ArticlePDF Available

The Effect of Changing Background Emissions on External Cost Estimates for Secondary Particulates

Authors:

Abstract and Figures

This paper discusses the importance of background concentrations of NH3, SO2 and NOx for the estimation of environmental external costs of secondary particulates. A modified version of the ECOSENSE software was developed within the ongoing series of European ExternE projects, devoted to the assessment of energy related environmental external costs. Using the Windrose Trajectory Model the yearly average concentrations of pollutants at ground level was calculated based on average meteo data and a simple scheme of atmospheric reactions. After this, epidemiological exposure response functions are applied to determine the impact on the receptors. Finally, the calculated physical impacts are monetized on the basis of selected economic evaluations. The fact that estimates of external costs of incremental emissions of NOx and SO2 will increase when background emissions decrease is the most important new result. The choice of relevant background emissions is therefore essential to obtain meaningful estimates of external costs.
Content may be subject to copyright.
47 Open Environmental Sciences, 2008, 2, 47-53
1876-3251/08 2008 Bentham Open
Open Access
The Effect of Changing Background Emissions on External Cost Estimates
for Secondary Particulates
L.L.R. Int Panis*
Integrated Environmental Studies, Flemish Institute for technological Research (VITO), Belgium
Abstract: This paper discusses the importance of background concentrations of NH3, SO2 and NOx for the estimation of
environmental external costs of secondary particulates. A modified version of the ECOSENSE software was developed
within the ongoing series of European ExternE projects, devoted to the assessment of energy related environmental exter-
nal costs. Using the Windrose Trajectory Model the yearly average concentrations of pollutants at ground level was calcu-
lated based on average meteo data and a simple scheme of atmospheric reactions. After this, epidemiological exposure-
response functions are applied to determine the impact on the receptors. Finally, the calculated physical impacts are
monetized on the basis of selected economic evaluations. The fact that estimates of external costs of incremental emis-
sions of NOx and SO2 will increase when background emissions decrease is the most important new result. The choice of
relevant background emissions is therefore essential to obtain meaningful estimates of external costs.
INTRODUCTION
General
Environmental externalities from the emission of pollut-
ants in the atmosphere are the sum of the costs (adverse im-
pacts) that are imposed on society and the environment but
not taken into account by the polluter (e.g. health effects of
inhalation of secondary aerosols). The European ExternE
project series is the most state-of-the-art attempt to build a
consistent methodology to estimate the environmental exter-
nal costs from different fuel cycles. The resulting accounting
framework was implemented in the ECOSENSE software
package. During several of the projects in the ExternE series,
different versions of ECOSENSE were distributed to partici-
pants in order to make calculations in their own countries
(E.g. the 1995 National Implementation project) [1]. This
proved to be a very successful strategy leading to numerous
external cost estimates in different countries being published.
The software was distributed with databases including all
necessary data and parameters such as meteorology, back-
ground emissions, concentration response functions and
valuation data that allow the model to be used with default
settings. The parameters used for modelling however are
rarely discussed although this may have a large impact on
the results [2]. The current European CASES project will
therefore need to take these considerations into account.
Regional Dispersion
The regional dispersion model at the heart of ECO-
SENSE is the Windrose Trajectory Model (WTM), based on
the windrose approach of the Harwell Trajectory Model. It is
used to estimate the concentration and deposition of secon-
dary acid species on a European wide scale. It was originally
*Address correspondence to this author at the Integrated Environmental
Studies, Flemish Institute for technological Research (VITO), Belgium;
E-mail: luc.intpanis@vito.be
developed at Harwell Laboratory by [3] for atmospheric ni-
trogen species, and extended to include sulphur species by
[4]. The model is a receptor-orientated Lagrangian plume
model employing an air parcel with a constant mixing height
of 800 m moving with a representative wind speed. The re-
sults are obtained at each receptor point by considering the
arrival of 24 trajectories weighted by the frequency of the
wind in each 15° sector. The trajectory paths are assumed to
be along straight lines and are started at 96 hours from the
receptor point [5]. All data required to run the Windrose Tra-
jectory Model, including the background emissions, are pro-
vided by the ECOSENSE database. The background emis-
sions are the total emissions from all other sources of SO2,
NOx and NH3 given on a 50x50km grid covering the whole
of Europe. These emissions undergo the same chemical
transformations as the pollutant source that is being studied
and determine the rate at which pollutan ts react in the at-
mosphere.
Chemical Transformations
Within ECOSENSE applications, the WTM is configured
to resemble the atmospheric chemistry of the Harwell Tra-
jectory Model. The chemical transformations modelled in
WTM are schematically shown in Fig. (1). Through the ac-
tion of highly active oxygen containing species such as
ozone, primary emissions of NO and SO2 are converted into
acids. Reactions with ammonia transform these acids into
ammonium salts (ammonium nitrate and ammonium sul-
phate). Several chemical species occur in more than one dia-
gram in Fig. (1) (not all relationships are shown) indicating
competing reactions. Sulphuric acid is assumed to be some-
what more successful in scavenging ammonia from the at-
mosphere than nitric acid. All secondary species are removed
from the atmosphere through wet or dry deposition, each
species having its specific deposition rates.
The simple reaction scheme used by ECOSENSE does
not allow the modelling of organic aerosol formation. Never-
48 Open Environmental Sciences, 2008, Volume 2 L.L.R. Int Pa nis
theless [6] could show that (with the exception of organic
aerosols) WTM was sufficiently reliable given its purpose.
