ArticlePDF Available

Mesozoic transtensional basin history of the Eastern Cordillera, Colombian Andes: Inferences from tectonic models

Authors:

Abstract and Figures

Backstripping analysis and forward modeling of 162 stratigraphic columns and wells of the Eastern Cordillera (EC), Llanos, and Magdalena Valley shows the Mesozoic Colombian Basin is marked by five lithosphere stretching pulses. Three stretching events are suggested during the Triassic–Jurassic, but additional biostratigraphical data are needed to identify them precisely. The spatial distribution of lithosphere stretching values suggests that small, narrow (180km) wide, asymmetrical, transtensional half-rift basin existed, divided by the Santander Floresta horst or high. The location of small mafic intrusions coincides with areas of thin crust (crustal stretching factors >1.4) and maximum stretching of the subcrustal lithosphere. During the Aptian–early Albian, the basin extended toward the south in the Upper Magdalena Valley. Differences between crustal and subcrustal stretching values suggest some lowermost crustal decoupling between the crust and subcrustal lithosphere or that increased thermal thinning affected the mantle lithosphere. Late Cretaceous subsidence was mainly driven by lithospheric cooling, water loading, and horizontal compressional stresses generated by collision of oceanic terranes in western Colombia. Triassic transtensional basins were narrow and increased in width during the Triassic and Jurassic. Cretaceous transtensional basins were wider than Triassic–Jurassic basins. During the Mesozoic, the strike-slip component gradually decreased at the expense of the increase of the extensional component, as suggested by paleomagnetic data and lithosphere stretching values. During the Berriasian–Hauterivian, the eastern side of the extensional basin may have developed by reactivation of an older Paleozoic rift system associated with the Guaicáramo fault system. The western side probably developed through reactivation of an earlier normal fault system developed during Triassic–Jurassic transtension. Alternatively, the eastern and western margins of the graben may have developed along older strike-slip faults, which were the boundaries of the accretion of terranes west of the Guaicáramo fault during the Late Triassic and Jurassic. The increasing width of the graben system likely was the result of progressive tensional reactivation of preexisting upper crustal weakness zones. Lateral changes in Mesozoic sediment thickness suggest the reverse or thrust faults that now define the eastern and western borders of the EC were originally normal faults with a strike-slip component that inverted during the Cenozoic Andean orogeny. Thus, the Guaicáramo, La Salina, Bitúima, Magdalena, and Boyacá originally were transtensional faults. Their oblique orientation relative to the Mesozoic magmatic arc of the Central Cordillera may be the result of oblique slip extension during the Cretaceous or inherited from the pre-Mesozoic structural grains. However, not all Mesozoic transtensional faults were inverted.
Content may be subject to copyright.
A preview of the PDF is not available
... The Early Cretaceous evolution of the UMB is characterized by an extensional tectonic regime associated with a global plate configuration from the separation of South America and Africa and the formation of southern Atlantic Ocean between them (Bajolet et al., 2022;Bayona et al., 2006;Ramos, 2010;Sarmiento-Rojas et al., 2006;Zapata et al., 2019Zapata et al., , 2020. During the Late Cretaceous, the compressional history of the Andean Orogeny began with the deformation of an ancestral 'Central Cordillera' and several intrabasin highs (Bayona, 2018;Sarmiento & Rangel, 2004). ...
... The tectonic events that led to the formation of the basin (Bayona et al., , 2020Cardona et al., 2020;Guerrero et al., 2021;Horton et al., 2010;Jaimes & de Freitas, 2006;Jaramillo et al., 2017;León et al., 2018;Montes et al., 2015Montes et al., , 2019Spikings et al., 2015;Villagómez et al., 2011;Zapata et al., 2019) are shown in chronological order. Additionally, the petroliferous system elements and the timing of migration are indicated (Roncancio & Martínez, 2011;Sarmiento-Rojas, 2019;Sarmiento-Rojas et al., 2006). Fault deformation indicates a maximum or approximate deformation timeline (Butler & Schamel, 1988;Caballero et al., 2013;Espitia et al., 2022;Mojica & Franco, 1990;Rosero et al., 2022). ...
