ArticlePDF Available

Feeding habits of a large endangered skate from the south-west Atlantic: The spotback skate, Atlantoraja castelnaui

Authors:

Abstract and Figures

Elasmobranch predation has important effects on marine ecosystems. Identifying the main correlates of the feeding habits of skates is of paramount importance for determining their ecological role. We tested the hypotheses that the diet of the spotback skate, Atlantoraja castelnaui, off Uruguay and northern Argentina, changes with increasing body size, between seasons and regions and that prey size increased with predator's size using a multiple-hypothesis modelling approach. A. castelnaui preyed mainly on teleosts, followed by cephalopods, elasmobranchs and decapods. Small individuals of A. castelnaui consumed decapods and large individuals ate elasmobranchs and cephalopods. The consumption of teleosts was constant along the ontogeny but differed between seasons; more demersal-benthic teleosts were consumed in the cold season, whereas more benthic teleosts were eaten in the warm season. Also, A. castelnaui consumed more cephalopods in the warm season than in the cold season. Benthic teleosts were consumed more in the south region, whereas decapods were eaten more in the north region. A. castelnaui is able to consume larger teleosts as it grows. We conclude that A. castelnaui is a versatile, mainly piscivorous, consumer that shifts its diet with increasing body size and in response to seasonal and regional changes in prey abundance or distribution.
Content may be subject to copyright.
Feeding habits of a large endangered skate
from the south-west Atlantic: the spotback skate,
Atlantoraja castelnaui
Santiago A. Barbini
A
,
B
,
D
and Luis O. Lucifora
B
,
C
A
Laboratorio de Ictiologı´a, Departamento de Ciencias Marinas, Universidad Nacional
de Mar del Plata, Funes 3350, Mar del Plata, B7602AYL, Argentina.
B
Consejo Nacional de Investigaciones Cientı´ficas y Te
´cnicas (CONICET), Argentina.
C
Instituto de Biologı´a Subtropical – Sede Iguazu´, Universidad Nacional de Misiones
and Centro de Investigaciones del Bosque Atla
´ntico (CeIBA), Casilla de Correo 9,
Puerto Iguazu´, N3370AVQ, Misiones, Argentina.
D
Corresponding author. Email: sbarbini@mdp.edu.ar
Abstract. Elasmobranch predation has important effects on marine ecosystems. Identifying the main correlates of the
feeding habits of skates is of paramount importance for determining their ecological role. We tested the hypotheses that the
diet of the spotback skate, Atlantoraja castelnaui, off Uruguay and northern Argentina, changes with increasing body size,
between seasons and regions and that prey size increased with predator’s size using a multiple-hypothesis modelling
approach. A. castelnaui preyed mainly on teleosts, followed by cephalopods, elasmobranchs and decapods. Small
individuals of A. castelnaui consumed decapods and large individuals ate elasmobranchs and cephalopods. The
consumption of teleosts was constant along the ontogeny but differed between seasons; more demersal-benthic teleosts
were consumed in the cold season, whereas more benthic teleosts were eaten in the warm season. Also, A. castelnaui
consumed more cephalopods in the warm season than in the cold season. Benthic teleosts were consumed more in the south
region, whereas decapods were eaten more in the north region. A. castelnaui is able to consume larger teleosts as it grows.
We conclude that A. castelnaui is a versatile, mainly piscivorous, consumer that shifts its diet with increasing body size and
in response to seasonal and regional changes in prey abundance or distribution.
Additional keywords: Argentina, diet variation, predation, Rajidae, Uruguay.
Received 23 July 2011, accepted 4 November 2011, published online 28 November 2011
Introduction
Large predators have significant effects on the trophic dynamics
of a variety of ecosystems, affecting community structure and
energy flow (Estes et al. 2011). In marine ecosystems,
elasmobranch predation is a major force structuring communi-
ties (Heithaus et al. 2008, 2010; Ferretti et al. 2010). Large
sharks prey on smaller sharks and batoids; removing the large
sharks results in a cascading effect that changes the structure of
the benthic community (Myers et al. 2007; Ferretti et al. 2010).
Large batoids affect the species turnover of benthic communi-
ties by disrupting the structure of the bottom and preying on
benthic invertebrates (VanBlaricom 1982; Thrush et al. 1991).
Skates, by their abundance and species diversity, may play
influential roles in marine community dynamics (Ebert and
Bizzarro 2007). Therefore, knowing and understanding the
feeding habits of skates are very important for determining their
ecological role (San Martı´n et al. 2007). The spotback skate
Atlantoraja castelnaui (Rajidae) is the largest skate of coastal
waters and one of the largest benthic batoids in the south-west
Atlantic Ocean, attaining 1400 mm in total length. It is endemic
to the south-west Atlantic from Rio de Janeiro, Brazil (228S), to
San Jorge Gulf, Argentina (468390S) (Menni and Stehmann
2000; Bovcon et al. 2011). In Argentinean waters, this species
occurs from shallow coastal waters to ,100 m depth (Cousseau
et al. 2007) and matures at 1089 mm (females) and 980 mm
(males) total length (Colonello 2009).
Due to its large body size, A. castelnaui has a high commer-
cial value and has been subjected to heavy fishing pressure; as a
result, its biomass declined by 75% between 1994 and 1999
(Hozbor et al. 2004). For this reason, A. castelnaui is categorised
as endangered by the International Union for the Conservation
of Nature (IUCN), with a decreasing trend in population
abundance (Hozbor et al. 2004). Its large size makes it ecolog-
ically important because other large skate species, such as
Zearaja chilensis or Dipturus trachyderma, do not overlap
greatly with A. castelnaui in their bathymetric range and occur
only in deeper waters (Menni and Stehmann 2000; Cousseau
et al. 2007). However, the ecology of this species, including its
CSIRO PUBLISHING
Marine and Freshwater Research, 2012, 63, 180–188
http://dx.doi.org/10.1071/MF11170
Journal compilation ÓCSIRO 2012 www.publish.csiro.au/journals/mfr
feeding habits, is poorly known. Previous studies of the feeding
habits of A. castelnaui are limited to descriptions of dietary
composition, indicating that the species feeds mainly on teleost
fishes (Laureda and Martı´nez 1981; Soares et al. 1992; Paesch
2000).
Variation in the diet of elasmobranchs can be attributed to
intrinsic and extrinsic factors (Di Gia´ como and Perier 1996;
Lucifora 2003). Intrinsic factors are traits of the predator, such
as sex, maturity stage and body size; extrinsic factors are
characteristics of the prey or the environment that affects the
availability of prey. Evaluating the interplay and relative effects
of intrinsic and extrinsic factors on the diet will help to identify
potential effects of the decline in abundance of predators
(Lucifora et al. 2009a). For example, if skate body size is an
important determinant of the consumption of a particular prey,
then fishing for the larger skates will affect the predator–prey
relationship. However, if geographic region is the main deter-
minant of the consumption of a given prey, then regional
differences in fishing effort or coastal development will have
a higher impact on the predator–prey relationship than any
intrinsic factor.
In this paper, we explored the importance of several intrinsic
and extrinsic factors in determining the diet of a large skate, the
spotback skate, A. castelnaui. Specifically, we tested the
following hypotheses: (1) the diet of A. castelnaui changes with
increasing body size; (2) the diet composition changes between
seasons; (3) there are differences in the diet between regions;
and (4) prey size increases with increasing body size of
A. castelnaui.
Materials and methods
Study site and sampling
The coastal region off Uruguay and northern Argentina
(between 348S and 418S) consists of two large ecosystems. The
first, the northern region (34–388S), is a stratified coastal zone
influenced by the very large discharge of continental waters of
the Rı´o de la Plata. The second, the southern region (38–418S), is
a homogeneous coastal zone, called El Rinco´ n, influenced by
the smaller discharges of the Negro and Colorado rivers and by
high-salinity waters of the San Matı´as Gulf (Guerrero and Piola
1997; Lucas et al. 2005).
Samples (390 individuals, 255 with stomach contents) were
obtained from scientific trawl surveys conducted by the Instituto
Nacional de Investigacio´n y Desarrollo Pesquero (INIDEP,
Argentina) during December 2005, February and June 2006
and from commercial landings of the coastal fleet of Mar del
Plata harbour (Fig. 1) during May, September, October and
November 2006 and April, May, June, July, August, October,
November and December 2007 (Fig. 1). Each specimen cap-
tured was measured (total length (TL), mm) and sexed. Also, the
maturity stage (juvenile or adult) was determined according to
the degree of calcification of the claspers and the development
of testes and reproductive ducts in males and to the presence of
eggs and observation of the uteri, oviducal glands and ovarian
follicles in females (Stehmann 2002; Colonello 2009). The
stomachs were removed and stored at 208C. In the laboratory,
prey were sorted, identified to the lowest possible taxonomic
level using published catalogues, counted and wet weight was
recorded (0.01 g).
Feeding habits
The importance of each prey was evaluated using percentage by
number (%N), mass (%M), frequency of occurrence (%F) and
index of relative importance (%IRI; Pinkas et al. 1971; Corte´s
1997).
