ArticlePDF Available

Distribution of ostracoda species in mangrove ecosystem along the red sea coast

Authors:

Figures

Content may be subject to copyright.
Crustaceana 85 (14) 1669-1696
DISTRIBUTION OF PODOCOPID OSTRACODS IN MANGROVE
ECOSYSTEMS ALONG THE EGYPTIAN RED SEA COAST
BY
SOBHI A. HELAL1,3)and MOHAMED ABD EL-WAHAB2)
1)Geology Department, Faculty of Science, Fayoum University, Fayoum, Egypt
2)National Institute of Oceanography and Fisheries, Red Sea Branch, Hurghada, Egypt
ABSTRACT
The distribution of recent shallow marine species of Ostracoda was recorded from 46 bottom
samples collected from two mangrove ecosystems along the Egyptian Red Sea coast, i.e., the
regions Wadi El Gemal and Abu Ghoson. Four communities of Ostracoda were determined and
examined, recorded from recent intertidal, lagoon, swamp, and downstream sediments, respectively.
The distribution patterns of the Ostracoda are affected primarily by the conditions of the vegetation
and the bottom. Areas with dense vegetation and/or muddy sand bottoms contain the more abundant
and more diverse assemblages. Statistical analysis showed three clusters of species at each site. These
results coincide with the observed physiographic assemblages, except at Wadi El Gemal where we
have three clusters of species and only two communities. This can be explained through the more
dense growth of mangroves in the southeastern and southwestern parts, as well as the fact that the
substrate there is muddy sand instead of the sandy substrate found in the northern parts.
Key words. Ostracoda, Recent marine sediment, Red Sea, mangrove ecosystem, Wadi El
Gemal, Wadi Abu Ghoson, Egypt
RÉSUMÉ
La répartition des espèces marines récentes d’Ostracodes d’eaux peu profondes a été étudiée à
partir de 46 échantillons du fond collectés dans deux écosystèmes de mangrove de la côte égyptienne
de la mer Rouge, Wadi El Gemal et Abu Ghoson. Quatre communautés d’Ostracodes ont été
déterminées et examinées, en provenance d’intertidal actuel, de lagune, de marais et de sédiments
aval, respectivement. Les modèles de distribution d’Ostracodes sont affectés principalement par la
végétation et le type de fond. Les zones à végétation dense et/ou à fond de sable vaseux contiennent
les assemblages les plus abondants et les plus diversifiés. L’analyse statistique a montré trois groupes
d’espèces à chaque site. Ces résultats coïncident avec les assemblages physiographiques observés,
sauf à Wadi El Gemal nous avons trois groupes d’espèces et seulement deux assemblages. Ceci
peut s’expliquer par la croissance plus dense des mangroves dans les parties sud-est et sud ouest,
ainsi que par le fait que le substrat est du sable vaseux alors qu’il est sableux dans les régions
septentrionales.
3)Corresponding author; e-mail: sobhihelal@yahoo.com
©Koninklijke Brill NV, Leiden, 2012 DOI:10.1163/15685403-00003120
1670 SOBHI A. HELAL & MOHAMED ABD EL-WAHAB
INTRODUCTION
Ostracoda assemblages of the Egyptian Red Sea regions are diverse and
abundant, yet they are not well studied except from geographically distant and
isolated locations such as Hurghada Bay (Hartmann, 1964); the Gulf of Aqaba
(Bonaduce et al., 1976, 1980, 1983); southern parts of the Red Sea (Bonaduce et
al., 1983); and Safaga Bay (Helal & Abd El Wahab, 2004; Abd El Wahab et al.,
2011). The number of previous studies about the distribution and diversity of such
an important group in this region is low and does not allow understanding of the
ecological factors controlling such distribution or diversity patterns.
The aim of the present paper is to record the Ostracoda assemblages and
occurrences in two mangrove ecosystems, one in the Wadi El Gemal region and
one in the Abu Ghoson region, and to investigate the ecological factors involved
in their distribution and microhabitat in those regions. This paper presents an
introduction to a better understanding of the spatial distribution of Ostracoda in
the Red Sea. A detailed taxonomic study is outside the scope of the present work
and has been dealt with in another study (Helal & Abd El Wahab, 2010).
The Red Sea encompasses a variety of different habitats, mangrove communi-
ties, intertidal mud flats, lagoons and wadis, which support a diverse fauna and
flora. The shores of the study regions are heterogeneous in nature, encompassing
gravelly, sandy and muddy beaches. The coastal plain is relatively wide with a gen-
tle seaward slope. Mangrove communities or mangals have a rather patchy pattern
of distribution, extending from the north of the Red Sea (Gulf of Suez and Gulf of
Aqaba) to the south (Bab El Mandeb Strait), and they are found on both sides of the
Red Sea. The sampling localities of the present study are two well-developed man-
grove communities in the Wadi El Gemal and Abu Ghoson regions (figs. 1-2). Wadi
El Gemal is situated to the south of Marsa Alam (24°40.37-24°41.13N 35°05.18-
35°4.57E). Abu Ghoson is located 40 km south of Wadi El Gemal on the Red Sea
coast (24°2.29-24°21.32N 35°18.23-35°18.13E).
ENVIRONMENTAL SETTINGS
Mangrove communities are assemblages of halophytic trees, shrubs, palms and
creepers that form dense thickets covering the intertidal and shallow subtidal zones
of tropical and subtropical areas. They thrive in protected embayment areas, tidal
lagoons and estuaries (Michael et al., 1994). Mangroves play an important role
in shore stabilization, from the export of organic materials to the surrounding
coastal habitats and nutrients to the neighbouring coastal waters (Fouda, 1995).
The mangrove root systems and their associated biota act to capture, accumulate
and stabilize sediments suspended in the intertidal waters.
OSTRACODA COMMUNITIES ON THE EGYPTIAN RED SEA COAST 1671
Fig. 1. Map of the Wadi Gemal area showing sample sites and bottom facies.
Several ecological aspects of the Red Sea mangrove concerning the vegetation
have been studied previously (Dor & Por, 1977; Por et al., 1977; Dor & Levy,
1984). Mangrove surveys have also been undertaken in other parts of the Egyptian
shores of the Red Sea (Zahran, 1965, 1967, 1974; Kassas & Zahran, 1967;
Mansour, 1992; Madkour & Mohammed, 2005). The mangroves of the Red Sea
represent a composite habitat growing on both hard and soft substrates, each
inhabited by a typical fauna (Price et al., 1987). The mangrove community is
highly productive, from 350 to 500 gc/m2per year (Golley et al., 1962; Michael et
al., 1994), and supports a wide variety of animals that depend upon plant detritus
as a source of food (Heald, 1971; Odum, 1971).