To test the validity of the annual average concentrations ob-
tained by ECOSENSE they were compared with measure-
ments as well as results of a more sophisticated model built
around the chemical gas phase mechanism CACM [7] and
the aerosol module MADRID 2 [8, 9] which provides un-
precedented accuracy for many components of the aerosol
mixture. Their comparison, complicated by the large number
of substances modelled by MADRID 2 and not by ECO-
SENSE [6], therefore focused on the total amount of secon-
dary inorganic pollutants and found that the results of both
models agreed well, especially for the fraction attributed
with health effects.
Health Effects of Secondary Aerosols
It has been shown in epidemiology, but also in toxicol-
ogy and medical experiments, that particles in ambient air
cause adverse health effects in populations exposed to them
[10]. A large number of studies have demonstrated an asso-
ciation between PM, respiratory and cardiovascular illnesses
and increased mortality (both acute and chronic). The most
important health endpoints used in ECOSENSE are summa-
rized in the first column of Table 1. ECOSENSE uses con-
centration-response functions (CRF, references in Table 1)
and data on population density to estimate impacts on public
health.
Table 1. Most Important Health Endpoints Included in Ex-
ternE (Summarized from [11])
Health Endpoint Unit Implicated Pollutants
Chronic mortality
[12]
YOLL5 Primary PM2.5 (other)
Primary PM2.5 (traffic)1
Primary PM10
2
Nitrate aerosols 3
Sulphate aerosols 4
Chronic Bronchitis
[13]
Cases Primary PM2.5
Primary PM10
Nitrate aerosols
Sulphate aerosols
No effect in cluded Nitric Acid
Sec. Organic aerosols
1Assumed to cause 50% more mortality th an the general PM2.5 mixture.
2Assumed to cause 40% less mortality than PM2.5.
3Assumed to cause 50% less mortality than PM10.
4Assumed to be equivalent to PM10 (including sulphuric acid).
5Years Of Life Lost (loss of life expectancy).
Fig. (1). Schematic view of atmospheric reactions in ECOSENSE describing the transformation of nitrogen and sulphur containing emissions
into secondary aerosols (source: adapted from [4] by [5]).
External Cost Estimates for Secondary Particulates Open Environmental Sciences, 2008, Volume 2 49
Most of the available epidemiological studies are based
on the mass of PM without any distinction of physical or
chemical characteristics (acidity, solubility, …). There is for
example limited evidence for the toxicity of components like
sulphates and nitrates that make up a large fraction of the
mass of par ticulate matter in ambient air. In particular there
is a lack of epidemiological studies related to nitrate aerosols
because until recently this pollutant was not monitored by air
pollution monitoring stations [11]. It is however crucial to
quantify the external costs of source-specific contributions to
ambient PM. This will improve decisions on cost-efficient
abatement strategies, and will allocate the scarce resources to
those emission reduction measures that yield the largest re-
duction in air pollution related health effects.
Therefore ExternE tried to differentiate between primary
and secondary particles. In a first series of studies [14] the
assumption was made that the toxicity of all sulphates was
equal to that of the general PM2.5 mixture and the toxicity of
particulate nitrates equal to that of PM10. This distinction
between sulphates and nitrates was based only on size, not-
ing that nitrates need other particles to condense on, whereas
sulphates self-nucleate and are therefore smaller on average.
The ratio of CRF slopes of PM10 to PM2.5 was taken as 0.6,
because this is a typical value of the ratio of concentrations
of PM2.5 and PM10 [14].
For the most recent methodological report from the Ex-
ternE series the assumptions about the toxicity of the differ-
ent PM types have b een adapted to the latest epidemiological
and toxico logical evidence. [11] state that it is now more
likely than not that primary particles from combustion, more
specifically from traffic are more damaging to health than
other particles. For the secondary particles the evidence is
less convincing. In particular for nitrates there is still not
much evidence for harmful effects, whereas for sulphates
quite a few studies, including the very important cohort
study of [12], do find associations. Thus sulphates are now
treated as PM10, and nitrates as being half as toxic as PM10.
Primary particles from traffic are estimated to be 1.5 as toxic
as PM2.5 and particles from other combustion sources like
power plants are also treated as PM10.
Implications for External Cost Estimates in the Future
The continued use of older ECOSENSE versions today
may yield results th at are not compatible with the most up-
to-date methodology. Ever since the first model versions
were distributed, important changes to the ExternE method-
ology have been made. Several dominant exposure-response
functions (e.g. chronic mortality and chronic bronchitis)
were revised a number of times and recently new empirical
results for the value of a Life Year lost were introduced (e.g.
[5, 11, 14-16]. While the exposure-response functions and
monetary values included with the ECOSENSE software can
easily be modified by the user, changing the background
emissions used by the Windrose Trajectory Model is not
straightforward. More recent background emissions have
been compiled into ECOSENSE compatible formats, but
these were not widely distributed among ECOSENSE users
from previous ExternE projects (Bickel P., pers. com..).
Most users therefore still use the default background emis-
sions data included with the model that refer to the years
1990 or 1994. Even the ECOSENSE Pointsource 2000 ver-
sion still contained 1994 background emissions albeit on a
50x50km resolution (Krewitt W., pers. comm.).
To complicate things, the emissions database for the year
1994 has meanwhile been updated by EMEP. The first ver-
sion will therefore be referred to as 1994a (included with
ECOSENSE) and the more recent update (used in this paper
for the first time) as 1994b.
MATERIALS AND METHODS
The modeling results discussed in this paper were all
obtained with the transport version of ECOSENSE [5].
These results also apply to the point source versions because
the WTM parameters appear to be the same in all versions
available to the au thor. In addition a preliminary assessment
of the deposition and wash-out modelling in both versions
revealed no meaningful differences [6]. The ECOSENSE
software is available from the Institut für Energiewirtschaft
und Rationelle Energieanwendung (IER) of the University of
Stuttgart in Germany. More details can be found at: http:
//www.externe.info.