For statistical analyses, we grouped prey into six categories:
benthic teleosts, demersal-benthic teleosts, pelagic teleosts,
elasmobranchs, cephalopods and decapods. The number of
sampled A. castelnaui with prey was tested to evaluate whether
sample size by sex, maturity stage, region and season was
sufficient for the statistical analyses. The sampling order of
stomachs was randomised 100 times and the mean cumulative
Shannon–Wiener diversity index was plotted as a function of
sample size. Sample size was considered sufficient to describe
diet if the cumulative prey curve reached an asymptote
(Magurran 2004).
To test the hypothesis of change in the diet of A. castelnaui
with increasing body size and of differences in the diet compo-
sition between seasons and regions, we adopted a multiple-
hypothesis modelling approach (Franklin et al. 2001; Johnson
and Omland 2004; Symonds and Moussalli 2011). We assessed
whether the consumption of the prey categories varied with sex,
maturity stage (juvenile and adult), total length, season (warm ¼
October–March; cold ¼April–September) and region (north ¼
348–388S; south ¼388–418S) using generalised linear models
(GLM) (Venables and Ripley 2002). For each prey category, we
built GLMs in which the response variable was the number of
the prey consumed and the independent variables were sex,
maturity stage, TL, season and region (Lucifora et al. 2009a).
Further, models with combinations between two independent
64 62 60 58 56 54 52
42
41
40
39
38
37
36
35
34
33
Latitude S
Longitude W
Uruguay
Argentina
Fig. 1. Map of the sampling area from off Uruguay and north Argentina,
showing positions of trawls stations (black circles) and cells of the fishing
grid (black rectangles) where individuals of Atlantoraja castelnaui were
captured. The 50-m and 200-m isobaths are shown as solid and dashed lines
respectively. The rectangle in the inset shows the location of the study area in
South America.
Diet of Atlantoraja castelnaui Marine and Freshwater Research 181
variables were fitted: sex þseason, sex þregion, maturity stage þ
season, maturity stage þregion, TL þseason, TL þregion and
season þregion. Models without any of the independent variables
(i.e. null models) were fitted to test the hypothesis that none of the
variables tested had an effect on the consumption of a prey
category (Lucifora et al. 2009b). All models had a negative
binomial error distribution (i.e. a high number of zero-values
and variance much greater than the mean) and a log link (Crawley
2005).
For each model fitted within a prey category, we calculated
the Akaike information criterion (AIC) and the model with the
lowest AIC was selected as the best model. AIC measures the
amount of information lost when fitting a model, so the model
with the lowest AIC is the best one explaining the observed data
(Crawley 2005). To obtain the likelihood of each model fitted,
Akaike’s weight (w) was calculated (Franklin et al. 2001;
Johnson and Omland 2004). If wdid not provide strong support
for any model fitted, we used model averaging to measure the
effects of the variable explaining most of the variation (Johnson
and Omland 2004; Symonds and Moussalli 2011).
The hypothesis that prey size increased with increasing body
size of the predator was assessed using the TL of A. castelnaui
and the TL of prey teleosts. Regressions on the 5, 50 and 95%
quantiles were fitted to test an increase in minimum, medium
and maximum prey size consumed with increasing TL of
A. castelnaui respectively (Scharf et al. 1998).
Results
Of the individuals with food in the stomachs (n¼255), 121
were female (243–1365 mm TL) and 134 were male (332–
1400 mm TL). The cumulative diversity curves reached an
asymptote, indicating that sample size was sufficient for all
groups considered (see Fig. S1, available as Supplementary
Material to this paper).
Forty-five prey were identified to the lowest taxonomic
level: 27 teleosts, eight decapods, six elasmobranchs, three
molluscs and one cephalochordate (Table 1). Teleosts were
the dominant prey consumed by A. castelnaui. Decapods,
cephalopods and elasmobranchs were less important compo-
nents of the diet. The most important teleost by number was
Dules auriga, followed by Raneya brasiliensis,Porichthys
porosissimus and Trachurus lathami. In terms of weight, Cynos-
cion guatucupa was the most important prey, followed by
P. porosissimus and Prionotus nudigula.D. auriga and
R. brasiliensis were the most important prey by frequency of
occurrence. The decapods, cephalopods and elasmobranchs
consumed were predominantly shrimps, octopi and skates
respectively.
Relationships between number of prey consumed with TL,
season and region were found (Table 2). The effect of each of
these variables was dependent on the prey group; therefore,
below we present the results for each prey group. In all models,
the residual deviance was less than the residual degrees
of freedom, indicating that the models had a good fit to the
data (see Table S1, available as Supplementary Material to
this paper).
The consumption of benthic teleosts was affected by season
and region. Benthic teleosts were consumed more in the warm
season than in the cold season (Fig. 2). In the warm season, the
most important benthic teleosts in the diet were P. porosissimus,
Etropus longimanus and Percophis brasiliensis (Fig. 3). The
number of the benthic teleosts consumed was higher in the south
region than in the north region (Fig. 2).
Season was the only factor affecting the consumption of
demersal-benthic teleosts. More demersal-benthic teleosts were
consumed in the cold season than in the warm season (estimated
number of demersal-benthic teleosts by GLM: warm ¼0.388;
cold ¼0.747). D. auriga was the most consumed demersal-
benthic teleost by A. castelnaui in the cold season (Fig. 3).
The model of consumption of demersal-benthic teleosts had a
low w, so we computed model averaging. The averaged coeffi-
cient was 0.642 (s.e. ¼0.195) for the cold season, with a
combined wof 0.981. The consumption of pelagic teleosts
was independent of sex, maturity stage, TL, season or region.
Body size was the only variable with a significant effect on
the consumption of elasmobranchs by A. castelnaui; consump-
tion of elasmobranchs increased with increasing TL of
A. castelnaui (Fig. 4). Body size and season significantly
affected the consumption of cephalopods by A. castelnaui.
The number of cephalopods consumed increased with the size
of A. castelnaui and was higher in the warm season than in the
cold season (Fig. 4). The main cephalopod consumed in the
warm season was the octopus Octopus tehuelchus.
A combination of body size and region was the most
plausible explanation for the pattern of consumption of deca-
pods. Contrary to the pattern found for elasmobranchs and
cephalopods, the consumption of decapods decreased with
increasing TL of A. castelnaui (Fig. 4). Decapods were
consumed more in the northern region than in the southern
region (Fig. 4).
For elasmobranchs, cephalopods and decapods, model
averaging was computed. For elasmobranchs, the model aver-
aged slope for TL was 0.002 (s.e. ¼0.0007) with a combined w
of 0.636. The estimated averaged coefficients for cephalopods
were 0.004 (s.e. ¼0.002) for TL and 0.740 (s.e. ¼0.630) for
the cold season with a combined wof 0.90. The averaged
coefficients for decapods were 0.004 (s.e. ¼0.001) for TL
and 0.259 (s.e. ¼0.252) for the south region with a combined
wof 0.778.
Significant relationships between predator and prey body
size were found. As TL of A. castelnaui increased, minimum,
medium and maximum TL of teleosts increased (slope and
intercepts of 5, 50 and 95% quantile regressions ¼0.081 and
15.673; 0.131 and 32.817; 0.366 and 39.170, respectively,
P,0.05) (Fig. 5).
Discussion
Dietary composition
Corroborating our results, a previous study conducted off Mar
del Plata (388S) found that teleosts were the main prey con-
sumed by A. castelnaui, followed by molluscs, crustaceans and
other invertebrates (Laureda and Martı´nez 1981). However, the
main species of teleosts consumed were different between
studies. The most important species of teleosts observed by
Laureda and Martı´nez (1981) were flatfishes, Symphurus spp.
and R. brasiliensis. In our study, D. auriga,R. brasiliensis,
182 Marine and Freshwater Research S. A. Barbini and L. O. Lucifora
P. porosissimus and T. lathami were the most consumed teleosts.
This difference in consumption of teleosts may be associated
with local differences in prey availability, because the results
from Laureda and Martı´nez (1981) reflected the diet of samples
taken from off Mar del Plata whereas the samples in our study
covered a much larger area.