In the study area, algae and seagrasses are widely distributed. At Wadi Gemal,
the macro algae were found at a depth of 50-60 cm, in a scattered pattern. The
creeping green algae, such as Caulerpa racemosa (Forsskål) J. Agardh, 1873,
were found in small aggregations covering vast areas of the sandy substrate and
some dead corals as well. Also, small quantities of the green algae Halimeda
tuna (Ellis & Solander) Lamouroux, 1812 were found in-between branches of
1672 SOBHI A. HELAL & MOHAMED ABD EL-WAHAB
Fig. 2. Map of the Abu Ghoson area showing sample sites and bottom facies.
corals. Seagrass species, such as Halophila stipulacea (Forsskål, 1775) Ascherson,
1867 and Halodule uninervis (Forsskål) Ascherson, 1882, were found as spots
forming large meadows, growing in sandy mud substrates. The seagrass Halophila
stipulacea was the dominant species, forming separated patches.
In the Abu Ghoson area, the green algae formed a low dense mat that covered
some of the swamp floor. Cystoseira myrica (S. G. Gmelin) C. Agardh, 1820, Sar-
gassum dentifolium (Turner) C. Agardh, 1820 and Turbinaria triquetra (J. Agardh)
Kützing, 1849 were observed, forming scattered vegetation. The seagrass vegeta-
tion was very limited, only spots of Halophila stipulacea were found in the sandy
depressions around the corals. Also, the seagrass Thalassia hemprichii (Ehrenberg)
Ascherson, 1871 formed small scattered patches that occupied wide areas of the
sandy flats.
Mangrove sediments of the investigated area are composed basically of slightly
gravelly muddy sand, whereas fine sand fractions are dominant in the intertidal
zone. Mangrove sediments are characterized by being poorly sorted, nearly sym-
metrical to coarse skewed and mesokurtic to leptokurtic fine sand. Distribution of
gravel, sand and mud fractions is related to the bottom facies and the type of sed-
iment source. This reflects the trapping of fine material by plants and supply of
coarse material by mollusca particles.
OSTRACODA COMMUNITIES ON THE EGYPTIAN RED SEA COAST 1673
The Wadi El Gemal site
Wadi El Gemal is about 40 km long with the high, exposed basement rocks.
Wadi El Gemal and its delta are the central zone of the Wadi El Gemal protectorate
(fig. 1). It is the third largest valley in the Eastern Desert, draining into the Red
Sea, and one of the best vegetated areas, with an estimated watershed area of about
1840 km2(GEF, 1998). The mangrove trees are followed by a wider tidal flat, with
a gentle slope seaward and a steep slope that continuing up to the reef edge. The
beach is rocky, cemented by carbonates, and covered with gravel, and coarse to
medium sand with abundant shell fragments. Two bottom facies were recorded at
the Wadi El Gemal site, downstream facies and intertidal facies.
The downstream area follows the main asphalt road with a gentle seaward slope
followed by the beach. It has three shallow wells located in a row perpendicular to
the shoreline, reaching a depth of about 100 cm, and filled with brackish water.
Clay and mud represent the main sediments of the downstream area, which is
inhabited by some short mangrove trees, dates and some desert plants.
The intertidal zone is 100 m wide, with a gentle seaward slope, and the water
level covering it reaches 50 cm at high tide. The bottom floor is rocky, covered
with a thin layer of biogenic coarse sand. Diseased mangrove trees are distributed
parallel to the shoreline on both sides of the downstream entrance. Also, there are
many mangrove roots growing on the rocky bottom. Coral reefs have not been
recorded.
The Abu Ghoson site
This site includes a semi-closed lagoon with one inlet towards the north, three
rocky barriers at the northern margin of this lagoon, a wide back reef, and a large
land swamp connected with the sea at high tide. The southern and eastern sides
of the beach are rocky while the northern and western parts are sandy. The area
is one of the largest mangroves on the Egyptian Red Sea coast. In this area, the
mangrove swamp is healthy and its density increases from north to south, the
height of mangrove trees exceeding 8 m. The swamp and its surrounding areas are
flat plains with a gentle seaward slope. Three facies were recorded at Abu Ghoson:
intertidal facies, swamp facies and lagoon facies.
The intertidal zone facies is situated toward the sea behind the swamp; it is very
wide, nearly flat, and normally exposed during the low tide period, while during
the high tide the water reaches the swamp. Some unhealthy mangrove trees aerobic
roots are distributed in this zone. Sediments of this zone are mainly of biogenic
origin in addition to a low percentage of terrigenous deposits.
The swamp is a wide area in the supratidal zone, and builds a lake surrounded
by healthy mangrove trees, up to 8 m high, from the south, west and northwards.
1674 SOBHI A. HELAL & MOHAMED ABD EL-WAHAB
Eastwards is the main inlet towards the sea. The bottom floor is covered with clay
and mud sediments, and the water is 120 cm deep during the high tide. The swamp
is inhabited by fish larvae, young craps and shrimps. No corals were observed.
The lagoon is semi-closed, wide and surrounded by three conglomerate barriers
seawards. Its maximum depth lays in the central part and is about 150 cm, while
other sides are very shallow and usually exposed during the low tide, especially
on the eastern side. The lagoon has medium to fine sand deposits with a high
percentage of mud. The eastern side is rich with aerobic roots due to the abundance
of mud fractions, as well as high organic matter content. No corals or algae were
observed in this lagoon.
MATERIAL AND METHODS
In January 2004, 46 marine sediment samples were collected along transects
perpendicular to shoreline from Wadi El Gemal (18 samples) and Wadi Abu
Ghoson (28 samples) (figs. 1-2). About 500 g of sediment was collected from each
site using grab sampler or by pushing steel boxes into sediments. All samples were
washed over a 63 μm mesh sieve and dried overnight at 60°C. About 200 g of
each dried sample was studied at 40×magnification using a stereomicroscope.
Ostracoda species were identified and counted. Single valves and articulated
specimens of both juveniles and adults were counted as a single individual in
determining the total population.
Most oceanographic parameters such as water depth, water temperature, salin-
ity, dissolved oxygen (DO), hydrogen ion concentration (pH), total dissolved salts
(TDS), oxidationreduction potential (Eh) and specific conductivity (SPC) were
measured for each sample in situ using Surveyer41997 (Hydrolab Instrument) (ta-
ble I). For the abbreviations: BCMMP, BMMP and BMP, please see Note Added
in Proof.
OSTRACODA DISTRIBUTION
General distribution pattern
The actual role of Ostracoda in the mangrove ecosystem is not fully understood.
Due to the ecology of the mangrove forests ostracod species must be highly
adapted to the photic, shallow and nutrient-rich environment. Algae and seagrasses
are important elements of this community. Hence, phytal and plant dwelling
ostracods are abundant.
