ArticlePDF Available

Abstract and Figures

Track analysis of the Mexican species of Cerambycidae (Insecta, Coleoptera). A track analysis of 221 species belonging to 68 genera of Mexican Cerambycidae was undertaken in order to identify their main distributional patterns. Based on the comparison of the individual tracks, fifteen generalized tracks were obtained: six are placed in the Neotropical region, seven are shared by the Neotropical region and the Mexican Transition Zone, one is situated in the Mexican Transition Zone, and one is shared by the Nearctic region and the Mexican Transition Zone. Eight nodes were found in the intersection of these generalized tracks, five of them located in the Neotropical region and three in the Mexican Transition Zone. Distributional patterns of Mexican Cerambycidae show two basic patterns: one mostly Neotropical, in the Mesoamerican dominion (Mexican Pacific Coast and Mexican Gulf biogeographic provinces) and another in the Mexican Transition Zone (Transmexican Volcanic Belt and Balsas Basin biogeographic provinces).
Content may be subject to copyright.
131Track analysis of the Mexican species of Cerambycidae
Revista Brasileira de Entomologia 51(2): 131-137, junho 2007
Víctor H. Toledo1, Angélica Ma. Corona1 & Juan J. Morrone2*
Cerambycidae (longhorned beetles) represent one of the
largest families of wood-boring Coleoptera, with approximately
9,000 American species described from Alaska to Argentina.
Approximately 1,600 species have been recorded from Mexico
(Monné 2005a, b; Monné & Hovore 2005). The diversity of
Cerambycidae is also reflected in their coloration, body form
and adult morphology, with body length varying from ± 2.5
mm (Cyrtinus sp.) to slightly over 17 cm (Titanus giganteus).
Some species mimic ants (tribes Clytini and Tillomorphini),
bees and wasps (Rhinotragini), and lycid beetles (Pteroplatini).
Larvae are xylophagous and phytophagous, and play an
important role helping reduce dead and dying trees to humus
(Linsley 1961).
Taxonomic interest in Mexican Cerambycidae started in
1758 with some species described by Linnaeus (for details on
the taxonomic history in Mexico, see Noguera & Chemsak
1996), and has been constant especially in the last century.
Nevertheless, there are scarce distributional records (Noguera
& Chemsak 1996) and phylogenetic analyses including
Mexican taxa (Lingafelter 1998; Philips & Ivie 1998). Linsley
(1939, 1961) presented a summary of the world distribution of
Cerambycidae; he regarded climate and the availability of
suitable food plants as the main factors determining their
present occurrence, and the evolution and spread of past floras
as the major influence in the evolutionary history of the group.
Track analysis of the Mexican species of Cerambycidae (Insecta, Coleoptera)
1Centro de Educación Ambiental e Investigación Sierra de Huautla (CEAMISH), Universidad Autónoma del Estado de Morelos, Av. Universidad 1001,
Col. Chamilpa, Cuernavaca, 62210 Morelos, Mexico. victor.toledo@buzon.uaem.mx, acorona@buzon.uaem.mx
2Museo de Zoología, Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Apdo. postal 70-
399, 04510 Mexico-D.F., Mexico. jjm@hp.fciencias.unam.mx
*Corresponding author.
ABSTRACT. Track analysis of the Mexican species of Cerambycidae (Insecta, Coleoptera). A track analysis of 221
species belonging to 68 genera of Mexican Cerambycidae was undertaken in order to identify their main distributional
patterns. Based on the comparison of the individual tracks, fifteen generalized tracks were obtained: six are placed in the
Neotropical region, seven are shared by the Neotropical region and the Mexican Transition Zone, one is situated in the
Mexican Transition Zone, and one is shared by the Nearctic region and the Mexican Transition Zone. Eight nodes were
found in the intersection of these generalized tracks, five of them located in the Neotropical region and three in the
Mexican Transition Zone. Distributional patterns of Mexican Cerambycidae show two basic patterns: one mostly
Neotropical, in the Mesoamerican dominion (Mexican Pacific Coast and Mexican Gulf biogeographic provinces) and
another in the Mexican Transition Zone (Transmexican Volcanic Belt and Balsas Basin biogeographic provinces).
KEYWORDS. Biogeography; generalized tracks; Mexican Transition Zone; Neotropics; panbiogeography.
RESUMO. Análise de traço das espécies mexicanas de Cerambycidae (Insecta, Coleoptera). Uma análise de traço de 221
espécies de Cerambycidae mexicanos pertencentes a 68 gêneros foi feita com o objetivo de identificar seus principais padrões
de distribuição. Baseado na comparação de traços individuais, quinze traços generalizados foram obtidos: seis localizados na
região Neotropical, sete foram compartilhados entre a região Neotropical e a zona de transição mexicana, uma é situada na
zona de transição mexicana e uma compartilhada entre a região Neártica e a zona de transição mexicana. Oito nós
biogeográficos foram encontrados na intersecção dos traços biogeográficos generalizados, cinco deles localizados na
região Neotropical e três na zona de transição mexicana. Existem dois padrões de distribuição para os Cerambycidae mexicanos:
um principalmente Neotropical, no domínio Mesoamericano (províncias da costa pacífica mexicana e do golfo mexicano)
e outro na zona de transição mexicana.
PALAVRAS-CHAVE. Biogeografia; Neotrópico; panbiogeografia; traços generalizados; Zona de transição Mexicana.
Our objective is to describe the distributional patterns of
221 species of the family Cerambycidae in Mexico applying a
panbiogeographic analysis.
MATERIAL AND METHODS
We analyzed distributional data for 221 species of
cerambycids (see Appendix), which correspond to 68 genera,
most of them (78%) having Neotropical biogeographic
affinities. Several species (63) presented few localities (one or
two) and were excluded from the analysis. Distributional
records analyzed for these species were only from Mexico,
data from other countries were not included in the analysis.
Distributional data for this study were obtained from the
available literature (Bates 1879; Chemsak 1963a,b, 1964, 1967,
1969a,b, 1972, 1977, 1980, 1991, 1999; Chemsak & Hovore 2002;
Chemsak & Linsley 1963a,b, 1964a,b, 1965, 1966, 1967, 1975a,b,
1976a,b, 1982a,b, 1983, 1984, 1986, 1988; Chemsak & McCarty
1997; Chemsak & Noguera 1997, 1998, 2001, 2003; Giesbert
1979, 1985, 1986, 1992, 1993; Giesbert & Chemsak 1997; Giesbert
& Wappes 1999; Linsley 1962, 1970; Martins & Chemsak
1966a,b; McCarty 2001; Noguera 1993, 2002; Noguera &
Chemsak 1997; Noguera et al. 2002; Toledo 1997, 2005a,b;
Toledo et al. 2002).
We applied a panbiogeographic analysis, which basically
132 Toledo et al.
Revista Brasileira de Entomologia 51(2): 131-137, junho 2007
consists of plotting distributions of each species on maps,
and connecting their localities together with the nearest locality
via minimum distance lines. After many species have been
added to the data set, the overlapping of individual tracks
provides generalized tracks, which allow us to hypothesize
the pre-existence of ancestral biotic components that have
been fragmented by tectonic or climatic changes (Croizat 1958,
1964; Morrone & Crisci 1995; Craw et al. 1999; Morrone 2004).
If two or more generalized tracks intersect in a given area, they
determine a node, which indicates a complex area where
different ancestral biotic and geological elements interrelate
in time and space. Individual and generalized tracks and nodes
were represented on maps of the Mexican biogeographic
provinces (Morrone 2005, 2006), using ArcView 3.2 (ESRI 1998).
RESULTS
Generalized tracks. A total of 221 individual tracks were
constructed. Based on their overlapping, we obtained 15
generalized tracks (Fig. 1). Six are situated in the Neotropical
region, seven are shared by the Neotropical region and the
Mexican Transition Zone, one is situated in the Mexican
Transition Zone, and one is shared by the Nearctic region and
the Mexican Transition Zone (Morrone & Márquez 2003;
Morrone 2005, 2006).
Generalized track 1. Southeastern Sonora to central
southern Jalisco. Mexican Transition Zone (Transmexican
Volcanic Belt biogeographic province) and Neotropical region,
Mesoamerican dominion (Mexican Pacific Coast biogeographic
province). Based on Anelaphus badius, Cacophrissus paupe,
Colobothea sinaloensis, Dectes nigripilus, Eburia laticollis,
E. powelli, Ecyrus pacificus, Elytroleptus scabricollis,
Euderces bicinctus, E. longicollis, E. pulcra, Lagocheirus
obsoletus, Lophalia prolata, Methia occidentalis, Metironeus
hesperus, Neocompsa alacris, N. tenuisima, Neotaranomis
sinaloae, Oreodera brailovski, Phaea kaitlinae, P. marthae,
Psyrassa cylindricollis, P. megalops, P. nigricornis, P.
sinaloae, Rhodoleptus comis, R. femoratus, Sphaenothecus
trilineatus, Strangalia palaspina, Tetraopes subfasciatus,
Thryallis noguerai, and Triacetelus sericatus.