... The age of these deformational events is not clear; however, they certainly are part of the polyphasic Meso-Cenozoic deformation that characterizes the Colombian Andes including the UMB (Espitia et al., 2022;Montes et al., 2019;Sarmiento-Rojas, 2019;Sarmiento-Rojas et al., 2006;Villagómez & Spikings, 2013;Zapata et al., 2020). Given the close spatial proximity, we considered that cataclastic bands and veins of P 2 and C1 domains, found in both fault zones can be correlated and probably formed during the Early Cretaceous extensional regime of the UMB, owing to their relatively higher temperature and hydrothermal nature ( Figure 11; Mora-Bohorquez et al., 2010;Sarmiento-Rojas et al., 2006). ...
Article
The development of fractures and faults in plutonic rocks is significantly influenced by the primary fabrics and long-lived deformation history. Dike swarms and intersection damage zones are highly fractured and have the potential to form naturally fractured reservoirs of hydrocarbons and fluid pathways to zones of host rock matrix alteration.
... In the early Cretaceous, the northwestern margin of South America was evolving in extensional settings, marked by the formation of the rifts of the equatorial Atlantic ocean and back-arc rifts from the Andean collision zone (Fig. 5; León et al., 2019;Zapata et al., 2019;Cardona et al., 2010). These back-arc rifts created depocenters in the Llanos Basin and the Putumayo-Oriente-Maranon sedimentary province (Fig. 1), where early Cretaceous marine sediments started to accumulated over the Jurassic volcanic and siliciclastic units ( Fig. 3; Kammer and Sánchez, 2006;Sarmiento-Rojas et al., 2006). ...
... In the early Cretaceous, tectonic activity intensified, driven by the movement along normal faults of the rifts, which produced kilometer-scale displacements. During this time, the Llanos Basin experienced notably higher rates of tectonic subsidence, providing evidence for increased tectonism (Sarmiento-Rojas et al., 2006). At the upper end of these large normal faults, kilometer-scale tectonic uplift of rifts shoulders and surface topography may have been generated (Buiter et al., 2023). ...
... Simultaneously, the tectonic subsidence rate of the basins experienced a significant reduction in the post-Cenomanian (post-95 Ma), suggesting a correlation between the decrease in extensional tectonic activity and the diminishing of exhumation rates and sediment production ( Fig. 5; Cooper et al., 1995). The subsidence mechanism changed at this time from fault-induced subsidence to thermal subsidence (Sarmiento-Rojas et al., 2006). Our interpretation suggests that the thermal subsidence process during the post-rift phase resulted in a less elevated Rio Negro-Juruena basement in the late Cretaceous compared to the early Cretaceous. ...
Article
Full-text available
This study presents results from apatite fission track (AFT) thermochronology to investigate the thermal history and exhumation dynamics of the Rio Negro-Juruena basement, situated within the western Guiana Shield of the Amazonian Craton. AFT dating and associated thermal history modeling in South America has largely been restricted to the plate's margins (e.g., Andean active margin, Brazilian passive margin, and others). Our paper reports on low-temperature thermochronological data from the internal part of the western Guiana Shield for the first time. This area is part of a vast cratonic lithosphere that is generally thought to be stable and little influenced by Mesozoic and Ceno-zoic tectonics. Our data, however, show AFT central ages ranging from 79.1 ± 3.2 to 177.1 ± 14.8 Ma, with mean confined track lengths of ca. 12 µm. Contrary to what might be expected of stable cratonic shields, inverse thermal history modeling indicates a rapid basement cooling event in the early Cretaceous. This cooling is interpreted as a significant exhumation event of the basement that was likely driven by the coeval extensional tectonics associated with back-arc rifts in the Llanos and Putumayo-Oriente-Maranon basins. The extensional tectonics facilitated both basement uplift and subsidence of the adjoining basins, increasing erosional dynamics and consequent exhumation of the basement rocks. The tectonic setting shifted in the late Cretaceous from ex-tensional to contractional, resulting in reduced subsidence of the basins and consequential diminishing cooling rates of the Guiana Shield basement. Throughout the Cenozoic, only gradual, slow subsidence occurred in the study area due to regional flexure linked to the Andean orogeny. Comparative analysis with low-temperature thermochronology data from other west Gondwana cratonic segments highlights that ex-humation episodes are highly controlled by tectonic inheritance , lithospheric strength, and proximity to rift zones. This study underscores the complex interplay between tectonic events and the response of cratonic lithosphere over geological timescales and highlights extensional settings as an important geological context for craton exhumation.
