ArticlePDF Available

Review on the Removal of Metal Ions from Effluents Using Seaweeds, Alginate Derivatives and Other Sorbents

Authors:

Abstract and Figures

Biosorbents, especially those derived from seaweed (macroscopic algae) and alginate derivatives, exhibit high affinity for many metal ions. Because biosorbents are widely abundant (usually biodegradable) and less expensive than industrial synthetic adsorbents, they hold great potential for the removal of toxic metals from industrial effluents. Various studies have demonstrated the efficiency of living and non- living micro-organisms, such as bacteria, yeasts, moulds, micro-algae, cyanobacteria and biomass from water treatment sewage to remove metals from solution. Several types of organic and inorganic biomass have also been used as sorbent materials. In addition, by-products from the forestry industry, as well as agriculture waste and natural sorbents, have also been studied. This paper reviews and summarizes some key recent developments in these areas and it describes and discusses some specific applications of selected natural sorbents.
Content may be subject to copyright.
Érudit
est un consortium interuniversitaire sans but lucratif composé de l'Université de Montréal, l'Université Laval et l'Université du Québec à
Montréal. Il a pour mission la promotion et la valorisation de la recherche.
Érudit
offre des services d'édition numérique de documents
scientifiques depuis 1998.
Pour communiquer avec les responsables d'Érudit : erudit@umontreal.ca
Article
Jean-François Fiset, Jean-François Blais et Patricio A. Riveros
Revue des sciences de l'eau/ Journal of Water Science
, vol. 21, n° 3, 2008, p. 283-308.
Pour citer cet article, utiliser l'information suivante :
URI: http://id.erudit.org/iderudit/018776ar
DOI: 10.7202/018776ar
Note : les règles d'écriture des références bibliographiques peuvent varier selon les différents domaines du savoir.
Ce document est protégé par la loi sur le droit d'auteur. L'utilisation des services d'Érudit (y compris la reproduction) est assujettie à sa politique
d'utilisation que vous pouvez consulter à l'URI http://www.erudit.org/apropos/utilisation.html
Document téléchargé le 12 June 2013 02:03
"Review on the Removal of Metal Ions from Effluents Using Seaweeds, Alginate Derivatives
and Other Sorbents"
REVIEW ON THE REMOVAL OF METAL IONS FROM EFFLUENTS
USING SEAWEEDS, ALGINATE DERIVATIVES AND
OTHER SORBENTS
Revue sur l’enlèvenement des ions métalliques des efuents par l’utilisation des macro-algues, des dérivés d’alginate
et autres sorbants
Jean-François Fiset
1
*, Jean-François Blais
2
, Patricio a. riveros
1
1
Natural Resources Canada, CANMET-MMSL, 555 Booth Street, Ottawa, (Ont) K1A 0G1
2


*Auteur pour correspondance :
 613-995-4641
 : 613-996-9041
Courriel : jeset@nrcan.gc.ca
Revue des Sciences de l’Eau 21(3) (2008) 283-308

ABSTRACT
Biosorbents, especially those derived from seaweed
(macroscopic algae) and alginate derivatives, exhibit high
affinity for many metal ions. Because biosorbents are widely
abundant (usually biodegradable) and less expensive than
industrial synthetic adsorbents, they hold great potential for
the removal of toxic metals from industrial effluents. Various
studies have demonstrated the efficiency of living and non-
living micro-organisms, such as bacteria, yeasts, moulds,
micro-algae, cyanobacteria and biomass from water treatment
sewage to remove metals from solution. Several types of
organic and inorganic biomass have also been used as sorbent
materials. In addition, by-products from the forestry industry,
as well as agriculture waste and natural sorbents, have also been
studied. is paper reviews and summarizes some key recent
developments in these areas and it describes and discusses
some specific applications of selected natural sorbents.
Key Words: Metal, removal, adsorption, alginate, seaweed,
natural sorbent, wastewater, effluent, treatment.
SU
Les biosorbants, particulièrement ceux préparés à partir des
algues macroscopiques et des dérivés d’alginate, démontrent une
très bonne capacité d’adsorption des ions métalliques toxiques.
Ces biosorbants étant facilement disponibles (biodégradable)
et moins coûteux que les adsorbants (industriels) synthétiques,
Metals adsorption on seaweed, alginate and other sorbents

ils présentent un grand potentiel d’utilisation pour l’enlèvement
des métaux toxiques des effluents industriels. Les récents
développements dans ce domaine ont été revus et font l’objet
de la présente synthèse. Des applications spécifiques sont
décrites et discutées.
Diverses technologies sont disponibles pour enlever les
métaux des effluents industriels tels que la précipitation
(sous forme d’hydroxydes ou de sulfures), la coprécipitation,
l’adsorption, l’extraction par solvant, la cémentation,
l’électrodéposition, l’électrocoagulation, l’échange d’ions et
les technologies de séparation membranaire. Néanmoins, la
plupart de ces techniques présentent des coûts d’exploitation
élevés et, dans certains cas, sont limitées en terme de rendement
d’élimination des métaux. Dans ce contexte, l’utilisation
d’adsorbants naturels (dérivés de matière organique ou
inorganique) constitue une alternative intéressante aux produits
synthétiques. De nombreux articles ont d’ailleurs été publiés au
cours des dernières années faisant état de la performance d’une
grande variété d’adsorbants naturels pour enlever les métaux
des effluents.
Plusieurs espèces d’algues marines ont aussi démontré des
propriétés pour adsorber les métaux, mais les algues marines
brunes, telles que Sargassum et Ascophyllum semblent avoir la
plus grande capacité de rétention des métaux, à cause de leur
grande concentration en polysaccharides. L’intégrité physique
des algues est également importante, ceci afin de prévenir
leur désintégration pendant les processus d’adsorption. Afin
d’améliorer la stabilité et les propriétés mécaniques des algues
fraîches, diverses méthodes ont été suggérées : i) greffage
dans des polymères synthétiques; ii) incorporation dans des
matériaux inorganiques; iii) liaison sur un support adéquat; et
iv) séquestration par un agent de liaison.
L’acide alginique est un polymère naturel se trouvant
dans les algues brunes. Ce polymère est extrait en traitant les
algues avec une solution de carbonate de sodium, puis l’acide
alginique est précipité, ou converti en sel d’alginate de calcium.
Lorsque l’acide alginique réagit avec des ions polyvalents,
tel que le calcium, une séquestration se produit procurant
un gel d’alginate ayant des forces structurales significatives.
L’alginate de calcium peut être préparé sous plusieurs formes,
telles que des billes, de la poudre, des membranes, des
fibres ou des supports d’immobilisation cellulaire. Les billes
sont particulièrement intéressantes du point de vue de leur
application et de leur réutilisation.
L’utilisation des algues marines en tant que procédé
d’enlèvement des métaux doit tenir compte de plusieurs
considérations techniques. Les systèmes de biosorption
utilisent les biomasses sous forme solide en un pro
conventionnel de contact solide-liquide et, dans certains cas,
les systèmes comprennent plusieurs étapes de biosorption et de
désorption. L’effluent à traiter peut entrer en contact avec la
biomasse selon un procédé en mode discontinu, semi-continu
ou continu. Une fois saturés en métaux lourds, les adsorbants
peuvent être disposés de façon sécuritaire, ou être réutilisés
après élution des métaux. Dans ce cas, la plupart des métaux
lourds (Cd, Co, Cu, Mn, Pb, Zn) peuvent être élués à l’aide
d’acides dilués (chlorhydrique, sulfurique, nitrique) ou de
solutions salines concentrées. Certains métaux qui sont moins
dépendants du pH d’adsorption (Au, Ag, Hg) ne peuvent être
élués en utilisant un acide dilué. Des solutions de thiourée ou de
mercaptol peuvent être utilisées pour l’or et l’acétate de sodium
pour la récupération de l’argent. La combustion des algues est
également possible, néanmoins, elle n’est envisageable que si
l’adsorbant est peu dispendieux et grandement disponible.
Plusieurs types de biomasses organiques ou inorganiques
peuvent être utilisés comme matériaux adsorbants. Des études
ont démontré l’efficacité des microorganismes vivants ou morts
incluant les bactéries, les levures, les moisissures, les microalgues,
les cyanobactéries et les biomasses issues du traitement des eaux
usées (boues d’épuration). Les rejets de l’industrie forestière,
incluant les sciures et les écorces de bois riches en lignine et en
tannins, ont été également étudiés de façon intensive. Certaines
plantes aquatiques (Ceratophyllum demersum, Lemna minor,
Myriophyllum spicatum) ont également été évaluées pour leur
capacité en phytofiltration et phytoassainissement. D’autres
études ont été effectuées sur la performance de fixation des
métaux de la chitine, cette dernière étant un biopolymère
naturel très abondant, lequel est classé second après la cellulose
en terme d’abondance. Ce biopolymère se retrouve largement
dans l’exosquelette des crustacés et des coquillages. Le chitosan
est produit en effectuant la dé-acétylation de la chitine en milieu
alcalin. La mousse de tourbe, les déchets d’agriculture (résidus
de thé et de café, pelures de certains légumes, écailles de noix,
d’arachides, de cacao) et divers autres adsorbants de nature
inorganique (sable, argile, oxyde, zéolites) ont également été
étudiés pour la récupération des métaux en solution.
D’un point de vue économique, plusieurs méthodes existent
pour traiter les eaux usées. La sélection d’une méthode dépend
de plusieurs critères, tels que la compatibilité avec les opérations
existantes, les coûts d’exploitation, la flexibilité des procédés
afin de pouvoir traiter des variations de charges hydrauliques et
de concentrations de contaminants. La méthode doit être aussi
fiable, robuste et simple d’utilisation. Dans certains cas, des
économies substantielles peuvent être réalisées en faisant appel
à l’adsorption des métaux sur des biomasses, comparativement
aux procédés conventionnels, tel que la précipitation des
métaux.
Mots clés : métal, enlèvement, adsorption, alginate, algue,
eau usée, sorbant naturel, effluent, traitement.
J.-F. Fiset et al./ Revue des Sciences de l’Eau

INTRODUCTION
e preservation of the environment has become
increasingly important in view of the ecological problems
brought about by industrialization and urbanization. Lakes
and rivers are particularly vulnerable to contamination as
a result of the discharge of large quantities of effluents from
industries and municipalities. e presence of heavy metals,
such as cadmium, chromium, cobalt, copper, lead, mercury,
nickel, silver, tin and zinc in rivers and watercourses may cause
serious health problems to living organisms (ALLOWAY and
AYERS, 1993; WASE and FORSTER, 1997).
Consequently, the norms and regulations imposed on
industrial effluents are becoming increasingly stringent.
ese restrictions stem largely from recent advances in
the understanding of the behaviour of heavy metals in the
environment. Being non-biodegradable, toxic metals tend
to accumulate in lower plants and animals, thereby entering
the food chain (CHANG et al., 2003; LIPPMANN, 2000;
WATTS, 1998).
Various technologies are available to remove metal ions
from industrial effluents, including precipitation (usually
as metal hydroxide or sulphide) and coprecipitation,
sorption, solvent extraction, cementation, electrodeposition,
electrocoagulation, ion exchange, and membrane technology
(BLAIS et al., 1999; BROOKS, 1991; CHMIELEWSKI
et al., 1997; PATTERSON, 1989). However, most of these
techniques require expensive, usually toxic, reagents, and this
fact significantly increases the capital and operating costs. In
this context, biosorbents (i.e., ion exchangers and adsorbents
derived from organic matter) present an attractive alternative
to synthetic and chemical products because they are widely
available, generally biodegradable and relatively inexpensive.
e main characteristics and past applications of biosorbents
have been summarized and discussed by several researchers
(ATKINSON et al., 1998; BABEL and KURNIAWAN,
2003; BAILEY et al., 1999; FISET et al., 2000; KUYUCAK
and VOLESKY, 1988; VEGLIO and BEOLCHINI, 1997;
VOLESKY, 1990; VOLESKY and HOLAN, 1995; WASE and
FORSTER, 1997). is present review summarizes the recent
research carried out on the use of biosorbents, especially those
derived from seaweeds, as substrates to remove heavy metal
from solutions and effluents. e various systems, mechanisms
and results presented in the scientific literature are analyzed
and compared.
1. SEAWEED SORBENTS
1.1 Seaweed-derived sorbents
e ability of biosorbents derived from marine algae
to adsorb metal ions has been demonstrated by several
researchers (LEE and VOLESKY, 1997; LEUSCH et al., 1995;
VEGLIO and BEOLCHINI, 1997; VOLESKY and HOLAN,
1995; VOLESKY and PRASETYO, 1994; WILSON and
EDYVEAN, 1994).
According to FAO (2002), the world aquaculture production
of brown, red and green seaweeds in 2002 was approximately 5,
2.5 and 0.018 Megatons (wet basis), respectively. Whereas all
these seaweed species exhibit good metal adsorption properties,
the brown marine algae (Sargassum and Ascophyllum) have the
highest capacity for heavy metal ions because of their high
polysaccharide content (VOLESKY and HOLAN, 1995).
Tables 1 and 2 summarize the research carried out on the
adsorption of metal ions using various seaweed species.
KLIMMEK et al. (2001) compared the efficiency of
thirty strains of algae for their abilities to extract cadmium,
lead, nickel and zinc from aqueous solution. ese researchers
found that the cyanophyceae Lyngbya taylorii exhibited high
uptake capacities for the four metals. Similarly, VOLESKY and
HOLAN (1995) provide some 23 examples of algal biomass
metal adsorption.
e physical integrity of algae is important to prevent them
from disintegrating during the sorption process. HOLAN et al.
(1993) summarized various techniques used to improve the
stability and the mechanical properties of fresh biopolymers:
Grafting into synthetic polymers;
Entrapment into inorganic material;
Binding to a suitable carrier; and
Cross-linking.
1.2 Algins and alginates derivatives
Algins are salts of alginic acid, a natural polymer found
in brown algae (Phaeophyceae). is polymer is extracted by
treating the seaweed with a sodium carbonate solution and
recovered by precipitation as alginic acid and afterward as the
sodium salt. e alginic acid molecules have a complicated
structure. Figure 1 shows two of the main segments found in
alginic acid. e abundance of carboxylic, hydroxyl and oxo
Metals adsorption on seaweed, alginate and other sorbents

References Seaweeds Metals Studied parameters
ARAVINDHAN
et al. Turbinaria sp. Cr(III)
Pre-treated with H
2
SO
, CaCl
2
and
MgCl
2
AXTELL et al. (2003) Microspora sp. 

study
BORBA
et al. Sargassum lipendula Ni(II)

mathematical modeling
CEPRIÁ
et al. Ulva rigida Au(III), Hg(II), Ag(I),


CHAISUKSANT
(2003)
Gracilaria sheri (red marine
algae)
Cd(II), Cu(II)

treated with CaCl
2
.
COSSICH
et al. Sargassum sp. Cr(III) 
DA COSTA
and DE FRANÇA