Generalized track 2. Central southern to southwestern
Jalisco. Mexican Transition Zone (Transmexican Volcanic Belt
biogeographic province) and Neotropical region,
Mesoamerican dominion (Mexican Pacific Coast biogeographic
province). Based on Acanthoderes noguerai, Ischnocnemis
similis, Lagocheirus obsoletus, Oncideres albomarginata, O.
scitula, Oreodera corticina, Phaea carnelia, P. juanitae, P.
tenuata, and Psyrassa katsurae.
Generalized track 3. Southwestern Jalisco to southwestern
Guerrero. Neotropical region, Mesoamerican dominion
(Mexican Pacific Coast biogeographic province). Based on
Acanthoderes ramirezi, Eburia chemsaki, E. clara, E.
hatsuae, E. juanitae, E. laticollis, E. maccartyi, E. nigrovittata,
E. paraegrota, E. powelli, Lagocheirus obsoletus, Lophalia
prolata, Neoperiboeum juanitae, Phaea flavovittata, P. hogei,
P. juanitae, P. marthae, Poliaenus hesperus, Psyrassa
basicornis, P. cribricollis, P. cylindricollis, P. katsurae, P.
levicollis, P. nigricornis, P. sthenias, Tetranodus copei, and
Tylosis puncticollis.
Generalized track 4. Southwestern Guerrero to southeastern
Oaxaca. Neotropical region, Mesoamerican dominion (Mexican
Pacific Coast biogeographic province). Based on Eburia clara,
E. laticollis, E. maccartyi, E. ribardoi, Euderces batesi,
Lagocheirus obsoletus, Phaea hogei, P. kellyae, Psyrassa
basicornis, P. sthenias, Sphaenothecus trilineatus, and
Stenobatyle prolixa.
Generalized track 5. Southeastern Oaxaca to northeastern
Chiapas. Neotropical region, Mesoamerican dominion
(Mexican Pacific Coast and Chiapas biogeographic provinces).
Based on Aneflus poriferus, Choriolaus howdeni, Eburia
clara, E. laticollis, E. ribardoi, E. schusteri, Ecyrus lineicollis,
Enaphalodes coronatus, Euderces boucardi, E. disparicus,
E. reticulates, E. turnbowi, Lagocheirus cristulatus, L.
simplicicornis, L. obsoletus, Metironeus hovorei, Neocompsa
alacris, N. clerochroa, N. exclamationis, Oncideres ocellaris,
Phaea biplagiata, P. bryani, P. flavovittata, P. helayae, P.
hogei, P. kellyae, P. maccartyi, P. miniata, P. pthistica, P.
semirufa, P. tenuata, P. wappesi, Psyrassa angelicae, P.
basicornis, P. levicollis, P. oaxacae, P. sthenias,
Sphaenothecus argenteus, S. toledoi, S. trilineatus,
Sphaerionillum castaneum, Stenobatyle prolixa, Strangalia
cavaventra, and Tetranodus copei.
Generalized track 6. Northeastern to southeastern Chiapas.
Neotropical region, Mesoamerican dominion (Mexican Pacific
Coast and Chiapas biogeographic provinces). Based on
Eburia laticollis, Lagocheirus cristulatus, L. integer, L.
simplicicornis, L. obsoletus, Neocompsa exclamationis,
Oreodera corticina, O. fasciculosa, O. wappesi, Phaea
biplagiata, and P. helayae.
Generalized track 7. Northeastern to eastern Chiapas.
Neotropical region, Mesoamerican dominion (Chiapas
biogeographic province). Based on Anthoboscus oculatus,
Anatinoma alveolatum, Assycuera macrotela, Choriolaus
howdeni, Eburia brevispinis, E. schusteri, Euderces bellus,
E. boucardi, E. disparicus, E. laevicauda, E. turnbowi, E.
wappesi, Megapsyrassa testacea, Oncideres ocellaris, Phaea
kellyae, P. tenuata, P. wappesi, Plocaederus yucatecus,
Psyrassa sthenias, Rhodoleptus nigripennis, Sphaenothecus
argenteus, and S. toledoi.
Generalized track 8. Southeastern Veracruz to northwestern
Chiapas. Neotropical region, Mesoamerican dominion
(Mexican Gulf and Chiapas biogeographic provinces). Based
on Eburia brevispinis, E. cruciata, Euderces reticulatus,
Lagocheirus integer, L. binumeratus, Oncideres
albomarginata, O. fisheri, O. putator putator, O. rubra,
Oreodera corticina, O. fasciculosa, O. wappesi, Phaea
acromela, P. pthistica, and Tetraopes varicornis.
Generalized track 9. Southeastern San Luis Postosí to
southeastern Veracruz. Mexican Transition Zone (Sierra Madre
Oriental biogeographic province) and Neotropical region,
Mesoamerican dominion (Mexican Gulf biogeographic
province). Based on Anatinoma alveolatum, Eburia
133Track analysis of the Mexican species of Cerambycidae
Revista Brasileira de Entomologia 51(2): 131-137, junho 2007
brevispinis, E. mutica, Lagocheirus binumeratus,
Micropsyrassa bimaculata, Neocompsa exclamationis,
Oncideres cingulata texana, O. rubra, Phaea acromela, P.
saperda, Psyrassa castanea, P. cribricollis, P. tympanophora,
and Tetraopes varicornis.
Generalized track 10. Northwestern Nuevo León to
southeastern San Luis Potosí. Nearctic region (Tamaulipas
biogeographic province) and Mexican Transition Zone (Sierra
Madre Oriental biogeographic province). Based on Eburia
mutica, Lagocheirus obsoletus, Meloemorpha aliena,
Neoptychodes trilineatus, Oncideres cingulata texana,
Oreodera corticina, Phaea acromela, P. tenuata, Psyrassa
brevicornis, and P. sallaei.
Generalized track 11. Central and southern Jalisco to central
Morelos. Mexican Transition Zone (Transmexican Volcanic
Belt and Balsas Basin biogeographic provinces). Based on
Acanthoderes noguerai, Ancylocera michelbacheri,
Aneflomorpha crinita, Dectes nigripilus, Deltaspis cyanipes,
Dexithea humeralis, Eburia poricollis, Euderces
basimaculatus, E. cribripennis, Hexoplon calligrammum,
Lophalia prolata, Megaderus bifasciatus, Neocompsa
tenuissima, Oncideres scitula, Phaea bryani, P. carnelia, P.
juanitae, P. semirufa, P. tenuata, Tetraopes subfasciatus, and
T. varicornis.
Generalized track 12. Central Morelos to southwestern
Veracruz. Mexican Transition Zone (Balsas Basin and
Transmexican Volcanic Belt biogeographic provinces) and
Neotropical region, Mesoamerican dominion (Mexican Gulf
biogeographic province). Based on Assycuera macrotela,
Cirrhicera leuconota, Dexithea humeralis, Elytroleptus
similis, Euderces batesi, Hexoplon calligrammum,
Lagocheirus funestus, L. integer, L. binumeratus, L. obsoletus,
Meloemorpha aliena, Neocompsa clerochroa, Neoptychodes
trilineatus, Phaea acromela, P. pthistica, and Tetraopes
umbonatus.
Generalized track 13. Central Morelos to southeastern
Oaxaca. Mexican Transition Zone (Balsas Basin and
Transmexican Volcanic Belt biogeographic provinces) and
Neotropical region, Mesoamerican dominion (Mexican Pacific
Coast biogeographic province). Based on Ancylocera
michelbacheri, Anelaphus hirtus, Dectes nigripilus, Eburia
chemsak, E. cruciata, E. hatsuae, E. poricollis, Elytroleptus
scabricollis, Euderces batesi, E. laevicauda, E. longicollis,
E. perplexus, E. postipalidus, Ischnocnemis costipennis,
Metironeus hesperus, Micropsyrassa reticulata, Ochraethes
nigropunctatus, Phaea biplagiata, Psyrassa nigroaenea,
Rhodoleptus comis, Sphaenothecus picticornis, Tetraopes
cleroides, T. subfasciatus, and Tylosis puncticollis.
Generalized track 14. Southwestern Jalisco to Central
Morelos. Mexican Transition Zone (Balsas Basin and
Transmexican Volcanic Belt biogeographic provinces) and
Neotropical region, Mesoamerican dominion (Mexican Pacific
Coast biogeographic province). Based on Alphomorphus
vandykei, Anelaphus hirtus, Deltaspis rubriventris, Eburia
aliciae, E. cruciata, E. hatsuae, E. nigrovittata, E.
rotundipennis, Elytroleptus scabricollis, Euderces
cribripennis, E. longicollis, E. pulcra, Lagocheirus xileuco,
Megaderus bifasciatus, Neocompsa alacris, N. clerochroa,
Neoptychodes trilineatus, Oncideres senilis, Oreodera
brailovski, O. glauca glauca, Phaea biplagiata, P. carnelia,
P. flavovittata, P. hogei, P. maxima, Psyrassa chamelae, P.
megalops, P. sinaloae, Sphaenothecus argenteus, S.
picticornis, S. trilineatus, and Tetraopes umbonatus.
Generalized track 15. Central Morelos to southeastern
Fig. 1. Generalized tracks and nodes obtained from the biogeographic analysis of 221 species belonging to 68 genera of Mexican Cerambycidae.