... Three N-NE trending Cordilleras built the Andes of Colombia. The Eastern Cordillera, mainly constituted by a Proterozoic metamorphic basement covered by highly deformed Paleozoic to Cenozoic sedimentary sequences (Villamil, 1999;Sarmiento-Rojas et al., 2006). This cordillera is separated from the Central Cordillera by the Magdalena River Valley, which in turn consists of Permo-Triassic gneisses, migmatites and amphibolites (Martens et al., 2014) and Jurassic schists belts (Blanco-Quintero et al., 2014;Bustamante et al., 2017) intruded by Jurassic (Cochrane et al., 2014;Bustamante et al., 2016) and Cretaceous to Paleogene arc-related plutons respectively (Bayona et al., 2012;Bustamante et al., 2017). ...
Article
Full-text available
With the imperative to diversify energy matrices and reduce dependence on fossil fuels, nations are actively exploring alternative sources of energy. In that sense, graphite, due to its role in lithium batteries, emerges as a pivotal component in the global energy transition. Governments, recognizing the strategic significance of certain minerals, compile lists of critical minerals to achieve energy autonomy. However, in the recent update of Colombia’s critical mineral list, noteworthy minerals such as lithium and graphite were overlooked. Despite the widespread presence of graphite along the Central Cordillera of Colombia, potentially extending into the Real Cordillera in Ecuador, its importance has remained largely unnoticed for years. This manuscript underscores the critical need to comprehensively characterize graphite occurrences in the Andes of Colombia. The manifestations of graphite suggest its potential significance in the pursuit of cleaner energy sources. This study aims to draw attention to the overlooked role of graphite, urging a reevaluation of its inclusion in Colombia’s critical minerals list to enhance the nation’s strategic positioning in the global shift towards sustainable energy solutions.
... The Villeta Group encompasses the main hydrocarbon source rocks of the UMVB; this sedimentary succession was deposited during a maximum marine flooding event in the Cenomanian (Fig. 2b;Sarmiento-Rojas et al., 2006;Sarmiento and Rangel, 2004). Source rocks consist of shales and limestones deposited in an anoxic environment, with an average of Total Organic Carbon (TOC) ranging from 1% to 4% (Sarmiento and Rangel, 2004). ...
Article
Full-text available
Fractured basement hydrocarbon reservoirs are widely distributed worldwide in more than 30 basins, where volcanic and plutonic rocks have produced significant quantities of oil and gas. The Upper Magdalena Valley Basin (UMVB) is a mature and productive hydrocarbon basin located in the Colombian Andes. In this basin, plutonic and volcaniclastic Jurassic rocks are thrusted on top of Cretaceous to Cenozoic sedimentary rocks, which constitute the petroleum system. Multi-scale fracture analysis together with petrography, petrophysics, and low-temperature thermochronology were conducted in and outcrop analogue of this basement to assess the structural evolution and investigate the main factors controlling the development of fracture properties in igneous basements. Thermochronological data indicate the occurrence of three exhumation events between the Early Cretaceous and Miocene, suggesting that most of the fracture networks within the Agrado-Betania hanging-wall were likely formed before hydrocarbon migration. Structural analysis has identified a fault damage zone with a width of approximately 746 m. Volcanic breccias and ash tuffs exhibit slightly higher areal fracture intensities (P21 > 30 m/m2) compared to plutonic and clastic rocks (P21 < 20 m/m2). Furthermore, the fracture networks exhibit good connectivity, with connection per branch (CB) values exceeding the 1.5 percolation threshold. Petrophysical calculations of matrix-fracture properties indicate high permeabilities (ranging from 1000mD to 10000000mD) and low porosities (<10%). The structural position and the diagenetic transformation of the volcanic rocks are the primary factors controlling fracture intensity in the igneous rocks within the Agrado-Betania fault. Results from this outcrop analogue also show that polyphasic structural histories and the burial history positively influence the quality of fractured basement reservoirs.