Off the ´o de la Plata, between 50 and 100 m depth, the diet
composition of A. castelnaui is also dominated by teleosts
Table 1. Diet composition of Atlantoraja castelnaui off Uruguay and northern Argentina
%N, percentage by number; %M, percentage by mass; %F, percentage frequency of occurrence; %IRI, percentage index of relative importance
Group Prey %N %M %F %IRI
Teleosts
A
74.40 92.52 89.41 97.81
Unidentified teleosts 19.40 14.54 30.20
Congridae Conger orbignyanus 0.22 1.70 0.39
Engraulidae Engraulis anchoita 0.22 0.03 0.39
Ophidiidae Raneya brasiliensis 6.13 4.77 10.59
Batrachoididae Porichthys porosissimus 5.47 7.60 9.02
Triathalassothia argentina 2.19 1.54 3.14
Triglidae Prionotus nudigula 3.50 7.32 5.88
Serranidae Dules auriga 11.82 3.84 12.55
Carangidae Trachurus lathami 5.47 4.37 5.88
Parona signata 0.22 0.62 0.39
Sparidae Pagrus pagrus 0.44 2.07 0.78
Sciaenidae Cynoscion guatucupa 2.62 16.10 4.31
Umbrina canosai 0.87 2.04 1.57
Paralonchurus brasiliensis 0.22 0.14 0.39
Mullidae Mullus argentinae 2.62 2.72 2.74
Cheilodactylidae Nemadactylus bergi 0.44 2.10 0.78
Percophidae Percophis brasiliensis 2.84 6.17 4.31
Pinguipedidae Pinguipes brasiliensis 1.31 5.41 1.96
Gobiidae Gobiosoma parri 0.87 ,0.01 0.39
Stromateidae Stromateus brasiliensis 0.22 0.46 0.39
Paralichthyidae Paralichthys orbignyanus 0.22 5.25 0.39
Paralichthys patagonicus 0.66 1.53 1.17
Xystreurys rasile 0.22 0.29 0.39
Achiropsetta tricolepis 0.66 0.07 0.78
Etropus longimanus 3.72 0.55 4.70
Unidentified Paralichthyidae 0.66 1.15 1.18
Cynoglossidae Symphurus spp. 0.87 0.10 1.59
Elasmobranchs
A
4.16 2.63 5.49 0.24
Triakidae Mustelus schmitti 0.22 0.55 0.39
Rajidae Atlantoraja castelnaui 0.22 0.05 0.39
Psammobatis extenta 0.22 0.43 0.39
Psammobatis spp. 0.22 0.52 0.39
Sympterygia bonapartii 0.22 0.07 0.39
Unidentified Rajidae 3.06 1.00 3.53
Cephalochordates
A
Branchiostoma platae 0.22 ,0.01 0.39 ,0.01
Molluscs
A
Cephalopods
A
3.50 4.09 5.10 0.25
Unidentified squid 0.44 0.18 0.78
Octopodidae Octopus tehuelchus 3.06 3.90 4.31
Gastropods Unidentified Fissurellidae 0.22 0.03 0.39
Crustaceans
A
Decapods
A
17.50 0.73 14.12 1.69
Penaeidae Artemesia longinaris 1.31 0.07 1.96
Solenoceridae Pleoticus muelleri 3.28 0.02 0.78
Unidentified shrimps 8.31 0.04 5.10
Majidae Collodes rostratus 0.22 ,0.01 0.39
Libinia spinosa 0.44 ,0.01 0.39
Libidoclaea granaria 0.44 0.01 0.39
Portunidae Ovalipes trimaculatus 0.66 0.47 1.18
Unidentified crabs 2.84 0.12 4.31
Total number of prey 457
Total mass (g) 17 813
A
Major taxonomic group.
Diet of Atlantoraja castelnaui Marine and Freshwater Research 183
(Paesch 2000). In contrast, in Ubatuba Bay (248S, Brazil), the
diet composition consisted of two main prey items: teleosts and
decapods (Soares et al. 1992). The high consumption of dec-
apods may be due to a bias in the frequency distribution of
samples towards small skates (range of TL: 217–865 mm), since
our results indicate a negative relationship between skate size
and decapod consumption. The pattern found in Ubatuba Bay
could also be a result of lower sample size (n¼24).
Relationships between diet and body size,
season and region
The diet of A. castelnaui was affected by ontogeny, season and
geographic area. Body size (i.e. total length) has an important
effect on the diet composition of A. castelnaui; small individuals
consume decapods and large individuals consume elasmo-
branchs and cephalopods. An increase in the consumption of
elasmobranchs with body size has been reported for sharks
(Smale 1991; Lowe et al. 1996; Lucifora et al. 2005, 2009a).
However, elasmobranchs are not important prey in the diet of
skates and this pattern has not been documented before in any
skate. In other studies on the diet of A. castelnaui, elasmo-
branchs such as angel sharks, Squatina spp. and skates (Laureda
and Martı´nez 1981; Paesch 2000) were also found. Skates were
the main elasmobranchs consumed by A. castelnaui and there
was even one case of cannibalism by an adult male (TL ¼
1063 mm) that consumed a juvenile individual. As the mor-
phology of skates as prey (i.e. dorsoventrally flattened)
complicates the handling and suction by small individuals of
A. castelnaui, large individuals may be more able to capture this
prey. The importance of body size in determining the
consumption of elasmobranchs indicates that shifting size dis-
tributions towards smaller individuals, a common result of
overfishing (Bianchi et al. 2000), would relax the predation
pressure on these prey by A. castelnaui. Body size has been
identified as the main determinant of elasmobranch predation by
the copper shark Carcharhinus brachyurus (Lucifora et al.
2009a) and the sand tiger shark Carcharias taurus (Lucifora
et al. 2009b), which indicates that body size may be a general
determinant of elasmobranch consumption regardless of the
taxonomic identity of the predator. A decrease in the con-
sumption of decapods with increasing body size has been
described for other skates (Koen Alonso et al. 2001; Treloar
et al. 2007). In A. castelnaui, this pattern may be associated with
an increase in the quality of the diet, where decapods are
replaced by more energetically profitable prey such aselasmo-
branchs and cephalopods. The most important cephalopod in the
diet of A. castelnaui is the octopus O. tehuelchus and its higher
consumption in the warm season may be related to the behaviour
of this prey. The warm season is a period of intense reproductive
(mating) and feeding activity by O. tehuelchus, potentially
increasing its exposure and vulnerability to predation (Iribarne
1991; Re´ and Go´ mez Simes 1992). Season was also the main
factor affecting the consumption of teleosts by A. castelnaui.
The higher consumption of demersal-benthic teleosts in the cold
season and the higher consumption of benthic teleosts in the
warm season may be related to seasonal shifts in the distribution
and abundance of teleosts. In the same study area, other coastal
skates, such as Psammobatis extenta (Braccini and Perez 2005),
Psammobatis bergi (San Martı´n et al. 2007) and Rioraja agas-
sizi (Barbini and Lucifora 2011), also have seasonal shifts in diet
composition. These skates have evolved strategies to cope with
temporal variability in prey abundance (Caddy and Sharp 1986;
Braccini and Perez 2005).
The dominant benthic teleosts in the diet during the warm
season were P. porosissimus,E. longimanus and P. brasiliensis,
while D. auriga was the most important in the cold season. In the
Table 2. Best models explaining the consumption in number of the main prey categories of Atlantoraja castelnaui
TL, total length; AIC, Akaike information criterion; w, Akaike’s weigths; standard errors are in parentheses. South and cold are levels of factors region and
season respectively
Prey categories Intercept Coefficient AIC w
Benthic teleosts 1.357 (0.262) 0.706 (0.293) south 0.346 (0.250) cold 372.4 0.559
Demersal-benthic teleosts 0.944 (0.148) 0.653 (0.197) cold 500.9 0.325
Elasmobranchs 5.981 (1.136) 0.003 (0.001) TL 128.4 0.244
Cephalopods 6.831 (1.463) 1.443 (0.680) cold þ0.004 (0.001) TL 109.5 0.421
Decapods 1.700 (0.674) 0.881 (0.449) south 0.004 (0.001) TL 286.6 0.279
Warm Cold
Estimated mean number of benthic teleosts per stomach
0.0
0.2
0.4
0.6
0.8
1.0
Fig. 2. Changes in consumption of benthic teleosts (in number) with
season and region of Atlantoraja castelnaui estimated by generalised linear
models. The models had a log link and a negative binomial error distribution.
Black, north region; white, south region.
184 Marine and Freshwater Research S. A. Barbini and L. O. Lucifora
warm season, male P. porosissimus migrate to rocky habitats
where they establish and maintain a territory, emitting low
frequency sounds (Brantley and Bass 1994) and producing a
bioluminescent display to attract females (Crane 1965). This
reproductive behaviour may increase the vulnerability and
availability of this prey to elasmobranch predators in the warm
season, due to the increased visual exposure or audible detection
related to the breeding activity (Lucifora et al. 2006).
P. brasiliensis has a constant spatial distribution in this area
(Barreto 2007), but higher abundances were observed during
spring, possibly associated with reproductive movements of
adult individuals from deep areas towards shallower spawning
areas (Perrotta and Ferna´ndez Gime´nez 1996; Barreto 2007).
These seasonal patterns indicate that A. castelnaui is a versatile
consumer of teleosts and can shift its diet in response to seasonal
changes in the abundance or distribution of these prey.
The consumption of pelagic teleosts was not related to any of
the variables tested in our study. In Carcharhinus brachyurus,
the consumption of pelagic teleosts is a bell-shaped function of
predator age (Lucifora et al. 2009a). We did not test age as a
potential variable explaining consumption of any prey in
A. castelnaui. It remains a question for future studies to test
whether the consumption of pelagic teleosts in skates is also
affected mostly by age or some other variable.
Relationships between prey size and predator size
The consumption of teleosts is homogeneous throughout the
ontogeny of A. castelnaui, but this species is able to consume
larger teleosts as it grows. The same pattern has been observed in
other piscivorous skates, such as Zearaja chilensis in the south-
west Atlantic (Lucifora et al. 2000) and Dipturus gudgeri and
Porichthys porosissimus
Triathalassothia argentina
Percophis brasiliensis
Gobiosoma parri
Paralichthys orbignyanus
Xystreurys rasile
Etropus longimanus
Symphurus spp.
