Article

Loss of glycosaminoglycans (GAGs) from implanted bioprosthetic heart valves

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... However, cuspal extracellular matrix components lacking free amine functionalities, such as elastin and glycosaminoglycans (GAGs), are not effectively stabilized10111213. In the case of GAGs, this deficiency has previously been documented quantitatively as a reduction in the GAG content of explanted clinical BHVs [14,15] and qualitatively using histology and ultrastructural analysis following Glut fixation [10,16]. GAGs constitute a large fraction of the extracellular matrix of porcine aortic valve cusps, particularly within the central cuspal layer, the spongiosa. ...
... The data presented here extend the findings of previous quantitative and qualitative studies that have described the instability of GAGs within the extracellular matrix of porcine BHVs. [10,11,141516. Routinely, valves are harvested at slaughterhouses, transported to heart valve manufacturing facilities on ice, cleaned and dissected in cold saline and fixed in Glut. ...
... These studies include one in which we showed that the calcification of Glut fixed cusps in the rat subdermal model was accompanied by a marked decrease in GAG content and a concomitant increase in GAGdegrading enzyme activities [11]. Lower quantities of GAGs have also been reported in calcified natural valves [43], as well as in clinically failed, calcified BHVs [15]. Using the rat subdermal model it has also previously been demonstrated that the extraction of GAGs before Glut fixation stimulated the calcification of bovine pericardium [44] and conversely, the covalent immobilization of hyaluronic acid mitigated pericardial calcification [45]. ...
Article
Glycosaminoglycans (GAGs) are important structural and functional components in native aortic heart valves and in glutaraldehyde (Glut)-fixed bioprosthetic heart valves (BHVs). However, very little is known about the fate of GAGs within the extracellular matrix of BHVs and their contribution to BHV longevity. BHVs used in heart valve replacement surgery have limited durability due to mechanical failure and pathologic calcification. In the present study we bring evidence for the dramatic loss of GAGs from within the BHV cusp structure during storage in saline and both short- and long-term Glut fixation. In order to gain insight into role of GAGs, we compared properties of fresh and Glut-fixed porcine heart valve cusps before and after complete GAG removal. GAG removal resulted in significant morphological and functional tissue alterations, including decreases in cuspal thickness, reduction of water content and diminution of rehydration capacity. By virtue of this diminished hydration, loss of GAGs also greatly increased the "with-curvature" flexural rigidity of cuspal tissue. However, removal of GAGs did not alter calcification potential of BHV cups when implanted in the rat subdermal model. Controlling the extent of pre-implantation GAG degradation in BHVs and development of improved GAG crosslinking techniques are expected to improve the mechanical durability of future cardiovascular bioprostheses.
... Unlike collagen, these extracellular matrix components are not stabilized within the GLUT-fixed porcine valve leaflet. As a result GAGs are unremittingly lost from BHVs during in vitro fatigue experiments, storage, as well as when implanted in vivo345. Alternative fixation techniques using carbodiimides [1], epoxides [6], acyl azides [7], dye-mediated fixation [8], ultraviolet irradiation [9] and sodium periodate [10] been used to over come the inadequacies associated with GLUT. ...
... Morphological and structural changes occur in BHVs, particularly in the extracellular matrix of valve leaflets, following implantation. Eventually, these modifications may lead to the demise of the implant via various mechanisms including: calcification, GAG loss, collagen bundle loosening, and degeneration [2,3,26,27]. The relationship between GAGs and calcification remains highly debated although previous work by our group as well as others have shown that the preservation of endogenous GAGs within valve leaflets may play a minor role in inhibiting calcification [4,28]. ...
... Additionally, others have demonstrated the ability of utilizing exogenous GAGs to successfully mitigate calcification of BHV tissue [29]. Furthermore, discernible losses in GAGs have previously been observed in clinically explanted calcified BHVs [3,30]. Correlating in vivo GAG content with the observed calcification in crosslinked leaflets from our studies, GAGs appear to play a minor role if any to inhibit calcium deposition. ...