134 Toledo et al.
Revista Brasileira de Entomologia 51(2): 131-137, junho 2007
Guerrero. Mexican Transition Zone (Balsas Basin and
Transmexican Volcanic Belt biogeographic provinces) and
Neotropical region, Mesoamerican dominion (Mexican Pacific
Coast biogeographic province). Based on Alphomorphus
vandykei, Eburia chemsaki, E. nigrovittata, Euderces
longicollis, E. perplexus, Hexoplon calligrammum,
Ischnocnemis costipennis, Lagocheirus funestus, L. obsoletus,
L. xileuco, Micropsyrassa reticulata, Neocompsa alacris,
Oncideres senilis, Phaea kellyae, P. semirufa, P. tenuata, and
Psyrassa cribricollis.
Nodes. We found eight nodes in the areas where the
generalized tracks intersected (Fig. 1):
Node A. Intersection of generalized tracks 2, 3, and 14.
Southwestern Jalisco. Neotropical region, Mesoamerican
dominion (Mexican Pacific Coast biogeographic province).
Node B. Intersection of generalized tracks 1, 2, and 11.
Central south Jalisco. Mexican Transition Zone (Transmexican
Volcanic Belt biogeographic province).
Node C. Intersection of generalized tracks 9 and 10.
Southeastern San Luis Potosí. Mexican Transition Zone (Sierra
Madre Oriental biogeographic province).
Node D. Intersection of generalized tracks 11, 12, 13, 14,
and 15. Northwestern Morelos. Mexican Transition Zone
(Transmexican Volcanic Belt and Balsas Basin biogeographic
provinces).
Node E. Intersection of generalized tracks 3, 4, and 15.
Southwestern Guerrero. Neotropical region, Mesoamerican
dominion (Mexican Pacific Coast biogeographic province).
Node F. Intersection of generalized tracks 8, 9, and 12.
Southeastern Veracruz. Neotropical region, Mesoamerican
dominion (Mexican Gulf biogeographic province).
Node G. Intersection of generalized tracks 4, 5, and 13.
Southeastern Oaxaca. Neotropical region, Mesoamerican
dominion (Mexican Pacific Coast biogeographic province).
Node H. Intersection of generalized tracks 5, 6, 7, and 8.
Northeastern Chiapas. Neotropical region, Mesoamerican
dominion (Chiapas biogeographic province).
DISCUSSION
Distributional patterns identified herein were mostly
Neotropical. We found two main distributional patterns for
the species analyzed, which are related to their host plants
distribution. One of them, in the lowlands of the Mesoamerican
dominion, where eight generalized tracks and five nodes were
obtained, is associated to the tropical dry forests of the
Mexican Pacific Coast and Chiapas biogeographic provinces,
and tropical rain forests of the Mexican Gulf (Rzedowski 1978).
The other, in the highlands of the Mexican Transition Zone,
where seven generalized tracks and three nodes were
established, is associated to montane forests in the
Transmexican Volcanic Belt and tropical dry forests of the
Balsas Basin biogeographic province. In general,
Cerambycidae in Mexico have been better collected in the
tropical dry forests than in other kinds of vegetation (Chemsak
& Noguera 1993; Noguera et al. 2002; Toledo et al. 2002).
The convergence of five generalized tracks in node D,
which is situated in the Mexican Transition Zone
(Transmexican Volcanic Belt- Balsas Basin biogeographic
provinces), supports the hypothesis that it is a complex area
where biotic elements with different origins overlap (Halffter
1987; Morrone & Márquez 2001). The absence of generalized
tracks in the Nearctic region may indicate the lack of elements
with Nearctic biogeographic affinities. Therefore, the results
obtained are considered preliminary, because it would be
necessary to include more distributional records from different
national and international collections, recent systematic
collects, and new species records with different biogeographic
affinities, in order to complement the work and corroborate
our hypothesis.
REFERENCES
Bates, H. W. 1879-1886. Biologia Centrali-America, Insecta,
Coleoptera, Longicornia. Vol 5, 436 pp. London.
Chemsak, J. A. 1963a. Synopsis of the genus Ancylocera in Mexico.
Journal of the Kansas Entomological Society 36: 104–109.
Chemsak, J. A. 1963b. Taxonomy and bionomics of the genus Tetraopes.
University of California Publications in Entomology 30: 1–
90.
Chemsak, J. A. 1964. A new species of Mexican Ancylocera with records
of others. Entomological News 75: 108–110.
Chemsak, J. A. 1967. Review of the genus Championa Bates. The
Pan-Pacific Entomologist 43: 43–48.
Chemsak, J. A. 1969a. New Mexican and Central American species of
Strangalia Audinet-Serville. Journal of the New York
Entomological Society 77: 2–9.
Chemsak, J. A. 1969b. Records and descriptions of Mexican and Central
American Tillomorphini. The Pan-Pacific Entomologist 45:
303–317.
Chemsak, J. A. 1972. Review of the genus Cirrhicera Thomson. The
Pan-Pacific Entomologist 48: 86–93.
Chemsak, J. A. 1977. Records and descriptions of some Mexican species
of the genus Phaea Newman. The Pan-Pacific Entomologist 53:
269–276.
Chemsak, J. A. 1980. Revision of the genus Stenobatyle Casey. The
Pan-Pacific Entomologist 56: 113–120.
Chemsak, J. A. 1991. New Mexican and Central American Elaphidiini.
Anales del Instituto de Biología, UNAM, Serie Zoología 62:
469–480.
Chemsak, J. A. 1999. Revision of the genus Phaea Newman.
Occasional Papers of the Consortium Coleopterorum 3:
36–101.
Chemsak, J. A. & F. T. Hovore. 2002. New Mexican and Central
American species of Acanthoderini (Lamiinae) with notes on others,
parts 1 & 2. Les Cahiers Magellanes 15: 1–32, 16: 1–26.
Chemsak, J. A. & E. G. Linsley. 1963a. Synopsis of the known Mexican
species of Aneflus. Bulletin of Brooklyn Entomological Society
5: 80–96.
Chemsak, J. A. & E. G. Linsley. 1963b. The genera of Hesperophanine
Cerambycidae presently known from Mexico, with description of
several new species. Journal of the Kansas Entomological
Society 36: 207–230.
Chemsak, J. A. & E. G. Linsley. 1964a. Descriptions and records of
Hesperophanini with keys to the species of Anatinomma and
Amphelictus. Journal of the Kansas Entomological Society
37: 216–226.
Chemsak, J. A. & E. G. Linsley. 1964b. Descriptions and records of
Mexican Methiini. The Pan-Pacific Entomologist 40: 158–161.
135Track analysis of the Mexican species of Cerambycidae
Revista Brasileira de Entomologia 51(2): 131-137, junho 2007
Chemsak, J. A. & E. G. Linsley. 1965. A revised key to the species of
Elytroleptus with notes on variation and geographical distribution.
The Pan-Pacific Entomologist 41: 193–199.
Chemsak, J. A. & E. G. Linsley. 1966. The genus Tigrinestola Breuning.
The Pan-Pacific Entomologist 42: 239–243.
Chemsak, J. A. & E. G. Linsley. 1967. A review of the genus
Sphaerionillum Bates. The Pan-Pacific Entomologist 43: 40–
43.
Chemsak, J. A. & E. G. Linsley. 1975a. New species of the genus
Aneflomorpha from Mexico. The Pan-Pacific Entomologist 51:
201–204.
Chemsak, J. A. & E. G. Linsley. 1975b. Mexican Pogonocherini. The
Pan-Pacific Entomologist 51: 271–286.
Chemsak, J. A. & E. G. Linsley. 1976a. A new genus of Mexican and
Central American Lepturinae with a review of the genus Neoleptura
Thomson. Journal of the Kansas Entomological Society 49:
177–187.
Chemsak, J. A. & E. G. Linsley. 1976b. The genus Triacetelus Bates.
The Pan-Pacific Entomologist 52: 216–219.
Chemsak, J. A. & E. G. Linsley. 1982a. Review of the genus Rhodoleptus
Linsley. The Coleopterists Bulletin 36: 390–394.
Chemsak, J. A. & E. G. Linsley. 1982b. New Mexican Purpuricenini.
Wasmann Journal of Biology 40: 71–76.
Chemsak, J. A. & E. G. Linsley. 1983. Confirmation of the occurrence
of Echthistatus in Mexico and description of a related new genus.
International Journal of Entomology 25: 226–230.
Chemsak, J. A. & E. G. Linsley. 1984. New genera and species of
Neotropical Cerambycidae. The Pan-Pacific Entomologist 60:
279–288.
Chemsak, J. A. & E. G. Linsley. 1986. New Lamiinae from Mexico.
Journal of the New York Entomological Society 94: 20–31.
Chemsak, J. A. & E. G. Linsley. 1988. Additional new species of
Cerambycidae from the Estación de Biología Chamela, Mexico
and environs. Folia Entomológica Mexicana 77: 123–140.
Chemsak, J. A. & J. D. McCarty. 1997. Review of the genus Thryallis
Thomson. The Coleopterists Bulletin 51: 101–112.
Chemsak, J. A. & F. A. Noguera. 1993. Annotated checklist of the
Cerambycidae of the Estación de Biología Chamela, Jalisco, Mexico,
with descriptions of new genera and species. Folia Entomológica
Mexicana 89: 55–102.