Mean number of
benthic teleosts
0.0
0.1
0.2
0.3
0.4
0.5
Raneya brasiliensis
Prionotus nudigula
Dules auriga
Pagrus pagrus
Cynoscion guatucupa
Umbrina canosai
Mullus argentinae
Nemadactylus bergi
Pinguipes brasiliensis
Mean number of
demersal−benthic teleosts
0.0
0.1
0.2
0.3
0.4
0.5
(a)
(b)
Fig. 3. Mean number and standard error of (a) benthic and (b) demersal-benthic teleosts consumed for Atlantoraja
castelnaui with season. Black, warm season; white, cold season.
Diet of Atlantoraja castelnaui Marine and Freshwater Research 185
Dipturus whitleyi in south-eastern Australian waters (Treloar
et al. 2007). Skates are suction feeders that ingest their prey
whole by creating a hydrodynamic flow (Dean et al. 2005).
Then, gape size imposes a limit on the size and type of prey
consumed (Scharf et al. 2000). Some elasmobranchs, such as
sharks, evade gape limitation by cutting prey with their teeth
(Frazzetta 1988; Lucifora et al. 2006; Braccini 2008), but skate
teeth are not able to cut. Therefore, the only way to increase prey
size in skates is by increasing body size.
Our results identified a heterogeneous array of factors
affecting the consumption of different prey groups in a large
endangered skate, suggesting a complex situation for managers
attempting to maintain the ecological function of this predator.
This array includes both extrinsic factors (e.g. season and
region) and intrinsic factors such as body size. Piscivorous fish
generally achieve the largest body size within their community
and have potentially large impacts on their communities through
predation (Juanes et al. 2002). Overfishing alters the size
structure of the populations because larger fishes are selectively
removed from the marine community (Bianchi et al. 2000). The
removal of large predators has indirect effects that involve
trophic interactions at the community level (e.g. trophic cas-
cades and non-lethal risk effects, indirect effects such as appar-
ent competition, Heithaus et al. 2008, 2010). Thus, the decline
and removal of large elasmobranchs, such as A. castelnaui, may
have marked ecological consequences in marine ecosystems.
Acknowledgements
We thank the Instituto Nacional de Investigacio´n y Desarrollo Pesquero
(INIDEP) for specimens collected from different research cruises and two
referees and the editor A. J. Boulton for their helpful comments.
S. A. Barbini was supported by a scholarship from the Comisio´n de Inves-
tigaciones Cientı´ficas de la Provincia de Buenos Aires (Argentina).
References
Barbini, S. A., and Lucifora, L. O. (2011). Feeding habits of the Rio skate,
Rioraja agassizi (Chondrichthyes, Rajidae), from off Uruguay and north
Argentina. Journal of the Marine Biological Association of the United
Kingdom 91, 1175–1184. doi:10.1017/S0025315410001529
200 400 600 800 1000 1200 1400
200 400 600 800 1000 1200 1400
200 400 600 800 1000 1200 1400
Number of elasmobranchs
0
1
2
3
4
Number of cephalopods
0
1
2
3
Total len
g
th
(
mm
)
Number of decapods
0
1
2
3
4
5
6
7
8
(a)
(b)
(c)
Fig. 4. Shifts with total length, season and region of Atlantoraja castelnaui
estimated by generalised linear models for number of (a) elasmobranchs,
(b) cephalopods and (c) decapods. Cold season, dashed lines and asterisk;
warm season, dotted line and solid circle; north region, long-dash line and
solid square; south region, two-dash line and cross.
400 600 800 1000 1200
0
100
200
300
400
Total length (mm)
TL of teleosts (mm)
Fig. 5. Relationship between teleost total length (TL) and predator total
length of Atlantoraja castelnaui. The dotted, dashed and solid lines are 5, 50
and 95% quantile regressions respectively.
186 Marine and Freshwater Research S. A. Barbini and L. O. Lucifora
Barreto, A. C. (2007). Influencia ambiental en la distribucio´n espacial de las
clases de edad del pez palo (Percophis brasiliensis) en el Sistema
Costero del Atla´ntico Sudoccidental (348–418S). MSc Thesis. Universi-
dad de Buenos Aires, Buenos Aires, Argentina.
Bianchi, G., Gibson, H., Graham, K., Hill, L., Jin, X., Koranteng, K.,
Manickchand-Heileman, S., Paya´, I., Sainsbury, K., Sanchez, F., and
Zwanenburg, K. (2000). Impact of fishing on size composition and
diversity of demersal fish communities. ICES Journal of Marine Science
57, 558–571. doi:10.1006/JMSC.2000.0727
Bovcon, N. D., Cochia, P. D., Go´ngora, M. E., and Gosztonyi, A. E. (2011).
New records of warm-temperate water fishes in central Patagonian
coastal waters (southwestern South Atlantic Ocean). Journal of Applied
Ichthyology 27, 832–839. doi:10.1111/J.1439-0426.2010.01594.X
Braccini, J. M. (2008). Feeding ecology of two high-order predators from
south-eastern Australia: the coastal broadnose and the deepwater sharp-
nose sevengill sharks. Marine Ecology Progress Series 371, 273–284.
doi:10.3354/MEPS07684
Braccini, J. M., and Perez, J. E. (2005). Feeding habits of the sandskate
Psammobatis extenta (Garman, 1913): sources of variation in dietary
composition. Marine and Freshwater Research 56, 395–403.
doi:10.1071/MF04205
Brantley, R. K., and Bass, A. H. (1994). Alternative male spawning tactics
and acoustic signals in the plainfin midshipman, Porichthys notatus
(Teleostei, Batrachoidiformes). Ethology 96, 213–232. doi:10.1111/
J.1439-0310.1994.TB01011.X
Caddy, J. M., and Sharp, G. D. (1986). An ecological framework for marine
fishery investigation. Fisheries Technical Paper No. 283. Food and
Agriculture Organization of the United Nations, Rome.
Colonello, J. (2009). Ecologı´a reproductiva de tres batoideos (Chon-
drichthyes): Atlantoraja castelnaui (Rajidae), Rioraja agassizi (Rajidae)
yZapteryx brevirostris (Rhinobatidae). Implicancias de distintas estra-
tegias adaptativas en un escenario de explotacio´ n comercial intensiva.
PhD Thesis. Universidad Nacional de La Plata, La Plata, Argentina.
Corte´s, E. (1997). A critical review of methods of studying fish feeding
based on analysis of stomach contents: application to elasmobranch
fishes. Canadian Journal of Fisheries and Aquatic Sciences 54,
726–738. doi:10.1139/CJFAS-54-3-726
Cousseau, M. B., Figueroa, D. E., Dı´az de Astarloa, J. M., Mabragan
˜a, E.,
and Lucifora, L. O. (2007). Rayas, Chuchos y otros Batoideos del
Atla´ntico Sudoccidental (348S–558S). (Instituto Nacional de Investiga-
cio´n y Desarrollo Pesquero: Mar del Plata).
Crane, J. M. (1965). Bioluminescent courtship display in the teleost
Porichthys notatus. Copeia 1965, 239–241. doi:10.2307/1440735
Crawley, M. J. (2005). ‘Statistics: an Introduction Using R.’ (Wiley:
Chichester, UK.)
Dean, M. N., Wilga, C. D., and Summers, A. P. (2005). Eating without hands
or tongue: specialization, elaboration and the evolution of prey proces-
sing mechanisms in cartilaginous fishes. Biology Letters 1, 357–361.
doi:10.1098/RSBL.2005.0319
Di Gia´como, E. E., and Perier, M. R. (1996). Feeding habits of cockfish,
Callorhinchus callorhynchus (Holocephali: Callorhynchidae), in Pata-
gonian Waters (Argentina). Marine and Freshwater Research 47,
801–808. doi:10.1071/MF9960801
Ebert, D. A., and Bizzarro, J. J. (2007). Standardized diet compositions and
trophic levels of skates (Chondrichthyes, Rajiformes, Rajoidei).
Environmental Biology of Fishes 80, 221–237. doi:10.1007/S10641-
007-9227-4
Estes, J. A., Terborgh, J., Brashares, J. S., Power, M. E., Berger, J., Bond,
W. J., Carpenter, S. R., Essington, T. E., Holt, R. D., Jackson, J. B. C.,
Marquis, R. J., Oksanen, L., Oksanen, T., Paine, R. T., Pikitch, E. K.,
Ripple, W. J., Sandin, S. A., Scheffer, M., Schoener, T. W., Shurin, J. B.,
Sinclair, A. R. E., Soule´, M. E., Virtanen, R., and Wardle, D. A. (2011).
Trophic downgrading of planet earth. Science 333, 301–306.
doi:10.1126/SCIENCE.1205106
Ferretti, F., Worm, B., Britten, G. L., Heithaus, M. R., and Lotze, H. K.
(2010). Patterns and ecosystem consequences of shark declines in the
oceans. Ecology Letters 13, 1055–1071.
Franklin, A. B., Shenk, T. M., Anderson, D. R., and Burnham, K. P. (2001).
Statistical model selection: an alternative to null hypothesis testing. In
‘Modeling in Natural Resource Management: Development, Interpreta-
tion, and Application’. (Eds T. M. Shenk and A. B. Franklin.) pp. 75–90.