Ostracoda have evolved in a wide variety of nutrition systems, including filter
feeding and deposit feeding (Pokorny, 1978). In captivity, most forms will live
OSTRACODA COMMUNITIES ON THE EGYPTIAN RED SEA COAST 1675
TABLE I
Oceanographic parameters in the study area
Sample Depth Temperature Bottom facies Salinity DO pH TDS EhSPC
(cm) (°C) (%) (mg/l) (g/l) (mV) (Ms/cm)
W1 80 20.16 Coarse sand 12.29 7.17 8.48 13.14 348 20.65
W2 120 19.32 Medium sand 25.75 5.84 8.08 25.79 370 40.56
W3 80 24.66 Sandy gravel 40.02 7.43 8.31 38.28 343 50.02
A1 Beach 24.95 Biogenic coarse sand 40.57 7.29 8.42 30.70 334 60.45
A2 50 25.08 Biogenic coarse sand 40.33 8.42 8.45 38.49 334 60.05
A3 50 24.89 Biogenic medium sand 41.12 8.69 8.96 39.16 337 61.16
A4 40 24.50 Biogenic medium sand 41.14 8.59 8.48 39.18 338 61.18
A5 40 24.60 Mixed coarse sand 41.16 8.62 8.46 39.21 339 61.22
B1 Beach 25.18 Gravelly sand 40.75 7.15 8.41 38.79 338 60.42
B2 50 25.00 Biogenic coarse sand 40.66 8.16 8.54 38.79 339 60.57
B3 50 24.95 Biogenic coarse sand 41.33 9.36 8.48 39.33 340 61.43
B4 40 24.98 Biogenic medium sand 41.31 9.60 8.49 39.32 345 61.46
B5 40 24.51 Biogenic medium sand 41.40 9.55 8.50 39.40 345 61.53
C1 Beach 24.59 Gravelly sand 41.26 7.83 8.47 39.29 332 61.40
C2 50 22.86 Biogenic muddy sand 41.49 9.48 8.50 39.43 339 61.65
C3 50 21.75 Biogenic medium sand 41.50 9.72 8.51 39.45 336 61.61
C4 40 23.18 Biogenic medium sand 41.61 9.43 8.52 39.53 345 61.75
C5 40 23.68 Biogenic coarse sand 41.52 8.90 8.53 39.47 345 61.64
D1 Beach 20.25 Biogenic coarse sand 40.42 6.01 8.42 38.75 270 60.43
D2 80 20.29 Biogenic coarse sand 40.44 6.00 8.64 38.81 271 60.73
D3 100 21.90 Biogenic medium sand 40.72 6.43 8.50 38.80 270 60.72
D4 100 20.46 Biogenic medium sand 40.61 6.25 8.51 38.68 278 60.50
D5 120 20.51 Biogenic medium sand 41.06 6.18 8.53 39.05 307 60.98
D6 140 20.28 Biogenic medium sand 41.17 5.89 8.53 39.11 310 61.18
D7 70 20.52 Biogenic fine sand 41.26 6.07 8.53 39.23 312 61.27
D8 30 20.64 Biogenic fine sand 41.28 6.55 8.53 39.25 313 61.32
D9 30 21.83 Biogenic medium sand 41.32 6.42 8.54 39.26 315 61.34
D10 20 23.23 Biogenic medium sand 41.00 7.71 8.57 39.07 278 61.02
E1 Swamp 22.38 Medium sand 41.42 6.60 8.55 39.39 324 61.60
E2 Swamp 22.39 Muddy sand 41.35 6.69 8.55 39.33 322 61.48
E3 Swamp 21.97 Muddy sand 41.30 7.43 8.55 39.32 318 61.40
E4 Swamp 22.44 Muddy sand 41.06 6.64 8.54 39.06 316 61.06
E5 Beach 22.02 Mixed gravelly sand 41.22 7.24 8.53 39.22 313 62.21
E6 Beach 21.63 Mixed gravelly sand 41.31 6.40 8.51 39.29 311 61.37
E7 20 22.42 Biogenic medium sand 44.29 5.24 8.46 41.80 310 65.36
E8 20 20.13 Biogenic medium sand 43.12 5.50 8.46 40.80 309 63.80
E9 30 20.11 Biogenic medium sand 43.10 5.40 8.44 40.60 309 63.70
E10 50 20.15 Biogenic medium sand 43.15 5.43 8.42 40.40 308 63.60
F1 Swamp 20.10 Muddy sand 43.10 5.30 8.40 40.60 325 63.50
F2 Swamp 22.44 Muddy sand 44.13 5.86 8.40 41.71 325 65.18
F3 Swamp 23.68 Muddy sand 44.54 6.12 8.43 42.01 328 65069
F4 Swamp 23.67 Muddy sand 44.52 6.18 8.45 42.20 330 65.70
1676 SOBHI A. HELAL & MOHAMED ABD EL-WAHAB
TABLE I
(Continued)
Sample Depth Temperature Bottom facies Salinity DO pH TDS EhSPC
(cm) (°C) (%) (mg/l) (g/l) (mV) (Ms/cm)
G1 Swamp 26.69 Muddy sand 45.29 7.96 8.48 42.70 330 66.71
G2 Swamp 26.65 Muddy sand 45.28 7.90 8.40 42.60 330 66.70
G3 Swamp 26.63 Muddy sand 45.27 7.86 8.38 42.50 330 66.69
G4 Swamp 26.61 Muddy sand 45.26 7.81 8.36 42.40 330 66.65
on a diet of algae, tomatoes or raw potatoes, as well as on crushed snails,
copepods or fresh raw meat (Van Morkhoven, 1962). Recent marine benthic forms
tend to be either crawlers or burrowers. They filter feed on detritus, diatoms,
foraminifers and small polychaete worms. Such ostracods thrive best in muddy
sands and silts, or algae and sea grasses (Brasier, 1979). The mouth parts of
Paradoxostominae are specially adapted to sucking, and they use it to suck the
juices from water plants. The majority of ostracods are omnivorous and most
often scavengers (Van Morkhoven, 1962; Schmit et al., 2007). The scavenger
ostracods, through their nutrition habits, will consume and disturb the excess
accumulation of the organic matter. This will contribute to preventing the change
of the environment to euxinic conditions. Normally, other biota support this role,
especially the burrowers, filter-feeding and deposit-feeding organisms. Beside
Ostracoda, the environment is inhabited by rich communities of benthic forams,
molluscs, bryozoans, echinoderms, crabs, fishes, sea turtles, algae and sea grasses.