... A first phase of deformation, which postdate the Paleozoic, possibly in the final phase of the Caledonian orogeny, formed the tight folding of the Floresta Formation. A second phase of deformation, sometime during the Mesozoic rifting, allowed deposition along asymmetrical normal fault-related basins, as shown by the lateral changes in thickness of the Floresta Formation identified here and in other localities across the Eastern Cordillera (e.g., Sarmiento, 2001;Kammer and Sánchez, 2006;Sarmiento et al., 2006). A third phase of deformation related to the pre-Andean and Andean deformation, as identified in previous works (e.g., Mora et al., 2010Mora et al., , 2013Ramírez-Arias et al., 2012). ...
Article
Full-text available
A comprehensive tectono-stratigraphic and sedimentological investigation of Early to Middle Devonian rocks was conducted in the southern Floresta Massif and adjacent regions in the Northern Andes of Colombia. A substantially reduced thickness of the Floresta Formation compared to prior studies is suggested here, attributable to pronounced stratal deformation and the prevalence of recumbent folds throughout the area. The deformation in the Floresta Formation manifests as atypical recumbent folds, diverging from the structural behavior observed in the underlying and overlying strata of the El Tibet and Cuche formations respectively, which exhibit minimal deformation. Our findings also reveal that the Floresta Formation accumulated under shallow-water platform conditions, subject to eustatic sea-level fluctuations. This resulted in distinct episodes of carbonate and siliciclastic deposition, with terrigenous sediments sourced from continental origins, potentially encompassing a combination of cratonic areas and uplifted blocks. The identification of a plausible stage of carbonate silicification signifies a post-diagenetic transformation. The sedimentary rocks of the Floresta Formation reached the upper epizone conditions, in proximity to the transition between the epizone and the upper anchizone, which suggests a maximum depth and temperature of ~5-7 km and ~300 °C, respectively. This contribution provides new insights into the geological history of the region, emphasizing the importance of scrutinizing Early to Middle Devonian rocks within the broader geological context of the Northern Andes.
... Although the compound effect of strike-slip and extension has been widely recognized, the concepts of extension torsional fault and transtensional fault have been put forward 15,16 . In the early stage of exploration, many scholars have been relatively mature in the study of extensional faults, and their structural deformation is relatively simple [17][18][19][20] . The tectonic evolution of normal faults and the extensional deformation under gravity slump are simulated and the rotation deformation mechanism of non-rigid blocks is proposed 21,22 . ...