(Island Press: Washington, DC.)
Frazzetta, T. H. (1988). The mechanics of cutting and the form of shark teeth
(Chondrichthyes, Elasmobranchii). Zoomorphology 108, 93–107.
doi:10.1007/BF00539785
Guerrero, R. A., and Piola, R. A. (1997). Masas de agua de la plataforma
continental. In ‘El Mar Argentino y sus Recursos Pesqueros. Vol. 1’.
(Ed. E. E. Boschi.) pp. 107–118. (Instituto Nacional de Investigacio´n y
Desarrollo Pesquero: Mar del Plata, Argentina.)
Heithaus, M. R., Frid, A., Wirsing, A. J., and Worm, B. (2008). Predicting
ecological consequences of marine top predator declines. Trends in
Ecology & Evolution 23, 202–210. doi:10.1016/J.TREE.2008.01.003
Heithaus, M. R., Frid, A., Vaudo, J. J., Worm, B., and Wirsing, A. J. (2010).
Unraveling the ecological importance of elasmobranchs. In ‘Sharks and
their Relatives II. Biodiversity, Adaptive Physiology, and Conservation’
(Eds J. C. Carrier, J. A. Musick, and M. R. Heithaus.) pp. 611–637. (CRC
Press: Boca Raton, FL.)
Hozbor, N., Massa, A. M., and Vooren, C. M. (2004). Atlantoraja castelnaui.
Available at http://www.iucnredlist.org [Accessed 15 June 2011].
Iribarne, O. O. (1991). Life history and distribution of the small south-
western Atlantic octopus, Octopus tehuelchus. Journal of Zoology 223,
549–565. doi:10.1111/J.1469-7998.1991.TB04387.X
Johnson, J. B., and Omland, K. S. (2004). Model selection in ecology and
evolution. Trends in Ecology & Evolution 19, 101–108. doi:10.1016/
J.TREE.2003.10.013
Juanes, F., Buckel, J. A., and Scharf, F. S. (2002). Feeding ecology of
piscivorous fishes. In ‘Handbook of Fish Biology and Fisheries, Vol. 1.
Fish Biology’. (Eds P. J. Hart and J. D. Reynolds.) pp. 267–283.
(Blackwell Science: Malden, MA.)
Koen Alonso, M., Crespo, E. A., Garcı´a, N. A., Pedraza, S. N., Mariotti,
P. A., Bero´n Vega, B., and Mora, N. J. (2001). Food habits of Dipturus
chilensis (Pisces: Rajidae) off Patagonia, Argentina. ICES Journal of
Marine Science 58, 288–297. doi:10.1006/JMSC.2000.1010
Laureda, C. E., and Martı´nez, C. C. (1981). Alimentacio´ n de una raya costera
marplatense (Raja castelnaui M. Ribeiro, 1907). BSc Thesis. Universi-
dad de Buenos Aires, Buenos Aires, Argentina.
Lowe, C. G., Wetherbee, B. M., Crow, G. L., and Tester, A. L. (1996).
Ontogenetic dietary shifts and feeding behavior of the tiger shark,
Galeocerdo cuvier, in Hawaiian waters. Environmental Biology of
Fishes 47, 203–211. doi:10.1007/BF00005044
Lucas, A. J., Guerreo, R. A., Mianzan, H. W., Acha, E. M., and Lasta, C. A.
(2005). Coastal oceanographic regimes of the Northern Argentine
Continental Shelf (348–438S). Estuarine, Coastal and Shelf Science
65, 405–420. doi:10.1016/J.ECSS.2005.06.015
Lucifora, L. O. (2003). Ecologı´a y conservacio´ n de los grandes tiburones
costeros de Bahı´a Anegada, Provincia de Buenos Aires. PhD thesis,
Universidad Nacional de Mar del Plata, Mar del Plata, Argentina.
Lucifora, L. O., Valero, J. L., Bremec, C. S., and Lasta, M. L. (2000).
Feeding habits and prey selection by the skate Dipturus chilensis
(Elasmobranchii: Rajidae) from the south-western Atlantic. Journal of
the Marine Biological Association of the United Kingdom 80, 953–954.
doi:10.1017/S002531540000299X
Lucifora, L. O., Menni, R. C., and Escalante, A. H. (2005). Reproduction,
abundance and feeding habits of the broadnose sevengill shark Notor-
ynchus cepedianus in north Patagonia, Argentina. Marine Ecology
Progress Series 289, 237–244. doi:10.3354/MEPS289237
Lucifora, L. O., Garcı´a, V. B., Menni, R. C., and Escalante, A. H. (2006).
Food habits, selectivity, and foraging modes of the school shark,
Diet of Atlantoraja castelnaui Marine and Freshwater Research 187
Galeorhinus galeus. Marine Ecology Progress Series 315, 259–270.
doi:10.3354/MEPS315259
Lucifora, L. O., Garcı´a, V. B., Menni, R. C., Escalante, A. H., and Hozbor,
N. M. (2009a). Effects of body size, age and maturity stage on diet in a
large shark: ecological and applied implications. Ecological Research
24, 109–118. doi:10.1007/S11284-008-0487-Z
Lucifora, L. O., Garcı´a, V. B., and Escalante, A. H. (2009b). How can the
feeding habits of the sand tiger shark influence the success of conserva-
tion programs? Animal Conservation 12, 291–301. doi:10.1111/
J.1469-1795.2009.00247.X
Magurran, A. E. (2004). ‘Measuring Biological Diversity.’ (Blackwell:
Malden, MA.)
Menni, R. C., and Stehmann, M. F. W. (2000). Distribution, environment
and biology of batoid fishes off Argentina, Uruguay and Brazil.
A review. Revista del Museo Argentino de Ciencias Naturales 2,
69–109. [Nueva Serie]
Myers, R. A., Baum, J. K., Shepherd, T., Powers, S. P., and Peterson, C. H.
(2007). Cascading effects of the loss of apex predatory sharks from a
coastal ocean. Science 315, 1846–1850. doi:10.1126/SCIENCE.
1138657
Paesch, L. (2000). Ha´bitos alimentarios de algunas especies de elasmo-
branquios en el frente ocea´nico del Rı´o de la Plata. Frente Marı
´timo 18,
71–90.
Perrotta, R. G., and Ferna´ndez Gime´nez, A. (1996). Estudio preliminar sobre
la edad y el crecimiento del pez palo Percophis brasiliensis (Quoy &
Gaimard, 1824). INIDEP Informe Te
´cnico 10, 25–36.
Pinkas, L. M., Oliphant, S., and Iverson, I. L. K. (1971). Food habits of
albacore, bluefin tuna and bonito in California waters. California Fish
and Game 152, 1–105.
Re´, M. E., and Go´mez Simes, E. (1992). Ha´bitos alimentarios del pulpo
(Octopus tehuelchus). I. Ana´lisis cuali-cuantitativos de la dieta en el
intermareal del Puerto de Lobos, Golfo San Matı´as (Argentina). Frente
Marı
´timo 11, 119–128.
San Martı´n, M. J., Braccini, J. M., Tamini, L. L., Chiaramonte, G. E., and
Perez, J. E. (2007). Temporal and sexual effects in the feeding ecology of
the marbled sand skate Psammobatis bergi Marini, 1932. Marine
Biology 151, 505–513. doi:10.1007/S00227-006-0499-6
Scharf, F. S., Juanes, F., and Sutherland, M. (1998). Inferring ecological
relationships from the edges of scatter diagrams: comparison of regres-
sion techniques. Ecology 79, 448–460. doi:10.1890/0012-9658(1998)
079[0448:IERFTE]2.0.CO;2
Scharf, F. S., Juanes, F., and Rountree, R. A. (2000). Predator size–prey size
relationships of marine fish predators: interspecific variation and effects
of ontogeny and body size on trophic-niche breadth. Marine Ecology
Progress Series 208, 229–248. doi:10.3354/MEPS208229
Smale, M. J. (1991). Occurrence and feeding of three shark species,
Carcharhinus brachyurus, C. obscurus and Sphyrna zygaena, on the
Eastern Cape coast of South Africa. South African Journal of Marine
Science 11, 31–42. doi:10.2989/025776191784287808
Soares, L. S. H., Rossi-Wongtschowski, C. L. D. B., Alvares, L. M. C., Muto,
E. Y., and Gasalla, M. A. (1992). Grupos tro´ficos de peixes demersais da
plataforma continental interna de Ubatuba, Brasil. I. Chondrichthyes.
Boletim do Instituto Oceanogra
´fico, Sa˜o Paulo 40, 79–85.
Stehmann, M. F. W. (2002). Proposal of a maturity stages scale for oviparous
and viviparous cartilaginous fishes (Pisces, Chondrichthyes). Archiv
fuer Fischerei und Meeresforschung 50, 23–48.
Symonds, M. E., and Moussalli, A. (2011). A brief guide to model selection,
multimodel inference and model averaging in behavioural ecology using
Akaike’s information criterion. Behavioral Ecology and Sociobiology
65, 13–21. doi:10.1007/S00265-010-1037-6
Thrush, S. F., Pridmore, R. D., Hewitt, J. E., and Cummings, V. J. (1991).