Chemsak, J. A. & F. A. Noguera. 1997. New Mexican Cerambycidae.
Occasional Papers of the Consortium Coleopterorum 1: 6–
14.
Chemsak, J. A. & F. A. Noguera. 1998. Review of the genus
Sphaenothecus Dupont. The Pan-Pacific Entomologist 74: 12–
26.
Chemsak, J. A. & F. A. Noguera. 2001. New Mexican and Central
American Cerambycidae. Occasional Papers of the Consortium
Coleopterorum 4: 50–55.
Chemsak, J. A. & F. A. Noguera. 2003. New species of Anelaphus
Linsley from Mexico, Central and South America (Coleoptera:
Cerambycidae). The Pan-Pacific Entomologist 79: 58–65.
Craw, R. C., J. R. Grehan & M. J. Heads. 1999. Panbiogeography:
Tracking the history of life. Oxford University Press, New York.
Croizat, L. 1958. Panbiogeography. Vols. 1 y 2. Published by the
author, Caracas.
Croizat, L. 1964. Space, time, form: The biological synthesis.
Published by the author, Caracas.
ESRI (Environmental Systems Research Institute). 1998. ArcView
GIS 3.2.
Giesbert, E. F. 1979. A review of the Mexican and Central American
species of Colobothea Serville. The Coleopterists Bulletin 33:
415–438.
Giesbert, E. F. 1985. Two new species of Cerambycinae from Quintana
Roo, Mexico. The Coleopterists Bulletin 39: 80–85.
Giesbert, E. F. 1986. A new species of Strangalia from Western Mexico.
The Pan-Pacific Entomologist 62: 140–143.
Giesbert, E. F. 1992. Two new species of Cerambycidae from the State
of Chiapas, Mexico. The Coleopterists Bulletin 46: 155–159.
Giesbert, E. F. 1993. New species of Cerambycinae from Guatemala
and Chiapas, Mexico. The Coleopterists Bulletin 47: 137–149.
Giesbert, E. F. & J. A. Chemsak. 1997. A review of the genus Euderces
LeConte (Tillomorphini). Proceedings of the Calififornia
Academy of Sciences 49: 211–286.
Giesbert, E. F. & J. E. Wappes. 1999. Further studies in the Lepturini of
Central America. Part II. Occasional Papers of the Consortium
Coleopterorum 3: 8–14.
Halffter, G. 1987. Biogeography of the montane entomofauna of
Mexico and Central America. Annual Review of Entomology
32: 95–114.
Lingafelter, S. W. 1998. The genera of Elaphidiini Thomson 1864.
Memoirs of the Entomological Society of Washington 20:
1–118.
Linsley, E. G. 1939. The origin and distribution at the Cerambycidae of
North America, with special reference to the fauna of the Pacific
slope. Proceedings of the Pacific Science Congress, Science
Association, 6th Meeting 4: 269–282.
Linsley, E. G. 1961. The Cerambycidae of North America. Part I.
Introduction. University of California Publications in
Entomology 18: 1–135.
Linsley, E. G. 1962. Synopsis of the genus Elytroleptus Dugés. Folia
Entomológica Mexicana 3: 1–13.
Linsley, E. G. 1970. New genera and species in the Lepturine complex
related to Euryptera and Choriolaus. The Pan-Pacific
Entomologist 46: 128–141.
Martins, U. R. & J. A. Chemsak. 1966a. Synopsis of the known Mexican
Ibidionini. Journal of the Kansas Entomological Society 39:
454–467.
Martins, U. R. & J. A. Chemsak. 1966b. Revision of the genus
Micropsyrassa Linsley. The Pan-Pacific Entomologist 42: 120–
126.
McCarty, J. D. 2001. A review of the Mexican species Oreodera Audinet-
Serville (Lamiinae). Occasional Papers of the Consortium
Coleopterorum 4: 13–34.
Monné, M. A. 2005a. Catalogue of the Cerambycidae (Coleoptera) of
the Neotropical region. Part I. Subfamily Cerambycinae. Zootaxa
946: 1–765.
Monné, M. A. 2005b. Catalogue of the Cerambycidae (Coleoptera) of
the Neotropical region. Part II. Subfamily Lamiinae. Zootaxa
1023: 1–760.
Monné, M. A. & F. T. Hovore. 2005. Electronic checklist of the
Cerambycidae of the Western Hemisphere. Bioquip, 393 pp.
Morrone, J. J. 2004. Panbiogeografía, componentes bióticos y zonas
de transición. Revista Brasileira de Entomologia 48: 149–
162.
Morrone, J. J. 2005. Hacia una síntesis biogeográfica de México. Revista
Mexicana de Biodiversidad 76: 207-252.
Morrone, J. J. 2006. Biogeographic areas and Transition Zones of
Latin America and the Caribbean Islands, based on panbiogeographic
and cladistic analyses of the entomofauna. Annual Review of
Entomology 51: 467-494.
Morrone, J. J. & J. V. Crisci. 1995. Historical biogeography: Introduction
to methods. Annual Review of Ecology and Systematics 26:
373–401.
Morrone, J. J. & Márquez, J. 2001. Halffter’s Mexican transition zone,
beetle generalized tracks, and geographical homology. Journal of
Biogeography 28: 635–650.
Morrone, J. J. & J. Márquez. 2003. Aproximación a un Atlas
Biogeográfico de México: Componentes bióticos principales y
provincias biogeográficas. In: J. J. Morrone & J. Llorente Bousquets,
eds. Una perspectiva latinoamericana de la biogeografía. pp. 217–
220. Las Prensas de Ciencias, UNAM, México, D. F.
Noguera, F. A. 1993. Revisión taxonómica del genero Oncideres Serville
en Mexico. Folia Entomológica Mexicana 88: 9–60.
Noguera, F. A. 2002. Revisión taxonómica de las especies del género
Eburia Lepeletier & A.-Serville in Lacordaire de Norte y
Centroamérica. Folia Entomológica Mexicana 41: 1–167.
Noguera, F. A. & J. A. Chemsak. 1996. Cerambycidae. p. 381–409.
Biodiversidad, taxonomía y biogeografía de artrópodos de
México: Hacia una síntesis de su conocimiento (eds, In:
136 Toledo et al.
Revista Brasileira de Entomologia 51(2): 131-137, junho 2007
Llorente-Bousquets J. García Aldrete A. N. & González Soriano E.),
Vol. I. Instituto de Biología, UNAM. México.
Noguera, F. A. & J. A. Chemsak. 1997. New species and notes on the
genus Championa Bates with a key to the species. Occasional
Papers of the Consortium Coleopterorum 1: 1–5.
Noguera, F. A., S. Zaragoza-Caballero J. A. Chemsak, A. Rodríguez-
Palafox, E. Ramírez, E. González-Soriano & R. Ayala. 2002.
Diversity of the family Cerambycidae of the tropical dry forest of
Mexico, I. Sierra de Huatla, Morelos. Annals of the Entomological
Society of America 95: 617–627.
Philips, T. K. & M. A. Ivie. 1998. The Methiini of the West Indies
with notes on the circum-Caribbean species. Entomologica
Scandinavica 29: 57–87.
Rzedowski, J. 1978. Vegetación de México. Edit. Limusa, México,
D. F. 431 pp.
Toledo, V. H. 1997. Revisión taxonómica del género Lagocheirus para
México y Centroamérica. Folia Entomológica Mexicana 101:
1–58.
Toledo, V. H. 2005a. Revisión taxonómica del género Psyrassa Pascoe
(Coleoptera: Cerambycidae). Acta Zoológica Mexicana, Nueva
Serie 21: 1–64.
Toledo, V. H. 2005b. New distributional records for Mexican
Cerambycidae (Coleoptera). The Coleopterists Bulletin 59:
415–422.
Toledo, V. H., F. A. Noguera, J. A. Chemsak, F. T. Hovore & E. F.
Giesbert. 2002. The cerambycid fauna of the tropical dry forest of
“El Aguacero,” Chiapas, Mexico. The Coleopterists Bulletin
56: 515–532.
APPENDIX
List of species of the family Cerambycidae (Coleoptera) analyzed,
with references consulted between square brackets.
1. Acanthoderes albifrons Chemsak & Hovore [Chemsak & Hovore
2002].
2. A. amplitoris Chemsak & Hovore [Chemsak & Hovore 2002].
3. A. bicolor Chemsak & Hovore [Chemsak & Hovore 2002].
4. A. linsleyi Chemsak & Hovore [Chemsak & Hovore 2002].
5. A. noguerai Chemsak & Hovore [Chemsak & Hovore 2002].
6. A. ramirezi Chemsak & Hovore [Chemsak & Hovore 2002].
7. Alphomorphus vandykei (Linsley) [Chemsak & Linsley 1975b].
8. Anatinomma alveolatum Bates [Chemsak & Linsley, 1963b 1964].
9. Ancylocera michelbacheri Chemsak [Chemsak 1963a].
10. Aneflomorpha crinita Chemsak & Linsley [Chemsak & Linsley
1975a].
11. A. ruficollis Chemsak & Linsley [Chemsak & Linsley 1975a].
12. Aneflus glabropunctatus Chemsak & Linsley [Chemsak & Linsley
1963a].