Codium sp., Colpomenia sp.,
Gelidium sp., Padina sp.,
Sargassum sp., Ulva sp.
Cd(II)
Langmuir and Freundlich models, ion-

DA COSTA
et al. Sargassum sp.
Al(III), Ca(II), Cd(II),
Mg(II), Na(I), Zn(II)

GONG
et al. (2005) Spirulina maxima 

concentration, Freundlich model,
desorption, pre-treated with CaCl
2
.
GUPTA
et al. (2001) Spirogyra sp. Cr(VI)

pH, Langmuir model
HOLAN et al.
Ascophyllum nosodum,
Fucus vesiculosus
Cd(II) 
HOLAN and VOLESKY
Ascophyllum nosodum,
Fucus vesiculosus





KAEWSARN and YU (2001)
Padina sp. Cd(II)

 
KAEWSARN
et al. (2001) Durvillaea potatorum Cu(II)

EDTA)
KAEWSARN
(2002) Padina sp. Cu(II)



KHANI
et al Cystoseira indica U(VI)


algae
KRATOCHVILL
et al. Sargassum sp. Cr(III), Cr(VI) Protonated seaweed, pH optimization
KUYUCAK
and VOLESKY

Ascophyllum nodosum,
Chondrus crispus, Halimeda
opuntia, Palmaria palmata,
Porphyra tenera, Sargassum
natans
Ag(I), Au(III), Cd(II),

U(VI), Zn(II)




KUMAR
et al. Ulva fasciata sp. Cu(II)




LAU
et al. (2003) Ulva lactuca Cu(II), Ni(II), Zn(II)
 



Table 1. Studies on the metal sorption using seaweeds
Tableau 1. Études portant sur l’adsorption des métaux par utilisation d’algues macroscopiques
J.-F. Fiset et al./ Revue des Sciences de l’Eau

References Seaweeds Metals Studied parameters
LEE
and VOLESKY Sargassum uitans
Al(III), Ca(II), K(I),
Mg(II), Na(I)

LEUSCH
et al.
Ascophyllum nodosum
Sargassum uitans
Cd(II), Cu(II), Ni(II),



polyethylene imine, Langmuir,

 
LODEIRO
et al. Cystoseira baccata 



LUO
et al. Laminaria japonica 

 

MATHEICKAL
et al. Ecklonia radiata Cu(II)



MATHEICKAL
 Phellinus badius 



NAJA
and Sargassum uitans Cu(II), Zn(II), Cd(II) 
OFER
et al. (2003)
Padina pavonia,
Sargassum vulgaris Cd(II), Ni(II)
Kinetic studies, desorption studies,
Langmuir isotherm
PARK
et al. Ecklonia sp. Cr(III), Cr(VI)


FTIR characterization
PRASHER
et al. Palmaria palmate (red algae)
Cd(II), Cu(II), Ni(II),

Freundlich, Langmuir and Brunauer
Emmer and Teller (BET) models,

concentration and temperature
SENTHILKUMAR
et al.
Gracilaria crassa, Gracilaria
edulis, Hypnea valentiae, Ulva
lactuca, Ulva reticula, Codium
tomentosum, Chaetomorpha
antennina, Turbinaria conoides,
turbinaria ornata, Sargassum
polycystium
Zn(II)

Freundlich, Redlich-Peterson and



desorption studies
TSUI
et al. Sargassum hemiphyllum
Ag(I), As(V), Cd(II),
Co(II), Cd(II), Cr(III),
Cr(VI), Mn(II), Ni(II),



VOLESKY

Sargassum natans, Sargassum
uitans, Sargassum vulgaris,
Ascophyllum nodosum,
Palmaria palmata, Chondrus
crispus, Halimeda opuntia,
Fucus vesiculosis, Padina
gymnospora, Codium taylori

YU
et al.
Ascophyllum nodosum,
Lessonia avicans, Lessonia
nigresense
Laminaria japonica, Laminaria
hyperbola, Ecklonia maxima,
Ecklonia radiate, Durvillaea
potatorum

U(VI)


Metals adsorption on seaweed, alginate and other sorbents

groups gives alginic acid and alginate salts strong chelating
properties for metal ions.
When alginic acid reacts with polyvalent ions, such as
calcium, a cross-linking effect takes place, which gives the
resulting alginate gel a significant structural strength (NESTLE
and KIMMICH, 1996). e cross-linking is caused by a
polyvalent ion binding two or more carboxylic groups on
adjacent polymer chains, and this can be accompanied by
chelation of the ion by the hydroxyl and carboxyl groups of the
polymer chains (SHIMIZU and TAKADA, 1997).
e alginate products are not only used for metal removal,
but also for other commercial applications, including some in
the food industry (HOLAN et al., 1993; RENN, 1997). e
main advantage of using algae or biomass derivatives is that they
do not require nutrients and they are resistant to the physical-
chemical properties of heavy metal solutions (ARAÚJO and
TEIXEIRA, 1997). Alginate products have been used as
supporting substrate for a variety of active agents, including
microorganisms, algae (AL-RUB et al., 2004; SINGHAL et al.,
2004), chitosan (GOTOH et al., 2004; HUANG et al., 1996),
activated sludge (WANG et al., 2004), cellulose and humic
acid (MISRA and PANDEY, 2001). Tables 3 and 4 present
alginate derivatives studied for their capacity to adsorb different
metals.
Calcium alginate may be prepared in various forms, such
as beads, powder (CRIST et al., 1994), membranes (HIRAI
and ODANI, 1994; TOTI and AMINABHAVI, 2002) or
fibers (SHIMIZU and TAKADA, 1997; WILLIAMS and
EDYVEAN, 1997) and can be used as cell-immobilization
support (IBÁÑEZ and UMETSU, 2002). Bead particles have
practical advantages in terms of applicability to a wide variety
of process configuration and reusability (GOTOH et al., 2004).
Also, the alginate beads may be protonated (IBÁÑEZ and
UMETSU, 2002, 2004) or doped with another metallic ion
to obtain various bead properties (MIN and HERING, 1998).
GOTOH et al. (2004) improved the mechanical strength and
resistance to chemical and microbial degradation without
affecting adsorption capacity by cross-linking the alginate
beads with 1,6-Diaminohexane. Producing alginate gels “in-
situ” is also feasible when a high concentration of metal ions is
References Sorbents Cd(II) Cu(II) Cr(III) Ni(II) Zn(II)
ARAVINDHAN
et al. T. ornata 31
CHAISUKANT (2003) G. sheri  
COSSICH
et al. Sargassum sp. 
KUMAR
et al. Ulva fasciata sp. 
LAU
et al.(2003)
Ulvas sp. 1
Ulva lactuca
Ulva sp. 3

55
51
10




31
LODEIRO
et al. S. muticum 
LODEIRO
et al C. baccata 101
OFER et al. (2003)
S. vulgaris
P. pavonia
135



PAVASANT
et al. Caulerpa lentillifera   
Table 2. Recent studies on the adsorption capacities (mg/g) of marine algae for selected heavy metals.
Tableau 2. Études récentes sur la capacité d’adsorption (mg/g) des l’algues marines pour des métaux lourds sélectionnés.
O
HO
COO
-
HO
O
O
HO
COO
-
O
HO
O
HO
COO
-
HO
O
O
HO
COO
-
O
HO
O
HO
COO
-
HO
O
O
HO
COO
-
O
HO
O
HO
COO
-
HO
O
O
HO
COO
-
O
HO
O
HO
COO
-
HO
O
O
HO
COO
-
O
HO
O
O
OH
HO
COO
-
O
HO
O
OH
COO
-
O
O
OH
HO
COO
-
O
HO
O
OH
COO
-
O
O
O
OH
HO
COO
-
O
HO
O
OH
COO
-
O
O
OH
HO
COO
-
O
HO
O
OH
COO
-
O
A
B
Figure 1. Main segments of alginic acid: A) a poly(D-mannuronosyl
segment and B) a poly(L-guluronosyl) segment.
Principales parties de l’acide alginique : A) une
portion poly(D-mannuronosyl, et B) une portion
poly(L-guluronosyl).
J.-F. Fiset et al./ Revue des Sciences de l’Eau

References Sorbents Metals Studied parameters
AL-RUB
et al.  Ni(II)



model, sorption desorption cycle
AKSU
et al.

Chlorella vulgaris
Cu(II) 
CHEN
et al.  Cu(II)


CRIST
et al
Vaucheria, Rhizoclonium,
Ca-alginate powder
Ag(II), Al(III),
Ba(II), Cd(II),
Cu(II), La(III),

Zn(II)


FOUREST
and VOLESKY


Sargassum uitans, Ascophyllum
nodosum, Fucus vesiculosus,
Laminaria japonica
Ca(II), Cd(II),
Cu(II),



and
13

GOTOH
et al  Cu(II), Mn(II)


and SEM characterization
HIRAI
and ODANI



Co(II)


HUANG
et al.  Cu(II), Ni(II)

 
IBÁÑEZ
and UMETSU
(2002)

Co(II), Cr(III),
Cu(II),
Ni(II), Zn(II)


strength, pH and protonation
IBÁÑEZ
and UMETSU

Protonated dry alginate

Cr(III)

EPMA-EDX analysis
JANG et al.  Co(II), Cu(II)


JANG et al.  Cu(II), Zn(II)



JEON et al. (2002)  

,
FTIR and
13
C NMR characterization,
elemental analysis, desorption
JEON et al. (2005)  


KARAGUNDUZ
et al.  Cu(II)



LU and WILKINS
Sacharomyces cerevisiae

Cd(II), Cu(II),
Zn(II)
Caustic treatment, metal desorption,

NESTLE
and KIMMICH

 Cu(II) 

PAPAGEORGIOU
et al.


Laminaria
digitata
 



PARK
and CHAE 
capsules, alginate gel coated
 
SEM characterization
Table 3. Studies on the metal sorption using alginate products.
Tableau 3. Études portant sur l’adsorption des métaux sur les produits d’alginate.
Metals adsorption on seaweed, alginate and other sorbents

SEKI and SUZUKI Alginic acid and humic acid

 
model
SHIMIZU
and TAKADA

 Bi(III), Cu(II),


characterization
SINGHAL
et al. Chlorella pyrendoidosa

alginate
U(IV), U(VI) 
characterization
VEGLIO
et al. (2002)  Cu(II)  
present in solution (ARAÚJO and TEIXEIRA, 1997; JANG
et al., 1999).
Various chemical treatments may be applied on alginic
acid in order to increase metal uptake capacity such as
carboxylation, phosphorylation, and sulfonation (JEON et al.,
2002), although these treatments tend to increase the cost of
the resulting product.
ARAÚJO and TEIXEIRA (1997) studied the transport
properties of Cr(III) on alginate beads using the Linear
Adsorption model and the Shrinking Core model. For low
Cr(III) concentration, ion exchange was the rate-controlling
mechanism and the experimental results fit well with the
Shrinking Core model. At higher concentrations, however, the
Linear Adsorption model was a better fit for the experimental
results and ionic exchange was no longer the main mechanism
of sorption. e study of CHEN et al. (1993) indicated that
Linear Adsorption model was preferable for the Cu calcium
alginate gel.
1.3 Algal biosorption systems
Engineering considerations are very important during the
development of an algal-based sorption system. All biosorption
systems used biomass in solid form in a basic solid-liquid contact
process, with, in certain cases, cycling of the process through
biosorption and desorption stages (GARNHAM, 1997). e
effluent to treat would make contact with the biosorbent in
a batch, semi-continuous or continuous flow system. e
following reactor types have been described by BANKS (1997)
as potential biosorption systems:
Conventional stirred tank reactors;
Packed bed reactors (upflow and downflow);
Expanded bed reactors;
Fluidised bed reactors;
Airlift reactors.
In the cases of algal-based processes using actively growing
biomass these can also be based on ponds, lagoons, streams and
artificial stream meander units (VOLESKY, 1990).
References Sorbents Cu(II) Cr(III) Cr(VI) Ni(II) Pb(II)
AL-RUB
et al.

Free dead algal cell



31
BAJPAI
et al
Bio-polymeric (Ca and
gelatin)

  112
NGOMSIK
et al.
Magnetic alginate
microcapsule

OZDEMIR
et al. (2005)


polysaccharide






Alginate capsule


Table 4. Recent studies on the adsorption capacities (mg/g) of alginate for selected heavy metals.
Tableau 4. Études récentes sur la capacité d’adsorption (mg/g) de l’alginate pour des métaux lourds sélectionnés
.
J.-F. Fiset et al./ Revue des Sciences de l’Eau