Impact of ray feeding disturbances on sandflat macrobenthos: do
communities dominated by polychaetes or shellfish respond differently?
Marine Ecology Progress Series 69, 245–252. doi:10.3354/
MEPS069245
Treloar, M. A., Laurenson, L. J. B., and Stevens, J. D. (2007). Dietary
comparisons of six skate species (Rajidae) in south-eastern Australian
waters. Environmental Biology of Fishes 80, 181–196. doi:10.1007/
S10641-007-9233-6
VanBlaricom, G. R. (1982). Experimental analyses of structural regulation
in a marine sand community exposed to oceanic swell. Ecological
Monographs 52, 283–305. doi:10.2307/2937332
Venables, W. N., and Ripley, B. D. (2002). ‘Modern Applied Statistics with
S-Plus.’ 4th edn. (Springer: New York.)
www.publish.csiro.au/journals/mfr
188 Marine and Freshwater Research S. A. Barbini and L. O. Lucifora
... En los últimos años se ha incrementado el conocimiento acerca de los mecanismos de coexistencia entre especies simpátricas de batoideos (Ebert et al., 1991;Smale & Cowley, 1992;Ellis et al., 1996;Plattel et al., 1998;Brickle et al., 2003;White et al., 2004;Bizarro et al., 2007;Mabragaña & Giberto, 2007;Navia et al., 2007;Treolar et al., 2007;Yang et al., 2007;Marshall et al., 2008;Yick et al., 2011;Barbini & Lucifora, 2012;Jacobsen & Bennett, 2012;Navarro-González et al., 2012;O'Shea et al., 2013;Grijalba-Bendeck et al., 2012;Bornatowski et al., 2014;Yemisken et al., 2017;Barbini et al., 2018;Rastgoo et al., 2018), así como de las interacciones de este grupo con otros grupos como: tiburones (Dale et al., 2011;Sommerville et al., 2011;Vaudo & Heithaus, 2011;Tilley et al., 2013;Barría et al., 2015;Espinoza et al., 2015;Shaw et al., 2016;Bangley et al., 2017;Poulakis et al., 2017;Shipley et al., 2018;Silva-Garay et al., 2018), quimeras (Silva-Garay et al., 2018), teleósteos (Platell & Potter, 2001;Shaw et al., 2016) y cefalópodos (Valls et al., 2017). ...
... En este contexto, se ha identificado que las rayas en un mismo ecosistema pueden coexistir gracias al uso diferencial de los recursos, reduciendo la competencia a través de la segregación del nicho, inclusive en especies ecológicamente similares que se sobreponen en alguna o varias dimensiones del nicho (Barbini & Lucifora, 2012;O'Shea et al., 2013;Flores-Ortega et al., 2015;Yemisken et al., 2017). Entre los principales ejes del nicho ecológico en los que más frecuentemente se han reportado divergencia entre rayas simpátricas son: el espacio, particularmente en la distribución batimétrica (Navia et al., 2007;Marshall et al., 2008;Navia et al., 2017;Barbini et al., 2018) y el uso diferencial del hábitat o microhábitats (Platell et al., 1998;Plattell & Potter, 2001;White et al., 2004;Marshall et al., 2008;Bangley & Rulifson, 2017;Navia et al., 2017;Rastgoo et al., 2018) y el tiempo (Barbini & Lucifora, 2012;Flores-Ortega et al., 2015). ...
... En este contexto, se ha identificado que las rayas en un mismo ecosistema pueden coexistir gracias al uso diferencial de los recursos, reduciendo la competencia a través de la segregación del nicho, inclusive en especies ecológicamente similares que se sobreponen en alguna o varias dimensiones del nicho (Barbini & Lucifora, 2012;O'Shea et al., 2013;Flores-Ortega et al., 2015;Yemisken et al., 2017). Entre los principales ejes del nicho ecológico en los que más frecuentemente se han reportado divergencia entre rayas simpátricas son: el espacio, particularmente en la distribución batimétrica (Navia et al., 2007;Marshall et al., 2008;Navia et al., 2017;Barbini et al., 2018) y el uso diferencial del hábitat o microhábitats (Platell et al., 1998;Plattell & Potter, 2001;White et al., 2004;Marshall et al., 2008;Bangley & Rulifson, 2017;Navia et al., 2017;Rastgoo et al., 2018) y el tiempo (Barbini & Lucifora, 2012;Flores-Ortega et al., 2015). ...
Thesis
Full-text available
Los estudios sobre interacciones tróficas han sido fundamentales para comprender la coexistencia entre especies dentro de una comunidad. Por esta razón, la presente investigación tiene como objetivo identificar las posibles estrategias alimenticias que facilitan la coexistencia entre las rayas Hypanus dipterurus, Narcine entemedor y Rhinoptera steindachneri, a partir de estudios de contenidos estomacales previamente realizados y análisis de isótopos estables δ13C y δ15N en Bahía de La Paz (2013-2017). Se detectó diferencias entre los principales grupos de presas consumidos por estos depredadores, dominando los sipuncúlidos en N. entemedor (%PSIRI=52), los bivalvos en H. dipterurus (%PSIRI=45) y los misidáceos en R. steindachneri (%PSIRI=78). No se evidenció sobreposición trófica interespecífica en ninguno de los factores evaluados (temporadas, sexos, estados de madurez sexual y grupos de edades), en donde los grupos alimenticios ya descritos son los responsables de la disimilitud trófica. La composición isotópica mostró que H. dipterurus es una especie generalista de niveles tróficos que varían con la ontogenia y con el uso de hábitat más extenso en la zona. Contrario a N. entemedor, que es un depredador especialista de sipuncúlidos y poliquetos, y con un estrecho uso de hábitat, mientras que R. steindachneri es un depredador especialista probablemente de presas de bajo nivel trófico (pequeños crustáceos malacostráceos), con movimientos entre zonas costeras y oceánicas. El acceso diferencial a los grupos de presas, la especialización trófica y el uso preferencial por diversas zonas de alimentación fueron las principales estrategias usadas por los batoideos para facilitar la coexistencia en la zona.
... Argentina has an intermediate to low production of worldwide literature on trophic studies of freshwater and marine fishes (Braga et al., 2012). However, research on the trophic ecology of marine fishes is concentrated in the Argentine Sea north of 42° S (e.g., Colonello, 2005;Sardiña and Lopez Cazorla, 2005;Lucifora et al., 2006;Gilberto et al., 2007;Barbini et al., 2012;Belleggia et al., 2012;Troccoli et al., 2022), leaving gaps in local diet descriptions of fish species in southern areas covered with the best-known data from regional and international sources. In fact, in a previous literature search of diet content information for a local pool of 127 marine fish species within the central Patagonia of Argentina by Rincón-Díaz et al. (2021), only 12 local studies between 1979 and 2021 were found, representing 29% of the recorded species in the studied area. ...
Article
Full-text available
Developing frameworks to identify knowledge gaps and prioritize research on diet studies in marine fish species is critical, as this knowledge is required for ecosystem-based management. We applied a framework in central Patagonia, Argentina, which faces a demand for gap assessments in diet knowledge and ecosystem management due to changes in marine fish assemblages' structure and function linked to industrial fishing and tropicalization. Our framework effectively identified gaps by examining the history of research efforts regarding spatial and temporal coverage, sampling sizes, fish life stages, and information quality of studies per species. We found critical gaps in local diet studies, particularly for mostly bony, Petromyzonti, and Myxini species, whereas elasmobranchs received the best coverage of the diet described. Most studies lack evaluation of ontogenetic diet changes and prey cumulative curves. Fixing these shortcomings improves research quality and reduces data uncertainties in community assessments. The prioritization framework identified high-priority species as those that require updated diet information, had shifted ranges, and lacked data. Our framework can be tailored to other biological traits and regions based on specific contextual needs to identify research gaps and priorities for fish assemblages impacted by global change while disseminating knowledge from diverse sources and languages.
... In the warm months, incidental catches of most species occur closer to the coast, in very shallow waters, mainly below 20 m depth, where the highest fishing effort concentrates, following the distribution pattern of the target species (Haimovici et al. 1996;Prado et al. 2021). During this period, small juveniles of several species of sciaenidae fish and adult M. furnieri are abundant near the shore (Haimovici et al. 1996), attracting both fishers and species that prey upon them, as is the case of P. blainvillei, S. guggenheim and A. castelnaui (Colonello 2005;Barbini and Lucifora 2012;Belleggia et al. 2019;Bassoi et al. 2020;Prado et al. 2021). Thus, extensive fishing effort in an area with a relatively high abundance of these animals results in high bycatch mortality (Secchi et al. 1997;Prado et al. 2021). ...