13. A. minutivestis Chemsak & Linsley [Chemsak & Linsley 1963a].
14. A. poriferus Giesbert [Giesbert 1993].
15. Anelaphus badius Chemsak [Chemsak 1991].
16. A. hirtus Chemsak & Noguera [Chemsak & Noguera 2003].
17. Anthoboscus oculatus Giesbert [Giesbert 1992; Toledo et al. 2002].
18. A. tricolor (Chevrolat) [Toledo 2005b].
19. Assycuera macrotela Bates [Chemsak 1964].
20. Cacophrissus pauper Bates [Chemsak & Linsley 1963b].
21. Cacostola janzeni Chemsak & Linsley [Chemsak & Linsley 1986].
22. Ceralocyna cribricollis (Bates) [Chemsak 1963a].
23. Cirrhicera cristipennis Bates [Chemsak 1972].
24. C. leuconota Laporte [Chemsak 1972].
25. Colobothea sinaloensis Giesbert [Giesbert 1979].
26. Crossidius mexicanus Chemsak & Noguera [Chemsak & Noguera
1997].
27. Championa elegans Chemsak [Chemsak 1967].
28. C. westcotti Noguera & Chemsak [Noguera & Chemsak 1997].
29. Choriolaus howdeni Giesbert & Wappes [Giesbert & Wappes 1999].
30. Dectes nigripilus Chemsak & Linsley [Chemsak & Linsley 1986].
31. Deltaspis cyanipes Bates [Toledo 2005b].
32. D. rubriventris Bates [Toledo 2005b].
33. Dexithea humeralis Chemsak & Noguera [Chemsak & Noguera
2001].
34. Eburia aegrota Bates [Noguera 2002].
35. E. aliciae Noguera [Noguera 2002].
36. E. baroni Bates [Noguera 2002].
37. E. blancaneaui Bates [Noguera 2002].
38. E. brevicornis Chemsak & Linsley [Noguera 2002].
39. E. brevispinis Bates [Noguera 2002].
40. E. bruneicomis Chemsak & Linsley [Noguera 2002].
41. E. clara Bates [Noguera 2002].
42. E. cruciata (Linsley ) [Noguera 2002].
43. E. cubae (Fisher) [Noguera 2002].
44. E. championi Bates [Noguera 2002].
45. E. chemsaki Noguera [Noguera 2002].
46. E. falli Linsley [Noguera 2002].
47. E. fuliginea (Bates) [Noguera 2002].
48. E. haldemani LeConte [Noguera 2002].
49. E. hatsueae Chemsak & Giesbert [Noguera 2002].
50. E. juanitae Chemsak & Linsley [Noguera 2002].
51. E. laticollis Bates [Noguera 2002].
52. E. maccartyi Noguera [Noguera 2002].
53. E. mutica LeConte [Noguera 2002].
54. E. nigrovittata Bates [Noguera 2002].
55. E. opaca Chemsak & Linsley [Noguera 2002].
56. E. ovicollis LeConte [Noguera 2002].
57. E. paraegrota Chemsak & Linsley [Noguera 2002].
58. E. patruelis Bates [Noguera 2002].
59. E. pedestris White [Noguera 2002].
60. E. poricollis Chemsak & Linsley [Noguera 2002].
61. E. porulosa Bates [Noguera 2002].
62. E. powelli Chemsak & Linsley [Noguera 2002].
63. E. ribardoi Noguera [Noguera 2002].
64. E. rotundipennis Bates [Noguera 2002].
65. E. schusteri Giesbert [Giesbert 1993; Noguera 2002].
66. Ecyrus ciliatus Chemsak & Linsley [Chemsak & Linsley 1975b].
67. E. lineicollis Chemsak & Linsley [Chemsak & Linsley 1975b].
68. E. pacificus Linsley [Chemsak & Linsley 1975b].
69. Echthistatus spinosus Pascoe [Chemsak & Linsley 1983].
70. Elytroleptus apicalis LeConte [Chemsak & Linsley 1965; Linsley
1962].
71. E. divisus (LeConte) [Linsley 1962].
72. E. ignitus (LeConte) [Linsley 1962].
73. E. pallidus pallidus (Thomson) [Chemsak & Linsley 1965; Linsley
1962].
74. E. scabricollis Bates [Chemsak & Linsley 1965; Linsley 1962].
75. E. similis Chemsak & Linsley [Chemsak & Linsley 1965].
76. Enaphalodes coronatus (White) [Toledo 2005b].
77. Erichsonia dentifrons Westwood [Toledo 2005b].
78. Erosida yucatana Giesbert [Giesbert 1985].
79. Euderces batesi Giesbert & Chemsak [Giesbert & Chemsak 1997].
80. E. basimaculatus Giesbert & Chemsak [Giesbert & Chemsak
1997].
81. E. bellus Giesbert & Chemsak [Giesbert & Chemsak 1997].
82. E. bicinctus (Linsley) [Chemsak 1969b].
83. E. biplagiatus Giesbert & Chemsak [Giesbert & Chemsak 1997].
84. E. boucardi (Chevrolat) [Chemsak 1969b].
85. E. brailovskyi Giesbert & Chemsak [Giesbert & Chemsak 1997].
86. E. cribripennis Bates [Chemsak 1969b].
87. E. disparicus Giesbert & Chemsak [Giesbert & Chemsak 1997].
88. E. laevicauda Bates [Chemsak 1969b; Giesbert & Chemsak 1997].
89. E. longicollis (Linsley) [Linsley 1935; Chemsak 1969b].
90. E. noguerai Giesbert & Chemsak [Giesbert & Chemsak 1997].
91. E. perplexus Giesbert & Chemsak [Giesbert & Chemsak 1997].
92. E. postipallidus Giesbert & Chemsak [Giesbert & Chemsak 1997].
93. E. pulcher (Bates) [Chemsak 1969b; Giesbert & Chemsak 1997].
94. E. reichei LeConte [Chemsak 1969b; Giesbert & Chemsak 1997].
95. E. reticulatus (Bates) [Giesbert & Chemsak 1997].
137Track analysis of the Mexican species of Cerambycidae
Revista Brasileira de Entomologia 51(2): 131-137, junho 2007
96. E. tibialis Giesbert & Chemsak [Giesbert & Chemsak 1997].
97. E. turnbowi Giesbert & Chemsak [Giesbert & Chemsak 1997].
98. E. wappesi Giesbert & Chemsak [Giesbert & Chemsak 1997].
99. Giesbertia rugosa Chemsak & Linsley [Chemsak & Linsley 1984].
100.Heterachthes integripennis (Bates) [Martins & Chemsak 1966a].
101.Hexoplon calligrammum Bates [Martins & Chemsak 1966a].
102.Ischnocnemis costipennis Thomson [Toledo 2005b].
103.I. similis Chemsak & Noguera [Chemsak & Noguera 1997].
104.Lagocheirus binumeratus Thomson [Toledo 1997].
105.L. cristulatus Bates [Toledo 1997].
106.L. funestus Thomson [Toledo 1997].
107.L. integer Bates [Toledo 1997].
108.L. lugubris Dillon [Toledo 1997].
109.L. obsoletus Thomson [Toledo 1997].
110.L. procerus Casey [Toledo 1997].
111.L. simplicicornis Bates [Toledo 1997].
112.L. xileuco Toledo [Toledo 1997].
113.Lasiogaster costipennis Gahan [Toledo 2005b].
114.Lochmaeocles cretatus Chemsak & Linsley [Chemsak & Linsley
1986].
115.L. nigritarsus Chemsak & Linsley [Chemsak & Linsley 1986].
116.Lophalia prolata Chemsak & Linsley [Chemsak & Linsley 1988].
117.Megaderus bifasciatus Dupont [Toledo 2005b].
118.Megapsyrassa testacea Giesbert [Giesbert 1993].
119.Meloemorpha aliena (Bates) [Chemsak & Linsley 1976a].
120.Methia occidentalis Chemsak & Linsley [Chemsak & Linsley
1964b].
121.Metironeus hesperus Chemsak [Chemsak 1991].
122.M. hovorei Chemsak [Chemsak 1991].
123.Micropsyrassa bimaculata (Bates) [Martins & Chemsak 1966b].
124.M. reticulata Martins & Chemsak [Martins & Chemsak 1966b].
125.Neocompsa alacris (Bates) [Martins & Chemsak 1966a].
126.N. clerochroa (Thomson ) [Martins & Chemsak 1966a].
127.N. exclamationis (Thomson) [Martins & Chemsak 1966a].
128.N. tenuissima (Bates) [Martins & Chemsak 1966a].
129.Neoleptura alpina Chemsak & Linsley [Chemsak & Linsley 1976a].
130.Neoperiboeum juanitae Chemsak [Chemsak 1991].
131.Neoptychodes trilineatus Linnaeus [Toledo 2005b].
132.Neospondylis mexicanus (Bates) [Bates 1879].
133.Neotaranomis sinaloae Chemsak & Linsley [Chemsak & Linsley
1982b].
134.Ochraethes nigropunctatus Chevrolat [Noguera et al. 2002; Toledo
2005b].
135.O. octomaculata Chemsak & Noguera [Chemsak & Noguera 2001].