All the Ostracoda species recorded are forms adapted to shallow, sheltered and
vegetated environments. The most common Ostracoda are Xestoleberis Sars, 1866
(42.11% at Wadi El Gemal and 29.6% at Abu Ghoson, respectively), Ghardaglaia
Hartmann, 1964 (11.1% and 24.23%), Loxoconcha Sars, 1866 (9.57% and
11.88%), Quadracythere Hornibrook, 1952 (11.4% and 8.43%), Hiltermanni-
cythere Bassiouni, 1970 (2.5% and 5.82%), Loxocorniculum Benson & Coleman,
1963 (6.59% and 2.23%), Paranesidea Maddocks, 1969 (3.4% and 1.74%) and
Neonesidea Maddocks, 1969 (2.63% and 1.52%) (figs. 3 and 4).
The plant dominant environments not only offer food, but also protection for
ostracods (Benson, 1961; Benzie, 1989; Paterson, 1993; Kiss, 2007). Moreover,
the type of algae and seagrass determines the associated Ostracoda species. Benson
(1961) noted that a filigreed coralline algae growing in a tide pool can teem
with species of Xestoleberis and Cythere Müller, 1785 whereas a neighbouring
different type of alga may be associated with numerous individuals of Loxoconcha
or Hemicythere Sars, 1925.
In this study, it is generally noted that the samples with higher percentages of
Ostracoda are those associated with algae and seagrasses (e.g., samples C3, C4,
OSTRACODA COMMUNITIES ON THE EGYPTIAN RED SEA COAST 1677
Fig. 3. Pie diagram showing the ratio of the Ostracoda species at Wadi El Gemal. This figure
is published in colour in the online edition of this journal, which can be accessed via http://
booksandjournals.brillonline.com/content/15685403.
E1, E10, D3, D4 and D5). The patches occupied by the turtle seagrass Thalas-
sia hemprichii (Ehrenb.) Ascherson, 1867 and Halophila stipulacea have yielded
dense communities of Ghardaglaia triebeli (Hartmann, 1964), followed by Hilter-
mannicythere rubrimaris (Hartmann, 1964) and Sclerochilus rectomarginatus.The
areas with the green creeping algae Caulerpa racemosa have yielded dense com-
munities of Xestoleberis spp. followed by Loxoconcha spp. and Loxocorniculum
spp. (e.g., samples A2, B3 and C4). The scattered vegetation of Cystoseira myrica
Fig. 4. Pie diagram showing the ratio of the Ostracoda species at Abu Ghoson. This figure
is published in colour in the online edition of this journal, which can be accessed via http://
booksandjournals.brillonline.com/content/15685403.
1678 SOBHI A. HELAL & MOHAMED ABD EL-WAHAB
and Sargassum dentifolium is inhabited by fairly high numbers of Xestoleberis
spp., Ghardaglaia triebeli,Quadracythere borchersi,Loxoconcha ornatovalvae
(Hartmann, 1964), Moosella striata (Hartmann, 1964) and Hiltermannicythere
rubrimaris (samples D2 and D3).
The dense vegetation of Halophila stipulacea,Cystoseira myrica,Caulerpa
racemosa (Forsskål) J. Agardh and Sargassum dentifolium is inhabited by high
numbers of Ghardaglaia triebeli,Hiltermannicythere rubrimaris,Xestoleberis
spp., Miocyprideis cf. spinulosa and Loxoconcha spp. (e.g., samples D4 and D5).
The presence of Turbinaria triquetra is accompanied by a fairly high number
of Callistocythere arcuata,Ghardaglaia and Hiltermannicythere (e.g., sample
D6). Also, this is associated with less abundant occurrences of Callistocythere
arenicola,Neonesidea spp., Paranesidea spp., and Triebelina sp.
The substrate exerts a strong influence on benthic Ostracoda. It has often been
observed that the size, shape and sculpture of benthic Ostracoda broadly reflects the
stability, grain size and pore size of the substrate on or in which they live (Brasier,
1979). Coarse-grained sediments, like clean sands or oolites, support only a small
ostracode population, whereas mud-mixed sands and pelitic sediments usually
have a larger and much more diversified ostracode fauna (Pokorny, 1978). They
are scarcer in Globigerina oozes and scarcest in euxenic black mud, evaporites,
well-sorted quartz sands and calcareous sand (Brasier, 1979).
Generally, the mangrove sediments in the study area are composed of a com-
bination of both organic and terrestrial materials. Organic material is either devel-
oped in situ or from Red Sea landward migration, whereas terrestrial materials are
derived from the hinterland old rocks and transported to the sea by different ways
of transportation.
In this study, it is generally observed that samples with a muddy sand substrate
are inhabited by dense ostracods communities (e.g., samples D9, D8, D5, E10, E9,
E8, C3, C4 and B5). The samples with sandy mud substrates showed poor benthic
ostracod communities (e.g., samples F3, F4, G1, G2 and G3). Moreover, ostracods
in the muddy gravels were very low in number to totally absent. The recorded
carapaces are mostly reworked or damaged (e.g., samples W1, W2 and W3).
Ostracoda assemblages
The following assemblages have been observed in the study area:
The intertidal assemblage.— This assemblage comprises 36 species in the Wadi
Gemal area and 26 species in the Abu Ghoson area. It is composed of the fol-
lowing species: Loxoconcha ornatovalvae Hartmann, 1964, L. idkui Hartmann,
1964, L. sp. A Bate, 1971, Loxocorniculum ghardaquensis (Hartmann, 1964),
Neonesidea schultzi (Hartmann, 1964), Paranesidea fracticorallicola Maddocks,
OSTRACODA COMMUNITIES ON THE EGYPTIAN RED SEA COAST 1679
1969, P. n. sp. 2 Bonaduce et al., 1983, Pontocypris sp. Bate, 1971, Quadracythere
borchersi (Hartmann, 1964), Cyprideis littoralis Brady, 1868, Hiltermannicythere
rubrimaris (Hartmann, 1964), Ghardaglaia triebeli Hartmann, 1964, Triebelina
sertata Triebel, 1948, Caudites levis Hartmann, 1964, Moosella striata Hartmann,
1964, Leptocythere arenicola Hartmann, 1964, Callistocythere cf. littoralis (G. W.
Müller, 1894), Callistocythere arcuata Bonaduce et al., 1980, Sclerochilus rec-
tomarginatus Hartmann, 1964, Alocopocythere reticulata (Hartmann, 1964), Para-
cytheridea remanei Hartmann, 1964, P. aqabaensis Bonaduce et al., 1976, Loxo-
corniculum aff. L. algicola (Hartmann, 1974), Xestoleberis multiporosa Hartmann,
1964, X. rotunda Hartmann, 1964, X. rhomboidea Hartmann, 1964, Paranesidea
fortificata (Brady, 1880) [currently as Neonesidea f.], Cytherois gracilis Hart-
mann, 1964, Cytherelloidea sp. A Bate, 1971, Paradoxostoma punctatum Hart-
mann, 1964, P. parabreve Hartmann, 1964, P. breve G. W. Müller, 1894, P. longum
Hartmann, 1964, Lankacythere sp. Bonaduce et al., 1983, Loxocorniculum n. sp.