ECOSENSE stores only one set of background emissions
on the EUROGRID co-ordinate system, which defines equal-
area projection grid cells, covering all EU and European
non-EU countries in a Paradox database at a 50x50km reso-
lution [17]. All versions known to us use either 1990 or
1994a EMEP emissions.
For the calculations presented here, new emissions data
for the years 1990, 1994b, 2000, 2005, 2010 and 2020 were
taken for the EU18 countries (including the 15 old member
states as well as Iceland, Norway and Liechtenstein) from
the UNECE/EMEP emission database WebDab (http:
//www.emep.int). This online database was constructed to
facilitate access to the emission data reported to the Conven-
tion on Long-Range Transboundary Air Pollution
(CLRTAP). This data served as the basis for the preparation
of six new versions of the background emissions Paradox
database that were integrated to work with ECOSENSE and
WTM. This involved running the model without any extra
emissions to create a database with background concentra-
tions which was then again integrated to work with ECO-
SENSE and WTM. Results were calculated for each dataset
and used in a validation of previously published results.
RESULTS
Total Background Emissions (EU18)
Emissions of SO2 and NO2 have been decreasing consid-
erably since 1990 (Fig. 2) and this is expected to continue for
another decade. The total decrease between 1990 and 2020 is
projected to be 80% for SO2 and 60% for NOx. For individ-
ual grid cells (e.g. in Belgium) the differences may be even
more important.
The emissions of NH3 have decreased to a much lesser
extent. Projected emissions of NH3 were not completely re-
ported by all countries for the year 2005 and could therefore
not be used in this study. This different evolution will
change balance in the atmospheric chemistry and change the
50 Open Environmental Sciences, 2008, Volume 2 L.L.R. Int Pa nis
amount of SO2 and NOx that gets converted into secondary
particulate matter [18]. This effect is reproduced in a fairly
simple way by the WTM reaction scheme (Fig. 1).
Externalities R esulting from Secondary Aerosols
Fig. (3) shows the results obtained with ECOSENSE for
the release of 1 additional tonne of pollutant. Six runs with
different background emissions were performed. The results
are expressed in Euro per tonne of pollutant emitted (either
NOx or SO2) and includes all damages caused by the secon-
dary aerosols resulting from this primary emission.
The original results (labelled 1994a, obtained with the
background emissions originally provided with ECOSENSE)
are quite similar to the results obtained with the emissions
for 1994 (1994b) currently distributed by EMEP. This exer-
cise therefore constitutes an important independent valida-
tion of the ExternE-methodology. Fig. (3) also shows that
costs per tonne are expected to rise significantly in the fu-
ture. This effect can easily be understood from the ECO-
SENSE reaction scheme (Fig. 1). Because the emissions of
NH3 are expected to stay at a similar level whereas SO2
emissions show a strong decrease (Fig. 2) more NH3 is left to
react with sulphuric acid and transform it to ammonium sul-
phate.
Similarly when NOx emissions decrease significantly
more NH3 is left to react with nitric acid and more nitric acid
will be converted to nitrate aerosol. Since ECOSENSE only
attributes health effects to the nitrate aerosol (and not to its
nitric acid precursor) the cost per one tonne of NOx emitted
will increase.
Model results show it to be more than twice as high in
2020 than it was in 1990. The emission of one tonne of SO2
will also lead to imp acts from sulphates that are nearly twice
as high in 2020 as compared to 1990.
DISCUSSION
Literature
The only similar manipulation of background emissions
with ECOSENSE was done in the Green Accounting project
[5, 19] where it was demonstrated that impacts from emis-
sions are higher when emissions in a neighbouring country
are set to zero (a test was carried out for Germany and the
Netherlands). The reason for this effect is that concentrations
of NH3 are higher without the emissions in the neighbouring
country so that more NH3 remains available to react with
local SO2 and NOx emissions to form sulphates and nitrates.
The influence of German emissions on the Dutch damage
estimation was about 10% and vice versa about 1 percent. In
addition [19] demonstrated that the effects of emission re-
ductions on impacts are not linear, which is entirely consis-
tent with the results presented her e (Fig. 3).
Modelling Results
It is clear from the results in Fig. (3) that ECOSENSE
external cost estimates (in /tonne of primary pollutant emit-
ted) will rise in the future. Th is is due to two mechanisms in
the scheme of atmospheric reactions used in the WTM mod-
ule. The first effect is that more sulphuric acid is converted
to ammonium sulphate when more ammonia is available.
This in turn causes more SO2 to be converted to sulphuric
acid. Both sulphuric acid and ammonium sulphates are at-
tributed with adv erse health effects in ECOSENSE. These
health impacts from the release of 1 unit of SO2 will incr ease
54% between 1994(b) and 2010. On the other hand impacts
from SO2 itself will be 10% lower because it gets depleted
from the atmosphere. The second effect is that similarly
more nitric acid is converted to ammonium nitrate when NH3
is abundant. In this way future concentrations of nitric acid
will be lower and concentrations of ammonium nitrate will
rise. This finding is related to the question whether nitric
Fig. (2). Comparison of total emissions over the EMEP grid for different years.
External Cost Estimates for Secondary Particulates Open Environmental Sciences, 2008, Volume 2 51
acid is also toxic (pers. comm. A. Rabl, 2004). Unlike sul-
phuric acid, the tested ECOSENSE version assumes nitric
acid is harmless (P. Bickel, pers. comm., 2004). This ex-
plains why impacts from this pathway are expected to show
a stronger increase (+87% between 1994(b) and 2010). If
however nitric acid is toxic, the present day impacts have
been underestimated and the extra conversion of nitric acid
to nitrate in the future would not have an additional effect. If
nitric acid is toxic, the damage cost attributed to the emission
of NO2 could be about 15 to 35% higher than with the refer-
ence assumption of ExternE. The reason why the difference
is not larger lies in the high deposition velocity of HNO3
which reduces the geographic range of the impact relative to
particulate nitrates P. Bickel (pers. comm., 2004).