1.4 Adsorption mechanisms
e chemical structure and metal sorption mechanisms
of biomass have been extensively studied. VEGLIO and
BEOLCHINI (1997) classified the biosorption mechanisms
into two main categories, according to their cell functionality,
i.e., metabolism-dependant and non-metabolism-dependant.
e metabolism-dependant mechanism involves transport
across the cell membrane and a precipitation step (BRIERLEY,
1990; COSTA and LEITE, 1990), whereas the non-
metabolism-dependant mechanism consists of precipitation
(HOLAN et al., 1993; SCOTT and PALMER, 1990),
physical adsorption (AKSU et al., 1992; ZHOU and KIFF,
1991), ion exchange (FRISS and MYERS-KEITH, 1986;
MURALEEDHARAN and VENKOBACHAR, 1990) and
complexation (CABRAL, 1992; TSEZOS and VOLESKY,
1981). Another way to classify the mechanism is based
on the location where the extracted metal accumulates;
for example, there is intracellular accumulation (transport
across membrane), cell surface adsorption/precipitation (ion
exchange, complexation, physical adsorption, precipitation)
and extra-cellular accumulation/precipitation (VEGLIO and
BOELCHINI, 1997).
1.5 Adsorption models
Various models have been used to evaluate the experimental
data in order to identify the sorption mechanisms, i.e.,
chemisorption, physical adsorption or ion exchange. Some
studies have compared the ion exchange model with the
Langmuir adsorption model (DA COSTA and DE FRANÇA,
1996; FIGUEIRA et al., 2000). e Langmuir adsorption
model assumes that only one type of adsorption site exists
(i.e., all surface sites have equal activity) and that adsorption
equilibrium is reached with the formation of a monolayer
(STUMM and MORGAN, 1996). is model does not take
into account the speciation of the metal in solution and,
therefore, it applies only if the ionic strength, the pH and the
ligand concentration are constants.
e ion exchange model has been found to give the best
fit for metal sorption on algae biomass because the sorption is
accompanied by the release of ions (e.g., Ca
2+
, Mg
2+
, Na
+
and K
+
)
(CRIST et al., 1994; KRATOCHVIL et al., 1998; KUYUCAK
and VOLESKY, 1988; SCHIEWER and VOLESKY, 1995).
Experiments have been carried out to study several system
variables, such as the initial concentration (CRIST et al., 1994),
the sorbent particle size (FISHER, 1985), and the solution pH
(JANG et al., 1995; LEE and VOLESKY, 1997). Similarly,
experimental data have been analyzed to determine the reaction
kinetic order of a pore/solid phase diffusion mechanism (HO
and MCKAY, 2000).
Other models used to describe various biosorption
isotherms include the Freundlich model, a combination of the
Langmuir and Freundlich models, the Radke and Prausnitz
model, the Reddlich-Peterson model, the Brunauer (BET)
model, and the Dubinin-Radushkevich model (VOLESKY,
2003). e «Ideal Absorbed Solution eor(IAST) and the
«Surface Complexation» (SCM) models have also been used
for solutions containing a mixture of metal ions (VOLESKY,
2003). Some other structured types of models taking into
consideration the metal speciation in solution, the pH and
the electrostatic attraction in solution have been proposed by
SCHIEWER and WONG (1999) and YANG and VOLESKY
(2000).
1.6 Metal recovery
e metal-laden biosorbent can be either eluted and
reused or disposed of in a safe manner. In the former case, the
biosorbent operates much like an ion exchange resin. Metals
can be eluted using a specific solution (the eluant) to generate a
small volume of a concentrated solution (the eluate). e choice
of eluant depends on the metal ion to be eluted. Common and
heavy metals (e.g., Cd, Co, Cu, Mn, Pb, Zn) are usually eluted
with dilute mineral acids (e.g., HCl, H
2
SO
4
, and HNO
3
) or
concentrated saline solutions (e.g. 0.5 M NaCl) (GARNHAM
et al., 1992b). EDTA has been used in certain cases, but it is
generally more expensive than mineral acids or saline solutions
(HORIKOSHI et al., 1979). e adsorption of some noble
metals, such as gold, silver and mercury, shows little or no
dependence on pH and, consequently, these metals cannot be
removed with dilute acid solutions (EDYVEAN et al., 1997).
iourea or mercaptoethanol solutions have been used for
recovering gold from biosorbents (DARNALL et al., 1986;
GREENE and DARNALL, 1990). Similarly, sodium acetate
solutions are effective for eluting copper and silver (HARRIS
and RAMELO, 1990). Sodium carbonate has been used to
desorb uranium from the algae Chlorella regularis (NAKAJIMA
et al., 1982).
In general, biosorbents decompose and char at relatively
low temperatures. erefore, metal-laden biosorbents can be
readily burned to produce an ash residue having a high metal
concentration. is alternative may be economically viable
for systems dealing with valuable metals and/or inexpensive
biosorbents (GARNHAM, 1997). Alginic acid powder and
calcium alginate beads have high affinity and capacity sorption
for Fe(III), and the extraction of Fe(III) from acid synthetic
solution is technically feasible (RIVEROS et al., 2001). Applied
to acid mine drainage, the Fe(III) extraction would result
in a significant reduction of the lime consumption and the
volume of the neutralization sludge (RIVEROS, 2004). Once
adsorbed, the Fe may be eluted and precipitated as hematite in
Metals adsorption on seaweed, alginate and other sorbents

order to obtain marketable and useful product (DUTRIZAC
and RIVEROS, 1999).
1.7 Cost analyses
Preliminary costing evaluation for biosorption treatment
options were conducted by ADERHOLD et al. (1996) and
VOLESKY (1999). e results indicate that biosorption is
a cost-effective technology. e cost-benefit analysis of any
treatment option presents various difficulties, such as the lack of
publicly available information on operating cost and the long-
term impact of the treatment operation. is is particularly
true for biotechnological processes. However, a comparative
cost study was conducted for biosorptive processes with ion
exchange and chemical precipitation (ECCLES, 1995). e
selection of an effluent treatment system needs to comply with
various criteria, such as compatibility with existing operations,
cost effectiveness, flexibility to handle fluctuation in quality
and quantity of effluent feed. e system should also be
reliable, robust, selective and simple (ECCLES, 1995). Eccles
compared the AMT-Bioclaim-process-based hard granular
biomass, Bacillus subtilis (BRIERLEY et al., 1986) with the
chemical precipitation method. e predicted results showed
that the AMT-Bioclaim method could reduce the cost per
gallon by over 50% when compared with a chemical treatment
method. A second study was completed by the author to
compare the Biofix process with chemical precipitation to treat
acid mine drainage. e Biofix process consists of a mixture
of biomass including bacteria, algae and fungi immobilized in
polyethylene beads. Using the data from JEFFERS (1994), the
acid mine drainage (AMD) treatment cost was 1.4 US$ per
1000 US gallons for the Biofix process and for conventional
lime treatment, it was calculated the cost would correspond to
1.5 US$ (ECCLES, 1995). Table 5 summarizes the treatment
options, along with their advantages and disadvantages.
2. OTHER NATURAL SORBENTS
Several research papers have been published about the use of
a variety of natural sorbents to remove metals from synthetic or
industrial effluents. Table 6 shows different studies conducted
on the utilization of natural sorbents for the removal of several
metals (Ag, Al, As, Au, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, Hg, Ir,
Mg, Mn, Mo, Na, Ni, Os, Pb, Pd, Pt, Ra, Sb, St, Ti, Tl, V, Zn,
Zr), lanthanides (Ce, Eu, La, Yb) and actinides (, U).
2.1 Microorganisms
Many studies have been carried out on the utilization of
dead or living microorganisms, including bacteria, yeasts,
fungi, microalgae, cyanobacteria and activated sludge biomass
for metal removal from solutions. Some examples of different
microorganisms used for their metal adsorption capacity are
Treatment options Advantages Disadvantages
Lime precipitation 


 


No sludge production
Electrolysis allows metal recycling
High capital and operating costs



solution

Osmosis

Very specialized application


conditions

Adsorption processes Versatile, simple

Low cost technology
Table 5. Treatment options for the removal of heavy metals (adapted from ADERHOLD et al., 1996).
Tableau 5. Options de traitement pour l’enlèvement des métaux (adapté d’ADERHOLD et al., 1996).
J.-F. Fiset et al./ Revue des Sciences de l’Eau

Metals References
Aluminium (Al) (III) CRIST
et al.ORHAN and BÜYÜKGÜNGÖRet al.
 COUPAL and LALANCETTEMASRI and FRIEDMAN
Arsenic (As) (II, V) LOUKIDOU
et al. (2003), MASRI and FRIEDMAN
Barium (Ba) (II) CRIST
et al.SMITH et al.
Bismuth (Bi) (III) MASRI
and FRIEDMANSHIMIZU and TAKADA 
Cadmium (Cd) (II) VOLESKY
and PRASETYOet al.
Calcium (Ca) (II) FISET
et al. (2002), FOUREST and VOLESKY
Cerium (Ce) (III) MASRI
and FRIEDMAN
Chromium (Cr)(III, VI) BAILEY
et al.FISHER et al.
 FLYNN et al.KUYUCAK and VOLESKY 
Copper (Cu) (I, II) MCKAY
et al.et al.et al.
Europium (Eu) (III) ANDRES
et al.
Gold (Au) (III) KUYUCAK
and VOLESKY NAKAJIMA (2003)
Iridium (Ir) (IV) RUIZ
et al. (2003)
Iron (Fe) (II, III) FISET
et al. (2002), NASSAR et al.et al.
Lanthanum (La) (III) BLOOM
and MCBRIDECRIST et al.
 HOLAN and VOLESKYet al.MURATHAN and BÜTÜN
Magnesium (Mg) (II) CRIST
et al.FISET et al. (2002), CUI et al.
Manganese (Mn) (II) FISET
et al. (2002), NASSAR et al.et al.
Mercury (Hg) (I, II) FISHER
et al.VIRARAGHAVAN and KAPOOR 
 GUIBAL et al.SAKAGUSHI et al.
 FLYNN et alLEUSCH et al.
Osmium (Os) (IV) RUIZ
et al. (2003)
Palladium (Pd) (II) BABA
and HIRAKAWA GUIBAL et al. (2001)
Platinum (Pt) (IV) BABA
and HIRAKAWAGUIBAL et al. (2001)
Radium (Ra) (II) 
and
 FISHER et al. FLYNN et al.
Sodium (Na) (I) FISET
et al. (2002), SPINTI et al.
Strontium (Sr) (II) SHIMIZU
and TAKADA SMALL et al.
Technetium (Tc) (VII) GARNHAM
et al.
Thallium (Tl) (I) MASRI
and FRIEDMAN
Thorium (Th) (IV) MASRI
and FRIEDMANTSEZOS and VOLESKY
Titanium (Ti) (IV) PARKASH
and BROWN
Uranium (U) (IV, VI) GUIBAL
et al.TSEZOS and VOLESKY
Vanadium (V) (V) GUIBAL
et al.
 ANDRES et al.
Zinc (Zn) (II) ARTOLA
and RIGOLAKUYUCAK and VOLESKY
Zirconium (Zr) (IV) GARNHAM
et al.PARKASH and BROWN
Table 6. Studies on the adsorption of different metals using natural adsorbents.
Tableau 6. Études portant sur l’adsorption de différents métaux sur des adsorbants naturels.
Metals adsorption on seaweed, alginate and other sorbents

presented in Table 7. e metal adsorption on the cell surface of
non-living microorganisms usually involves different functional
groups such as carboxyl, amino, hydroxyl, sulfhydryl, phosphate
and sulfate groups (KAPOOR and VIRARAGHAVAN, 1997;
URRUTIA, 1997).
2.2 Forestry industry wastes
Forestry industry wastes including sawdust and tree
barks, which are lignin/tannin-rich materials, have been
also intensively studied for metal recovery from solutions
(FISET et al., 2000; SEKI et al., 1997; VAISHYA and PRASAD,
1991). e polyhydroxy polyphenol groups of tannin are
thought to be the active species in the metal adsorption (ion-
exchange) process (VASQUEZ et al., 1994). Lignin extracted
from black liquor, a waste product of the paper industry, has
been considered for metal adsorption, specifically Hg, Pb and
Zn (MASRI et al., 1974; SRIVASTAVA et al., 1994). Lignin
(Figure 2) contains polar functional groups, such as alcohols,
acids, aldehydes, ketones, phenol hydroxides and ethers, which
have varying metal binding capabilities (BAILEY et al., 1999).
Microorganisms References
Bacteria
Bacillus subtilis and spp. BEVERIDGE et al.COTORAS et al.
Micrococcus spp. COTORAS et al.LO et al. (2003)
Mycobacterium spp. ANDRES et al.
Pseudomonas spp. CABRALLOPEZ et al. (2002), D’SOUZA et al.
Streptomyces spp. FRISS and MYERS-KEITHMATTUSCHKA and STRAUBE
Zooglea ramigera AKSU et al.NORBERG and PERSSON
Yeasts
Candida spp. AKSU and DONMEZ (2001)
Candida utilis KUJAN et al.
Saccharomyces cerevisiae KUYUCAK and VOLESKYVOLESKY et al.
Fungi
Aspergillus niger VENKOBACHAR
Aureobasidium pullulans GADD and DE ROME
Cladosporium resinae GADD and DE ROME
Funalia trogii ARICA et al.
Ganoderma lucidum VENKOBACHAR
Penicillium spp. LOUKIDOU et al. (2003), SAY et al. (2003)
Rhizopus arrhizus FOUREST and ROUXTSEZOS and VOLESKY
Trametes versicolor BAYRAMOGLU et al. (2003)
Micro-algae
Chlorella vulgaris and spp. AKSU and ACIKELMEHTA et al. (2002)
Chlamydomonas spp. GARNHAM et al.SAKAGUCHI et al.
Eudorina spp. TIEN (2002)
Euglena spp. MANN et al.
Scenedesmus spp. GARNHAM et al.SAKAGUCHI et al.
Synechocystis aquatilis ERGENE et al
Cyanobacteria
Anabaena spp. GARNHAM et al.TIEN (2002)
Nostoc spp. FERNANDEZ-PINAS et al.HASSETT et al.
Oscillatoria spp. FISHER et al.TIEN (2002)
Synechoccus spp. GARNHAM et al.SAKAGUCHI et al.
Other
 ARTOLA and RIGOLA HAMMAINI et al. (2003)
Table 7. Some examples of the microorganisms studied for the metal recovery from solutions.
Tableau 7. Exemples de microorganismes étudiés pour la récupération de métaux en solution.
J.-F. Fiset et al./ Revue des Sciences de l’Eau

2.3 Aquatic plants
Some aquatic plants (e.g. Ceratophyllum demersum, Lemna
minor, Myriophyllum spicatum) have also been tested for
phytoremediation or phytofiltration of metal-contaminated
effluents (AXTELL et al., 2003; KESKINKAN et al., 2004
SCHNEIDER et al., 2001). Chemical modification and
spectroscopic studies have shown that the cellular components
include carboxyl, hydroxyl, sulfate, sulfhydryl, phosphate,
amino, amide, imine, and imidazol moieties, which have metal
binding properties and are, therefore, the functional groups in
these plants (GARDEA-TORRESDEY et al., 2004).
2.4 Chitin and chitosan
Various researchers have utilized chitin and chitosan for
removing metal ions from effluents (MCKAY et al., 1989;
HSIEN and RORRER, 1995). Chitin (Figure 3) is the second
most abundant natural biopolymers after cellulose (BABEL
et al., 2003). is natural biopolymer is widely found in the
exoskeleton of shellfish and crustaceans (KIM and PARK, 2001).
Chitosan (Figure 4) is produced by alkaline N-deacetylation of
chitin. Crab shells or seafood processing waste sludge can also
be used directly for metal adsorption without chitin extraction
(KIM and PARK, 2001; LEE and DAVIS, 2001). e metal
ions adsorption on chitosan mostly involved free amine groups.
However, the binding ability of these sorbents for various metal
ions is not directly proportional to the degree of free amine
content (EDYVEAN et al., 1997).
2.5 Peat moss
Peat moss, which is also very abundant in nature, has been
intensively studied for water decontamination and particularly
for the metal removal from waste streams (KERTMAN et al.,
1993; SHARMA and FORSTER, 1993; VIRARAGHAVAN
and RAO, 1993). Peat moss is a complex material, having lignin
and cellulose as its major components. Both these components
contain polar functional groups, such as carboxylic acids,
phenol hydroxides, alcohols, aldehydes, ketones and ethers,
which bind metal ions (BROWN et al., 2000. COUILLARD,
1994; WASE et al., 1997).
2.6 Agricultural wastes
Other types of natural sorbents proposed in the literature
for metal retention include different agricultural wastes (e.g.,
tea/coffee and rice residues, fruit and vegetable peels, nut
skins/husks). Some examples of these inexpensive and readily
available materials are presented in Table 8. e polyhydroxy
polyphenol groups, as well as, carboxylic and amino groups,
found in these materials are involved in the metal adsorption
(ion-exchange) process (MEUNIER et al., 2003b; RANDALL
et al., 1974).
2.7 Miscellaneous sorbents
Finally, other natural sorbents studied include notably animal
bones (BANAT et al., 2002), clays (e.g. bentonite, kaolinite,
C
OCH
3
O
C
C
HC
HOCH
2
HCOH
OCH
3
O
HOCH
2
OCH
3
O
Figure 2. e chemical structure of lignin.
Structure chimique de la lignine.
O
O
NHCOCH
3
HO
OH
O
O
NHCOCH
3
HO
OH
Figure 3. e chemical structure of chitin.
Structure chimique de la chitine.
O
O
NH
2
HO
OH
O
O
NH
2
HO
OH
Figure 4. e chemical structure of chitosan.
Structure chimique du chitosan.
Metals adsorption on seaweed, alginate and other sorbents