Preprint
Full-text available
This study used the growth index, fault activity rate and fault distance burial depth curve methods to analyze the characteristics of fault activity in the central area of Dongying depression. Using typical fault evolution and dynamic analysis to study the stages of fault evolution in the area, and using physical simulation experiments to study the mechanism and evolution process of fault formation. According to the results, the faults in the study area can be classified into four types. The Shicun fault and the pre-existing faults in the basin developed in the Paleogene Kongdian to Es4 period. Es3x and Es3z stages were characterized by strong extensional fault activities. The effect of strike-slip transformation from the Es3s to Es1 period was strengthened. The extensional fault continued to be active in Dongying period, and the strike-slip fault was basically stopped. The study area has been in the depression stage since Neogene. The physical simulation experiments show that the northern He 125 fault system is a fault combination composed of a main fault and broom-shaped branches formed by normal fault activities in the early stages and dextral strike slip processes in the late periods. The central en echelon fault system is a fault combination composed of three R fractures inherited the NE-SW basement fault and regulated by the later dextral strike-slip activities. The southern Wangjiagang fault system is a complex fault combination composed of Wangjiagang structure (P fracture) and Bamianhe structure (R fracture) developed from the Tanlu concealed branch strike-slip fault. This paper provided important reference for further research on the tectonic evolution and hydrocarbon accumulation in Dongying depression.
Article
Full-text available
Deep-seated structures can exhume deep crustal rocks (>20 km), transmitting the signal of geodynamic processes from the subduction zone to the interiors of the continents. The role of deep-seated structures can be analyzed with low-temperature thermochronological dating techniques. However, studies coupling low-temperature thermochronology with structural geological analyses of the deformational style are not common in the Northern Andes. In this contribution, we present new apatite (AFT) and zircon (ZFT) fission-track data coupled with meso- and microstructural analyses to reveal the deformational and exhumation history of the Santander Massif (SM; Northern Andes) and the related cortical Bucaramanga strike-slip fault (BF). Samples for thermochronological analyses were collected along an elevation profile with a significant elevation difference of 2.4 km across the western flank of the SM, crossing the BF. The time-temperature history modeling of ZFT data reveals phases of prolonged residence in the zircon partial annealing zone from ∼125-94 Ma and a cooling phase related to an exhumation episode at around 25 Ma based on samples collected near the BF. Inverse modeling of AFT data reveals structurally-controlled Pliocene exhumation rates of 0.6-0.7 km/Myr mediated by the action of secondary faults. A shift in the deformation style resulting from the oblique interaction of the SM and Mérida Andes domain is interpreted as the main driver of the Pliocene exhumation. This deformation phase is observed in the fault damage zone, where evidence of brittle-ductile deformation was exhumed. Finally, we discuss the geodynamic implications of our thermochronological and structural analyses, contrasting local and more regional competing hypotheses (Pamplona Indenter vs. slab break-off of the Caribbean plate), which may explain the tectonic evolution of the northern part of the Eastern Cordillera and the SM in the Colombian Northern Andes.
Article
Full-text available
La parte superior del Grupo Guadalupe y la Formación Guaduas en el área de Sutatausa, registran el último evento regresivo del mar cretácico. Se observa un progresivo cambio de ambientes sedimentarios que evolucionan en sentido vertical desde mar somero e isla de barrera a laguna costera, llanura intermareal, pantanos costeros, lagos, canales de ríos y llanuras aluviales con esporádicas manifestaciones de la influencia costera. La excelente exposición de la sección permitió hacer un reconocimiento detallado de los rasgos estratigráficos y la definición de los segmentos. A través de la descripción se deduce la evolución secuencial, caracterizada por procesos de continentalización de los medios de depósito afectados por la acción de la dinámica costera y el restablecimiento de las condiciones bajas a transicionales de acumulación, circunstancias causantes de la abundante preservación de materia orgánica en las lodolitas o representada en la formación de mantos de carbón (52 mayores de 20 cm).
Article
Full-text available
La estratigrafía comprende unidades que se formaron desde la orogénesis hasta la granitización Hercínica. Se presenta una descripción del alto estructural del Macizo de Floresta (área entre Duitama y Pesca) de finales del Paleozoico. A principios del Cretáceo se instala un dominio de sedimentación diferente epicontinental - euxínico representado en la Formación Cumbre. A partir del Hauteriviano toda la cuenca tras-jurásica se entrelaza con las facies de la cuenca. A la sedimentación Marina del Cretáceo sigue la sedimentación continental del Paleógeno con la conformación de las cuencas de Sogamoso y Cundinamarca. Los recursos minerales están representados por arcillas caoliníticas pertenecientes a la Formación Cumbre, calizas de las Formaciones Tibasosa y Rosablanca, fosforita y material de recebo de la Formación Plaeners, asfaltos de las formaciones Labor y Tierna y arenas aptas para construcción en las formaciones Bogotá y Tilatá.