Article
Numerous crosslinking chemistries and methodologies have been investigated as alternative fixatives to glutaraldehyde (GLUT) for the stabilization of bioprosthetic heart valves (BHVs). Particular attention has been paid to valve leaflet collagen and elastin stability following fixation. However, the stability of glycosaminoglycans (GAGs), the primary component of the spongiosa layer of the BHV, has been largely overlooked despite recent evidence provided by our group illustrating their structural and functional importance. In the present study we investigate the ability of two different crosslinking chemistries: sodium metaperiodate (NaIO(4)) followed by GLUT (PG) and 1-Ethyl-3-(3 dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS) followed by GLUT (ENG) to stabilize GAGs within BHV leaflets and compare resulting leaflet characteristics with that of GLUT-treated tissue. Incubation of fixed leaflets in GAG-degrading enzymes illustrated in vitro resistance of GAGs towards degradation in PG and ENG treated tissue while GLUT fixation alone was not effective in preventing GAG loss from BHV leaflets. Following subdermal implantation, significant amounts of GAGs were retained in leaflets in the ENG group in comparison to GLUT-treated tissue, although GAG loss was evident in all groups. Utilizing GAG-targeted fixation did not alter calcification potential of the leaflets while collagen stability was maintained at levels similar to that observed in conventional GLUT-treated tissue.
... Due to the lacking of endothelium, plasma, erythrocytes and inflammatory cells may penetrate into the leaflet. In addition, cross-linked cellular debris, collagen and elastin on the leaflets can serve as foci of calcification [55] and since natural inhibitors to mineralisation may be diminished [56], collagen degeneration may follow. Attempts toward preventing mineralisation in bioprosthetic valve tissue by further chemical treatment have been carried out in experimental models [20]. ...
... Moreover, studies have suggested that leaflet damage may be chemically induced, as well. Chemical determinants include increased levels of extracellular matrix-degrading activity [142,143], canges in the molecular structure of collagen [144], and progressive deficiency of glycosaminoglycans (GAGs), in view of their role in tissue viscoelasticity and accommodation of the dynamic relationship between fibrous cuspal layers [56,145]. ...
Article
Full-text available
The second most common major heart operation in the western world is valve replacement. Any one of the four heart valves may become either so stenotic or regurgitant that it needs to be replaced in order to restore normal heart function. Although replacement surgery of dysfunctional heart valves has a very high success rate, it can provide the surgeon with a difficult decision regarding the choice of a suitable prosthesis for the individual patient. Over the years many different types of artificial heart valves have been devised. Surgeons typically deal with a heart valve replacement by installing a mechanical prosthesis or by using a bioprosthetic valve, hand-crafted from animal tissue. Least commonly, valves can be taken from human organ donors. Mechanical valve substitutes have a long fatigue life but the central flow occluders often induce blood cell trauma. Tissue substitutes have an unimpeded central orifice when open, cause minimal cell damage but have a relatively short fatigue life, especially in children where calcification may be a major problem. More recently alternative materials, such as polyurethane, have been used in artificial heart valve design while the new concept of tissue-engineering has enhanced the prospects towards an ideal cardiac valve replacement. Today's artificial valves are designed with a better understanding of the cardiovascular system with the aid of computers. Advances in computer software have allowed simulations of fluid flows through valve substitutes, both in cardiac flow simulators and the heart itself.
... Such alterations are associated with demonstrable changes in leaflet motion which produce abnormal stress patterns causing buckling, accelerated calcification and eventual tissue failure [113]. Moreover it is known that bioprostheses show progressive depletion of proteoglycans both in vitro and in vivo [114,115]. As such because proteoglycans contribute significantly to the viscoelastic properties and accommodation of stresses in the leaflet, their loss may influence mechanical deterioration. ...