montmorillonite, wollastonite) (CELIS et al., 2000; PRADAS
et al., 1994), human hair and teeth (HELAL et al., 2002;
TAN et al., 1985), leaf mould (SHARMA and FORSTNER,
1994), sand (AWAN et al., 2003), metal oxides (Al, Fe, Mn
oxides) (BAILEY et al., 1992; TRIVEDI and AXE, 2001),
vermicompost (PEREIRA and ARRUDA, 2003), xanthate
(FLYNN et al., 1980; JAWED and TARE, 1991), and zeolites
(e.g., clinoptilolite and chabazite) (GENÇ-FUHRMAN, 2007;
LEPPERT, 1990; KALLO, 2001; OLIVEIRA et al., 2004).
2.8 Industrial applications
e majority of studies on metal adsorption on biosorbents
have been carried out using synthetic solutions containing one
or several metal ions (BLAIS et al., 2003; CRIST et al., 1994;
MASRI and FRIEDMAN, 1974). However, many research
papers have shown the efficiency of biosorbents for the removal
of metal ions from industrial wastewaters and acid mine drainage
solutions (MCGREGOR et al., 1998; UTGIKAR et al., 2000;
ZOUMIS et al., 2000), landfill leachates (ABOLLINO et al.,
2003; CECEN and GURSOY, 2001), tannery wastewaters
(ALVES et al., 1993), electroplating effluents (AJMAL et
al., 1996, 2000; ALVAREZ-AYUSO et al., 2003; LO et al.,
2003), acid leachates from sewage sludge decontamination
(FISET et al., 2002), acid leachates from soil decontamination
(MEUNIER et al., 2004), and alkaline leachates from
air pollution control residues from municipal solid waste
incinerators (BLAIS et al., 2002a, BLAIS et al., 2002b).
Biosorption has proved to be effective for removing
metal ions from contaminated solutions and effluents. e
main advantages of biosorption over conventional treatment
techniques include lower capital and operating costs, arising
from the use of abundant and inexpensive natural products,
and lower disposal cost of the spent adsorbents because of
their biodegradable nature. However, industrial applications
of biosorption are rare, and this situation has been attributed
to the non-technical gaps involved in the commercialization
of technological innovations (VOLESKY and NAJA, 2005).
Furthermore, most biosorption studies have been conducted
in batch systems, rather than in the continuous systems that
are typical of industrial applications, such as fluidized bed
and packed bed columns and continuous stirred tank reactors
(MEHTA and GAUR, 2005). Despite these facts, VOLESKY
Wastes References
Banana pith and peels ANNADURAI et al. (2003), LOW et al.
Canola meal AL-ASHEH and DUVNJAK
Carrot residues NASERNEJAD et al. (2005)
 ABIA et al.
 AL-ASHEH et al. (2002)
Cocoa shells FISET et al. (2002), MEUNIER et al.
 RANDALL et al. OFOMAJA andet al
 MINAMISAWA et al. (2002)
 BOSINCO et al.GOLDBERG and GRIEVE (2003)
 FIOL et al.ESCUDERO et al
Indian mustard CRIST
et al.
 MARSHALL and CHAMPAGNE
Nut and walnut shells ORHAN and BÜYÜKGÜNGÖR 
 GHARAIBEH
et al.VEGLIO et al. (2003)
Onion peels KUMAR and DARA
Orange peels AJMAL et al. (2000), MASRI et al.
 HO 
 CHAMARTHY et al. (2001), RANDALL et al.
   and SAEED (2002)
 AJMAL et al. (2003), MONTANHER et al. (2005)
Sheep manure wastes AL-RUB et al. (2003)
 OZDEMIR et al.
 ORHAN and BÜYÜKGÜNGÖRTEE and KHAN
Table 8. Agricultural wastes studied for the metal recovery from solutions.
Tableau 8. Déchets agricoles étudiés pour la récupération de métaux en solution.
J.-F. Fiset et al./ Revue des Sciences de l’Eau

and NAJA (2005) have identified some industrial operations
which represent a big potential market for biosorption
applications; these include electroplating and metal finishing,
mining and ore processing, smelting, leather processing and
printed circuit board manufacturing. However, as some
of these sectors may be reluctant to novel biotechnology
applications, biotechnology industries may have to share the
risk with the industry. erefore, biotechnology industry may
have to develop partnership with industries in order to finance,
build and operate the treatment plant or to provide a turnkey
operating plant.
CONCLUSIONS
Biosorbents, especially those derived from seaweed and
alginic acid, have attracted much interested in recent years
as a source of inexpensive adsorbents for toxic metallic ions.
Biosorbents are widely available in nature, can be readily
produced under various forms, and are both non-toxic and
biodegradable. ese characteristics give them a definitive
advantage over synthetic products for the removal of toxic
metals from industrial effluents. e physical stability of
biosorbents, especially in alkaline conditions continues to be a
drawback and more research is needed in this area.
3. REFERENCES
ABIA A.A., O.B. DIDI, E.D. ASUQUO (2006). Modeling
of Cd2+ sorption kinetics from aqueous solutions onto
some thiolated agricultural waste adsorbents. J. Appl. Sci.,
6, 2549-2556.
ABOLLINO O., M. ACETO, M. MALANDRINO,
C. ARZANINI, E. MENTASTI (2003). Adsorption of
heavy metals on Na-montmorillonite. Effect of pH and
organic substances. Water Res., 37, 1619-1627.
ADERHOLD D., C.J. WILLIAMS, R.G.J. EDYVEAN
(1996). e removal of heavy-metal ions by seaweeds and
their derivatives. Bioresource Technol., 58, 1-6.
AJMAL M., R.A.K. RAO, R. AHMAD, J. AHMAD (2000).
Adsorption studies on Citrus reticulata (Fruit peel of
orange): removal and recovery of Ni(II) from electroplating
wastewater. J. Hazard. Mater., 79, 117-131.
AJMAL M., R.A.K. RAO, S. ANWAR, J. AHMAD, R.
AHMAD (2003). Adsorption studies on rice husk: removal
and recovery of Cd(II) from wastewater. Bioresource
Technol., 86, 147-149.
AJMAL M., R.A.K. RAO, B.A. SIDDIQUI (1996). Studies
on the removal and recovery of Cr(VI) from electroplating
wastes. Water Res., 30, 1478-1482.
AKSU Z. and U. ACIKEL (1999). A single-staged bioseparation
process for simultaneous removal of copper(II) and
chromium(VI) by using C-vulgaris. Process Biochem., 34,
589-599.
AKSU Z. and G. DONMEZ (2001). Comparison of copper(II)
biosorptive properties of live and treated Candida sp. J.
Environ. Sci. Health Part A. Toxic/Hazard. Subst. Environ.
Eng., 36, 367-381.
AKSU Z., G. EGRETLI, T. KUTSAL (1998). A comparative
study of copper(II) biosorption on Ca-alginate, agarose and
immobilized C. vulgaris in a packed-bed column. Process
Biochem., 33, 393-400.
AKSU Z., Y. SAG, T. KUTSAL (1992). e biosorption
of copper(II) by C. vulgaris and Z. ramigera. Environ.
Technol., 13, 579-586.
AL-ASHEH S., F. BANAT, D. ALROUSAN (2002).
Adsorption of copper, zinc and nickel ions from single
and binary metal ion mixtures on to chicken feathers.
Adsorption Sci. Technol., 20, 849-864.
AL-ASHEH S. and Z. DUVNJAK (1996). Biosorption of
chromium by canola meal. Water Qual. Res. J. Can., 31,
319-328.
ALLOWAY B.J. and D.C. AYERS (1993). Chemical principles of
environmental pollution. Blackie Academic & Professional,
London, United Kingdom.
AL-RUB F.A.A., M.H. EL-NAAS, F. BENYAHIA, I
ASHOUR (2004). Biosorption of nickel on blank alginate
beads, free and immobilized algal cells. Process Biochem.,
39, 1767-1773.
AL-RUB F.A.A., M. KANDAH, N. ALDABAYBEH (2003).
Competitive adsorption of nickel and cadmium on sheep
manure wastes: Experimental and prediction studies. Sep.
Sci. Technol., 38, 483-497.
ALVAREZ-AYUSO E., A. GARCIA-SANCHEZ, X. QUEROL
(2003). Purification of metal electroplating waste waters
using zeolites. Water Res., 37, 4855-4862.
Metals adsorption on seaweed, alginate and other sorbents

ALVES M.M., C.G. GOZÁLEZ BEÇA, R. GUEDES
DE CARVALHO, J.M. CASTANHEIRA, M.C. SOL
PEREIRA, L.A.T. VASCONCELOS (1993). Chromium
removal in tannery wastewaters polishing” by Pinus
sylverstris bark. Water Res., 27, 1333-1338.
ANDRES Y., H.J. MACCORDICK, J.C. HUBERT (1993).
Adsorption of several actinide (, U) and lanthanide
(La, Eu, Yb) ions by Mycobacterium smegmatis. Appl.
Microbiol. Biotechnol., 39, 413-417.
ANNADURAI G., R.S. JUANG, D.J. LEE (2003). Adsorption
of heavy metals from water using banana and orange peels.
Water Sci. Technol., 47, 185-190.
ARAÚJO M.M. and J.A. TEIXEIRA (1997). Trivalent
chromium sorption on alginate beads. Int. Biodeterior
Biodegradation, 40, 63-74.
ARAVINDHAN R., B. MADHAN, J.R. RAO, B.U. NAIR
(2004). Recovery and reuse of chromium from tannery
wastewaters using Turbinaria ornata seaweed. J. Chem.
Technol. Biotechnol., 79, 1251-1258.
ARICA M.Y., G. BAYRAMOGLU, M. YILMAZ, S. BEKTAS,
O. GENC (2004). Biosorption of Hg
2+
, Cd
2+
, and Zn
2+
by
Ca-alginate and immobilized wood-rotting fungus Funalia
trogii. J. Hazard. Mater., 109, 191-199.
ARTOLA A. and M. RIGOLA (1992). Selection of optimum
biological sludge for zinc removal from wastewater by a
biosorption process. Biotechnol. Lett., 14, 1199-1204.
ATKINSON B.W., F. BUX, H.C. KASAN (1998).
Considerations for application of biosorption technology
to remediate metal-contaminated industrial effluents.
Water SA, 24, 129-135.
AWAN M.A., I.A. QAZI, I. KHALID (2003). Removal of
heavy metals through adsorption using sand. J. Environ.
Sci. China, 15, 413-416.
AXTELL N.R., S.P.K. STERNBERG, K. CLAUSSEN (2003).
Lead and nickel removal using Microspora and Lemna
minor. Bioresource Technol., 89, 41-48.
BABA Y. AND H. HIRAKAWA (1992). Selective adsorption
of palladium(II), platinum(IV), and mercury(II) on a new
chitosan derivative possessing pyridyl. Chem. Lett., 10,
1905-1908.
BABEL S. and T.A. KURNIAWAN (2003). Low-cost
adsorbents for heavy metals uptake from contaminated
water: a review. J. Hazard. Mater., 97, 219-243.
BAILEY R.P., T. BENNETT, M.M. BENJAMIN (1992).
Sorption onto and recovery of Cr(VI) using iron-oxide-
coated sand. Water Sci. Technol., 26(5-6), 1239-1244.
BAILEY S.E., T.J. OLIN, R.M. BRICKA, D. ARIAN (1999).
A review of potentially low-cost sorbents for heavy metals.
Water Res., 33, 2469-2479.
BAJPAI, J., S R. HRIVASTAVA, A. K. BAJPAI (2004).
Dynamic and equilibrium studies on adsorption of Cr(VI)
ions onto binary bio-polymeric beads of cross linked
alginate and gelatin. Colloids and Surfaces A: Physicochem.
Eng. Aspects. 236. 81-90.
BANAT F., S. ALASHEH, F. MOHAI (2002). Multi-metal
sorption by spent animal bones. Sep. Sci. Technol., 37,
311-327
.
BANKS C.J. (1997). Scavenging trace concentrations of metals.
In: Biosorbents for metal ions. WASE J., FORSTER C.
[Editors.], Taylor & Francis Ltd, London, United Kingdom,
pp. 115-140.
BAYRAMOGLU G., S. BEKTAS, M.Y. ARICA (2003).
Biosorption of heavy metal ions on immobilized white-
rot fungus Trametes versicolor. J. Hazard. Mater., 101,
285-300.
BEVERIDGE T.J., C.W. FORESBERG, R.J. DOYLE (1982).
Major sites of metal binding in Bacillus licheniformis walls.
J. Bacteriol., 150, 1438-1448.
BLAIS J.F., S. DUFRESNE, G. MERCIER (1999). État du
développement technologique en matière d’enlèvement
des métaux des effluents industriels. Rev. Sci. Eau, 12,
687-711.
BLAIS J.F., MERCIER G., DURAND A. (2002b).
Récupération du plomb et du zinc par adsorption sur
tourbe lors de la décontamination de cendres volantes
d’incinérateur de déchets municipaux. Environ. Technol.,
23, 515-524.
BLAIS J.F., S E. ALVANO, F. HAMMY, G. MERCIER
(2002a). Comparaison de divers adsorbants naturels pour
la récupération du plomb lors de la décontamination
de chaux usées d’incinérateur de déchets municipaux.
J. Environ. Eng. Sci.
, 1, 265-273.
BLAIS J.F., S S. HEN, N. MEUNIER, R.D. TYAGI (2003).
Comparison of different natural adsorbents for metal
removal from acidic effluent. Environ. Technol. 24,
205-215.
J.-F. Fiset et al./ Revue des Sciences de l’Eau

