diverse biota that existed during the rise of angiosperms, a time of fundamental change in terrestrial ecosystems that likely affected epiphytic taxa. Recent analyses have provided important insight into the phylogenetic diversification and morphological evolution of liverworts. They suggest that the mid- to Late Cretaceous was a transitional time with a significant species turnover. Here, we review all currently recognized leafy liverwort species from Cretaceous ambers based on the examination of previously described fossil specimens as well as newly discovered amber inclusions. Our survey includes a determination key. The study of 26 new fossils from Kachin amber, including fertile material, enabled us to emend descriptions for Frullania cretacea, F. baerlocheri, and Protofrullania cornigera. Mid-Cretaceous Frullaniaceae often possess some characters and character combinations that are absent in extant representatives, substantiating the assumption of a lineage turnover in the Cretaceous. Among the new fossils is Radula heinrichsii sp. nov., which expands the number of Cretaceous, amber-preserved liverwort species to eight.
Article
Full-text available
During the past few years several high-quality genomes has been published from Charophyte algae, bryophytes, lycophytes and ferns. These genomes have not only elucidated the origin and evolution of early land plants, but have also provided important insights into the biology of the seed-free lineages. However, critical gaps across the phylogeny remain and many new questions have been raised through comparing seed-free and seed plant genomes. Here, we review the reference genomes available and identify those that are missing in the seed-free lineages. We compare patterns of various levels of genome and epigenomic organization found in seed-free plants to those of seed plants. Some genomic features appear to be fundamentally different. For instance, hornworts, Selaginella and most liverworts are devoid of whole-genome duplication, in stark contrast to other land plants. In addition, the distribution of genes and repeats appear to be less structured in seed-free genomes than in other plants, and the levels of gene body methylation appear to be much lower. Finally, we highlight the currently available (or needed) model systems, which are crucial to further our understanding about how changes in genes translate into evolutionary novelties.
Article
The RNA-binding pentatricopeptide repeat (PPR) family comprises hundreds to thousands of genes in most plants, but only a few dozen in algae, evidence of massive gene expansions during land plant evolution. The nature and timing of these expansions has not been well-defined due to the sparse sequence data available from early-diverging land plant lineages. We exploit the comprehensive OneKP dataset of over 1,000 transcriptomes from diverse plants and algae to establish a clear picture of the evolution of this massive gene family, focusing on the proteins typically associated with RNA editing, which show the most spectacular variation in numbers and domain composition across the plant kingdom. We characterise over 2,250,000 PPR motifs in over 400,000 proteins. In lycophytes, polypod ferns and hornworts, nearly 10% of expressed protein-coding genes encode putative PPR editing factors, whereas they are absent from algae and complex-thalloid liverworts. We show that rather than a single expansion, most land plant lineages with high numbers of editing factors have continued to generate novel sequence diversity. We identify sequence variation that implies functional differences between PPR proteins in seed plants versus non-seed plants and which we propose to be linked to seed-plant-specific editing cofactors. Finally, using the sequence variation across the dataset, we develop a structural model of the catalytic DYW domain associated with C-to-U editing and identify a clade of unique DYW variants that are strong candidates as U-to-C RNA editing factors, given their phylogenetic distribution and sequence characteristics.
ResearchGate has not been able to resolve any references for this publication.