... GAG loss has been documented during fixation and storage via hexosamine analysis, as well as using transmission electron microscopy [10]. This reduction in the amount of GAGs is also thought to be involved in the failure process, possibly resulting in tissue buckling and the depletion of the valve's ability to sustain high compressive loads during valve operation [2,8,57]. The results of this work are consistent with research concerning the role of GAGs in BHVs. ...
Article
While the role of collagen and elastin fibrous components in heart valve valvular biomechanics has been extensively investigated, the biomechanical role of the glycosaminoglycan (GAG) gelatinous-like material phase remains unclear. In the present study, we investigated the biomechanical role of GAGs in porcine aortic valve (AV) leaflets under tension utilizing enzymatic removal. Tissue specimens were removed from the belly region of porcine AVs and subsequently treated with either an enzyme solution for GAG removal or a control (buffer with no enzyme) solution. A dual stress level test methodology was used to determine the effects at low and high (physiological) stress levels. In addition, planar biaxial tests were conducted both on-axis (i.e. aligned to the circumferential and radial axes) and at 45° off-axis to induce maximum shear, to explore the effects of augmented fiber rotations on the fiber-fiber interactions. Changes in hysteresis were used as the primary metric of GAG functional assessment. A simulation of the low-force experimental setup was also conducted to clarify the internal stress system and provide viscoelastic model parameters foR this loading range. Results indicated that under planar tension the removal of GAGs had no measureable affect extensional mechanical properties (either on- or 45° off-axis), including peak stretch, hysteresis and creep. Interestingly, in the low-force range, hysteresis was markedly reduced, from 35.96±2.65% in control group to 25.00±1.64% (p<0.001) as a result of GAG removal. Collectively, these results suggest that GAGs do not play a direct role in modulating the time-dependent tensile properties of valvular tissues. Rather, they appear to be strongly connected with fiber-fiber and fiber-matrix interactions at low force levels. Thus, we speculate that GAGs may be important in providing a damping mechanism to reduce leaflet flutter when the leaflet is not under high tensile stress.
... Additionally, others have demonstrated the ability of utilizing added exogenous GAGs to successfully mitigate calcification of BHV tissue[25]. Furthermore, distinct losses in GAGs have been observed in clinically explanted calcified BHVs[26,27]. In present study, cusps from GAG-fixation groups NEG and ENG, showed lower calcification than GLUT fixed cusps, but the calcification was not completely inhibited despite the fact that NEG group had considerable amounts of GAGs. ...
Article
Bioprosthetic heart valves (BHVs) derived from glutaraldehyde crosslinked porcine aortic valves are frequently used in heart valve replacement surgeries. However, BHVs have limited durability and fail either due to degeneration or calcification. Glycosaminoglycans (GAGs), one of the integral components of heart valve cuspal tissue, are not stabilized by conventional glutaraldehyde crosslinking. Previously we have shown that valvular GAGs could be chemically fixed with GAG-targeted chemistry. However, chemically stabilized GAGs were only partially stable to enzymatic degradation. In the present study an enzyme inhibitor was incorporated in the cusps to effectively prevent enzymatic degradation. Thus, neomycin trisulfate, a known hyaluronidase inhibitor, was incorporated in cusps via 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS) chemistry followed by glutaraldehyde crosslinking (NEG). Controls included cusps crosslinked with either EDC/NHS followed by glutaraldehyde (ENG) or only with glutaraldehyde (GLUT). NEG group showed improved resistance to in vitro enzymatic degradation as compared to GLUT and ENG groups. All groups showed similar collagen stability, measured as a thermal denaturation temperature by differential scanning calorimetry (DSC). The cusps were implanted subdermally in rats to study in vivo degradation of GAGs. NEG group preserved significantly more GAGs than ENG and GLUT. NEG and ENG groups showed reduced calcification than GLUT.