BLOOM P.R., M.B. McBRIDE (1979). Metal ion binding
and exchange with hydrogen ions in acid-washed peat. Soil
Sci. Soc. Am. J., 43, 687-692.
BORBA C.E., R. GUIRARDELLO, E.A. SILVA, M.T. VEIT,
C.R.G. TAVARES (2006). Removal of nickel(II) ions from
aqueous solution by biosorption in a fixed bed column:
experimental and theoretical breakthrough curves. Biochem.
Eng. J. 30, 184-191.
BOSINCO S., J. ROUSSY, E. GUIBAL, P. LECLOIREC,
(1996). Interaction mechanisms between hexavalent
chromium and corncob. Environ. Technol., 17, 55-62.
BRIERLEY C.L. (1990). Bioremediation of metal-contamined
surfaces and groundwaters. Geomicrobiol. J., 8, 201-223.
BRIERLEY I.A., G.M. GOYAK, C.L. BRIERLEY (1986).
Considerations for commercial use of natural products for
metals recovery. In: Immobilisation of ions by biosorption,
H. Eccles & S.Hunt. Ellis Horwood (Editors), Chichester,
pp.105-120.
BROOKS C.S. (1991). Metal recovery from industrial wastes.
Lewis Publishers (Editors), Boca Raton, Florida, UNITED
STATES.
BROWN P.A., S.A. GILL, S.J. ALLEN (2000). Metal removal
from wastewater using peat. Water Res., 34, 3907-3916.
CABRAL J.P.S. (1992). Selective binding of metal ions to
Pseudomonas syringae cells. Microbios., 71, 47-53.
CECEN F. and G. GURSOY (2001). Biosorption of heavy
metals from landfill leachate onto activated sludge. J.
Environ. Sci. Health Part A. Toxic/Hazard. Subst. Environ.
Eng., 36, 987-998.
CELIS R., M.C. HERMOSIN, J. CORNEJO (2000). Heavy
metal adsorption by functionalized clays. Environ. Sci.
Technol., 34, 4593-4599.
CEPRIÁ G., L. IRIGOYEN, J.R. CASTILLO (2006).
A microscale procedure to test the metal sorption
properties of biomass sorbents: A time and reagents saving
alternative to conventional methods. Microchim. Acta.,
154, 287-295.
CHAISUKSANT Y. (2003). Biosorption of cadmium(II) and
copper(II) by pretreated biomass of marine alga Gracilaria
fisheri. Environ. Technol., 24, 1501-1508.
CHAMARTHY S., C.W. SEO, W.E. MARSHALL (2001).
Adsorption of selected toxic metals by modified peanut
shells. J. Chem. Technol. Biotechnol., 76, 593-597.
CHANG A.C., D.E. CROWLEY, A.L. PAGE (2003). Assessing
bioavailability of metals in biosolids-treated soils. Water
Environment Research Foundation, 97-REM-5, IWA
Publishing, London, United Kingdom.
CHEN D., Z. LEWANDOWSKI, F. ROE, P. SURAPANENI
(1993). Diffusivity of Cu2+ in calcium alginate gel beads.
Biotechnol. Bioeng., 41, 755-760.
CHMIELEWSKI A.P., T.S. URBANSKI, W. MIGDAL
(1997). Separation technologies for metals recovery from
industrial wastes. Hydrometallurgy, 45, 333-344.
COSSICH E.S., E.A. DA SILVA, C.R.G. TAVARES,
L.C. FILHO, T.M.K. RAVAGNANI (2004). Biosorption
of chromium (III) by biomass of seaweed Sargussum sp. in
a fixed-bed column. Adsorption, 10, 129-138.
COSTA A.C.A. and S.G.F. LEITE (1990). Cadmium and zinc
biosorption by Chlorella homosphaera. Biotechnol Lett.,
12, 941-944.
COTORAS D., P. VIEDMA, L. CIFUENTES, A. MESTRE
(1992). Sorption of metal ions by whole cells of Bacillus
and Micrococcus. Environ. Technol., 13, 551-559.
COUILLARD D. (1994). e use of peat in wastewater
treatment. Water Res., 28, 1261-1274.
COUPAL B. and J.M. LALANCETTE (1976). e treatment
with waste waters with peat moss. Water Res., 10,
1071-1076.
CRIST R.H., J.R. MARTIN, D. CARR, J.R. WATSON,
H.J. CLARKE (1994). Interaction of metals and protons
with algae. 4. Ion exchange vs adsorption models and
reassessment of scatchard plots; ion-exchange rates and
equilibria compared with calcium alginate. Environ. Sci.
Technol., 28, 1859-1866.
CRIST R.H., J.R. MARTIN, D.L.R. CRIST (2004). Ion-
exchange aspects of toxic metal uptake by Indian mustard.
Int. J. Phytoremediation, 6, 85-94.
CUI H., L.Y. LI, J. R. GRACE (2006). Exploration of
remediation of acid rock drainage with clinoptilolite as
sorbent in a slurry bubble column for both heavy metal
capture and regeneration. Water Res., 40, 3359-3366.
Metals adsorption on seaweed, alginate and other sorbents
300
DA COSTA A.C.A. and F.P. DE FRANÇA (1996). Cadmium
uptake by biosorbent seaweeds: adsorption isotherms
and some process conditions. Sep. Sci. Technol., 31,
2373-2393.
DA COSTA A.C.A., L.M.S. DE MESQUITA,
J. TORNOVSKY (1996). Batch and continuous heavy
metal biosorption by a brown seaweed from a zinc-
producing plant. Miner. Eng., 9, 811-824.
DARNALL D.W., B. GREENE, M. HOSEA,
R.A. McPHERSON, M. HENZL, M.D. ALEXANDER
(1986). Recovery of metals from algae. In: Trace Metal
Removal from Aqueous Solutions. THOMPSON R.
(Editors), Litho Ltd, Whitstable, Kentucky, UNITED
STATES, pp. 1-24.
D’SOUZA S.F., P. SAR, S.K. KAZY, B. KUBAL (2006).
Uranium sorption by Pseudomonas biomass immobilized
in radiation polymerized polyacrylamide bio-beads. J.
Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ.
Eng., 41, 487-500.
DUTRIZAC J.E. and P.A. RIVEROS (1999). Hematite
precipitation from ferric chloride media at atmospheric
pressure: A new approach to iron control and recycling.
Proceedings of REWAS’99, A global symposium on recycling,
waste treatment and clean technology, San Sebastian Spain,
September 5-9. Gaballah I., Hager J. and Solozabal R.
(Editors), TMS-Inasmet, 1, p. 663-673.
ECCLES H. (1995). Removal of heavy metals from effluent
streams - why select a biological process? Int. Biodeterioration
Biodegradation, 5, 5-16.
EDYVEAN R.G.J., C.J. WILLIAMS, M.W. WILSON,
D. ADERHOLD (1997). Biosorption using unusual
biomasses. In: Biosorbents for metal ions. WASE J.,
FORSTER C. (Editors), Taylor & Francis Ltd, London,
United Kingdom, Chap. 8, pp. 165-812.
ERGENE A., S. TAN, H. KATIRCIOĞLU, Z. OKTEM (2006)
Biosorption of copper(II) on immobilised Synechocystis
aquatilis. Fresenius Environ. Bull. 15, 283-288.
ESCUDERO C., N. FIOL, I. VILLAESCUSA (2006).
Chromium sorption on grape stalks encapsulated in
calcium alginate beads. Environ. Chem. Lett. 4, 239-242.
FAO (2002). Food and agriculture organization of the United
Nations. Yearbooks of fishery statistics production.
FERNANDEZ-PINAS F., P. MATEO, I. BONILLA (1991).
Binding of cadmium by cyanobacterial growth media : free
ion concentration as a toxicity index to the cyano-bacteria
Nostoc UAM 208. Arch. Environ. Contam. Toxicol., 21,
435-431.
FIGUEIRA M.M., B. VOLESKY, K. AZARIAN,
V.S.T. CIMINELLI (2000). Biosorption column
performance with a metal mixture. Environ. Sci. Technol.,
34, 4320-4326.
FIOL N., C. ESCUDERO, J. POCH, I. VILLAESCUSA
(2006). Preliminary studies on Cr(VI) removal from
aqueous solution using grape stalk wastes encapsulated in
calcium alginate beads in a packed bed up-flow column.
React. Funct. Polym. 66, 795-807.
FISET J.F., J.F. BLAIS, R. BEN CHEIKH, R.D. TYAGI
(2000). Revue sur l’enlèvement des métaux des effluents
par adsorption sur les sciures et les écorces de bois. Rev. Sci.
Eau, 13, 323-347.
FISET J.F., R.D. TYAGI, J.F. BLAIS (2002). Cocoa shells
as adsorbent for metal recovery from acid effluent. Water
Pollut. Res. J. Can., 37, 379-388.
FISHER N.S. (1985). Bioaccumulation of metals by marine
picoplankton. Marine Biol., 87, 137-142.
FISHER N.S., M. BOHE, J.L. TEYSSIE (1984). Accumulation
and toxicity of Cd, Zn, Ag and Hg in four marine
phytoplankters. Marine Ecol. Prog. Series, 18, 201-213.
FLYNN C.M. JR., T.G. CARNAHAN, R.E. LINDSTROM
(1980). Adsorption of heavy metal ions by xanthated
sawdust. Report of Investigations # 8427. United States
Bureau of Mines.
FOUREST E. and J.C. ROUX (1992). Heavy metal biosorption
by fungal mycelial by-products: mechanism and influence
of pH. Appl. Microbiol. Biotechnol., 37, 399-403.
FOUREST E., and B. VOLESKY (1997). Alginate properties
and heavy metal biosorption by marine algae. Appl.
Biochem. Biotechnol., 67, 215-226.
FRISS N. and P. MYERS-KEITH (1986). Biosorption
of uranium and lead by Streptomyces longwoodensis.
Biotechnol. Bioeng., 28, 21-28.
GADD G.M. and L. DE ROME (1988). Biosorption of
copper by fungal melanine. J. Appl. Microbiol. Biotechnol.,
29, 610-617.
GARDEA-TORRESDEY J.L., G. DELAROSA,
J.R. PERALTA-VIDEA (2004). Use of phytofiltration
J.-F. Fiset et al./ Revue des Sciences de l’Eau
301
technologies in the removal of heavy metals: A review. Pure
Appl. Chem., 76, 801-813.
GARNHAM G.W. (1997). e use of algae as metal
biosorbents. In: Biosorbents for metal ions. WASE J.,
FORSTER C. (Editors), Taylor & Francis Ltd, London,
United Kingdom, pp. 11-37.
GARNHAM G.W., G.A. CODD, G.M. GADD (1992a).
Uptake of technetium by freshwater green microalgae.
J. Appl. Microbiol. Biotechnol., 37, 679-684.
GARNHAM G.W., G.A. CODD, G.M. GADD (1992b).
Accumulation of cobalt, zinc and manganese by the estuarine
green microalgal Chlorella salina immobilised in alginate
microbeads. Environ. Sci. Technol., 26, 1764-1769.
GARNHAM G.W., G.A. CODD, G.M. GADD (1993a).
Accumulation of zirconium by microalgae and cyanobacteria.
J. Appl. Microbiol. Biotechnol., 39, 666-672.
GARNHAM G.W., G.A. CODD, G.M. GADD (1993b).
Accumulation of technetium by cyanobacteria. J. Appl.
Phycol., 5, 307-315.
GENÇ-FUHRMAN H., P.S. MIKKELSEN, A. LEDIN
(2007). Simultaneous removal of As, Cd, Cr, Cu, Ni,
and Zn from stormwater: Experimental comparison of
11 different sorbents. Water Res. 41, 591-602.
GHARAIBEH S.H., W.Y. ABU-EL-SHA’R, M.M. AL-
KOFAHI (1998). Removal of selected heavy metals from
aqueous solutions using processes solid residue of olive mill
products. Water Res., 32, 498-502.
GOLDBERG S. and C.M. GRIEVE (2003). Boron adsorption
by maize cell walls. Plant Soil, 251, 137-142.
GONG R.M., Y. DING, H.J. LIU, Q.Y.,CHEN, Z.L. LIU
(2005). Lead biosorption and desorption by intact and
pretreated Spirulina maxima biomass. Chemosphere, 58,
125-130.
GOTOH T., K. MATSUSHIMA, K.I. KIKUCHI (2004).
Adsorption of Cu and Mn on covalently cross-linked
alginate gel beads. Chemosphere, 55, 57-64.
GREEN-RUIZ C. (2006). Mercury(II) removal from aqueous
solutions by nonviable Bacillus sp. from a tropical estuary.
Bioresour. Technol., 97, 1907-1911.
GREENE B. and D.W. DARNALL (1990). Microbial oxygenic
photoautotrophes (cyanobacteria and algae) for metal-ion
binding. In: Microbial Mineral Recovery. EHRLICH H.L.,
BRIERLEY C.L. (Editors), McGraw-Hill, New-York,
New-York, UNITED STATES, pp. 227-302.
GUIBAL E., C. MILOT, J. ROUSSY (1999). Molybdate
sorption by cross-linked chitosan beads: Dynamic studies.
Water Environ. Res., 71, 10-17.
GUIBAL E., M. RUIZ, T. VINCENT, A. SASTRE,
R. NAVARROMENDOZA (2001). Platinum and
palladium sorption on chitosan derivatives. Sep. Sci.
Technol., 36, 1017-1040.
GUIBAL E., I. SAUCEDO, M. JANSSON-CHARRIER,
B. DELANGHE, P. LE CLOIREC (1994). Uranium and
vanadium sorption by chitosan and derivatives. Water Sci.
Technol., 30, 183-190.
GUPTA V.K., A.K. SHRIVASTAVA, N. JAIN (2001).
Biosorption of chromium(VI) from aqueous solutions by
green algae Spirogyra species. Water Res., 35, 4079-4085.
HAMMAINI A., F. GONZALEZ, A. BALLESTER, M.L.
BLAZQUEZ, J.A. MUNOZ (2003). Simultaneous uptake
of metals by activated sludge. Min. Eng., 16, 723-729.
HARRIS P.O. and G.J. RAMELOW (1990). Binding of metal
ions by particulate biomass derived from Chlorella vulgaris
and Scenedesmus quadricauda. Environ. Sci. Technol., 24,
220-234.
HASSETT J.M., J.V. JENNET, J.E. SMITH (1981).
Microplate technique for determining accumulation of
metals by algae. Appl. Environ. Microbiol., 41, 1097-1106.
HELAL A.A., G.A. ALIAN, H.A. MADBOULY (2002).
Sorption of tin on human teeth. Health Phys., 82,
105-108.
HIRAI A., H. ODANI (1994). Sorption and transport of
water vapor in alginic acid, sodium alginate, and alginate-
cobalt complex films. J. Polymer Sci. Part B: Polymer Phys.,
32, 2329-2337.
HO Y.S. and McKAY (2000). Batch sorber design using
equilibrium and contact time data for the removal of lead.
Water Air Soil Pollut., 124, 141-153.
HO Y.S. and A.E. OFOMAJA (2006). Kinetic studies of
copper ion adsorption on palm kernel fibre. J. Hazard.
Mater. 137, 1796-1802.
HOLAN Z.R. and B. VOLESKY (1994). Biosorption of lead
and nickel by biomass of marine algae. Biotechnol. Bioeng.,
43, 1001-1009.
Metals adsorption on seaweed, alginate and other sorbents
302
HOLAN Z.R., B. VOLESKY, I. PRASETYO (1993).
Biosorption of cadmium by biomass of marine algae.
Biotechnol. Bioeng., 41, 819-825.
HORIKOSHI T., A. NAKAJIMA, T. SAKAGUSHI (1979).
Studies on the accumulation of heavy metal elements in
biological systems IV. Uptake of uranium by Chlorella
regularis. Agric. Biol. Chem., 43, 617-623.
HSIEN T.Y. and G.L. RORRER (1995). Effects of acylation
and crosslinking on the material properties and cadmium
ion adsorption capacity of porous chitosan beads. Sep. Sci.
Technol., 30, 2455-2475.
HUANG C., Y.C. CHUNG, M.R. LIOU (1996). Adsorption
of Cu(II) and Ni(II) by pelletized biopolymer. J. Hazard.
Mater., 45, 265-277.
IBÁÑEZ J.P. and Y. UMETSU (2002). Potential of protanated
alginate beads for heavy metals uptake. Hydrometallurgy,
64, 89-99.
IBÁÑEZ J.P. and Y. UMETSU (2004). Uptake of trivalent
chromium from aqueous solutions using protonated dry
alginate beads. Hydrometallurgy, 72, 327-334.
IQBAL M. and A. SAEED (2002). Removal of heavy metals
from contaminated water by petiolar felt-sheath of palm.
Environ. Technol., 23, 1091-1098.
JANG L.K., D. NGUYEN, G.G. GEESEY (1999). Selectivity
of alginate gel for Cu over Zn when acidic conditions
prevail. Water Res., 33, 2817-2825.
JANG L.K., D. NGUYEN, G.G. GEESY (1995). Effect of
pH on the absorption of Cu(II) by alginate gel. Water Res.,
29, 315-321.
JAWED M. and V. TARE (1991). Application of starch
xanthates for cadmium removal: a comparative evaluation.
J. Appl. Polymer Sci., 42, 317-324.
JEFFERS T.H., P.G. BENNETT, R.R. CORWIN (1994).
Biosorption of metal contaminants using immobilised biomass-
field studies. U.S. Bureau of Mines, R1 9461.
JEON C., J.Y. PARK, Y.J. YOO (2002). Characteristics of
metal removal using carboxylated alginic acid. Water Res.,
36, 1814-1824.
JEON C., Y.J. YOO, W.H. HOELL (2005). Environmental
effects and desorption characteristics on heavy metal
removal using carboxylated alginic acid. Bioresource
Technol., 96, 15-19.
KAEWSARN P. (2002). Biosorption of copper(II) from
aqueous solutions by pre-treated biomass of marine algae
Padina sp. Chemosphere, 47, 1081-1085.
KAEWSARN P., Q.M. YU, W.D. MA (2001). Interference of
co-ions in biosorption of Cu2+ by biosorbent from marine
alga Durvillaea potatorum. Environ. Eng. Sci., 18, 99-104.
KAEWSARN P. and Q.M. YU (2001). Cadmium(II) removal
from aqueous solutions by pre-treated biomass of marine
alga Padina sp. Environ. Pollut., 112, 209-213.
KALLO D. (2001). Applications of natural zeolites in water
and wastewater treatment. In: Natural Zeolites: Occurrence,
Properties, Applications (Reviews in Mineralogy and
Geochemistry, Vol. 45) BISH D.L., MING D.W., [Ed.],
Mineralogical Society of America - e Geochemical
Society, Washington, DC, U.S.A, pp. 519-550.
KAPOOR A. and T. VIRARAGHAVAN (1997). Fungi
as biosorbents. In: Biosorbents for metal ions. WASE J.,
FORSTER C. (Editors), Taylor & Francis Ltd, London,
United Kingdom, pp. 67-85.
KARAGUNDUZ A., Y. KAYA, B. KESKINLER, S. ONCEL
(2006). Influence of surfactant entrapment to dried alginate
beads on sorption and removal of Cu2+ ions. J. Hazard.
Mater. 131, 79-83.
KERTMAN S.V., G.M. KERTMAN, Z.S. CHIBRIKOVA
(1993). Peat as a heavy-metal sorbent. J. Appl. Chem.
U.S.S.R., 66, 465-466.
KESKINKAN O., M.Z.L. GOKSU, M. BASIBUYUK,
C.F. FORSTER (2004). Heavy metal adsorption properties
of a submerged aquatic plant (Ceratophyllum demersum).
Bioresource Technol., 92(2), 197-200.
KHANI M. H., KESHTKAR A. R., MEYSAMI B., ZAREA
M. F., JALALI R. (2006) Biosorption of uranium from
aqueous solutions by non living biomass of marine algae
Cystoseira indica. Electronic J. Biotechnol., 9, 100-106.
KIM D.S. and B.Y. PARK (2001). Effects on the removal of
Pb2+ from aqueous solution by crab shell. J. Chem. Technol.
Biotechnol., 76, 1179-1184.
KLIMMEK S., H.J. STAN, A. WILKE, G. BUNKE, R.
BUCHHOLZ (2001). Comparative analysis of the
J.-F. Fiset et al./ Revue des Sciences de l’Eau
303
biosorption of cadmium, lead, nickel, and zinc by algae.
Environ. Sci. Technol., 35, 4283-4288.
KRATOCHVIL D., P. PIMENTEL, B. VOLESKY (1998).
Removal of trivalent and hexavalent chromium by seaweed
biosorbent. Environ. Sci. technol., 32, 2693-2698.
KUJAN P., A. PRELL, H. ŠAFÁŘ, M. SOBOTKA,
T. ŘEZANKA, P. HOLLER (2006). Use of the industrial
yeast Candida utilis for cadmium sorption. Folia Microbiol.,
51, 257-260.
KUMAR P. and S.S. DARA (1982). Utilization of agricultural
wastes for decontaminating industrial/domestic wastewaters
from toxic metals. Agr. Wastes, 4, 213-223.
KUMAR Y.P., P. KING, V.S.R.K. PRASAD (2006). Removal
of copper from aqueous solution using Ulva fasciata sp. - A
marine green algae. J. Hazard. Mater. 137, 367-373.
KUYUCAK N. and B. VOLESKY (1988). Biosorbents for the
recovery of metals from industrial solutions. Biotechnol.
Lett., 10, 137-142.
LAU T.C., P.O. ANG, P.K. WONG (2003). Development of
seaweed biomass as a biosorbent for metal ions. Water Sci.
Technol., 47, 49-54.
LEE H.S. and B. VOLESKY (1997). Interaction of light
metals and protons with seaweed biosorbent. Water Res.,
31, 3082-3088.
LEE S.M. and A.P. DAVIS (2001). Removal of Cu(II) and
Cd(II) from aqueous solution by seafood processing waste
sludge. Water Res., 35, 534-540.
LEPPERT D. (1990). Heavy metal sorption with clinoptilolite
zeolite: alternatives for treating contaminated soil and
water. Mining Eng., 42, 604-608.
LEUSCH A., Z.R. HOLAN, B. VOLESKY (1995).
Biosorption of heavy metals (Cd, Cu, Ni, Pb, Zn) by
chemically-reinforced biomass of marine algae. J. Chem.
Technol. Biotechnol., 62, 279-288.
LIPPMANN M. (2000). Environmental toxicants. Human
exposures and their health effects. Wiley Interscience, New
York, New York, United States, 987 pages.
LO W., H. CHUA, M.F. WONG, P. YU (2003). Bacterial
biosorbent for removing and recovering copper from
electroplating effluents. Water Sci. Technol., 47, 251-256.
LODEIRO P., J.L. BARRIADA, R. HERRERO, M.E. SASTRE
DE VICENTE (2006). e marine macroalga Cystoseira
baccata as biosorbent for cadmium(II) and lead(II)
removal: kinetic and equilibrium studies. Environ. Pollut.
142, 264-273.
LODEIRO P., B. CORDERO, Z. GRILLE, R. HERRERO,
M.E. SASTRE DE VIVENTO (2004). Physicochemical
studies of cadmium(II) biosorption by the invasive alga
in Europe Sargassum muticum. Biotechnol. Bioeng, 88,
237-247.
LOPEZ A., N. LAZARO, S. MORALES, A.M. MARQUES
(2002). Nickel biosorption by free and immobilized cells
of Pseudomonas fluorescens 4F39: A comparative study.
Water Air Soil Pollut., 135, 157-172.
LOUKIDOU M.X., K.A. MATIS, A.I. ZOUBOULIS,
M. LIAKOPOULOU-KYRIAKIDOU (2003). Removal
of As(V) from wastewaters by chemically modified fungal
biomass. Water Res., 37(18), 4544-4552.
LOW K.S., C.K. LEE, A.C. LEO (1995). Removal of metals
from electroplating wastes using banana pith. Bioresource
Technol., 51, 227-231.
LU Y., E. WILKINS (1996). Heavy metal removal by caustic-
treated yeast immobilized in alginate. J. Hazard. Mater.,
49, 165-179.
LUO F., Y. LIU, X. LI, Z. XUAN, J. MA (2006). Biosorption
of lead ion by chemcially-modified biomass of marine algae
Laminaria japonica. Chemsophere, 64, 1122-1127.
MANN H., W.S. FYFE, R. KERRICH (1988). e chemical
content of algae and waters: bioconcentration. Toxicity
Assessment, 3, 1-16.
MARSHALL W.E. and E.T. CHAMPAGNE (1995).
Agricultural byproducts as adsorbents for metal ions
in laboratory prepared solutions and in manufacturing
wastewaters. J. Environ. Sci. Health, A30, 241-261.
MASRI M.S. and M. FRIEDMAN (1974). Effect of chemical
modification of wool on metal ion binding. J. Appl. Polymer
Sci., 18, 2367-2377.
MASRI M.S., F.W. REUTER, M. FRIEDMAN (1974).
Binding of metal cations by natural substances. J. Appl.
Polymer Sci., 18, 675-681.
MATHEICKAL J.T., J. FELTHAM, Q. YU (1997). Cu(II)
binding by marine alga Ecklonia radiata biomaterial.
Environ. Technol., 18, 25-34.
Metals adsorption on seaweed, alginate and other sorbents