The relative changes found in our calculations were
compared with the values given in [20], Table 1 for Belgium
(1990 – 2010). The change they report for nitrates is very
similar (93% versus 96% increase in this calculation). The
increase in cost per tonne of SO2 through exposure to sul-
phates was only predicted to increase by 6%-18% by [20],
while it was seen to increase 87% in this trial. The most
likely explanation for this differen ce is that different back-
ground concentrations were used as emissions predictions
for 2010 were updated by EMEP. It proved however impos-
sible to find out exactly which data had been used and com-
pare it with our approach. The continuous update of back-
ground emission files and the use of the correct files for the
questions under study should therefore be a constant point of
attention. Authors should always state which background
emissions were used and be aware of the consequences of
using outdated background emissions for their results. The
issue of changing background emissions is probably even
more important for ozone formation and its impacts (see [20]
for a discussion).
Implications for the Results Published in the ExternE
Transport Project
Results from the ExternE transport project [5] have
widely been used by policy makers to decide on the best
automotive technologies (from an environmental point of
view) and to estimate total savings from different policy
proposals (by linear aggregation of incremental external-
ities). Implicitly external costs per tonne of pollutant calcu-
lated for a given year (often 1990 or 1994) were used to es-
timate avoided externalities in the future. Nevertheless it is
important to take into account changes in atmospheric condi-
tions when analyzing policy decisions that take their full
effect in 2010 or later. Using external cost data obtained with
software using 1990 or 1994 background emissions could
yield spurious results, depending on which pollutants (pri-
mary or secondary) cause the dominant impacts.
To demonstrate the relevance of our main result to prac-
tical problems, we have recalculated the external costs for a
diesel car driven in the centre of Brussels (Belgium), one of
the case studies explored in detail in [15]. The results shown
in Fig. (4) (expressed as -cents per vehicle.km) were ob-
tained by multiplication of the cost per tonne and specific
emission factors. Only results for secondary pollutants are
shown. Direct health impacts from SO2 and impacts on soil
are so small that they are indiscernible on this scale. It is
clear that for the analysis of transportation problems the
changing value of sulphate impacts can be neglected when
compared to increasing nitrate impacts. The sulphur content
of all currently av ailable transportation fuels has become so
low under European fuel standards that the impacts have
become very small. Impacts attributed to NOx emissions
could in this case be approximately 0,3 -cent higher than
previously reported. Obviously the total cost per km is less
sensitive to the non-linearity of the secondary aerosol forma-
tion. Depending on the magnitude of impacts resulting from
Fig. (3). Damage cost per tonne emitted under different background conditions (years).
52 Open Environmental Sciences, 2008, Volume 2 L.L.R. Int Pa nis
primary emissions this may or may not be an important dif-
ference. For the majority of the results published in ExternE
transport [5] primary PM emissions accounted for the largest
share of the total impacts by far, and changing the value for
nitrate would not have a significant effect on the total costs.
On the other hand with the increased use of particulate
filters in advanced and future vehicles, the comparison of
technologies and modes for future years often depends on a
correct estimate for the external effects of NOx [21].
Implications for Industrial Emissions from High Stacks
As for transport, results from the ECOSENSE point
source model have been widely used to compare different
technologies for electricity production. European energy
policy has partly been influenced by results from the Ex-
ternE projects. We believe that the ECOSENSE point source
model behaves very similar to what was demonstrated in this
paper for transport related problems (see also [20]). Never-
theless there are some important differences. Emissions from
power plants are mostly emitted from high stacks that are
some distance away from populated areas whereas exhaust
gases from traffic are sometimes contained within street can-
yons before being dispersed. The sulphur content of the fuels
used is also considerably higher than that of present day
transportation fuels. The external costs of power plants are
therefore dominated by impacts from secondary pollutants.
The correct use of relevant background emissions with
ECOSENSE point source is therefore even more important
for applications focusing on power plants.
CONCLUSION
The most important new finding in this paper is that the
external costs caused by ammonium sulphate and ammo-
nium nitrate in the future (formed from the emission of NOx)
are underestimated when using wrong background emissions
with ECOSENSE or any other model.
There is some uncertainty because the magnitude of this
effect depends on how nitric acid is dealt with in the epide-
miological calculations. If nitric acid is considered not to be
toxic, incremental health impacts of secondary nitrogen spe-
cies will more than double between 1990 and 2010. If on the
other hand nitric acid is attributed with adverse health ef-
fects, present day impacts are underestimated, but the ex-
pected relative increase in the future will be smaller. Exter-
nal costs from SO2 emissions (through the adverse effects of
ammonium sulphate on public health) will increase by 87%
between 1994 and 2010.
Given the dominance of PM2.5 and other locally acting
pollutants, results generated for present transport technolo-
gies show little change.
However, the results presented here are highly relevant
for calculations related to advanced vehicles such as gaso-
line-electric hybrids and diesels with particulate filters.
Because of the relative importance of secondary pollut-
ants for point source emissions from high stacks, changes to
the externalities from power plants are expected to be impor-
tant.
The findings presented in this paper will therefore be
used to produce more accurate estimates of externalities
within the ongoing ExternE projects NEEDS and CASES
(6FP).
ACKNOWLEDGEMENTS
Discussions with Peter Bickel and Ari Rabl contributed
to the results presented in this paper.
Fig. (4). Results for the regionally acting pollutants (from Belgian case study of a 10km trajectory through Brussels, ExternE 1998 [15].