1 Bonaduce et al., 1983, Cyprideis torosa Jones, 1857 and Miocyprideis cf. spinu-
losa (G. S. Brady, 1868).
The last 11 species are present in Wadi Gemal and not recorded from Abu
Ghoson area. However, these species are rare (>5 carapaces) and only two species,
Xestoleberis multiporosa Hartmann, 1964 and X. ghardaqae Hartmann, 1964, are
abundant. In Wadi Gemal, 16 species are rare (table II and fig. 3), 8 of which only
represented by one carapace. At Abu Ghoson, 8 species are rare and 5 of which are
represented by only one carapace (table III and fig. 4).
The swamp assemblage.— This assemblage is composed of 24 species as
follows: Ghardaglaia triebeli Hartmann, 1964, Neonesidea schulzi (Hartmann,
1964), Quadracythere borchersi (Hartmann, 1964), Loxocorniculum ghardaquen-
sis (Hartmann, 1964), Paranesidea fracticorallicola Maddocks, 1969, P.n.sp.
2 Bonaduce et al., 1983, Moosella striata Hartmann, 1964, Sclerochilus rec-
tomarginatus Hartmann, 1964, Hiltermannicythere rubrimaris (Hartmann, 1964),
Loxoconcha ornatovalvae Hartmann, 1964, L. idkui Hartmann, 1964, Aloco-
pocythere reticulata (Hartmann, 1964), Xestoleberis rotunda Hartmann, 1964, X.
rhomboidea Hartmann, 1964, X. simplex Hartmann, 1964, Miocyprideis cf. spin-
ulosa (G. S. Brady, 1868), Cytherois gracilis Hartmann, 1964, Caudites levis
Hartmann, 1964, Paracytheridea remanei Hartmann, 1964, Leptocythere arenicola
Hartmann, 1964, Callistocythere arcuata Bonaduce et al., 1980, C.cf.littoralis
(G. W. Müller, 1894), Xestoleberis multiporosa Hartmann, 1964 and Xestoleberis
ghardaqae Hartmann, 1964.
The first 15 species are totally absent from the western part of the swamp, while
the eastern part is inhabited by a more dense and diversified community. This may
be due to the connection between the swamp and the nearby intertidal zone on the
eastern side of the swamp. Four species of the association are rare: Leptocythere
1680 SOBHI A. HELAL & MOHAMED ABD EL-WAHAB
TABLE II
Cluster analysis performed using SPSS for abundance and frequency of species at Wadi El Gemal
Ghardaglaia
triebeli
Quadracythere
borchersi
Hiltermannicythere
rubrimaris
Neonesidea
schulzi
Paranesidea
fracticorallicola
Paranesidea n. sp. 2
Triebelina
sertata
Paranesidea
fortificata
Loxocorniculum
aff. algicola
Loxocorniculum
ghardaquensis
Loxoconcha
ornatovalvae
Loxoconcha
idkui
Loxoconcha n. sp.
1 BCMMP
Caudites
levis
Cytherelloidea
sp. Bate
Moosella
striata
Leptocythere
arenicola
Sclerochilus
rectomarginatus
Neonesidea n. sp.
1 BCMMP
Lankacythere sp.
BCMMP
Paradoxostoma
punctatum
Paradoxostoma
parabreve
s n s n s n snsnsnsnsnsns n s n snsns n snsnsnsnsnsnsnsn
A1 2511110113110100102 6 0 0 00000 0 0000000000000000
A2 3 7 4 11 2 0 120000131000513 719 01002 6 1011102700000000
A3 1 1 3 11 0 2 0312001100002 6 3 9 02001 6 0001011112000100
A4 1100000001000000000 0 0 0 00000 0 0000000000000000
A5 4 11 2 3 1 2 1101001200000 0 1 4 11000 1 0002000101000001
B1 0101100000000000000 0 0 2 00000 0 0010000010000000
B2 2215001413001100001 2 1 1 00000 0 0001000111000000
B3 0028021323000000011 3 412 11001 6 0010001410 10000
B4 0123000001100000000 0 0 1 00001 2 0000001100000000
B5 1 1 3 10 0 0 1214000000001 2 1 3 02001 4 0000001500000000
C1 2 5 8 27 0 1 0102010100001 2 2 7 00000 0 0012001200000000
C2 5 16 2 5 1 0 0111000000000 2 310 00002 4 0001001000000000
C3 18 57 5 13 1 4 1113000000001 2 523 0000512 0000101400000000
C4 8 25 13 36 614 2627001100001 4 821 0011413 0000102310000000
C5 1 3 5 14 2 2 1114010000000 1 1 0 00001 1 0001001311000000
W1 0201000001000000000 0 0 0 00000 0 0000000000000000
W2 1613010102000000001 1 1 5 00000 2 0001001200000000
W3 1200000012010100000 2 1 1 00010 1 0011000100000000
Tot a l s +n 195 201 44 36 52 6 16 1 2 62 156 9 3 76 1 16 4 48 11 1 1 1
% 11.1 11.4 2.5 2 3 0.34 0.91 0.06 0.1 3.53 8.9 0.5 0.17 4.3 0.06 0.91 0.23 2.73 0.63 0.06 0.06 0.06
OSTRACODA COMMUNITIES ON THE EGYPTIAN RED SEA COAST 1681
TABLE II
(Continued)
Abditacythere
subterranea
Paradoxostoma
longum
Callistocythere
cf. littoralis
Paracytheridea
remanei
Alocopocythere
reticulata
Cytherois
gracilis
Paracytheridea
aqabaensis
Xestoleberis
rotunda
Xestoleberis
rhomboidea
Xestoleberis
simplex
Xestoleberis
multiporosa
Xestoleberis
ghardaqae
Xestoleberis
rubrimaris
Loxocorniculum
n. sp. 1 BCMMP
Cyprideis
littoralis
Cyprideis
torosa
Tot a l
snsnsnsnsnsnsn s n s n s n s n snsnsnsnsn
A1 00000000000000 2 8 2 6 1 5 0 0 0000150012 61
A2 000000 1000000 4 13 1 5 1 3 5 15 1315281100 171
A3 12000000000000 0 0 0 0 0 0 0 0 0000170000 71
A4 00000000000000 0 0 0 0 0 0 0 0 0000000000 3
A5 00000000000000 1 4 1 6 0 1 0 2 0100000000 57
B1 00000000000000 1 1 0 2 0 0 0 0 0000000000 11
B2 00000000000000 1 5 1 3 0 0 0 0 0011130000 46
B3 00000000000000 2 7 3 8 1 5 1 7 1201110000 99
B4 00000000000000 0 1 0 2 0 0 0 0 0000000000 18
B5 00100000100000 1 2 1 1 0 0 0 0 0100130000 55
C1 00000000000000 8 20 3 11 3 9 2 6 1200220000 135
C2 00010011100000 9 19 2 8 4 14 2 11 1200120000 134
C3 0000100200001013 45 8 20 12 27 9 21 2700110000 328
C4 0100010000100018 64 19 45 10 18 12 32 1700130000 414
C5 00000000010000 2 6 1 5 1 2 1 2 1100010000 70
W1 00000000000000 0 4 1 0 0 1 0 1 0100020000 14
W2 00000000000000 1 4 0 1 0 2 0 0 1000010000 39
W3 00000000000000 2 10 0 0 1 1 0 0 0000010000 31
Tot a l s +n4225311 278 166 122 12936952231757
% 0.23 0.1 0.1 0.28 0.17 0.06 0.06 15.82 9.45 6.94 7.34 2.05 0.5 2.96 0.1 0.17 100
Abbreviations: s, stained; n, not stained.
