Article

Tumour targetingEfficient delivery

Authors:
To read the full-text of this research, you can request a copy directly from the author.

Abstract

One way to reduce the side effects of cancer chemotherapy on healthy tissues is to design targeted drugs; another is to use special delivery systems to deliver a drug specifically to the cancer cells. Tamara Minko and colleagues now report a system that delivers camptothecin selectively and effectively to ovarian cancer cells in a mouse model.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the author.

ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
The central problem in cancer chemotherapy is the severe toxic side effects of anticancer drugs on healthy tissues. Invariably the side effects impose dose reduction, treatment delay, or discontinuance of therapy. To limit the adverse side effects of cancer chemotherapy on healthy organs, we proposed a drug delivery system (DDS) with specific targeting ligands for cancer cells. The proposed DDS minimizes the uptake of the drug by normal cells and enhances the influx and retention of the drug in cancer cells. This delivery system includes three main components: (i) an apoptosis-inducing agent (anticancer drug), (ii) a targeting moiety-penetration enhancer, and (iii) a carrier. We describe one of the variants of such a system, which utilizes camptothecin as an apoptosis-inducing agent and poly(ethylene glycol) as a carrier. Luteinizing hormone-releasing hormone (LHRH) was used as a targeting moiety (ligand) to LHRH receptors that are overexpressed in the plasma membrane of several types of cancer cells and are not expressed detectably in normal visceral organs. The results showed that the use of LHRH peptide as a targeting moiety in the anticancer DDS substantially enhanced the efficacy of chemotherapy, led to amplified apoptosis induction in the tumor, and minimized the side effects of the anticancer drug on healthy organs. The LHRH receptor targeting DDS did not show in vivo pituitary toxicity and did not significantly influence the time course or the plasma concentration of luteinizing hormone and its physiological effects on the reproductive functions of mice. • adverse side effects • apoptosis • cancer • targeted drug delivery