External Cost Estimates for Secondary Particulates Open Environmental Sciences, 2008, Volume 2 53
The author also wishes to thank Rudi Torfs, Leo De
Nocker, Daan Beheydt, Carolien Beckx and four anonymous
reviewers for their useful comments on earlier versions of
this paper. This work was partly funded under the European
ExternE-POL project in the ExternE series.
REFERENCES
[1] ExternE. Externalities of Energy. National Implementation. Brus-
sels: European Commission EC DGXII, Science Research and De-
velopment, 1999; EUR 18528: 606 pp. 606.
[2] Brizio E, Genon G. The influence of different mixing heights on
the ECOSENSE model results at a local scale. Environ Model
Software 2005; 20(7): 917-33.
[3] Derwent R, Nodop K. Long-range transport and deposition of
acidic nitrogen species in north-west Europe. Nature 1986; 324:
356-8.
[4] Derwent R, Dollard G, Metcalfe S. On the nitrogen budget for the
United Kingdom and north-west Europe. QJR Meteorol Soc 1988;
114: 1127-52.
[5] Friedrich R, Bickel P, Ed. Environmental External Costs of Trans-
port. Heidelberg: Springer Verlag, 2001.
[6] Int Panis L, Deutsch F, Torfs R. Factors contributing to the uncer-
tainty of secondary particulates externalities: 2006: Proceedings of
the 2nd International Conference on Quantified Eco-Efficiency
Analysis for Sustainability: 2006; Egmond aan Zee, The Nether-
lands.
[7] Griffin R, Dabdub D, Seinfeld J. Secondary organic aerosol 1.
Atmospheric chemical mechanism for production of molecular
constituents. J Geophys Res 2002; 107(D17): 4332.
[8] Pun B, Griffin R, Seigneur C, Seinfeld J. Secondary organic aero-
sol 2. Thermodynamic model for gas/particle partitioning of mo-
lecular constituents. J Geophys Res 2002; 107(D17): 4333.
[9] Zhang Y, Pun B, Vijayaraghavan K, et al. Development and appli-
cation of the Model of Aerosol Dynamics, Reaction, Ionization,
and Dissolution (MADRID). J Geophys Res 2004; 109: D01202.
[10] WHO. WHO air quality guidelines global update: WHO Regional
Office for Europe, Denmark, 2005.
[11] Rabl A, Hurley F. Impact Pathway approach: Exposure Response
functions. In: Bickel P, Friedrich R, Ed. ExternE Externalities of
Energy, Methodology 2005 Update. Brussels: European Commis-
sion, DG Research 2005; 270.
[12] Pope C, Burnett R, Thun M, et al. Lung cancer, cardiopulmonary
mortality and long-term exposure to fine particulate air pollution. J
Amer Med Assoc 2002; 287(9): 1132-41.
[13] Abbey D, Lebowitz M, Mills P, Pe tersen F, Lawrence Beeson W,
Burchette R. Long-term ambient concentrations of particulates and
oxidants and development of chronic disease in a cohort of non
smoking California residents. Inhal Toxicol 1995; 7: 19-34.
[14] ExternE. Methodology Report, 2nd Edition Volume 7. Bru ssels:
European Commission EC DGXII. Sci Res Develop 1998.
[15] Int Panis L, De Nocker L. Marginal Costs Belgium. In: Friedrich R,
Bickel P, Ed. Environmental External Costs of Transport. Heidel-
berg: Springer Verlag 2001; 169-73.
[16] Int Panis L. Impacts on crops. In: Bickel P, Friedrich R, Ed. Ex-
ternE Externalities of Energy, Methodology 2005 Update. Brussels:
European Commission. DG Res 2005: 270.
[17] Bonnefous S, Despres A. Evolution of the European data base:
IPSN/EURATOM - CEA Association, BP 6, 92265 Fontenay-Aux-
Roses, France, 1989.
[18] Erisman J, Schaap M. The need for ammonia abatement with re-
spect to secondary PM reductions in Europe. Envir Pollut. 2004;
129: 159-63.
[19] GARPII. Green Accounting In Europe, A Comparative Study.
Edgar Elgar, Cheltenham: The Fondazione Eni Enrico Mattei (FE-
EM); 2005; Vol 2.
[20] Krewitt W , Trukenmuller A, Bachman TM, Heck T. Country-
specific damage factors for air pollutants. Int J LCA 2001; 6(4):
199-210.
[21] Int Panis L, De Nocker L, De Vlieger I, Torfs R. Trends and uncer-
tainty in air pollution impacts and external costs of Belgian passen-
ger car traffic. Int J Vehicle Des 2001; 27(1-4): 183-94.
Received: February 25, 2008 Revised: April 7, 2008 Accepted: April 11, 2008
© L.L.R. Int Panis; Licensee Bentham Open.
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/license/by/2.5/), which
permits unrestrictive use, distribution, and reproduction in any medium, provided the original work is properly cited.
... Although in wide use, ammonia is both caustic and hazardous. In the atmosphere, ammonia reacts with oxides of nitrogen and sulfur to form secondary particles (Int Panis, 2008). ...
Book
The wide field of geochemistry includes: (1) Elemental geochemistry; (2) Mineral geochemistry; (3) Isotope geochemistry; (4) Cosmochemistry; (5) Geochemistry of igneous rocks; (6) Geochemistry of metamorphic rocks; (7) Geochemistry of sedimentary rocks; (8) Ore geochemistry; (9) Soil geochemistry; (10) Chemostratigraphy; (11) Biogeochemistry; (12) Photogeochemistry; (13) Hydrochemistry; (14) Atmospheric geochemistry; (15) Climate geochemistry; (16) Organic geochemistry; (17) Source rock geochemistry; (18) Reservoir geochemistry; (19) Coal geochemistry; (20) Environmental geochemistry; (21) Industrial geochemistry; (22) Medical geochemistry; (23) Analytical geochemistry; (24) Experimental geochemistry; (25) Exploration geochemistry; and (26) Geochemical engineering. Geochemistry has applications in many fields such as medicine, climate, environment, water quality, petroleum, mineral deposits, age dating, etc. This book is an explanation of the basics of the geochemical branches mentioned above.