136.Ochraethes tomentosus (Chevrolat) [Toledo 2005b].
137.Oncideres albipilosa Noguera [Noguera 1993].
138.O. albomarginata chamela Chemsak & Giesbert [Noguera 1993].
139.O. cingulata texana Horn [Noguera 1993].
140.O. fisheri Dillon & Dillon [Noguera 1993].
141.O. ocellaris Bates [Noguera 1993].
142.O. putator putator Thomson [Noguera 1993].
143.O. rubra Franz [Noguera 1993].
144.O. scitula Bates [Noguera 1993].
145.O. senilis Bates [Noguera 1993].
146.Oreodera brailovskyi Chemsak & Noguera [McCarty 2001].
147.O. copei McCarty [McCarty 2001].
148.O. corticina Thomson [McCarty 2001].
149.O. fasciculosa Thomson [McCarty 2001].
150.O. glauca glauca (Linnaeus) [McCarty 2001].
151.O. wappesi McCarty [McCarty 2001].
152.Phaea acromela Pascoe [Chemsak 1999].
153.P. biplagiata Chemsak [Chemsak 1977].
154.P. bryani Chemsak [Chemsak 1999].
155.P. carnelia Chemsak & Linsley [Chemsak 1999].
156.P. eyai Chemsak [Chemsak 1999].
157.P. flavovittata Bates [Chemsak 1999].
158.P. haleyae Chemsak [Chemsak 1999].
159.P. hogei Bates [Chemsak 1999].
160.P. juanitae Chemsak & Linsley [Chemsak 1999].
161.P. kaitlinae Chemsak [Chemsak 1999].
162.P. kellyae Chemsak [Chemsak 1999].
163.P. maccartyi Chemsak [Chemsak 1999].
164.P. marthae Chemsak [Chemsak 1999].
165.P. maryannae Chemsak [Chemsak 1977].
166.P. maxima Bates [Chemsak 1999].
167.P. miniata Pascoe [Chemsak 1999].
168.P. phthisica Bates [Chemsak 1999].
169.P. saperda Newman [Chemsak 1999].
170.P. semirufa Bates [Chemsak 1999].
171.P. tenuata Bates [Chemsak 1999].
172.P. tricolor Bates [Chemsak 1999].
173.P. wappesi Chemsak [Chemsak 1999].
174.Platerosida howdeni Linsley [Linsley 1970].
175.Plectromerus wappesi Giesbert [Giesbert 1985].
176.Plocaederus yucatecus (Chemsak & Noguera) [Chemsak &
Noguera 1997].
177.Poliaenus concolor (Schaeffer) [Chemsak & Linsley 1975b].
178.P. hesperus Chemsak & Linsley [Chemsak & Linsley 1988].
179.Psyrassa aliena (Linsley) [Toledo 2005a].
180.P. angelicae (Toledo) [Toledo 2005a].
181.P. basicornis Pascoe [Toledo 2005a].
182.P. brevicornis Linsley [Toledo 2005a].
183.P. castanea Bates [Toledo 2005a].
184.P. cribricollis (Bates) [Toledo 2005a].
185.P. cylindricollis Linsley [Toledo 2005a].
186.P. chamelae Toledo [Toledo 2005a].
187.P. chemsaki Toledo [Toledo 2005a].
188.P. katsurae Chemsak & Noguera [Toledo 2005a].
189.P. levicollis Chemsak & Noguera [Toledo 2005a].
190.P. megalops Chemsak & Noguera [Toledo 2005a].
191.P. nigricornis Bates [Toledo 2005a].
192.P. nigroaenea Bates [Toledo 2005a].
193.P. oaxacae Toledo [Toledo 2005a].
194.P. sallaei Bates [Toledo 2005a].
195.P. sinaloae Linsley [Toledo 2005a].
196.P. sthenias Bates [Toledo 2005a].
197.P. tympanophora Bates [Toledo 2005a].
198.Rhodoleptus comis (Bates) [Chemsak & Linsley 1982a].
199.R. femoratus (Schaeffer) [Chemsak & Linsley 1982a].
200.R. nigripennis Giesbert [Giesbert 1993].
201.Sphaenothecus argenteus Bates [Chemsak & Noguera 1998].
202.S. picticornis Bates [Chemsak & Noguera 1998].
203.S. trilineatus Dupont [Chemsak & Noguera 1998].
204.Sphaerionillum castaneum Chemsak & Linsley [Chemsak &
Linsley 1967].
205.Stenobatyle prolixa (Bates) [Chemsak 1980].
206.Strangalia auripilis Chemsak [Chemsak 1969a].
207.S. cavaventra Chemsak [Chemsak 1969a].
208.S. hamatipes Giesbert [Giesbert 1986].
209.S. palaspina Chemsak [Chemsak 1969a].
210.Tetranodus copei Chemsak & Linsley [Chemsak & Linsley 1988].
211.T. niveicollis Linell [Chemsak 1969b].
212.Tetraopes cleriodes Thomson [Chemsak 1963b].
213.T. subfasciatus Bates [Chemsak 1963b].
214.T. thoreyi Bates [Chemsak 1963b].
215.T. umbonatus LeConte [Chemsak 1963b].
216.T. varicornis Laporte [Chemsak 1963b].
217.Thryallis leucophaeus (White) [Chemsak & McCarty 1997].
218.T. noguerai Chemsak & McCarty [Chemsak & McCarty 1997].
219.Tigrinestola howdeni Chemsak & Linsley [Chemsak & Linsley
1966].
220.Triacetelus sericatus Bates [Chemsak & Linsley 1976b].
221.Tylosis puncticollis Bates [Toledo 2005b].
Received 31/08/2006; accepted 02/03/2007
... El análisis de la distribución geográfica de los tricópteros registrados en la Sierra de Juárez permitió identificar 8 trazos generalizados que ponen de manifiesto la naturaleza compleja de la región por la mezcla de especies que pertenecen a distintos componentes bióticos. En el trazo generalizado I se relacionan las provincias Veracruzana y de la Sierra Madre del Sur, patrón que se ha reconocido recurrentemente mediante el análisis de diversos taxones en otros estudios (Contreras-Medina et al., 2007;Corona y Morrone, 2005;Corona et al., 2007;García-Marmolejo et al., 2008;Morrone y Escalante, 2002;Morrone y Gutiérrez, 2005;Toledo et al., 2007). La relación entre la provincia de las Tierras Altas de Chiapas y la Veracruzana, observada en el trazo generalizado II, ha sido evidenciada en trabajos que incluyen el análisis de varios taxones (Echeverry y Morrone, 2013;, coleópteros (Morrone y Márquez, 2001;Toledo et al., 2007), mamíferos (Escalante et al., 2005) y plantas (Contreras-Medina et al., 2007;Cué-Bär et al., 2006). ...
... En el trazo generalizado I se relacionan las provincias Veracruzana y de la Sierra Madre del Sur, patrón que se ha reconocido recurrentemente mediante el análisis de diversos taxones en otros estudios (Contreras-Medina et al., 2007;Corona y Morrone, 2005;Corona et al., 2007;García-Marmolejo et al., 2008;Morrone y Escalante, 2002;Morrone y Gutiérrez, 2005;Toledo et al., 2007). La relación entre la provincia de las Tierras Altas de Chiapas y la Veracruzana, observada en el trazo generalizado II, ha sido evidenciada en trabajos que incluyen el análisis de varios taxones (Echeverry y Morrone, 2013;, coleópteros (Morrone y Márquez, 2001;Toledo et al., 2007), mamíferos (Escalante et al., 2005) y plantas (Contreras-Medina et al., 2007;Cué-Bär et al., 2006). Este trazo está sustentado por una mezcla de especies endémicas y de especies que se distribuyen en México y Centroamérica, mostrando un patrón de distribución que, aparentemente, corresponde con el componente biótico Mesoamericano de . ...
... Los trazos generalizados identificados en este trabajo mediante el análisis de los patrones de distribución de los tricópteros de la Sierra de Juárez han sido reconocidos previamente como áreas de endemismo aplicando el PAE con un enfoque panbiogeográfico, para diferentes taxones (Contreras-Medina et al., 2007;Echeverry y Morrone, 2010;Escalante et al., 2005;Toledo et al., 2007). Los resultados aquí reportados integran patrones encontrados en múltiples trabajos, con una amplia variedad de taxones; sin embargo, también se reconocieron nuevos patrones no reportados con anterioridad. ...
Article
Full-text available
The distributional patterns of 120 species of caddisflies recorded in the Sierra de Juarez, Oaxaca, were analyzed by means of Parsimony Analysis of Endemicity with Progressive Character Elimination and the search for generalized tracks to discern the biogeographic complexity and better understand why it is a highly biodiverse area. Analysis was based on distribution records from field collections and specialized literature, and the study units were the Mexican biogeographical provinces. Eight generalized tracks were identified that generally coincide with those found in other studies, all of them include the Veracruzana province. Tracks include provinces belonging to Mexican Transition Zone and Neotropical region. The 8 generalized tracks intersect or cross the Sierra de Juárez, forming a panbiogeographic node that is notably more complex compared to that reported in previous studies, which allows us to recognize that its biogeographic history has contributed considerably to its high biodiversity, which is why it is considered necessary that it be protected as a natural area.