Article
Substitute heart valves composed of human or animal tissues have been used since the early 1960s, when aortic valves obtained fresh from human cadavers were transplanted to other individuals as allografts. Today, tissue valves are used in 40% or more of valve replacements worldwide, predominantly as stented porcine aortic valves (PAV) and bovine pericardial valves (BPV) preserved by glutaraldehyde (GLUT) (collectively termed bioprostheses). The principal disadvantage of tissue valves is progressive calcific and noncalcific deterioration, limiting durability. Native heart valves (typified by the aortic valve) are cellular and layered, with regional specializations of the extracellular matrix (ECM). These elements facilitate marked repetitive changes in shape and dimension throughout the cardiac cycle, effective stress transfer to the adjacent aortic wall, and ongoing repair of injury incurred during normal function. Although GLUT bioprostheses mimic natural aortic valve structure (a) their cells are nonviable and thereby incapable of normal turnover or remodeling ECM proteins; (b) their cuspal microstructure is locked into a configuration which is at best characteristic of one phase of the cardiac cycle (usually diastole); and (c) their mechanical properties are markedly different from those of natural aortic valve cusps. Consequently, tissue valves suffer a high rate of progressive and age-dependent structural valve deterioration resulting in stenosis or regurgitation (>50% of PAV overall fail within 10–15 years; the failure rate is nearly 100% in 5 years in those <35 years old but only 10% in 10 years in those >65). Two distinct processes—intrinsic calcification and noncalcific degradation of the ECM—account for structural valve deterioration. Calcification is a direct consequence of the inability of the nonviable cells of the GLUT-preserved tissue to maintain normally low intracellular calcium. Consequently, nucleation of calcium-phosphate crystals occurs at the phospholipid-rich membranes and their remnants. Collagen and elastin also calcify. Tissue valve mineralization has complex host, implant, and mechanical determinants. Noncalcific degradation in the absence of physiological repair mechanisms of the valvular structural matrix is increasingly being appreciated as a critical yet independent mechanism of valve deterioration. These degradation mechanisms are largely rationalized on the basis of the changes to natural valves when they are fabricated into a tissue valve (mentioned above), and the subsequent interactions with the physiologic environment that are induced following implantation. The “Holy Grail” is a nonobstructive, nonthrombogenic tissue valve which will last the lifetime of the patient (and potentially grow in maturing recipients). There is considerable activity in basic research, industrial development, and clinical investigation to improve tissue valves. Particularly exciting in concept, yet early in practice is tissue engineering, a technique in which an anatomically appropriate construct containing cells seeded on a resorbable scaffold is fabricated in vitro, then implanted. Remodeling in vivo, stimulated and guided by appropriate biological signals incorporated into the construct, is intended to recapitulate normal functional architecture. © 1999 John Wiley & Sons, Inc. J Biomed Mater Res, 47, 439–465, 1999.
Article
Bioprosthetic heart valves (BPHVs) derived from glutaraldehyde-crosslinked porcine aortic valves are frequently used in heart valve replacement surgeries. However, the majority of bioprostheses fail clinically because of calcification and degeneration. We have recently shown that glycosaminoglycan (GAG) loss may be in part responsible for degeneration of glutaraldehyde-crosslinked bioprostheses. In the present studies, we used a mild reaction of periodate-mediated crosslinking to stabilize glycosaminoglycans in the bioprosthetic tissue. We demonstrate the feasibility of periodate reaction by crosslinking major components of extracellular matrix of bioprosthetic heart valve tissue, namely type I collagen and hyaluronic acid (HA). Uronic acid assay of periodate-fixed HA-collagen matrices showed 48% of HA disaccharides were bound to collagen. Furthermore, we show that such reactions are also feasible to fix glycosaminoglycans present in the middle spongiosa layer of bioprosthetic heart valves. The periodate reactions were compatible with conventional glutaraldehyde crosslinking and showed adequate stabilization of extracellular matrix as demonstrated by thermal denaturation temperature and collagenase assays. Moreover, uronic acid assays of periodate-fixed BPHV cusps showed 36% reduction in the amount of unbound GAG disaccharides as compared with glutaraldehyde-crosslinked cusps. We also demonstrate that calcification of BPHV cusps was significantly reduced in the periodate-fixed group as compared with the glutaraldehyde-fixed group in 21-day rat subdermal calcification studies (periodate-fixed tissue Ca 72.01 ± 5.97 μg/mg, glutaraldehyde-fixed tissue Ca 107.25 ± 6.56 μg/mg). We conclude that periodate-mediated GAG fixation could reduce structural degeneration of BPHVs and may therefore increase the useful lifetime of these devices. © 2001 John Wiley & Sons, Inc. J Biomed Mater Res 56: 478–486, 2001