MATHEICKAL J.T. and Q. YU (1997). Biosorption of lead(II)
from aqueous solutions by Phellinus badius. Miner. Eng.,
10, 947-957.
MATTUSCHKA B. and G. STRAUBE (1993). Biosorption of
metals by a waste biomass. J. Chem. Technol., 58, 57-63.
McGREGOR R.G., D.W. BLOWES, J.L. JAMBOR,
W.D. ROBERTSON (1998). Mobilization and
attenuation of heavy metals within a nickel mine tailings
impoundment near Sudbury, Ontario, Canada. Environ.
Geol., 36, 305-319.
McKAY G., H.S. BLAIR, A. FINDON (1989). Equilibrium
studies for the sorption of metal ions onto chitosan. Ind. J.
Chem. A, 28, 356-360.
MCKAY G., Y.S. HO, J.C.Y. NG (1999). Biosorption of
copper from waste waters. A review. Sep. Purif. Methods,
28, 87-125.
MEHTA S.K. and J.P. GAUR (2005). Use of algae for removing
heavy metal ions from wastewater: progress and prospects.
Crit. Rev. Biotechnol., 25, 113-152.
MEHTA S.K., S A. INGH, J.P. GAUR (2002). Kinetics of
adsorption and uptake of Cu2+ by Chlorella vulgaris:
Influence of pH, temperature, culture age, and cations. J.
Environ. Sci. Health Part A. Toxic/Hazard. Subst. Environ.
Eng., 37, 399-414.
MEUNIER N., J.F. BLAIS, R.D. TYAGI (2004). Removal of
heavy metals from acid soil leachate using cocoa shells in
a counter-current sorption process. Hydrometallurgy, 73,
225-235.
MEUNIER N., J. LAROULANDIE, J.F. BLAIS, R.D. TYAGI
(2003a). Cocoa shells for heavy metal removal from acidic
solutions. Bioresource Technol., 90, 255-263.
MEUNIER N., J. LAROULANDIE, J.F. BLAIS, R.D. TYAGI
(2003b). Lead removal from acidic solutions by sorption
on cocoa shells: effect of some parameters. J. Environ. Eng.
Div. ASCE, 129, 693-698.
MIN J.H. and J.G. HERING 1998. Arsenate sorption by
Fe(III)-doped alginate gels. Water Res., 32, 1544-1552.
MINAMISAWA M., S. NAKAJIMA, Y. MITSUE,
K. MIYAZAWA, K. UENO, A. HATORI, S. MIYAJIMA,
M. HOSHINO, S. YOSHIDA, N. TAKAI (2002).
Removal of copper(II) and cadmium(II) in water by use of
roasted coffee beans. Nippon Kagaku Kaishi, 3, 459-461.
MISRA V. and S.D. PANDEY (2001). Removal of arsenic from
aqueous solutions by adsorption method using calcium
alginate beads containing humic acid. J. Ecophysiol. Occup.
Health, 1, 295-302.
MOHAN D., K.P. SINGH, V.K. SINGH (2006). Trivalent
chromium removal from wastewater using low cost
activated carbon derived from agricultural waste material
and activated carbon. J. Hazard. Mater. 135, 280-295.
MONTANHER S.F., E.A. OLIVEIRA, M.C. ROLLEMBERG
(2005). Removal of metal ions from aqueous solutions by
sorption onto rice bran. J. Hazard. Mater., 117, 207-211.
MURALEEDHARAN T.R. and C. VENKOBACHAR (1990).
Mechanism of biosorption of copper(II) by Ganoderma
lucidum. Biotechnol. Bioeng., 35, 320-325.
MURATHAN A.S. and M. BÜTÜN (2006). Removal of
lead ions from dilute aqueous solution in packed columns
by using natural fruit shell through adsorption. Fresenius
Environ. Bull., 15, 1491-1498.
NAJA G. and B. VOLESKY (2006). Multi-metal biosorption
in a fixed-bed flow-through column. Colloids and Surf., A,
281, 194-201.
NAKAJIMA A. (2003). Accumulation of gold by micro-
organisms. World J. Microbiol. Biotechnol., 19, 369-374.
NAKAJIMA A., T. HORIKOSHI, T. SAKAGUCHI (1982).
Recovery of uranium by immobilized microorganisms.
Eur. J. Microbiol. Biotechnol., 16, 88-91.
NASERNEJAD B., T.E. ZADEH, B.B. POUR, M.E. BYGI,
A. ZAMANI (2005). Camparison for biosorption modeling
of heavy metals (Cr(III), Cu(II), Zn(II)) adsorption
from wastewater by carrot residues. Process Biochem., 40,
1319-1322.
NASSAR M.M., K.T. EWIDA, E.E. EBRAHIEM,
Y.H. MAGDY, M.H. MHEAEDI (2004). Adsorption of
iron and manganese using low cost materials as adsorbents.
J. Environ. Sci. Health Part A. Toxic/Hazard. Subst.
Environ. Eng., 39, 421-434.
NESTLE N. and R. KIMMICH (1996). NMR Microscopy
of heavy metal absorption in calcium alginate beads. Appl.
Biochem. Biotechnol., 56, 9-17.
NGOMSIK A.F., A. BEE, J.M. SIAUGUE, V. CABUIL,
G. COTE (2006). Nickel adsorption by magnetic alginate
microcapsules containing an extractant. Water Res. 40,
1848-1856.
J.-F. Fiset et al./ Revue des Sciences de l’Eau
305
NORBERG A.B. and H. PERSSON (1984). Accumulation of
heavy metal ions by Zooglea ramigera. Biotechnol. Bioeng.,
26, 239-246.
OFER R., A. YERACHMIEL, Y. SHMUEL (2003). Marine
macroalgae as bisorbents for cadmium and nickel in water.
Water Environ. Res., 75, 246-253.
OFOMAJA A.E. and Y.S. LO (2007). Effect of pH on cadmium
biosorption by coconut copra meal. J. Hazard. Mater. 139,
356-362.
OLIVEIRA L.C.A., D.I. PETKOWICZ, A. SMANIOTTO,
S.B.C. PERGHER (2004). Magnetic zeolites: a new
adsorbent for removal of metallic contaminants from
water. Water Res., 38, 3699-3704.
ORHAN Y. and H. BÜYÜKGÜNGÖR (1993). e removal
of heavy metals by using agricultural wastes. Water Sci.
Technol., 28, 247-255.
OZDEMIR G., N. CEYHAN, E. MANAV (2005). Utilization
un alginate beads for Cu(II) and Ni(II) adsorption of an
exopolysaccharide produced by Chryseomonas luteola
Tem05. World J. Microbiol. Biotechnol. 21, 163-167.
OZDEMIR M., O. SAHIN, E. GULER (2004). Removal of
Pb(II) ions from water by sunflower seed peel. Fresenius
Environ. Bull., 13, 524-531.
PAPAGEORGIOU S.K., F.K. KATSAROS, E.P. KOUVELOS,
J.W. NOLAN, H. LE DEIT, N.K. KANELLOPOULOS
(2006). Heavy metal sorption by calcium alginate
beads from Laminaria digitata. J. Hazard. Mater. 137,
1765-1772.
PARK D., Y.S. YUN, H.Y. CHO, J.M. PARK (2004).
Chromium biosorption by thermally treated biomass of
the brown seaweed, Ecklonia sp. Ind. Eng. Chem. Res., 43,
8226-8232.
PARK H.G. and M.Y. CHAE (2004). Novel type of alginate
gel-based adsorbents for heavy metal removal. J. Chem.
Technol. Biotechnol., 79, 1080-1083.
PARKASH A.S. and R.A.S. BROWN (1976). Use of peat and
coal for recovering zirconium from solution. Can. Min.
Metallurgical Bull., 69, 59-64.
PATTERSON J.W. (1989). Industrial wastes reduction.
Environ. Sci. Technol., 23, 1032-1038.
PAVASANT P., R. APIRATIKUL, V. SUNGKHUM,
P. SUTHIPARINYANONT, S. WATTANACHIRA,
T. F. MARHABA (2006). Biosorption of Cu2+, Cd2+,
Pb2+, and Zn2+ using dried marine green macroalga
Caulerpa lentillifera. Bioresour. Technol. 97, 2321-2329.
PEREIRA M.G. and M.A.Z. ARRUDA (2003). Vermicompost
as a natural adsorbent material: Characterization and
potentialities for cadmium adsorption. J. Braz. Chem. Soc.,
14, 39-47.
PRADAS E.G., M.V. SÁNCHEZ, F.C. CRUZ, M.S.
VICIANA, M.F. PÉREZ (1994). Adsorption of cadmium
and zinc from aqueous solution on natural and activated
bentonite. J. Chem. Technol. Biotechnol., 59, 289-295.
PRASHER S.O., M. BEAUGEARD, J. HAWARI, P. BERA,
R.M. PATEL, S.H. KIM (2004). Biosorption of heavy
metals by red algae (Palmaria palmata). Environ. Technol.,
25, 1097-1106.
RANDALL J.M., R.L. BERMANN, V. GARRETT, A.C.
JR. WAISS (1974). Use of bark to remove heavy metal ions
from waste solutions. Forest Prod. J., 24, 80-84.
RENN, D. (1997). Biotechnology and the red seaweed
polysaccharide industry: Status, needs and prospects.
Trends Biotechnol., 15, 9-14.
RIVEROS P.A. (2004). Iron removal from effluents to
reduce sludge formation and CO2 emissions. European
Commission-CANMET Joint Workshop on Clean Production
Technologies, ADJEMIAN A., DUTRIZAC J., NÉGRÉ
P., YURRAMENDI L. (Editors), Madrid, Spain, Sep 29
-Oct 2, 2004., Inasmet, San Sebastian, Spain, pp. 253-
266.
RIVEROS P.A., J.D. KAWAJA, D. GOULD, D. KOREN
(2001). e extraction of Fe(III) from acid mine drainage
using a biosorbent derived from seaweed. CANMET
Report MMSL-INT 2001-005 (TR), Ottawa, Ontario,
Canada.
RUIZ M., A. SASTRE, E. GUIBAL (2003). Osmium and
iridium sorption on chitosan derivatives. Solvent Extr. Ion
Exc., 21, 307-329.
SAKAGUCHI T., T. HORIKOSHI, A. NAKAJIMA (1978).
Uptake of uranium from sea water by microalgae. J.
Ferment. Technol., 56, 561-565.
SAKAGUCHI T., A. NAKAJIMA, T. HORIKOSHI (1981).
Studies on the accumulation of heavy metal elements in
biological systems XVII. Accumulation of molybdenum by
green microalgae. Eur. J. Appl. Microbiol. Biotechnol., 12,
84-89.
Metals adsorption on seaweed, alginate and other sorbents