... The percentage of frequency of each insect was determined. Insects were identified to order: Coleoptera with keys by Toledo et al. (2007), Aguirre (2009), andCasari (2002), while keys of Sepúlveda et al. (2013) were used to identify Diptera. ...
... Cerambycidae (Di Lorio 1997) (Gosling 1984) (Martínez 2000) (Micheli 2006) (Swift et al. 2010) (Toledo, Corona, and Morrone 2007) Cerylonidae (Dajoz 1992) Chelonariidae (Mequignon 1934) Chelonarium Genus ...
Thesis
Full-text available
Deforestation is a growing threat to biodiversity in the tropics. In the last few years, a number of reforestation initiatives, such as agroforestry systems, have been put in place. However, agroforestry systems are under threat by herbivory and this influence can be felt even at a very small scale. In fact, herbivores can have highly disproportionate effects on tree functioning. This research focuses on the role of stand diversification in reducing insect herbivory damage, using the Sardinilla plantation as a model site. The research will improve our understanding of the role played by herbivores in regulating processes in the ecosystem.Chapter 1 establishes the context of the research, focusing primarily on reviewing scientific knowledge about insect herbivory and ecosystem functioning as well as the effect of stand diversification on ecosystem resilience. Chapter 2 describes and characterizes the beetle community in the Sardinilla plantation, Panama, in relation to stand diversification and local environmental variables. Our results show that experimental manipulation of tree diversity impact overall beetle community assemblages, for both morphospecies and functional diversity, and that the beetle communities in diverse tree stands are functionally even. Additionally, canopy openness and vegetation, which regulates microclimate, has a significant effect on beetle communities. Chapter 3 focuses on using Structural Equation Modeling (SEM) to assess relationships between environmental variables and beetles in an experimental neotropical agroforestry setting. The major findings of this exploratory analysis show that there is a negative relationship between aboveground biomass and beetle diversity and between beetle diversity and herbivory. Aboveground plant biomass also seemed to be the most important determinant of herbivory.This thesis establishes links between herbivory and ecosystem functioning in the Sardinilla plantation. Moving forward, the information gathered will contribute to the wealth of knowledge already accumulated by the Sardinilla project during the last 15 years. Understanding the potential effects of herbivores in agroforestry systems is a step towards ensuring the sustainability of these forests and support their use as an initiative to counter deforestation in Central America.
... Track Analyses Several authors have undertaken track analyses of the Mexican Transition Zone Escalante et al. , 2018Huidobro et al. 2006;Toledo et al. 2007;García-Marmolejo et al. 2008;). These authors have analyzed different taxa (plants, insects, crustaceans, fish, and mammals), finding that some of the generalized tracks identified correspond to Halffter's patterns, but in other cases new patterns have emerged. ...
Chapter
The biota of the Mexican Transition Zone was assembled through the successive dispersal of four cenocrons from North and South America and their incorporation to the Paleoamerican biota, which was the original North American (Holarctic) biota that extended in Mexico in the Jurassic-Cretaceous. The Mexican Plateau cenocron dispersed to southern North America from South America (Gondwana) in the Late Cretaceous-Paleocene. The Mountain Mesoamerican cenocron dispersed from South America to the mountain forests of Central America and southern Mexico in the Oligocene-Miocene and then northward in the Pliocene. The Nearctic cenocron dispersed from northern North America to the mountains of the Mexican Transition Zone in the Miocene-Pliocene. Finally, in the Pleistocene the Typical Neotropical cenocron dispersed from the Neotropical region, being represented by genera widespread in South America. Based on the successive assembly of these cenocrons, three horobiotas are distinguished: Paleogene horobiota (original Paleoamerican biota plus Mexican Plateau cenocron), Neogene horobiota (Paleoamerican biota plus Mexican Plateau, Mountain Mesoamerican, and Nearctic cenocrons), and Quaternary horobiota (Paleoamerican biota plus Mexican Plateau, Mountain Mesoamerican, Nearctic and Typical Neotropical cenocrons)
... Track Analyses Several authors have undertaken track analyses of the Mexican Transition Zone Escalante et al. , 2018Huidobro et al. 2006;Toledo et al. 2007;García-Marmolejo et al. 2008;). These authors have analyzed different taxa (plants, insects, crustaceans, fish, and mammals), finding that some of the generalized tracks identified correspond to Halffter's patterns, but in other cases new patterns have emerged. ...
Chapter
Several authors have considered that the complex area where the Neotropical and Nearctic biotas overlap corresponds to a transition zone. In the strict sense that is followed in this book, the Mexican Transition Zone includes the highlands of Mexico, Guatemala, Honduras, El Salvador, and Nicaragua north of Lake Nicaragua, whereas northern Mexico, the United States and Canada belong to the Nearctic region, and the lowlands of the Pacific coast and the Gulf of Mexico, the Yucatán Peninsula, and Central America belong to the Neotropical region. In a series of contributions, Gonzalo Halffter provided a coherent theory that explains how cenocrons that evolved in different geographic areas assembled in the Mexican Transition Zone. I review herein the historical development of Halffter’s theory, including the characterization of the dispersal or distributional patterns recognized by this author. These distributional patterns are considered to represent cenocrons, namely, sets of taxa that share the same biogeographic history and constitute identifiable subsets within a biota by their common biotic origin and evolutionary history. The biotic assembly of the Mexican Transition Zone is summarized into five stages, from the Jurassic-Cretaceous to the Pleistocene.
... Track Analyses Several authors have undertaken track analyses of the Mexican Transition Zone Escalante et al. , 2018Huidobro et al. 2006;Toledo et al. 2007;García-Marmolejo et al. 2008;). These authors have analyzed different taxa (plants, insects, crustaceans, fish, and mammals), finding that some of the generalized tracks identified correspond to Halffter's patterns, but in other cases new patterns have emerged. ...
Chapter
The Mexican Transition Zone is the area where the Neotropical and Nearctic regions overlap. In its strict sense followed in this book, it corresponds to the moderate- to high-elevation highlands of Mexico, Guatemala, Honduras, El Salvador, and Nicaragua. This area is considered a transition zone between the Nearctic and Neotropical regions, so from the perspective of biogeographic regionalization, it should be assigned simultaneously to both regions. Within the Mexican Transition Zone, I recognize 5 biogeographic provinces and 22 districts. The Sierra Madre Occidental province is situated in western Mexico at elevations between 200 and 3000 m, with most of the area above 2000 m; it includes the Apachian and Durangoan districts. The Sierra Madre Oriental province is situated in eastern Mexico at elevations above 1500 m; it includes two subprovinces: Austral-Oriental (with the Saltillo-Parras and Potosí districts) and Hidalgoan (with the Sierra Gorda and Zacualtipán districts). The Transmexican Volcanic Belt province is situated in central Mexico, at elevations above 1800 m; it includes two subprovinces: West (with the Otomí and Tarascan districts) and East (with the Aztec and Orizaba-Zempoaltepec districts). The Sierra Madre del Sur province comprises south central Mexico at elevations above 1000 m; it includes three subprovinces: Western Sierra Madre del Sur (with the Jaliscian and Jaliscian-Manantlán districts), Central Sierra Madre del Sur subprovince (Michoacán district), and Eastern Sierra Madre del Sur (with the Guerreran and Oaxacan Highlands districts). The Chiapas Highlands province comprises southern Mexico, Guatemala, Honduras, El Salvador, and Nicaragua, basically corresponding to the Sierra Madre de Chiapas, from 500 to 2000 m altitude; it includes the Sierra Madrean, Comitanian, Lacandonian, Soconusco, Guatemalan Highland, and Nicaraguan Montane districts.
... Track Analyses Several authors have undertaken track analyses of the Mexican Transition Zone Escalante et al. , 2018Huidobro et al. 2006;Toledo et al. 2007;García-Marmolejo et al. 2008;). These authors have analyzed different taxa (plants, insects, crustaceans, fish, and mammals), finding that some of the generalized tracks identified correspond to Halffter's patterns, but in other cases new patterns have emerged. ...
Chapter
Most of the authors involved in the theoretical development of evolutionary biogeography assume that dispersalism, panbiogeography, cladistic biogeography, and phylogeography represent alternative approaches. Instead, I consider that different biogeographic methods may be used to answer different questions, which are different steps of an integrative biogeographic analysis. This stepwise approach comprises five steps, each corresponding to particular questions and methods. Track analysis and methods for identifying areas of endemism are used initially to identify biotas (graphically represented on maps as generalized tracks or areas of endemism), which represent hypotheses of primary biogeographic homology and are the basic units of evolutionary biogeography. Then, cladistic biogeography uses available phylogenetic data to test the historical relationships between these biotas (secondary biogeographic homology). Based on the results of these analyses, a biogeographic regionalization is achieved. Intraspecific phylogeography, molecular dating, and fossils are incorporated to help identify the different cenocrons (set of taxa that share the same biogeographic history, which constitute identifiable subsets within a biota by their common biotic origin and evolutionary history) that became assembled in a biota. Finally, the geological and biological knowledge available is integrated to construct a geobiotic scenario that helps explain the way different dispersal and vicariance events contributed to biotic assembly and how the cenocrons dispersed to the biota analyzed. I present the concepts implied in these steps and some of the methods that may be applied to answer particular biogeographic questions and discuss how they can be integrated to explain biotic assembly within an integrative framework.