Article
Full-text available
Bycatch is one of the main causes of mortality among marine megafauna around the world. In the coastal waters of southern Brazil, bycatch in gillnet fisheries affects threatened species that use this region as a breeding and feeding area. The identification of hotspot areas of bycatch is necessary to design and prioritize efficient spatial–temporal closures that protect the largest possible number of threatened species of marine megafauna. In this context, the use of a multispecies approach is an important step towards planning effective fisheries management measures. This study has two main objectives: (1) to identify hotspot areas of bycatch in gillnet fisheries for the most threatened marine megafauna species on the continental shelf of Rio Grande do Sul (RS); (2) compare single species and multispecies mapping methods for the identification of these areas. To meet these objectives, data collected by onboard observers during fishing trips in the coastal commercial RS-based gillnet fleet between 2013 and 2015 and between 2018 and 2020 were analyzed. For the identification of the areas, hierarchical Bayesian spatio-temporal models were implemented, using monospecific and multispecific approaches and a weighting system for the conservation status of the species. Both approaches provide similar results, identifying three bycatch hotspots according to the time frame analysed. Based on our findings, we propose these areas as the top candidates for fishing exclusion zones, based on their biodiversity value. The suggested spatio-temporal closures would benefit several endangered species while also contributing to the recovery of fish populations.
... Since the mid-1990s, an increasing number of T. lathami individuals has been captured in the ACS between 35 and 41 S for research purposes (Orlando et al., 2018). It has been mentioned as a key prey in the diet of many bony fishes of commercial interest (i.e., stripped weakfish Cynoscion guatucupa, García & Marí, 2008; Brazilian flathead Percophis braziliensis, Milessi & Marí, 2012; Argentine hake Merluccius hubbsi, Cousseau, 1967), elasmobranch fishes (i.e., skates, Barbini & Lucifora, 2011a, 2011b, 2016a, 2016b and marine mammals (i.e., franciscana dolphin Pontoporia blainvillei, Paso-Viola et al., 2014; South American sea lion Otaria flavescens, Jarma et al., 2019). Hence, both as prey and/or as a potential competitor for food items with co-current E. anchoita and S. colias, the species can be considered an important component of the ACS marine ecosystem. ...
Article
Full-text available
Rough scad Trachurus lathami is a key pelagic fish in the Argentinean continental shelf (ACS, south‐west Atlantic Ocean), with recent increases in abundance. It is a main prey of fishes and marine mammals, and shares the environment with commercially relevant pelagic species (Engraulis anchoita and Scomber colias), playing an important role linking lower and upper trophic levels in the ecosystem. This study aims to determine the ontogenetic changes in the diet composition, feeding strategy, trophic niche breadth and trophic level of T. lathami in the North Patagonian Shelf (43°–45°30′S). The stomach contents of adult fish (n = 238) were analysed. The results suggest a clear ontogenetic shift in the diet at a size of ~190 mm. Smaller individuals (160–190 mm) were specialized on misidaceans, and showed the highest trophic level, while larger T. lathami (221–230 mm) consumed decapods (Peisos petrunkevitchi) and teleosts (eggs and larvae). Trophic niche breadth was higher at the medium‐sized class (191–220 mm), which mainly preyed on copepods (Calanoides carinatus) and chaetognaths (Sagitta spp.), evidencing a more diverse diet and a rather generalist strategy. Updated information on the trophic ecology of T. lathami evidences its extremely plastic feeding behaviour, being able to adapt its trophic niche to the most readily available food items from the mesopelagic community.
Technical Report
Resumen ejecutivo Los condrictios o peces cartilaginosos comprenden a los tiburones, batoideos (rayas, chuchos y afines) y holocéfalos (peces gallo y quimeras). Este grupo surgió hace más de 450 millones de años, antes que los primeros vertebrados terrestres. Son un grupo pequeño y diverso, con cerca de 1250 especies. Ocupan un gran rango de hábitats, desde ríos y estuarios hasta mares profundos. En el caso de los grandes tiburones, son predadores tope y tienen un efecto regulador en la cadena trófica, ayudando a mantener ecosistemas productivos y saludables. En la actualidad, los condrictios son el grupo de vertebrados más amenazado de los océanos, con el 37% de las especies evaluadas clasificadas bajo alguna categoría de amenaza según la Unión Internacional para la Conservación de la Naturaleza (UICN). La vulnerabilidad debida a su biología (madurez sexual tardía, baja tasa de reproducción, crecimiento lento y amplio rango de distribución), combinada con un manejo pesquero no sostenible, han redundado en una rápida declinación poblacional de varios representantes de este grupo a escala global (70% de tiburones pelágicos han visto sus poblaciones reducidas en los últimos 50 años). En el mar Argentino se han registrado 105 especies de condrictios (55 tiburones, 48 batoideos y 2 holocéfalos), de las cuales 59 (62%) se encuentran amenazadas de extinción. La Reserva Bahía San Blas, localizada al sur de la provincia de Buenos Aires y muy cerca del límite con la provincia de Río Negro, resguarda ecosistemas costeros de importancia para al menos 16 de estas especies de condrictios (9 tiburones, 6 batoideos y 1 holocéfalo), que lo habitan de manera permanente o visitan estacionalmente. Estas 16 especies son capturadas por la pesca deportiva, durante al menos una parte de su ciclo de vida. El 94% de estas especies se encuentra bajo alguna categoría de amenaza de extinción a escala global y/o regional, de acuerdo a los criterios de la Lista Roja de la UICN, con el 44% En Peligro Crítico. Con el propósito de facilitar una protección efectiva de estas especies, se trabajó con especialistas en la materia para sistematizar información acerca del estado del conocimiento sobre los condrictios en la Reserva Natural de Uso Múltiple Bahía San Blas (Reserva Bahía San Blas). Mediante este esfuerzo colaborativo se pretende sentar bases y poner en agenda la necesidad de impulsar la preservación y recuperación de estas especies, en línea con los objetivos de conservación del área protegida, los planes y programas nacionales de protección de condrictios y otras metas nacionales e internacionales relacionadas. De esta forma, este documento tiene el objetivo de convertirse en un aporte a la planificación de la gestión, la conservación y los usos en el área protegida y a la promoción de acciones complementarias que propicien la protección efectiva de las especies de condrictios que habitan la Reserva Bahía San Blas. Hasta el año 2007, en la Reserva había pesca artesanal marcadamente estacional durante la primavera. El arte de pesca utilizado era la red agallera de fondo, arte pasivo y altamente selectivo. La pesca era dirigida directamente a una única especie blanco: el gatuzo Mustelus schmitti, concentrando el esfuerzo sobre la fracción adulta de la población. La pesca artesanal y la pesca deportiva tenían un bajo grado de solapamiento en la utilización de los recursos pesqueros en el área, con una superposición temporal parcial entre ambas actividades. En la actualidad la pesca artesanal se encuentra vedada a partir de un fallo de la Corte Suprema de Justicia. En la Reserva Bahía San Blas se realiza anualmente una intensa actividad de pesca deportiva, principal motor económico y turístico del área, concentrada entre los meses de octubre y abril. Se pescan especies de condrictios al borde de la extinción (gatuzo, cazón y escalandrún En Peligro Crítico). San Blas es conocido como el paraíso del pescador. Con el mayor número de estudios e informes realizados y por sus capturas, se puede considerar el mejor pesquero del Atlántico sur del que se tenga registro. Entre los años 2008 y 2010 se registraron capturas de 22 a 30 Tn de gatuzo y de la raya Sympterygia por la pesquería recreativa de costa. Cerca del 12% del volumen capturado por pesca deportiva de costa corresponde a peces cartilaginosos, y casi un 11% del volumen capturado en la pesca embarcada corresponde al mismo grupo y para el mismo período. El resto corresponde a peces óseos. El gatuzo M. schmitti es la especie de condrictios con mayores capturas tanto en pesca de costa como embarcada. El volumen total capturado mediante la pesca embarcada es superior al de costa (por ejemplo, en las temporadas 2008/9 y 2009/10 se capturó 5 a 21% más en modalidad embarcada). En términos de las capturas por unidad de esfuerzo (CPUE), las capturas por pesca embarcada pueden llegar a cuadriplicar las de la pesca de costa (costa = 2,1 peces/hora vs. embarcada = 7,5 peces/hora). Dicho aspecto debe ser tenido en cuenta a la hora de planificar el manejo pesquero de la Reserva. A pesar de la intensa actividad pesquera, los propios pescadores deportivos notan que la calidad de la pesquería está decayendo. En un estudio reciente de percepción, casi todos los pescadores deportivos encuestados (más del 95%) afirmaron que los peces cartilaginosos en general están en peligro de extinción y reconocieron la necesidad de cuidarlos. Además, declararon que aceptarían medidas de manejo que aporten a la sostenibilidad de los recursos pesqueros. Aún queda mucho por entender sobre los condrictios en el sitio de interés. En la actualidad existen vacíos de información acerca de la distribución local, el comportamiento, la reproducción, la alimentación y otras variables poblacionales para las 16 especies de condrictios registradas para la Reserva Bahía San Blas. Para resolver estos vacíos de información, con miras a la adecuada implementación del área protegida, la promoción de mejores prácticas de manejo y la protección de los condrictios, se recomienda implementar nuevos análisis, integrales y a largo plazo, sobre la biología y ecología del grupo, incluyendo monitoreo de la pesca deportiva, los impactos del esfuerzo pesquero y del cambio climático, entre otros. Los monitoreos deberán incluir: registro de desembarques a nivel de especie, especialmente durante primavera y verano; registro de visitantes mediante encuestas permanentes y estandarizadas; evaluación económica de la pesca deportiva. Es menester analizar la relación entre la pesca deportiva, las percepciones y las prácticas de los usuarios (tanto locales como visitantes). Finalmente, dada la importancia del área para varias especies de peces cartilaginosos, principalmente para los grandes tiburones costeros, resulta imperioso armonizar la normativa actual como base para el ordenamiento de la pesca deportiva, tanto en términos temporales como espaciales, dentro los límites de la Reserva Bahía San Blas.