... There are many plants and trees that role very well as a windbreak. To choose the best implant or trees for windbreak, consider the gravity of the necessity as well as the area have ready and any decorative qualities influence [7]. This well help to locate which types of plants are most suitable for possession. ...
Article
Full-text available
Trees play a very important role in filter out the dust pollution, and other fine particles present in air by absorption or accumulation process. The tree species possessing higher dust escaping capacity has higher chances of survival in the polluted areas. This study indicates that evergreen plants with simple, rough, and fast growing trees are good dust arrestors. The study suggested a systematic way of selecting plant species on the basis of their efficiency in dust control (Callistemon , Casuarina equisetifolia, Ziziphus Lotus, and Eucalyptus Globu). The objective of the present study is to estimate the amount of deposition of particulate on the leaves surface of various species, and estimate the efficiency of four types of trees and to suggest the most suitable plant species foe plantation in dusty area. The results shown that the highest amount of dust deposited on the leaves of Casuarina equisetifolia (8.336 grams), then Callistemon tree (4.635 grams), while the Ziziphus Lotus tree was (2.291 grams), and the smallest amount of dust deposited on the Eucalyptus Globu tree (1.320 grams). The highest dust deposited on the all types of plants were in June, While the smallest amount of dust deposited in September.
... (Fig. 8) (Hueglin et al., 2005;Park et al., 2013). Nitrate (NO 3 -) and SO 4 2are formed by gas-phase oxidation of the primary gaseous oxides of nitrogen and sulfur (NO x and SO 2 ) into nitric acid (HNO 3 gaseous) and sulfuric acid (H 2 SO 4 aqueous) respectively (Panis, 2008). Ammonium (NH 4 + ) typically exists as ammonium salts formed through the neutralization of H 2 SO 4 and HNO 3 acids by atmospheric ammonia (NH 3 ) (Harrison and Yin, 2000) as shown in Eqs. ...
... Black carbon is primarily formed from incomplete combustion of bio-mass and fossil fuels; p-SO 4 2and p-NO 3 are formed by gas-phase oxidation of gaseous oxides of sulfur and nitrogen (SO 2 and NO X ) into sulfuric acid (H 2 SO 4 ) and nitric acid (HNO 3 ) respectively. 11 The p-NH 4 + typically exists as ammonium salts [(NH 4 ) 2 SO 4 and NH 4 NO 3 ] formed through the neutralization of H 2 SO 4 and HNO 3 by atmospheric ammonia (NH 3 ). 12 Trace elements (TEs) will normally exist in ambient PM 2.5 aerosols in their most stable oxide forms. ...
Article
Full-text available
Objectives: To assess cardiopulmonary morbidity associated with daily exposures to PM2.5 in Western Coast of Saudi Arabia. Methods: We monitored 24-h PM2.5 and its constituents including black carbon (BC), particulate sulfate (p-SO42–), nitrate (p-NO3–), ammonium (p-NH4+) and trace elements (TEs) at a site in Rabigh, Saudi Arabia from May to June 2013 with simultaneous collection of hospital data (N=2513). Cardiopulmonary morbidity risk was determined in a generalized linear time-series model. Results: Exposure to PM2.5 was associated with a 7.6% (p=0.056) increase in risk of respiratory disease (RD) in females. Black carbon increased RD morbidity risk by 68.1% (p=0.056) in females. Exposure to p-SO42– increased the cardiovascular disease (CVD) risk by up to 5.3% (p=0.048) in males; and RD by 2.9% (p=0.037) in females and 2.5% (p=0.022) in males. The p-NH4+ increased CVD risk by up to 20.3% (p=0.033) in males; and RD by 10.7% (p=0.014) in females and 8% (p=0.031) in males. No statistically significant association was observed for p-NO3– and TEs exposure. Conclusion: Overall, results show an increased risk for cardiopulmonary morbidity following exposure to air pollution.
... BC, NOx, CO, benzene, UFP, PM, VOC) that are emitted directly from tailpipes, tires and brakes and to secondary pollutant concentrations (e.g. NO 2 , O 3 , secondary (in)organic aerosols) that are formed in the atmosphere from precursors (Erisman and Schaap, 2004;HEI, 2010;Int Panis, 2008;Marshall et al., 2005). When estimating the impact of traffic on ambient concentrations and exposure, most studies focus on single compounds (primary or secondary), referred to as carriers or markers, although specific health effects may not be caused by just one component but by the collective attributes of the 'cocktail' (HEI, 2010). ...