1682 SOBHI A. HELAL & MOHAMED ABD EL-WAHAB
TABLE III
Cluster analysis performed using SPSS for abundance and frequency of species at Abu Ghoson
Ghardaglaia
triebeli
Quadracythere
borchersi
Hiltermannicythere
rubrimaris
Neonesidea
schulzi
Paranesidea
fracticorallicola
Paranesidea
n. sp. 2 BCMMP
Triebelina
sertata
Tuberculocythere
n. sp. 1 BCMM
Cyprideis
torosa
Loxocorniculum
ghardaquensis
Loxoconcha
ornatovalve
Loxocorncha
idkui
Loxocorniculum
aff. L. algicola
Ruggieria ?
danielopoli
Caudites
levis
Cyprideis
littoralis
Moosella
striata
Leptocythere
arenicola
Sclerochihus
rectomarginatus
s n snsnsnsnsnsnsnsnsn s n snsnsns n sn s n sns n
E1 1220354700120000001212 240010001 101 815001 1
E2 5 8243600110000001302 370011000 012 14002 4
E3 2 3111400000000000000 131200000 100 00000 1
E4 715321123340100011213 8120201001 301 411003 3
F1 4 6682511130000000012 281101000 011 26001 2
F2 0 0451200110100001200 000200000 013 26000 0
F3 0 0000000000000010000 000000000 012 00000 0
F4 4 9012401010000001100 231200000 100 00000 0
G1 0 1000100000000001300 000000000 000 00000 0
G2 0 1000100010000000000 110000000 000 00000 0
G3 0 0111000000000101201 000000000 000 10000 0
G4 1 3120100000000000010 250001000 000 00010 0
E5 007106902141200000024 8210012000 100 1200512
E6 4 9580000010000000012 250001000 000 13000 0
E7 0 0221200000000000010 000100000 000 10001 1
E8 0 0 17 21 0 1 00000000000023 4110001001 100 12012 2
E9 0 0 19 29 1 3 1314010001001318 34 0002001 200 13120 0
E10 16 27 18 32 12 18 914 36111200001317 42 150100514 00 00113 9
D1 2 3131112120000000012 380001003 500 00000 0
D2 1321481312120000000000 290200110 100 14131 3
D3 16 23 6 10 3 7 11120000000012 480001000 000 37002 5
D4 74 195 1 3 36 83 23140000000011 4140000261 400 1315311
D5 26 67 0 3 24 69 13130100000000 3100000140 000 00282 3
D6 10210372002020000000000 150000131 200 12121 3
D7 27 70 36 69 7 13 512 25120000123718 31 2613251 30016 34 01515
D8 6287241211110000000000 241100001 100 13132 1
D9 98144250200130000000011 240010000 001 11002 4
D10 12 30 6 16 0 0 00000000000011 130001111 100 00002 5
Total 1169 406 280 75 73 12 3 4 25 59 362 31 20 28 58 15 153 35 124
% 24.2 8.43 5.82 1.56 1.51 0.23 0.06 0.08 0.52 1.23 7.52 0.64 0.42 0.58 1.2 0.31 3.18 0.73 2.58
OSTRACODA COMMUNITIES ON THE EGYPTIAN RED SEA COAST 1683
TABLE III
(Continued)
Neonesidea
n. sp. 1
Lankacythere
sp.
Loxoconcha
sp. A Bate
Paradoxostoma
breve
Abditacythere
subterranea
Paradoxostoma
longum
Cytheroma
dimorpha
Callsttocythere
cf. littoralis
Paracytheridea
remanei
Alocopocythere
reticulata
Callistocythere
arcuata
Miocyprideis
cf. spinolusa
Pontocypris
sp. Bate
Xestoleberis
rotunda
Xestoleberis
rhomboida
Xestoleberis
simplex
Xestoleberis
multiporosa
Xestoleberis
ghardaqae
Cytherella
cf. punctata
Total
snsns n snsnsnsnsnsns n snsnsns n snsnsnsnsn
E1 00001 30000000000012 4000000 91741025151101 173
E2 00001 40000000000012 3001300 4124614110000 110
E3 00002 30000000000001 1010000 1 21300000100 37
E4 00002 70000000000000 0001000 0 00026001200 112
F1 00002 60000000000000 1111100 4631113000000 110
F2 00000 00000000000000 2000000 1 31222000000 45
F3 00000 00000000000000 0000000 0 00000000000 3
F4 00001 10000000000000 0000000 1 21413000000 48
G1 00000 00000000000000 0000000 0 00000000000 6
G2 00001 10000000000000 0000000 1 10000000000 9
G3 00000 00000000000000 0000000 1 21000000000 12
G4 00001 20000000000000 0010000 1 31100000000 29
E5 0000411 0000000000001 4000001 4 92648120000 158
E6 00001 10000000000001 0000000 1 20100000000 46
E7 00000 00000000000000 0000000 0 00110000000 14
E8 00001 10000000001000 0220000 2 30013000000 90
E9 0000715 0000000011001 2130000 2 91112000000 178
E10 0100717 1101120000000 000000034 96 19 51 29 55 000000 578
D1 00002 60000000000010 0000000 3 92412001300 73
D2 00121 40000000000001 314000011 29 8 22 5 13 001200 193
D3 00001 40000000000000 1000000 7213924001100 159
D4 00003 92637141201001 239415 00 612517717001500 603
D5 00002 71425131300001 537720 00 410310000041400 357
D6 00000 1121111110000619 312 817 00 3 63815000000 192
D7 0000924 0110110000003 702020016 37 9 29 5 12 0041200 580
D8 00000 10000120000001 200000029 115 29 55 14 36 000000 439
D9 00001 10000110000000 000000028 101 26 59 6 18 000000 490
D10 00000 10000110000000 1000000 1 12611000000 98
Total 1 3 179 19 21 23 9 4 3 78 57 80 1 626 445 287 11 55 1 4814
% 0.02 0.06 3.72 0.4 0.44 0.46 0.19 0.08 0.06 1.62 1.18 1.66 0.02 12.6 9.24 5.96 0.23 1.56 0.02
Abbreviations: s, stained; n, not stained.