Article
Full-text available
El Cuadrángulo I-13, Málaga comprende un área de 4800 km2 en la cordillera Oriental, en donde ésta abandona una dirección NNE para tomar una NNW, y cubre parte de los departamentos de Santander y Boyacá. Rocas metamórficas de edad predevónica están representadas por neises y esquistos de la Formación Neis de Bucaramanga y esquistos, filitas y metaareniscas de la Formación Silgará. Rocas metamórficas más jóvenes, posiblemente del Devónico inferior, incluyen filitas y metaareniscas, del Miembro Floresta Arcilloso Metamorfoseado. Rocas ígneas de edad Jura-Triásica forman parte del Batolito de Mogotes y otros pequeños cuerpos que, junto con las rocas metamórficas, se hallan restringidas a la parte occidental del área, formando parte del Macizo de Santander. Cuarzomonzonitas, granitos, granodioritas, dioritas, riolitas y diques básicos son los principales tipos de rocas ígneas presentes en el área. Las rocas sedimentarias, expuestas principalmente en la parte oriental del cuadrángulo, varían en edad desde Devónico a Reciente. EI Paleozoico está representado por las formaciones Floresta del Devónico, Cuche del Carbonífero y río Nevado del Permo-Carbonífero. El sistema Jura-Triásico está restringido a los afloramientos de las formaciones Montebel y Girón. El Cretáceo en su gran mayoría corresponde a sedimentos de la Cuenca de Maracaibo, en lo que puede ser su prolongación más sur y en pequeña proporción a las de la Cuenca del Valle Medio y parte alta de la Cuenca de la Sabana. El Terciario, con cierta homogeneidad litológica, está representado por sedimentos de la Cuenca de Maracaibo en el norte y área de Paz de río en el sur. La tectónica de la parte oriental es de falla y plegamiento que contrasta con la del lado oeste del macizo en donde el fracturamiento del zócalo es preponderante. Las ocurrencias minerales observadas corresponden a pequeñas manifestaciones de sulfuros de plomo, zinc y en menor proporción de cobre, hierro oolítico, así como carbones, calizas y fosfatos.
Article
Full-text available
El área objeto de este informe está localizada en el borde oriental de la cordillera Oriental de Colombia y se caracteriza por una topografía abrupta a suavemente ondulada en la región andina y plana en los Llanos Orientales. Se describen las rocas sedimentarias de las cuencas de los Farallones y Borde Llanero, lo mismo que pequeños diques y apófisis de lamprófiros que intruyen rocas de la Formación Lutitas de Macana. También se describen las tres áreas tectónicas que presenta la cordillera Oriental en el área de este trabajo, sus eventos geológico-históricos y sus principales recursos minerales.
Article
Full-text available
En esta memoria se describe y discute la estratigrafía, la tectónica, la geología histórica y los recursos minerales del cuadrángulo K-12, Guateque, ubicado en la cordillera Oriental de Colombia. En el área afloran únicamente rocas sedimentarias de edad pre-Devoniano a Pleistoceno y corresponden a 27 unidades estratigráficas que forman las cuencas de los Farallones, Sabana de Bogotá, Sogamoso y Borde Llanero. Se propone en este trabajo la creación de seis nuevas unidades que corresponden a: 1) Formación Batá, de edad Rhético-Liásico, 2) Las Calizas del Guavio, Tiloniano - Berrasiano Superior, 3) Lutitas de Macanal, Berriasiano – Valauginiano 4) · Areniscas de Las Juntas, Hauteriviano, 5) Grupo Palmichal, Cretáceo Superior; y 6) Formación La Cometa, Pleistoceno Superior. La cordillera Oriental, en el área de este trabajo, está constituida por cuatro regiones estructurales, las cuales se describen brevemente, lo mismo que las deformaciones evidenciadas en esta región. Los recursos minerales del cuadrángulo están constituidos por los depósitos de minerales metálicos de hierro en Ubalá, Sabana-larga y San Eduardo y las ocurrencias de cobre, plomo y zinc en la región del Guavio; entre los no metálicos, se encuentran las esmeraldas, yeso, caliza, baritina, los cuales constituyen los principales recursos no renovables del área.