Article
Bioprosthetic heart valve (BPHV) degeneration, characterized by extracellular matrix deterioration, remodeling, and calcification, is an important clinical problem accounting for thousands of surgeries annually. Here we report for the first time, in a series of in vitro accelerated fatigue studies (5-500 million cycles) with glutaraldehyde fixed porcine aortic valve bioprostheses, that the mechanical function of cardiac valve cusps caused progressive damage to the molecular structure of type I collagen as assessed by Fourier transform IR spectroscopy (FTIR). The cyclic fatigue caused a progressive loss of helicity of the bioprosthetic cuspal collagen, which was evident from FTIR spectral changes in the amide I carbonyl stretching region. Furthermore, cardiac valve fatigue in these studies also led to loss of glycosaminoglycans (GAGs) from the cuspal extracellular matrix. The GAG levels in glutaraldehyde crosslinked porcine aortic valve cusps were 65.2 +/- 8.66 microg uronic acid/10 mg of dry weight for control and 7.91 +/- 1.1 microg uronic acid/10 mg of dry weight for 10-300 million cycled cusps. Together, these molecular changes contribute to a significant gradual decrease in cuspal bending strength as documented in a biomechanical bending assay measuring three point deformation. We conclude that fatigue-induced damage to type I collagen and loss of GAGs are major contributing factors to material degeneration in bioprosthetic cardiac valve deterioration.
Article
Substitute heart valves composed of human or animal tissues have been used since the early 1960s, when aortic valves obtained fresh from human cadavers were transplanted to other individuals as allografts. Today, tissue valves are used in 40% or more of valve replacements worldwide, predominantly as stented porcine aortic valves (PAV) and bovine pericardial valves (BPV) preserved by glutaraldehyde (GLUT) (collectively termed bioprostheses). The principal disadvantage of tissue valves is progressive calcific and noncalcific deterioration, limiting durability. Native heart valves (typified by the aortic valve) are cellular and layered, with regional specializations of the extracellular matrix (ECM). These elements facilitate marked repetitive changes in shape and dimension throughout the cardiac cycle, effective stress transfer to the adjacent aortic wall, and ongoing repair of injury incurred during normal function. Although GLUT bioprostheses mimic natural aortic valve structure (a) their cells are nonviable and thereby incapable of normal turnover or remodeling ECM proteins; (b) their cuspal microstructure is locked into a configuration which is at best characteristic of one phase of the cardiac cycle (usually diastole); and (c) their mechanical properties are markedly different from those of natural aortic valve cusps. Consequently, tissue valves suffer a high rate of progressive and age-dependent structural valve deterioration resulting in stenosis or regurgitation (>50% of PAV overall fail within 10-15 years; the failure rate is nearly 100% in 5 years in those <35 years old but only 10% in 10 years in those >65). Two distinct processes-intrinsic calcification and noncalcific degradation of the ECM-account for structural valve deterioration. Calcification is a direct consequence of the inability of the nonviable cells of the GLUT-preserved tissue to maintain normally low intracellular calcium. Consequently, nucleation of calcium-phosphate crystals occurs at the phospholipid-rich membranes and their remnants. Collagen and elastin also calcify. Tissue valve mineralization has complex host, implant, and mechanical determinants. Noncalcific degradation in the absence of physiological repair mechanisms of the valvular structural matrix is increasingly being appreciated as a critical yet independent mechanism of valve deterioration. These degradation mechanisms are largely rationalized on the basis of the changes to natural valves when they are fabricated into a tissue valve (mentioned above), and the subsequent interactions with the physiologic environment that are induced following implantation. The "Holy Grail" is a nonobstructive, nonthrombogenic tissue valve which will last the lifetime of the patient (and potentially grow in maturing recipients). There is considerable activity in basic research, industrial development, and clinical investigation to improve tissue valves. Particularly exciting in concept, yet early in practice is tissue engineering, a technique in which an anatomically appropriate construct containing cells seeded on a resorbable scaffold is fabricated in vitro, then implanted. Remodeling in vivo, stimulated and guided by appropriate biological signals incorporated into the construct, is intended to recapitulate normal functional architecture.