1684 SOBHI A. HELAL & MOHAMED ABD EL-WAHAB
arenicola Hartmann, 1964, Cytherelloidea sp. A Bate, 1971, Paranesidea n. sp. 2
Bonaduce et al., 1983 and Cytherois gracilis Hartmann, 1964.
The downstream assemblage.— This assemblage is the least diversified in
the study area. It comprises the following species: Triebelina sertata Triebel,
1948, Loxocorniculum ghardaquensis (Hartmann, 1964), Ghardaglaia triebeli
Hartmann, 1964, Neonesidea schulzi (Hartmann, 1964), Quadracythere borchersi
(Hartmann, 1964), Paranesidea fracticorallicola Maddocks, 1969, P.n.sp.2
Bonaduce et al., 1983, Loxoconcha ornatovalvae Hartmann, 1964, L. n. sp. 1 Bona-
duce et al., 1983, Loxocorniculum aff. L. algicola (Hartmann, 1974), Caudites levis
Hartmann, 1964, Moosella striata Hartmann, 1964, Sclerochilus rectomarginatus
Hartmann, 1964, Xestoleberis rotunda Hartmann, 1964, X. rhomboidea Hartmann,
1964, X. simplex Hartmann, 1964, X. ghardaqae Hartmann, 1964 and Hilterman-
nicythere rubrimaris (Hartmann, 1964).
The species recoded in this zone are mostly damaged or badly worn. Out
of 19 species, 7 species are represented by only one carapace; 9 species are
represented by less than 5 carapaces; the remaining three species are Ghardaglaia
triebeli Hartmann, 1964 (12 carapaces), Xestoleberis rotunda Hartmann, 1964 (21
carapaces) and Loxoconcha ornatovalvae Hartmann, 1964 (8 carapaces).
The lagoon assemblage.— This assemblage has a relatively greater species
abundance and diversity in the study area. It is inhabited by 24 species. Al-
though the intertidal assemblage is more diversified (36 species), the lagoon as-
semblage is the denser. The intertidal assemblage in Wadi Gemal comprises 16
rare species, while the lagoon assemblage comprises only 4 rare species. The
lagoon assemblage is composed of the following species: Xestoleberis rotunda
Hartmann, 1964, X. rhomboida Hartmann, 1964, X. simplex Hartmann, 1964, X.
ghardaqae, Hartmann, 1964, Loxoconcha ornatovalvae Hartmann, 1964, L. id-
kui Hartmann, 1964, Loxocorniculum ghardaquensis (Hartmann, 1964), Rugieria?
danielopoli Bonaduce et al., 1976, Ghardaglaia triebeli Hartmann, 1964, Quadra-
cythere borchersi (Hartmann, 1964), Hiltermannicythere rubrimaris (Hartmann,
1964), Neonesidea schulzi (Hartmann, 1964), Paranesidea fracticorallicola Mad-
docks, 1969, Paranesidea n. sp. 2 Bonaduce et al., 1983, Caudites levis Hart-
mann, 1964, Moosella striata Hartmann, 1964, Lankacythere sp. Bonaduce et
al., 1983, Abditacythere subterranea Hartmann, 1964, Cytheroma dimorpha Hart-
mann, 1964, Callistocythere cf. littoralis (G. W. Müller, 1894), Callistocythere
arcuata Bonaduce et al., 1980, Alocopocythere reticulata (Hartmann, 1964) and
Miocyprideis cf. spinulosa Hartmann, 1964.
OSTRACODA COMMUNITIES ON THE EGYPTIAN RED SEA COAST 1685
CLUSTER ANALYSIS
The Wadi El Gemal site
Cluster treatments (cluster analyses) were done using SPSS for abundance and
frequency of species in the sample locations. This analysis shows that the studied
samples of the Wadi El Gemal site can be separated into 3 clusters (fig. 5 and
table II). The first has the highest value (57.14%) of total Ostracoda. This cluster
includes 20 species, belonging to the following genera: Triebelina,Cytherelloidea,
Paradoxostoma,Miocyprideis,Tanella,Paranesidea,Loxoconcha,Triebelina and
Fig. 5. Dendogram derived from cluster analysis (Ward’s method) of the Ostracoda species at Wadi
El Gemal.
1686 SOBHI A. HELAL & MOHAMED ABD EL-WAHAB
Moosella. It is characterized by a low similarity due to their low abundance and
also by their presence in different bottom facies.
The second cluster (8 species) comprises 22.86% of the total Ostracoda,
and is characterized by a medium similarity. All species in this cluster inhabit
bottom facies characterized by abundance of biogenic sand. Their abundance is
relatively higher than the one recorded in the first cluster. The species belong
to the genera Loxocorniculum,Neonesidea,Paranesidea,Xestoleberis,Caudites,
Carinocythereis and Sclerochilus.
The third cluster represents 20% of the total Ostracoda (7 species) and can
be distinguished by a high similarity and high frequency of Ostracoda which are
common in the biogenic sand facies. The majority of these species belong to the
genera Loxoconcha,Xestoleberis,Hemicythere and Aglaiocypris.
The Abu Ghoson site
In this area; four main clusters were distinguished, based on 36 variables of
Ostracoda species (fig. 6 and table III).
The first cluster represents 75% (27 species) of the total studied Ostracoda
species. It includes most species from swamp, beach and very shallow stations.
This cluster shows low similarity due to low abundance of Ostracoda species which
belong to different genera, such as Loxoconcha,Moosella and Sclerochihus.
The second cluster contains 3 species, 8.33% of the total studied Ostracoda
species. This cluster has the highest ratio of the genus Xestoleberis, compared with
other bottom facies, in particular in samples E10, D8 and D9.
The third cluster represents 11.11% (4 samples) characterized by the highest
abundance of Ostracoda species, in descending order: Hemicythere,Loxoconcha,
Carinocythereis and Cyprideis. The fourth cluster contains two Ostracoda species
making up 5.56% of the total studied Ostracoda species. This cluster includes the
highest ratio of Aglaiocypris and Xestoleberis, concentrated in samples D4 and D9
(fig. 6).