Article
Full-text available
Se presenta la geología del Noreste de Bogotá en un área que cubre 225 km2 y que ocupa la esquina sur occidental de la plancha K-11 del Mapa Geológico de Colombia, escala 1:200 000. Las rocas más antiguas expuestas en la región pertenecen a la parte superior de la formación Villeta, de edad Cenomaniano alto, y a la formación Guadalupe inferior de edad Turoniano-Coniaciano. La mayor parte del área está cubierta por sedimentos marinos del Cretáceo superior, formación Guadalupe superior y sedimentos continentales del Cretáceo superior y del Terciario inferior, formaciones Guadalupe y Bogotá. La formación Guadalupe superior se presenta bajo unidades litoestratigráficas, de acuerdo con Hubach, aun cuando se dan los límites cronológicos de ella. Se introduce una subdivisión en el llamado por él nivel de Plaeners, restringiendo la denominación a su parte inferior y llamando nivel de Areniscas de Labor a su parte superior. Los fósiles encontrados hasta ahora son escasos a través de la mayor parte del Guadalupe superior, pero locamente vienen a ser abundantes en la parte superior del nivel de las Areniscas de Labor y en el nivel de Plaeners, y comprenden: foraminíferos, gasterópodos, amonitas y lamelibranquios. El área estuvo sujeta a fuertes perturbaciones tectónicas, acaecidas probablemente con posterioridad al Terciario inferior, lo cual explica la falta de estructuras continuas.
Article
Full-text available
En varios artículos y mapas geológicos relativamente recientes, se usa todavía la designación "Jura-Triásico" para la formación Girón y depósitos contemporáneos. Esta designación es imprecisa y, en ciertos casos incorrecta, porque una parte del "Girón" es de edad pensilvaniana, y otra se depositó en el Liásico Medio y Superior. Con la única excepción, tal vez, del Pre-Payandé, no se conocen en el Triásico de Colombia capas del tipo del "Girón". Por esta razón se recomienda usar el término "Palaeogirón" para capas pensilvanianas del tipo de Girón y el término "Neogirón" para las de edad liásica. El término "Girón" debe aplicarse sólo en un sentido puramente litostratigráfico para designar capas continentales de la facies Girón, cuya edad no está definida. En una tabla se indica la posición cronostratigráfica de las principales formaciones del Triásico y Liásico de Colombia.