Technical Report
Full-text available
Este documento es una novedosa recopilación de información científica sobre el impacto del cambio climático en el Mar Argentino. Es el primer informe nacional de estas características y un insumo fundamental para la formulación de políticas públicas y metas y objetivos de gestión
Technical Report
Full-text available
El cambio climático es un fenómeno a escala global, con efectos evidentes que repercuten sobre los diversos cuerpos de agua provocando migraciones de especies, incremento en el nivel del mar, y aumento de la frecuencia e intensidad de condiciones climáticas extremas. En línea con lo expresado por la FAO en múltiples ámbitos y publicaciones, es posible afirmar que estos cambios generan impactos continuos a nivel ambiental, social y económico. La pesca y la acuicultura en general, y particularmente la pesca y la acuicultura de pequeña escala son actividades particularmente vulnerables a los efectos del cambio climático. Por ello, es necesario desarrollar políticas y acciones que contribuyan a mitigar los cambios y a acelerar la adaptación del sector a una realidad desafiante. En este sentido, la carencia periódica de agua y la alteración de sus parámetros de calidad, las sequías y las variaciones en los patrones de las temperaturas guardan correlación con el cambio climático, y son parte de un abanico mucho más amplio de situaciones que afectan a los sistemas productivos, y de cuya evolución depende el equilibrio natural en los lagos, ríos y mares. Por otra parte, la confluencia de factores naturales y antrópicos en los fenómenos que se están sucediendo, indican que resulta esencial tener presente que los impactos asociados a la variabilidad natural del clima pueden verse intensificados y su frecuencia incrementada debido al cambio climático. El escenario planteado hace necesaria una profunda innovación y adaptación de las políticas públicas, las legislaciones, y sus instrumentos de gestión asociados, para dar lugar a acciones capaces de mitigar eficazmente los efectos del cambio climático. Este proceso deberá originarse en la recolección, sistematización y análisis de los datos que puedan resultar relevantes, y deberá orientarse hacia la concientización sobre la naturaleza y profundidad de la problemática que se aborda. Asimismo, es imperioso consolidar un sistema de monitoreo que permita detectar con la mayor antelación posible los cambios ambientales y las variaciones en las poblaciones de recursos acuáticos. En línea con lo expuesto, el presente trabajo se centra en la investigación y recopilación de información científica sobre el cambio climático y sus consecuencias sobre la actividad pesquera. El mismo fue realizado por un grupo interdisciplinario de expertos, y constituye el primer avance para aportar información de calidad a los tomadores de decisión, fundamentalmente a quienes tienen la responsabilidad de estructurar e implementar políticas públicas. De hecho, resulta impensable la posibilidad de una planificación estratégica del sector pesquero y acuícola que no contemple la variabilidad ambiental, así como su incidencia y consecuencias. Por ello, este trabajo resulta un aporte fundamental para la formulación de metas y objetivos de gestión, tomando en cuenta la dificultad propia de las determinaciones relacionadas con los recursos acuáticos, así como el desafío que implica asegurar la sustentabilidad del sector, incluyendo en el análisis situacional el impacto de la reciente pandemia, que modificó la actividad normal de las flotas y la explotación de los distintos recursos a lo largo del litoral argentino. En un escenario marcado por la incertidumbre, una planificación certera aunada al compromiso y el esfuerzo mancomunado del sector público y privado, ha demostrado ser una senda virtuosa que se traduce en una productividad que ya supera los niveles anteriores a la pandemia. Sin dudas, esta capacidad de adaptación y cooperación debe dar lugar al sano orgullo por el desenvolvimiento alcanzado. Finalmente, este primer informe nacional sobre las implicancias del cambio climático en las pesquerías argentinas constituye la primera evaluación integral del conocimiento sobre cambio climático y pesquerías en el mar argentino. Su génesis y desarrollo implica la necesidad de una actualización permanente. Esto nos obliga a mantener un vínculo estrecho de colaboración e x intercambio con los distintos investigadores e instituciones públicas y privadas, cuya participación y compromiso desinteresado los hacen merecedores de un especial reconocimiento.
Article
Full-text available
Skates by virtue of their abundance and widespread occurrence appear to play an influential role in the food webs of demersal marine communities. However, few quantitative dietary studies have been conducted on this elasmobranch group. Therefore, to better understand the ecological role of skates, standardized diet compositions and trophic level (TL) values were calculated from quantitative studies, and compared within and among skate and shark taxa. Prey items were grouped into 11 general categories to facilitate standardized diet composition and TL calculations. Trophic level values were calculated for 60 skate species with TL estimates ranging from 3.48 to 4.22 (mean TL = 3.80 ± 0.02 SE). Standardized diet composition results revealed that decapods and fishes were the main prey taxa of most skate species followed by amphipods and polychaetes. Correspondingly, cluster analysis of diet composition data revealed four major trophic guilds, each dominated by one of these prey groups. Fish and decapod guilds were dominant comprising 39 of 48 species analyzed. Analysis of skate families revealed that the Arhynchobatidae and Rajidae had similar TL values of 3.86 and 3.79 (t-test, P = 0.27), respectively. The Anacanthobatidae were represented by a single species, Cruriraja parcomaculata, with a TL of 3.53. Statistical comparison of TL values calculated for five genera (Bathyraja, Leucoraja, Raja, Rajella, Rhinoraja) revealed a significant difference between Bathyraja and Rajella (t-test, P = 0.03). A positive correlation was observed between TL and total length (L T) with larger skates (e.g. >100 cm L T) tending to have a higher calculated TL value (>3.9). Skates were found to occupy TLs similar to those of several co-occurring demersal shark families including the Scyliorhinidae, Squatinidae, and Triakidae. Results from this study support recent assertions that skates utilize similar resources to those of other upper trophic-level marine predators, e.g. seabirds, marine mammals, and sharks. These preliminary findings will hopefully encourage future research into the trophic relationships and ecological impact of these interesting and important demersal predators.
Article
The food habits of the beaked skate were studied utilising 274 individuals obtained from the incidental catches of the Argentine hake (Merluccius hubbsi) fishery. The most important prey were the Argentine hake, the southern cod (Patagonotothen ramsayi), the Argentine shortfin squid (Illex argentinus). the isopod (Serolis schythei). the "raneya" (Raneya brasiliensis. Pisces: Ophidiidae), and the Argentine anchovy (Engraulis anchoita). A total of 45 prey species was identified, No differences in the diet between sexes, but significant differences among size classes and between immature and mature individuals were found, Two size-related dietary shifts previously reported in this species. at around 35 cm and 85 cm total length were confirmed and related to changes in habitat utilisation. The first shift entails a major change from benthic prey (mostly crustaceans) to demersal-benthic prey (mostly fishes) and the second change from demersal-benthic to demersal-pelagic prey (increased consumption of Argentine hake and decreased consumption of southern cod). The second shift coincides with sexual maturation and may reflect a behavioural response to maturation. (C) 2001 International Council for the Exploration of the Sea.
Article
Resumen Available published and unpublished information on the distribution , environment and biology of batoid fishes occurring off Brazil, Uruguay and Argentina is summarized and reviewed for sixty species. Zoogeographic provinces proposed by Lopez (1963, 1964) are considered an adequate framework to define the distribution of these species. The Magellanic fauna, which includes the Pacific Ocean coast off Chile, is a well-defined biological unit. Conversely, the northern fauna changes gradually from the temperate Bonaerensean District off northern Argentina, Uruguay and southern Brazil, to a subtropical and tropical fauna along most of the Brazilian coast. The more drastic change to a truly tropical fauna occurs off French Guiana and Surinam. Within the area studied, rajids are the dominant batoid family, with a large number of rhinobatids and myliobatoids to the north. A more detailed cluster analysis (Jaccard) of batoid distribution patterns, results in nine groups largely corresponding with biological and distributional information: Group I of Magellanic species, Group II of three Magellanic species extending into the Bonaerensean District, a small Group III formed by the deep water skates Bathyraja schroederi, Amblyraja frerichsi and Dasyatis cf. pastinaca, another small Group IV of species with uncommon distributions, Group V of Bonaerensean species, Group VI of relatively rare deep water species, Group VII of northern migrants into the Bonaerensean District, Group VIII of Brazilian species occurring in both the South Brazilian and Brazilian districts, and a completely different Group IX of Northern Brazilian species with their southern distributional limit usually at Rio de Janeiro. A large amount of information is available on many of the species, regarding depth and temperature of occurrence, patterns of distribution, and in many cases reproduction and feeding. Preliminary evaluations of abundance have been obtained for a few species only, but the risk of overfishing is clearly documented for some of them. An odd taxonomic - geographic situation is the status of D. cf. pastinaca, and a peculiar type of cloacal gestation has been described for Benthobatis (similar to that in Squatina). Studies at community ecology level are discussed and full references provided, including many reports only published as meeting summaries.