SAY R., N. YIMAZ, A. DENIZLI (2003). Removal of heavy
metal ions using the fungus Penicillium canescens. Ads.
Sci. Technol., 21, 643-650.
SCHIEWER S. and VOLESKY (1995). Modeling of the
proton-metal ion exchange. Environ. Sci. technol., 29,
2921-2927.
SCHIEWER S. and M.H. WONG (1999). Metal binding
stoichiometry and isotherm choice in biosorption. Environ.
Sci. Technol., 33, 3821-3828.
SCHNEIDER I.A.H., J. RUBIO, R.W. SMITH (2001).
Biosorption of metals onto plant biomass: exchange
adsorption or surface precipitation? Int. J. Miner. Proc., 62,
111-120.
SCOTT J.A. and S.J. PALMER (1990). Sites of cadmium
uptake in bacteria used for biosorption. Appl. Microbiol.
Biotechnol., 33, 221-225.
SEKI H. and A. SUZUKI (1996). Adsorption of lead ions
on composite biopolymer adsorbent. Ind. Eng. Res., 35,
1378-1382.
SEKI K., N. SAITO, M. AOYAMA (1997). Removal of heavy
metal ions from solutions by coniferous barks. Wood Sci.
Technol., 31, 441-447.
SENTHILKUMAR R., K. VIJAYARAGHAVAN,
M. THILAKAVATHI, P.V.R. IYER, M. VELAN (2006).
Seaweeds for the remediation of wastewaters contaminated
with zinc(II) ions. J. Hazard. Mater., 136, 791-799.
SHARMA D.C. and C.F. FORSTER (1993). Removal of
hexavalent chromium using Sphagnum moss peat. Water
Res., 27, 1201-1208.
SHARMA D.C. and C.F. FORSTER (1994). e treatment of
chromium wastewaters using the sorptive potential of leaf
mould. Bioresource Technol., 49, 31-40.
SHIMIZU T. and A. TAKADA (1997). Preparation of Bi-
based superconducting fiber by metal biosorption of Na-
Alginate. Polymer Gels Networks, 5, 267-283.
SINGHAL R.K., S. JOSHI, K. TIRUMALESH, R.P. GURG
(2004). Reduction of uranium concentration in well water
by Chlorella (Chlorella pyrendoidosa) a fresh water algae
immobilized in calcium alginate. J. Radioanal. Nuclear
Chem., 261, 73-78.
SMALL T.D., L.A. WARREN, E.E. RODEN, F.G. FERRIS
(1999). Sorption of strontium by bacteria, Fe(III) oxide,
and bacteria-Fe(III) oxide composites. Environ. Sci.
Technol., 33, 4465-4470.
SMITH E.F., P. MACCARTHY, T.C. YU, H.B. JR. MARK
(1977). Sulfuric acid treatment of peat for cation exchange.
J. Water Pollut. Control Fed., April, 633-638.
SPINTI M., H. ZHUANG, E.M. TRUJILLO (1995).
Evaluation of immobilized biomass beads removing
heavy metals from wastewaters. Water Environ. Res., 67,
943-952.
SRIVASTAVA S.K., A.K. SINGH, A. SHARMA (1994).
Studies on the uptake of lead and zinc by lignin obtained
from black liquor a paper industry waste material.
Environ. Technol., 15, 353-361.
STUMM W. and J.J. MORGAN (1996). Aquatic chemistry
chemical equilibria and rates in natural waters. SCHNOOR
J.L., ZEHNDER A. (Editors], John Wiley and Sons, New
York, New York, UNITED STATES, pp. 519-526.
TAN T.C., C.K. CHIA, C.K. TEO (1985). Uptake of metal
ions by chemically treated human hair. Water Res., 19,
157-162.
TEE T.W. and R.M. KHAN (1988). Removal of lead,
cadmium and zinc by waste tea leaves. Environ. Technol.
Lett., 9, 1223-1232.
TIEN C.J. (2002). Biosorption of metal ions by freshwater
algae with different surface characteristics. Proc. Biochem.,
38, 605-613.
TOTI U.S. and T.M. AMINABHAVI (2002). Pervaporation
separation of water-isopropyl alcohol mixtures with blend
membranes of sodium alginate and poly(acrylamide)-
grafted guar gum. J. Appl. Polymer Sci., 85, 2014-2024.
TRIVEDI P. and L. AXE (2001). Predicting divalent metal
sorption to hydrous Al, Fe, and Mn oxides. Environ. Sci.
Technol., 35, 1779-1784.
TSEZOS M. (1997). Biosorption of lanthanides, actinides
and related materials. In: Biosorbents for metal ions. WASE
J., FORSTER C. [Ed.], Taylor & Francis Ltd, London,
United Kingdom, pp. 87-113.
TSEZOS M. and D. KELLER (1983). Adsorption of radium-
226 by biological origin adsorbents. Biotechnol. Bioeng.,
25, 201-215.
TSEZOS M. and B. VOLESKY (1981). Biosorption of
uranium and thorium. Biotechnol. Bioeng., 23, 583-604.
J.-F. Fiset et al./ Revue des Sciences de l’Eau

TSEZOS M. and B. VOLESKY (1982). e mechanism of
uranium biosorption by Rhizopus arrhizus. Biotechnol.
Bioeng., 24, 385-401.
TSUI M.T.K., K.C. CHEUNG, N.F.Y. TAM, M.H. WONG
(2006). A comparative study on metal sorption by brown
seaweed. Chemosphere, 65, 51-57.
URRUTIA M.M. (1997). General bacterial sorption processes.
In: Biosorbents for metal ions. WASE J., FORSTER C.
[Ed.], Taylor & Francis Ltd, London, United Kingdom,
pp. 39-66.
UTGIKAR V., B.Y. CHEN, H.H. TABAK, D.F. BISHOP,
R. GOVIND (2000). Treatment of acid mine drainage: I.
Equilibrium biosorption of zinc and copper on non-viable
activated sludge. Int. Biodeterioration Biodegradation, 46,
19-28.
VAISHYA R.C. and S.C. PRASAD (1991). Adsoprtion of
copper(II) on sawdust. Indian J. Environ. Protection, 11,
284-289.
VÁZQUEZ G., G. ANTORRENA, J. GONZÁLEZ,
M.D. DOVAL (1994). Adsorption of heavy metal ions
by chemically modified Pinus Pinaster bark. Bioresource
Technol., 48, 251-255.
VEGLIO F. and F. BEOLCHINI (1997). Removal of metals
by biosorption: a review. Hydrometallurgy, 44, 301-316.
VEGLIO F., A. ESPOSITO, A.P. REVERBERI (2002).
Copper adsorption on calcium alginate beads: equilibrium
pH-related models. Hydrometallurgy, 65, 43-57.
VEGLIO, F., F. BEOLCHINI, M. PRISCIANDARO (2003).
Sorption of copper by olive mill residues. Water Res.. 37,
4895-4903.
VENKOBACHAR C. (1990) Metal removal by waste biomass
to upgrade wastewater treatment plants. Water Sci. Technol.,
22, 319-320.
VIRARAGHAVAN T. and A. KAPOOR (1994). Adsorption
of mercury from wastewater by bentonite. Appl. Clay Sci.,
9, 31-49.
VIRARAGHAVAN T. and G.A.K. RAO (1993). Adsorption
of cadmium and chromium from wastewater by peat. Int.
J. Environ. Studies, 44, 9-27.
VOLESKY B. (1990). Biosorption of heavy metals. CRC Press,
Boca Raton, Florida, UNITED STATES.
VOLESKY B. (1994). Advances in biosorption of metals:
selection of biomass type. FEMS Microbiol. Rev., 14,
291-302.
VOLESKY B. (1999). Biosorption for the next century. In:
Biohydrometallurgy and the Environment Toward the
Mining of the 21st Century, Internat. Biohydrometallurgy
Symposium Proceedings, volume B, BALLESTER, A. and
AMILS, R. [Ed.] Elsevier Sciences, Amsterdam, e
Netherlands, pp.161-170.
VOLESKY B. (2003). Biosorption process simulation tools.
Hydrometallurgy, 71, 179-190.
VOLESKY B. H. MAY, Z.R. HOLAN (1993). Cadmium
biosorption by Saccharomyces cerevisiae. Biotechnol.
Bioeng., 41, 826-829.
VOLESKY B. and Z.R. HOLAN (1995). Biosorption of heavy
metals. Biotechnol. Prog., 11, 235-250.
VOLESKY B. and G. NAJA (2005). Biosorption: Application
Strategies. In: Proceedings of the 16th Internat. Biotechnol.
Symp, IBS-Compress Co., Cape Town, South Africa, pp.
531-542.
VOLESKY B. and I. PRASETYO (1994). Cadmium removal in
a biosorption column. Biotechnol. Bioeng., 43, 1010-1015.
WANG L.S., W. HAI-SUO, Z. AI-QIANG (2004).
Immobilization study of biosorption of heavy metal ions
onto activated sludge. J. Environ. Sci., 16, 640-645.
WASE D.A.J. and C.F. FORSTER (1997). Biosorbents for
metal ions. Taylor & Francis Ltd (Editors), London, United
Kingdom, 238 pages.
WASE D.A.J., C.F. FORSTER, Y.S. HO (1997). Low-cost
biosorbents: batch processes. In: Biosorbents for metal ions.
WASE J., FORSTER C. (Editors), Taylor & Francis Ltd,
London, United Kingdom, pp. 141-163.
WATTS R.J. (1998). Hazardous wastes: sources, pathways,
receptors. John Wiley & Sons, (Editors) New York, New
York, United States, 764 pages.
WILLIAMS C.J. and G.J. EDYVEAN (1997). Ion exchange
in nickel biosorption by seaweed materials. Biotechnol.
Prog., 13, 424-428.
WILSON M.W. and R.G. EDYVEAN (1994). Biosorption for
the removal of heavy metals from industrial wastewaters.
Institution of Chemical Engineers Symposium Series
1994. Environ. Biotechnol., 89-91.
Metals adsorption on seaweed, alginate and other sorbents