Article
Full-text available
Se describe la geología de las áreas correspondientes a las planchas 135 y 151 (Cuadrángulo I-12), que cubren una superficie de 4800 km2 en la cordillera Oriental de los Andes colombianos haciendo parte de los departamentos de Santander y Boyacá. La unidad más antigua corresponde a la Formación Silgará, constituida por rocas metamórficas de bajo a medio grado, pre-Devónicas, que constan de esquistos, filitas, metalimolitas y metaareniscas. Encima de éstas se presentan rocas metamórficas de muy bajo grado, compuestas de cuarcitas, filitas y argilitas, posiblemente de Devónico inferior y corresponden al Miembro inferior de la Formación Floresta. El borde occidental del Batolito de Mogotes considerado de edad TriásicoJurásico, aflora en la parte sureste del cuadrángulo de estudio. Las rocas sedimentarias cubren la mayor parte del área y varían en edad desde el Triásico-Jurásico hasta el Holoceno. Los sistemas Triásico-Jurásico están representados por las formaciones Montebel, Girón, Jordán y Arcabuco. El Cretáceo abarca rocas de edad Berriasiano-Cenomaniano, en su mayoría pertenecientes a la nomenclatura usada en el área de Santander y parte de la empleada en la región de Chiquinquirá. El Holoceno, está constituido por depósitos de terraza, aluviales y de derrubio. La tectónica se describe según tres franjas principales: La central, donde existen pliegues relativamente amplios sin mayor complicación y las franjas este y oeste, las cuales presentan en su mayoría plieques estrechos e intenso fracturamiento, que refleja los episodios orogénicos Post-Cretáceos. La discordancia angular entre las formaciones Arcabuco y Cumbre evidencia movimientos acompañados de plegamientos en tiempos post-Formación Arcabuco. Las ocurrencias de minerales metálicos son escasas y corresponden a pequeñas manifestaciones de sulfuros de plomo y zinc. El yeso, las calizas y en menor proporción la barita y la fluorita, representan el mayor interés económico del área, en cuanto a los minerales no metálicos.
Article
Full-text available
La ciudad de Girardot está situada en un sinclinal terciario al Norte, Este y Oeste por rocas del Cretáceo Superior, las cuales comprenden una serie completa desde el Tnroniano Superior hasta el Maestrichtiano. Dos secciones del Cretáceo Superior han sido descritas en detalle en cuanto a su litología y a su fauna de moluscos y foraminíferos, la una situada al Oeste (Girardot-Nariño) y la otra al Este (Girardot-Melgar). La determinación de la edad de los horizontes está basada, en lo posible, en amonitas, aunque del estudio de los foraminíferos se obtuvieron valiosos datos. El Turoniano y el Coniaciano se dividen en algunos horizontes litológicos y son ricos en amonitas y lamelibranquios, mientras que la microfauna es muy pobre, conteniendo casi exclusivamente formas planctónicas. El Coniaciano Superior está presentado por la “segunda lidita”; las margas y arcillas situadas encima de esta, no contienen moluscos, pero si una microfauna muy rica y uniforme, la cual consideramos de edad Santoniana. Dichas margas y arcillas están superpuestas por la “Primera lidita” y por margas y arcillas arenosas, caracterizadas por la presencia de amonitas campanianas y por una microfauna muy rica en varias especies de Siphogonerinoides. Todos los horizontes desde el Turoniano hasta la cima del Campaniano, están conectados por transiciones litológicas y microfaunísticas las cuales indican una sedimentación continua durante estos periodos. En contraste, observamos un hiato encima del Campaniano, seguido al principio del Maestrichtiano por una transgresión nueva, caracterizada por la aparición de Siphogenerinoides plummeri o bramtellei. Hacia arriba los de ositos maestrichtianos se vuelven gradualmente más arenosos y más continentales. Algunas intercalaciones finas, arcillosas, con Siphogenerinoides plummeri determinan periodos cortos de inundación marinas. En comparación con el Cretáceo Superior de los alrededores de Bogotá, el de la región de Girardot es más rico en cal y menos arenoso que aquel y mucho más rico de fósiles. El espesor del Santoniano (y del Coniaciano?) es igual tanto en la región de Bogotá como en la de Girardot y en cambio el del Campaniano y del Maestrichtiano es mucho mayor cerca de Girardot que de Bogotá; esto indica que la zona de máxima sedimentación en el geosinclinal Cretáceo se movió al principio del Campaniano de una posición más oriental hacia la hoya del río Magdalena, donde después fueron depositados sedimentos de un mayor espesor en el Terciario. Este traslado de eje de sedimentación refleja evidentemente la iniciación del solevantamiento de la cordillera Oriental favorecido por una relativa acentuación del hundimiento en la hova del Madalena. El mismo fenómeno del hundimiento se observa en el borde oriental (Llanos) de la cordillera Oriental a partir del Oligoceno.