Article
Full-text available
The present study describes the measurement, chemical characterization and delineation of sources of fine particulate matter (PM2.5) in Rabigh, Saudi Arabia. The 24-h PM2.5 was collected from May 6th–June 17th, 2013. The sources of various air pollutants and their characterization was carried by computations of Enrichment Factor (EF), Positive Matrix Factorization (PMF) and Backward-in-time Trajectories. The 24-h PM2.5 showed significant temporal variability with average (37 ± 16.2 µg m–3) exceeding the WHO guideline (20 µg m–3) by 2 fold. SO42–, NO3–, NH4+ and Cl– ions dominated the ionic components. Two broad categories of aerosol Trace Elements (TEs) sources were defined as anthropogenic (Ni, V, Zn, Pb, S, Lu and Br) and soil/crustal derived (Si, Rb, Ti, Fe, Mn, Mg, K, Sr, Cr, Ca, Cu, Na and Al) elements from computations of EF. Anthropogenic elements originated primarily from fossil-fuel combustion, automobile and industrial emissions. A factor analysis model (PMF) indicated the major sources of PM2.5 as Soil (Si, Al, Ti, Fe, Mg, K and Ca); Industrial Dust (Ca, Fe, Al, and Si); Fossil-Fuel combustion (V, Ni, Pb, Lu, Cu, Zn, NH4+, SO42– and BC); Vehicular Emissions (NO3–, C2O42–, V and BC) and Sea Sprays (Cl– and Na). Backward-in-time Trajectories showed a significant contribution by long distance transport of fine aerosols to the overall daily PM2.5 levels. Results are consistent with previous studies and highlight the need for more comprehensive research into particulate air pollution in Rabigh and the neighboring areas. This is essential for the formulation of sustainable guidelines on air pollutant emissions in Saudi Arabia and the whole Middle Eas
Article
Full-text available
A model that predicts secondary organic aerosol (SOA) formation based on the thermodynamic equilibrium partitioning of secondary organic oxidation products has been developed for implementation into atmospheric models. Hydrophobic secondary products are assumed to partition to an absorbing organic aerosol consisting of primary organic aerosol (POA) and other secondary hydrophobic organics according to an equilibrium partitioning coefficient calculated iteratively for each secondary compound present. The hydrophobic module is evaluated by studying the partitioning of octadecanoic acid to surrogate POA species. As expected, the amount of octadecanoic acid predicted to be present in the aerosol phase increases as the total amount of absorbing material increases or as the total amount of acid present increases. Hydrophilic secondary compounds partition to an aqueous phase via Henry's law; the fraction of each compound's mass that partitions is determined by its Henry's law constant and its acid dissociation constant(s). The available liquid water content (LWC) of the aerosol is determined iteratively between an inorganic aerosol module and the hydrophilic module, which is evaluated by studying the partitioning of glyoxalic and malic acids. While glyoxalic acid tends to remain in the gas phase, malic acid partitions strongly to the aqueous phase, with ions being the dominant form in the aqueous phase. As expected, an increase in relative humidity increases the amount of water associated with the organics (DeltaLWC), and a lower aerosol pH favors molecular solutes over ionized forms. Increasing pH results in higher effective Henry's law constants for the acids, yielding higher organic aerosol concentrations. Results also indicate that increasing DeltaLWC induces additional partitioning of inorganics to the aqueous phase.
Article
Full-text available
A new aerosol model, the Model of Aerosol Dynamics, Reaction, Ionization, and Dissolution (MADRID) has been developed to simulate atmospheric particulate matter (PM). MADRID and the Carnegie-Mellon University (CMU) bulk aqueous-phase chemistry have been incorporated into the three-dimensional Models-3/Community Multiscale Air Quality model (CMAQ). The resulting model, CMAQ-MADRID, is applied to simulate the August 1987 episode in the Los Angeles basin. Model performance for ozone and PM is consistent with current performance standards. However, organic aerosol was underpredicted at most sites owing to underestimation of primary organic PM emissions and secondary organic aerosol (SOA) formation. Nitrate concentrations were also sometimes underpredicted, mainly owing to overpredictions in vertical mixing, underpredictions in relative humidity, and uncertainties in the emissions of primary pollutants. Including heterogeneous reactions changed hourly O3 by up to 17% and 24-hour average PM2.5, sulfate2.5, and nitrate2.5 concentrations by up to 3, 7, and 19%, respectively. A SOA module with a mechanistic representation provides results that are more consistent with observations than that with an empirical representation. The moving-center scheme for particle growth predicts more accurate size distributions than a typical semi-Lagrangian scheme, which causes an upstream numerical diffusion. A hybrid approach that simulates dynamic mass transfer for coarse PM but assumes equilibrium for fine PM can predict a realistic particle size distribution under most conditions, and the same applies under conditions with insignificant concentrations of reactive coarse particles to a bulk equilibrium approach that allocates transferred mass to different size sections based on condensational growth law. In contrast, a simple bulk equilibrium approach that allocates transferred mass based on a given distribution tends to cause a downstream numerical diffusion in the predicted particle size distribution.
Book
Transport causes a wide range of damage to human health, ecosystems and materials. This damage should be taken into account when making decisions, i.e. it should be reflected in the prices for transport. The damagae caused by cars, planes, ships and trains should be calculated and transformed into monetary values - so called external costs. In this book we endeavour to evaluate the external costs stemming from the emissions of atmospheric pollutants caused by transport, including damage from greenhouse gases, fine particles, ozone, nitrous oxides and benzene as well as other carciogenic substances, so as to be able to calculate the external costs of a huge number of current and future modes of transport operating in different locations all over Europe. The results offer an important basis for assessing modes of transport, discussing transport taxes and charges and implementing green accounting.
Article
This series of three papers addresses the representation of secondary organic aerosol (SOA) in atmospheric models. SOA forms when gas-phase organic species undergo oxidation, leading to products of sufficiently low vapor pressure that can partition between the gas and aerosol phases. The present paper, part 1, is devoted to the development of a gas-phase atmospheric chemical mechanism designed to represent ozone chemistry as well as formation of individual organic oxidation products that are capable of forming SOA. The ozone chemistry in the mechanism draws upon the recent work of Stockwell et al. [1997] and Jenkin et al. [1997] and SAPRC-97 and SAPRC-99 (available from W.P.L. Carter at http://helium.ucr.edu/~carter/). The mechanism is evaluated in the three-dimensional California Institute of Technology (CIT) model [Meng et al., 1998] by simulating gas-phase concentrations in the South Coast Air Basin (SoCAB) of California over the period 27-29 August 1987. Total predicted concentrations of gas-phase SOA compounds are compared with levels of SOA that have been inferred on the basis of ambient organic aerosol measurements during this period. These predicted concentrations indicate that the total gas-phase potential of SOA-forming compounds can account for observed aerosol concentrations. Part 2 develops a thermodynamic gas-aerosol partitioning module, and part 3 presents a full three-dimensional simulation of gas and aerosol levels in the SoCAB during a 1993 episode.