Article
Full-text available
Glutaraldehyde (GA)-fixed aortic valves used in heart valve replacement surgery have limited durability due to tissue degeneration and calcification. Despite their structural and functional importance, very little is known about the fate of glycosaminoglycans (GAGs) within the extracellular matrix of bioprosthetic heart valves. The study aim was to investigate the stability of GAGs in GA-fixed tissues and to identify enzymatic mechanisms that may be responsible for GAG degeneration. Porcine aortic valve cusps were fixed with GA and implanted subdermally in rats for 21 days. Fresh, fixed and explanted cusps were analyzed for GAG content by hexosamine determination, and GAG-degrading enzyme activity was evaluated using zymography. GAG classes in fresh cusps were also assessed by flurorophore-assisted carbohydrate electrophoresis. Fresh and GA-fixed cusps were also exposed in vitro to hyaluronidase and chondroitinase in order to test the susceptibility of cusp GAGs towards enzymatic degradation. Native aortic cusps contained -3.5% GAGs by dry weight, consisting of hyaluronic acid, chondroitin sulfate and dermatan sulfate. Significantly lower GAG levels were found in aortic cusps after fixation with GA, and even lower levels were found after subdermal implantation in rats. GAG levels in GA-fixed cusps were also significantly reduced by in-vitro incubation with hyaluronidase and chondroitinase. Novel GAG-degrading enzymes were detected in considerable levels in native cusps, in lower levels in GA-fixed cusps and significantly increased levels after subdermal implantation of GA-fixed cusps. The combined action of active GAG-degrading enzymes and the failure of GA to stabilize GAGs towards enzymatic digestion may contribute significantly to bioprosthetic heart valve degeneration and subsequent structural failure.
Article
Explanted porcine bioprosthetic valves have a thinned spongiosa, partially because of an overall loss of glycosaminoglycans (GAGs). We measured the concentrations of specific GAG classes in explanted bioprosthetic valves (n = 14, implanted 12.0 +/- 4.7 years) compared with glutaraldehyde-fixed porcine controls. After extraction with NaOH, GAGs were analyzed using either a hexuronic acid assay or fluorophore-assisted carbohydrate electrophoresis to quantify the individual GAG classes. The total GAG concentration in explants was 198 +/- 95 pmol/mg wet weight-93% less than freshly fixed controls. Explants also contained altered proportions of the different GAG classes relative to controls. The proportions of hyaluronan and chondroitin/dermatan-6-sulfate were reduced from 39 to 7% and 34 to 18% of total GAGs, respectively. The predominant explant GAG class was chondroitin/dermatan-4-sulfate (proportion elevated from 14 to 70%). This GAG is commonly found in the collagen-associated proteoglycan decorin, which is likely well crosslinked by glutaraldehyde. Chondroitin-6-sulfate is commonly found in the water- and hyaluronan-binding proteoglycan versican, which is likely poorly crosslinked. The loss of versican and its associated water-binding capacity is consistent with the thinned spongiosa. The resultant compromise of hydration, compressive resistance, and viscoelasticity may be responsible for the deterioration of the bioprosthesis in vivo.
ResearchGate has not been able to resolve any references for this publication.