... Track Analyses Several authors have undertaken track analyses of the Mexican Transition Zone Escalante et al. , 2018Huidobro et al. 2006;Toledo et al. 2007;García-Marmolejo et al. 2008;). These authors have analyzed different taxa (plants, insects, crustaceans, fish, and mammals), finding that some of the generalized tracks identified correspond to Halffter's patterns, but in other cases new patterns have emerged. ...
Chapter
Full-text available
A biogeographic transition zone is a geographical area of overlap, with a gradient of replacement and partial segregation between different biotas (sets of taxa sharing a similar geographic distribution as a product of a common history). It is an area where physical features and environmental conditions allow the mixture and co-occurrence of species belonging to two or more biotas, but also constrain their distribution further into one another. The biogeographic affinities of the taxa assigned to these biotas are the most fundamental information considered to analyze accurately biogeographic transition zones. Ecological biogeographers have plotted the frequency of different distribution patterns on maps, detecting gradual changes in their relative contribution to a given area and identifying the most heterogeneous places in terms of distributional patterns as transition zones. Evolutionary biogeographers have found transition zones particularly interesting for analyzing causal connections between evolutionary and geological processes at large spatial and temporal scales. Biogeographic transition zones constitute natural laboratories for investigating evolutionary and ecological principles shaping biotic assembly. Additionally, they represent places where different evolutionary lineages coexist, having important implications for conservation, particularly when they also exhibit high diversity.
... Track Analyses Several authors have undertaken track analyses of the Mexican Transition Zone Escalante et al. , 2018Huidobro et al. 2006;Toledo et al. 2007;García-Marmolejo et al. 2008;). These authors have analyzed different taxa (plants, insects, crustaceans, fish, and mammals), finding that some of the generalized tracks identified correspond to Halffter's patterns, but in other cases new patterns have emerged. ...
Article
This book presents an evolutionary biogeographic analysis of the Mexican Transition Zone, which is situated in the overlap of the Nearctic and Neotropical regions. It includes a comprehensive review of previous track, cladistic and molecular biogeographic analyses and is illustrated with full color maps and vegetation photographs of the respective areas covered. Given its scope, the book will be of interest to students and researchers whose work involves systematic and biogeographic analyses of plant and animal taxa of the Mexican Transition Zone or other transition zones of the world, and to ecologists working in biodiversity conservation, who will be able to appreciate the evolutionary relevance of the Mexican Transition Zone for establishing conservation areas.
... In Mexico, 20 species of the Oncideres Lacordaire genus have been registered (Monné and Bezark, 2011), which are in the habit of forming rings around adult tree branches or trunks of young specimens in order to deposit their eggs (Villaverde and Acosta, 2013), as was observed in one and three E. cyclocarpum plants in Valdeflores and albomarginata chamela (Noguera, 1993;Toledo et al., 2007;MacRae et al., 2012;Nearns et al., 2014) (Cibrián et al., 1995). The damage caused by X. ...
Article
Full-text available
In Mexico, there is a knowledge gap on plant mortality and health of tropical forest plantations. Therefore, a provenances test of Enterolobium cyclocarpum was established in two sites (Pinotepa de Don Luis and Valdeflores) in the coastal region of Oaxaca, Mexico to determine the mortality factors and biotic agents related to the health of this specie. Mortality and plant health were recorded during 18 months; also, differences between sites and between provenances were determined. Orthogeomys grandis (pocket gopher) in Pinotepa de Don Luis (27.9 %) and drought (29.2 %) in Valdeflores caused higher plant mortality. Powdery mildews (Oidum), aphid (Aphis), cottony cochineal (Pseudoccocus longispinus), twig girdlers (Oncideres), borer (Lepidoptera) and defoliator (Lepidoptera) were the biotic agents related to health of E. cyclocarpum. The powdery mildews and the aphids infected the highest number of plants; in Pinotepa de Don Luis, the powdery mildews and the aphids infected 58.8, 29.2 % of the plants, respectively; whereas, in Valdeflores, the powdery mildews and aphids infected 3.3 % and 0.8 % of the plants, respectively. In Pinotepa de Don Luis, plants from Cortijo and Colotepec had the lowest powdery mildews infection, and the aphid infestation was not different in plants between provenances. In Valdeflores, plants from five provenances were free of powdery mildews infection, and the aphids only infested plant from the El Zarzal provenance. The location and precipitation of the sites influenced the levels mortality and infection of E. cyclocarpum plants.
Article
Full-text available
A catalogue of the subfamiliy Cerambycinae (Coleoptera: Cerambycidae) of the Neotropical Region is presented. Fifty-seven tribes, 10 subtribes, 716 genera, 3789 species and 68 subspecies are listed in alphabetical order. Under each family-group name bibliographical references are given and under each species-group name, data on the type locality, the acronym of the institution where the type is deposited, the geographical distribution and detailed bibliographical references are provided. One new combination is presented: Plocaederus yucatecus (Chemsak & Noguera, 1997), new comb., from Brasilianus.
Article
Full-text available
Recognition of biotic components is a key element for understanding evolution in space-time. Panbiogeography represents a biogeographic approach that may be applied to identify these biotic components. A revision of the panbiogeographic approach is provided herein, including definitions of basic concepts (individual and generalized tracks, nodes, baselines, and main massings) and methods (manual, connectivity and incidence matrices, track compatibility, and parsimony analysis of endemicity). As an example of this approach, 70 biotic components of Latin America and the Caribbean are identified, briefly characterized, and arranged in a biogeographic system of three regions, seven subregions, and two transition zones. The relevance of the recognition of biotic components and transition zones is discussed.
Article
A catalogue of the subfamiliy Cerambycinae (Coleoptera: Cerambycidae) of the Neotropical Region is presented. Fifty-seven tribes, 10 subtribes, 716 genera, 3789 species and 68 subspecies are listed in alphabetical order. Under each family-group name bibliographical references are given and under each species-group name, data on the type locality, the acronym of the institution where the type is deposited, the geographical distribution and detailed bibliographical references are provided. One new combination is presented: Plocaederus yucatecus (Chemsak & Noguera, 1997), new comb., from Brasilianus.
Article
The genus Thryallis Thomson in the lamiine tribe Anisocerini is reviewed. Descriptions of the genus and species are provided along with a key for determination of species. Seven species are recognized, two previously undescribed: T. sallaei Bates Mexico; T. leucophaeus (White), Mexico to Costa Rica; T. undatus (Chevrolat), Texas to Guatemala; T. noguerai, new species, Mexico; T. granulosus Bates, Guatemala; T. maculosus Thomson, Mexico to Honduras, and T. ocellatus, new species, Costa Rica. All species are illustrated and one distribution map is included.
Article
The trachyderine genus Sphaenothecus Dupont is reviewed. Sphaenothecus funebris Bates is transferred to the genus Zalophia Casey and Z. spissicornis Casey is synonymized with Z. funebris, NEW COMBINATION, Sphaenothecus cribellatus Bates and S. luteicollis Bates are placed into the genus Ischnocnemis Thomson, NEW COMBINATION. Taranomis Casey is synonymized with Sphaenothecus and Taranomis pallida Schaeffer is placed into Perarthrus LeConte, NEW COMBINATION. Taranomis cvlindricollis Casey is synonymized under Sphaenothecus bivittatus Dupont. As here defined, Sphaenothecus consists of the following seven species: S. argenteus Bates, Mexico to Guatemala; S. bivittatus Dupont, United States to Honduras; S. picticornis Bates, Mexico; S. maccartyi NEW SPECIES, Mexico; S. toledoi NEW SPECIES, Mexico-Honduras; S. facetus NEW SPECIES Guatemala to Costa Rica; S. trilineatus Dupont, Texas and Mexico.
Article
Se revisan las especies de Lagocheirus Dejean para Mexico y Centroamerica. Son registradas 19 especies, de las cuales L. mecotrochanter y L. xileuco son nuevas. L. simplicicornis se registra por primera vez para Mexico. Se sinonimiza Karadinia McKeown y Sternocheirus Dillon en Lagocheirus Dejean; L. rogersi hondurensis Dillon y L. r. panamensis Dillon en L. rogersi Bates; L. tuberculatus v-album Bates en L. tuberculatus (Fabricius). Sternocheirus lugubris Dillon y Karadinia funesta (Thomson) son transferidos a Lagocheirus. Se incluye una clave para separar las 19 especies conocidas, la .descripción de machos y hembras e información sobre distribución, periodo de vuelo y hospederos.
Article
The Methiini of the West Indies are revised. Cyanomethia pseudothonalmus, new genus, new species and Methia jamaicensis new species are described. Methia pusilla, M. constricticollis, M. impressicollis, M. insularum, M. pallida, M. pulchra, M. punctata, and M. rhizophorae are new synonyms of M. necydalea. Keys to genera of Methiini and species of Methia in the West Indies are given and the biology and morphological variation of the genus Methia discussed. A phylogenetic analysis of the Methiini is conducted to determine relationships among the genera, and the zoogeographic patterns of species found in the West Indies is included.