Article
A cohort of 6340 nonsmoking California Seventh-Day Adventists (SDAs) who had resided within 5 miles of their present residence for the past 10 yr has been followed since 1977 for incidence of cancer and myocardial infarction (MI) through 1982; development of definite symptoms of, and increasing severity of, airway obstructive disease (AOD), chronic bronchitis, and asthma through 1987; and all natural cause mortality through 1987. Cumulative ambient concentrations of specific pollutants have been estimated for study participants from 1967 to 1987 by interpolating monthly statistics from statewide air monitoring stations to ZIP codes of residence and work location. Statistics include excess concentrations and exceedance frequencies above a number of cutoffs as well as mean ambient concentration and mean ambient concentration adjusted for time spent indoors. Indoor sources or nitrogen (NO2), and of paniculate pollution such as environmental tobacco smoke, both at home and at work, as well as occupational dusts and fumes, have been adjusted for in multivariate statistical models. Particulates included total suspended particulates (JSP), monitored from 1973 to 1987; inhalable particulates less than 10 μmlm in diameter (PM-10), estimated from site/seasonal-specific regressions on TSP for 1973–1987; fine particulates less than 2.5 μmlm in diameter estimated from airport visibility data for 7967–7987; and suspended sulfates [SO4), monitored from 1977 to 1987. A direct measure of visibility, and gaseous pollutants—ozone, sulfur dioxide (SO2), and (NO2)—monitored from 7973 to 7987 were also included in analyses. No statistically significant associations between any of the disease outcomes studied and NO2 or SO2 were found in this cohort. None of the pollutants studied showed statistically significant associations with all natural cause mortality or incidence of all malignant neoplasms in males. Statistically significant associations were observed between elevated ambient concentrations of one or more particulate pollutants and each of the other disease outcomes. In addition, ozone was significantly associated with increasing severity of asthma, and with the development of asthma in males. Multipollutant analyses indicated that none of the associations between particulate pollutants and disease outcomes were due to correlations with gaseous pollutants studied except possibly for PM2.5 and increasing severity of asthma, which could be due to a correlation with ozone. Observed associations between disease outcomes and PM2.5 or PM-70 could be biased toward the null because of increased measurement error due to their indirect methods of estimation.
Article
The mechanisms of the long-range transport and deposition of acidic nitrogen compounds over north-west Europe are not yet well understood. Aerosol nitrate concentrations have been steadily rising in southern England1 over the past three decades, as have the nitrate concentrations in precipitation at almost all sites in northwest Europe, including the most remote2,3. The life cycle of acidic nitrogen compounds potentially involves a wide range of trace constituents including nitric oxide (NO), nitrogen dioxide (NO2), gaseous nitric acid (HNO3), higher nitrogen oxides (such as N2O5), nitrate aerosol and nitrate in precipitation. Here we show that a simple model, incorporating an assumed life cycle of nitrogen-containing trace gases and the known NO sources, can account for much of the nitrate in rain observed over north-west Europe.
Article
The main objective of this paper is to track the changing importance of air pollution impacts by Belgian passenger cars. Our assessment of environmental impacts is based on the calculation of external costs with the ExternE methodology. Our results show that the decline of air pollution impacts from Belgian passenger cars between 1993 and 1998 was limited. This is explained by the combination of three contributing factors: the slow turnover of the fleet, the typical Belgian high and growing percentage of diesel fuelled passenger cars and the annual increase of the average mileage per car. The secondary objective is to investigate to what degree the choice of emission factors influences our conclusions. Although estimates of the overall cost of air pollution derived from MEET and Infras are similar, the trend towards improved air quality is more pronounced for MEET.
Article
The application of a simple trajectory model approach to the emission, transformation and deposition of a coupled series of atmospheric pollutants including SO2, NOx and ammonia is described. A detailed comparison of the model results with observations is provided using United Kingdom monitoring data. Whilst reasonable agreement can justifiably be claimed for some species, whether in the gas phase, aerosol or precipitation, it is clear that for the others there are either severe disagreements or a lack of suitable data for comparison purposes. Background sources of these pollutants are assessed by applying wind sector analysis to precipitation measurements at remote sites. The budgets for the United Kingdom and north-west Europe have a similar balance between wet and dry deposition to that given in the literature for the global nitrogen budget. This is in conflict with some literature budgets for Europe as a whole which have apparently overestimated the dry deposition terms.
Article
An integrated impact assessment model is used to calculate the impact per tonne of SO2, NOx, fine particles, and NMVOC emitted from different source countries on human health, acidification, eutrophication, and the man-made environment (crop yield and building materials). Indicators on the endpoint level are used to measure the effects resulting from a marginal change in emission levels. While the assessment of impacts on ecosystems and the man-made environment is limited to Europe, damage factors for health effects are also derived for Asia and South America. For Europe, emission scenarios for the years 1990 and 2010 are considered to analyse the influence of changing background conditions on the resulting impacts. Results show that there is a significant variation in the damage resulting from a unit emission for some of the impact categories, both between countries and between base years. Depending on the scope of the study and the information available from the life cycle inventory, results from the paper can be used to consider site dependent conditions in life cycle impact assessment as a complement to the current site-independent (or global) approach.