YANG J. and B. VOLESKY (2000). Modelling the uranium-
proton ion exchange in biosorption. Environ. Sci. Technol.,
33, 4049-4058.
YU Q.M., J.T. MATHEICKAL, P.H. YIN, P. KAEWSARN
(1999). Heavy metal uptake capacities of common marine
macro algal biomass. Water Res., 33, 1534-1537.
ZHOU J.L. and R.J. KIFF (1991). e uptake of copper from
aqueous solution by immobilised fungal biomass. J. Chem.
Technol. Biotechnol., 52, 317-330.
ZOUMIS T., W. CALMANO, U. FORSTNER (2000).
Demobilization of heavy metals from mine waters. Acta
Hydrochim. Hydrobiol., 28, 212-218.
... Two brown seaweed derivatives were produced commercially, namely alginate fibres and dealginated seaweed waste. These were tested for their metal-binding capability and were found to be good biosorbents for ions such as Cd, Cu, Pb and Ni [187]. Commercially available sodium alginate (SA) is a white powder that is soluble in water and forms a gum when polymerised with calcium ions and thus can be used as alginate beads with or without other biosorbents immobilised in it [188]. ...
... The biosorption capacity (q) of a biosorbent can be increased by physical modifications such as drying, pulverising and sieving, thus reducing it to a fine dust [189][190][191][192][193]. Such particles remain dispersed and suspended in water post-treatment and thus immobilising them on insoluble beads such as SA is advantageous. Some biosorbents immobilised on alginate beads include microorganisms such as bacteria, yeasts, moulds, algae and cyanobacteria [187], sugarcane bagasse [194], sunflower stem [195] and mango waste [196]. Most often, biosorbent particles are immobilised on carrier materials such as alginate and chitosan. ...
Article
Full-text available
The presence of heavy metals in drinking water is a serious global issue. Sustainable methods for treating drinking water such as biosorption are gaining popularity. The maximum permissible limits of most metal ions in drinking water are in the range from 0.003 to 2 mgL−1, however, the elevated concentrations in the range 0.01–2.5 mgL−1 are reported in contaminated waters in various regions of the world. Therefore, selecting the initial metal ion concentration range, and an optimum pH suitable for treating drinking water (pH 6.5–8.5) for laboratory experiments is a challenge for multi-ion biosorption studies. For the quantification of metal ions, ICP-MS is often used owing to its many advantages, however, the high operational costs of this instrument limits its use in research laboratories. Surface characterisation techniques such as TEM, NMR, ESR and related techniques are often ignored in biosorption studies although, these give valuable information pertaining to the mechanism of biosorption. Many theoretical models for explaining the biosorption mechanism have been proposed in the literature, one often contradicting the other. One of the major drawbacks of published biosorption studies is that too much emphasis has been laid on the theoretical explanation of biosorption mechanism and too little has been done to address the lack of practical application in terms of translatability of the methodology for commercial use. The present review highlights such issues while giving an insight on the processes, parameters and models used in biosorption reactions.
... In order for alginate to be able to be used in the biomedical and pharmaceutical field, it must be safe for the body and biocompatible, that is, it must have high purity. A crude alginate purified by a multistage extraction method is devoid of or contains impurities in a low amount and can be taken orally without causing a response from the immune system [2,3,[6][7][8][9]. ...
Article
Full-text available
From the multitude of materials currently available on the market that can be used in the development of microparticles, sodium alginate has become one of the most studied natural anionic polymers that can be included in controlled-release pharmaceutical systems alongside other polymers due to its low cost, low toxicity, biocompatibility, biodegradability and gelatinous die-forming capacity in the presence of Ca2+ ions. In this review, we have shown that through coacervation, the particulate systems for the dispensing of drugs consisting of natural polymers are nontoxic, allowing the repeated administration of medicinal substances and the protection of better the medicinal substances from degradation, which can increase the capture capacity of the drug and extend its release from the pharmaceutical form.
... Sodium alginate can be extracted by crushing of seaweed followed by alkaline extraction, precipitation with calcium chloride, and reaction with sodium carbonate solution [27]. Sodium alginate is a linear anion copolymer with homopolymeric blocks of (1-4)-linked β-Dmannuronate (M) and C-5 epimer α-L-guluronate (G) residues, respectively, covalently linked together in different sequences or blocks. ...
Article
Heavy metal pollution is one of the most important environmental issues in current industrial development. Due to its simplicity and low-cost, adsorption is regarded as one of the green and environmental friendly methods to remove heavy metals from aqueous solutions. Sodium alginate is a natural polysaccharide which contains significant amount of hydroxyl and carboxyl functional groups that has high affinity towards heavy metal ions. Currently, sodium alginate and its derivatives have been widely used to remove heavy metal ions from aqueous solutions in laboratories. Synthesized by surface grafting, crosslinking, and modification, sodium alginate based adsorbents have high adsorption capacities and great metal removal efficiency, which suggests potential industrial applications. However, due to the weak stability and thermosresistance, sodium alginate based adsorbents were limited in industrial applications. In this work, the development of sodium alginate based adsorbents, introduced the structure and chemical properties of sodium alginate, the adsorption performance and affecting parameters of sodium alginate based adsorbents were summarized. Finally, the adsorption mechanism was analyzed. In future studies, material science and environmental engineering could be combined in the adsorbent synthetic process to enhance the structure and adsorption behavior, which could provide potential applications to remove heavy metals from industrial effluents. Key learning points: (1) Adsorption behavior and affecting parameters were concluded. (2) Modifications of sodium alginate were summarized. (3) Adsorption mechanisms were concluded. Limitations of sodium alginate based adsorbents were indicated with suggestions for future research. © 2021, China Science Publishing & Media Ltd. All right reserved.
... One of the promising absorbent sources is seaweed due to its availability and cheap price (Utomo et al., 2016). Most of the seaweed surface is negatively charged, thus it has a great affinity for metal cations (Fiset et al., 2008). ...
Article
Full-text available
The fisheries potential in Gresik Regency is in danger from industrial lead (Pb) pollution. One possible solution is using Sargassum crassifolium, which acts as an absorbent to eliminate Pb in waters. S. crassifolium is characterized by its great affinity for metal cations to bind heavy metal content. This study aimed at finding the effect of S. crassifolium in different forms (wet, dry, and alginate) to absorb Pb content in water. This research was conducted from July to September 2020. The water sample was taken from Gresik Regency and S. crassifolium was obtained from farmers in Talango Island, Sumenep District, Madura. The effectiveness test of the three treatments was conducted based on contact time and biomass factor. Based on the contact time, each treatment was compared with the contact time (1, 7, and 14 days) with 10 g mass per treatment. Meanwhile, for the biomass factor, each treatment was compared by weight (10, 20, and 30 g) for 7 days. The contact time showed that in 14 days, the alginate form of S. crassifolium had the highest absorbent power with 1.370±0.0034 mg.L-1 of lead absorbed and 100% absorbed value. Based on the absorbent mass treatment, 10 g alginate gave the best result with the absorbed lead of 1.364±0.0028 mg.L-1 and an absorption value of 99.71%. The water quality showed that parameters of Dissolved Oxygen (DO), salinity, and nitrates from Gresik Regency were not above standard due to heavy metal pollution. S. crassifolium treatment could decrease the nitrite and nitrate values while increasing DO although still below the standard. This study indicated that 10 g alginate of S. crassifolium in 14 days was effective as a bio-absorbent for Pb heavy metal.
... SA has many uses due to its low cost, low toxicity, and gelation properties (Wee and Gombotz 1998). It is extracted from brown algae by first crushing the plant matter, then conducting alkaline extraction of the crushed material, followed by precipitation with calcium chloride, and finally reaction with sodium carbonate solution (Fiset et al., 2008). SA comprises of β-D-mannuronic acid (M) and α-L-guluronic acid (G) monomers, as seen in Scheme 1. ...
Article
Full-text available
High concentrations of heavy metals in groundwater are harmful to humans and ecological receptors. This study uses natural alginate-based sorbents for the removal of heavy metals (e.g., copper, zinc, iron, and nickel) from water. The effectiveness of alginate-based sorbents was enhanced by adding calcium bentonite clay and by tuning the porosity of the sorbents. Controlled porosity was obtained by an acid base reaction, using sodium carbonate and acetic acid. The maximum sorption capacity of alginate-based sorbents was 127.9 ± 0.6 mg/g and 148.1 ± 0.2 mg/g for Cu(II) and Zn(II), respectively. The sorption of Zn(II) onto the sorbents followed pseudo first-order kinetics (k1 = 9.71 × 10⁻³), indicating that the rate limiting step was the diffusion of Zn(II) into the sorbents. In contrast, the sorption of Cu(II) onto the sorbents followed pseudo second-order kinetics (k2 = 5.80 × 10⁻⁵), indicating that the rate limiting step was chemisorption of Cu(II) into the sorbents. Optical microscopy images of the sorbent cross-section showed pore shrinking following sorption of either Zn(II) or Cu(II), due to crosslinking of alginate by these metal ions. Cu(II) diffusion into the sorbents was further demonstrated by blue discoloration (as shown by images of their cross sections) and by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR). Intraparticle diffusion plots of both Zn(II) and Cu(II) showed that the sorption process begins with surface adsorption and is followed by the rate controlled step of intraparticle diffusion. Alginate-based sorbents could also be used to effectively remove other divalent ions (e.g., Ni(II)), whereas removal of trivalent ions (e.g., Fe(III)) was less effective. Graphical abstract
Chapter
Increased industrial and agricultural activity has led to the contamination of the earth's soil and groundwater resources with hazardous chemicals. The presence of heavy metals, dyes, fluorides, dissolved solids, and many other pollutants used in industry and agriculture are responsible for hazardous levels of water pollution. The removal of these pollutants in water resources is challenging. Bioremediation is a new technique that employs living organisms, usually bacteria and fungi, to remove pollutants from soil and water, preferably in situ. This approach is more cost-effective than traditional techniques, such as incineration of soils and carbon filtration of water. It requires understanding how organisms consume and transform polluting chemicals, survive in polluted environments, and how they should be employed in the field. Bioremediation for Environmental Pollutants discusses the latest research in green chemistry and practices and principles involved in quality improvement of water by remediation. It covers different aspects of environmental problems and their remedies with up-to-date developments in the field of bioremediation of industrial/environmental pollutants. Volume 1 focuses on the bioremediation of heavy metals, pesticides, textile dyes removal, petroleum hydrocarbon, microplastics and plastics.
Chapter
Water contamination remains an issue. A combination of biodegradation and nanotechnology is proposed as a potential proficient, minimal effort, and naturally amiable system to deal with it. Among different mediations, bioremediation procedures can conceivably be utilized to decrease the versatility of materials in the subsurface, reducing the potential for human and ecological exposure. The metabolic diversity of microorganisms ensures an assortment of substrates to be expended. Photosynthetic microorganisms have been found as a compelling and eco-friendly species that can remove carbon, nitrogen, and phosphorous in the manufactured sewage and wastewater. This chapter particularly emphasizes environmentally friendly NMs that give information for removing contaminants from wastewater and effluents. Additionally, various nanocomposites and different natural methods utilized in the wastewater treatment process are also briefly discussed.
Chapter
Three-dimensional (3D) bioprinting, consisting of computer-controlled deposition of scaffolds and cells into designed patterns, is an innovative and promising biofabrication strategy for creating artificial tissues and organs. Bioprinted skin has the potential for clinical transplantation, drug testing, cosmetic assaying as well as fundamental researches. Remarkable advancements have been done over the past decades in the improvement of engineered substitutes that mimic skin by applying the advances in polymer engineering, bioengineering, and nanomedicine. Prior to the printing stage, the pre-design of the process, selection of cell, and biofunctional inks are significant steps for the successful fabrication of 3D bioprinted skin constructs. It is crucial to seek and decide on an appropriate source of biofunctional ink capable of stimulating and supporting printed cells for tissue development. Based on this perspective, this chapter deals with the skin and wound structure, skin tissue engineering, the performance and properties of a broad range of biofunctional inks available for 3D bioprinting technologies to produce skin structures. Besides, the current challenges and advances in designing and developing biofunctional inks with desired properties are overviewed.
Article
Full-text available
The multi-component metal sorption by animal bones was examined using single, binary, and ternary systems composed of Cu 2+ , Zn 2+ , and Ni 2+. Four isotherm models, namely Freundlich, Langmuir, Sips, and Ideal Adsorption Solution Theory (IAST) were used in this study to predict the equilibrium uptake for Cu 2+ , Zn 2+ , and Ni 2+ in binary solutions using the single adsorption constants, obtained by the single isotherm experimental data. Sorption was suppressed by the presence of other metal ions in the binary or ternary sorption processes. The Langmuir, Freundlich, and Sips isotherm models were found to represent the experimental data of a single isotherm sorption process. Whereas, the predictions of binary sorption isotherm systems, Cu 2+-Ni 2+ , Zn 2+-Cu 2+ , Ni 2+-Zn 2+ , showed good agreement with experimental data when using all models except Langmuir.
Article
Full-text available
The removal of lead from water by sunflower seed peel was investigated. It was found to depend on the solution pH, temperature, adsorbent dose and initial concentration. The maximum adsorption efficiency observed was 99% at the equilibrium state. The most successful adsorption was performed at pH 6, 60 degreesC and initial concentration of 30 ppm. It was also found that the temperature changes have no big effect on the adsorption capacity. In summary, it can be concluded that metal ions such as Pb2+ can be removed efficiently from aqueous solutions using sunflower seed peel, which is a low-cost sorbent and abundantly available. It could be an alternative for the more costly processes.
Article
The removal of heavy metals from wastewater using adsorbants such as waste tea, Turkish coffee, exhausted coffee, nut and walnut shells has investigated. Batch studies were conducted at room temperature and adsorption experiments were carried out by shaking 0.3 g of adsorbent with 100 ml synthetic wastewater containing Cr (VI). Cd (II) and A1 (III) metal ions. The remaining concentration of heavy metals in each samples after adsorption at various time intervals was determined spectrophotometrically. Batch studies showed that these adsorbents exhibit a good adsorption potential for A1 (III) metalions. The adsorption ratios of A1(HI) were as 98, 99, 96, 99.5 and 96% for waste tea, Turkish coffee, exhausted coffee, nut and walnut shells, respectively. These results were compared with those obtained using activated carbon as adsorbent. The batch adsorption kinetics and adsorption equilibria were examined and described by a first order reversible reaction and Freundlich isotherm, respectively. The first order rate and isotherm constants have been calculated.
Article
Kinetics and equilibria for the adsorption of zirconium and titanium from aqueous solutions have been examined on a variety of peat and coal samples. Results indicate that adsorption on peat and low-rank subbituminous coal could be a practical means for recovering these metals from streams of industrial agnuous effluents such as oil sands tailings. The fact that peat ultimately accommodates almost four times more zirconium than titanium may also provide a simple and relatively cheap initial separation method.