TAXONOMIC LIST
The following is a list of the identified Ostracoda. The detailed taxonomic study,
description and illustrations of the recorded taxa is part of another study (Helal &
Abd El Wahab, 2010). Compare also figs. 7-8.
Order: Podocopida Müller, 1894.
Suborder: Podocopina Sars, 1866.
Superfamily: Bairdiacea Sars, 1888.
Family: Bairdiidae Sars, 1888.
OSTRACODA COMMUNITIES ON THE EGYPTIAN RED SEA COAST 1687
Fig. 6. Dendogram derived from cluster analysis (Ward’s method) of the Ostracoda species at Abu
Ghoson.
Genus: Paranesidea Maddocks, 1969.
Paranesidea fracticorallicola Maddocks, 1969.
1983 Paranesidea fracticorallicola Maddocks. Bonaduce, Ciliberto, Minichelli, Masoli & Pug-
liese, p. 477, fig. 3: 7-9.
Paranesidea fortificata (Brady, 1868)
1983 Paranesidea fortificata (Brady).-Bonaduce, Ciliberto, Minichelli, Masoli & Pugliese, p.
477, fig. 3: 4-6.
Paranesidea sp. 2 BCMMP, 1983
1983 Paranesidea sp. 2 Bonaduce, Ciliberto, Minichelli, Masoli & Pugliese, p. 477, fig. 3: 10-13.
Genus: Neonesidea Maddocks, 1969
Neonesidea schulzi (Hartmann, 1964)
1964 Triebelina schulzi Hartmann, p. 44, pl.4, 5, figs. 14-22.
1971 Neonesidea schulzi (Hartmann).-Bate, p. 246, pl. 1, fig. 1i.
Neonesidea sp. 1 BCMMP, 1983
1688 SOBHI A. HELAL & MOHAMED ABD EL-WAHAB
Fig. 7. 1, Thalmania sp., dorsal view, female carapace, sample D2; 2, Callistocythere arcuata BMMP,
1980, right view carapace, sample D3; 3, Quadracythere borchersi Hartmann, 1964, left view
carapace, , sample C5; 4, Triebelina jellinki Malz & Lord, 1988, right view carapace, sample A2;
5, Quadracythere borchersi Hartmann, 1964, left view carapace, , sample C5; 6, Quadracythere
borchersi Hartmann, 1964, right view carapace, , sample C5; 7, Hiltermannicythere rubrimaris
(Hartmann, 1964), left view carapace, , sample D4; 8, Hiltermannicythere rubrimaris (Hartmann,
1964), right view carapace, , sample D4; 9, Miocyprideis spinulosa (G. S. Brady, 1868), left view
carapace, , sample D4; 10, Cytheroma dimorpha Hartmann, 1964, right view carapace, ,sample
D2; 11, Cyprideis sp., left view carapace, sample D4; 12, Cyprideis littoralis G. S. Brady, right view
carapace, , sample D4.
OSTRACODA COMMUNITIES ON THE EGYPTIAN RED SEA COAST 1689
Fig. 8. 1, Cyprideis torosa (Jones, 1850), left view carapace, , sample E2; 2, Cyprideis littoralis
G. S. Brady, left view carapace, , sample D7; 3, Sclerochilus rectomarginatus Hartmann, 1964, left
view carapace, , sample A2; 4, Sclerochilus rectomarginatus Hartmann, 1964, dorsal view cara-
pace, sample A2; 5, Sclerochilus rectomarginatus Hartmann, 1964, right view carapace, sample A2;
6, Loxocorniculum ghardaquensis (Hartmann, 1964), right view carapace, sample A1; 7, Cytherel-
loidea sp., left view carapace, sample A2; 8, Loxoconcha sp., dorsal view carapace, , sample A3;
9, Paracytheridea remanei Hartmann, 1964, right view carapace, sample A1; 10, Xestoleberis rhom-
boidea Hartmann, 1964, right view carapace, sample A1; 11, Xestoleberis rubrimaris Hartmann,
1964, dorsal view carapace, sample A3; 12, Xestoleberis ghardaqae Hartmann, 1964, right view
carapace, , sample A2.
1690 SOBHI A. HELAL & MOHAMED ABD EL-WAHAB
1983 Neonesidea sp. 1 Bonaduce, Ciliberto, Minichelli, Masoli & Pugliese, p. 478, fig. 4: 6-9.
Genus: Triebelina Van den Bold, 1946
Triebelina jellinki Malz & Lord, 1988
1988 Triebelina jellinki Malz & Lord, p. 68, pl. 1, figs. 8-10; pl. 2, figs. 8-9.
Triebelina sertata Triebel, 1975
1975 Triebelina sertata Triebel. Teeter, p. 422, Text-fig. 31.
Superfamily: Cypridacea Baird, 1845
Family: Paracyprididae Sars, 1923
Genus: Ghardaglaia Hartmann, 1964
Ghardaglaia triebeli Hartmann, 1964
1964 Ghardaglaia triebeli Hartmann, p. 41, pl. 6-9, figs. 23-40.
Family: Pontocyprididae Müller, 1894
Genus: Pontocypris Sars, 1866
Pontocypris sp. B Bate, 1971
1971 Pontocypris sp. B Bate, p. 264, pl. 1, fig. 1h.
Superfamily: Cytheracea Baird, 1850
Family: Leptocytheridae Hanai, 1957
Genus: Leptocythere G. O. Sars, 1925
Leptocythere arenicola (Hartmann, 1964)
1964 Leptocythere (subgen. Callistocythere)arenicola Hartmann, pl. 12, figs. 52-57, pl. 13,
figs. 58-59.
1983 Leptocythere arenicola Hartmann.-Bonaduce, Ciliberto, Minichelli, Masoli & Pugliese, p.
478.
Genus: Callistocythere Ruggieri, 1953
Callistocythere arcuata BMMP, 1980
1983 Callistocythere arcuata Bonaduce, Minichelli, Masoli & Pugliese. Bonaduce, Ciliberto,
Minichelli, Masoli & Pugliese, p. 478, fig. 6: 1-3.
Callistocythere cf. C. littoralis (G. W. Müller, 1894)
1964 Leptocythere cf. littoralis (G. W. Müller). Hartmann, p. 64, pl. 11, figs. 46-51, pl. 13, fig. 60.
1983 Callistocythere cf. C. littoralis (G. W. Müller, 1894).-Bonaduce, Ciliberto, Minichelli,
Masoli & Pugliese, p. 481.
Family: Hemicytheridae Puri, 1953
Subfamily: Orionininae Puri, 1974
Genus: Caudites Coryell & Fields, 1937
Caudites levis Hartmann, 1964
1964 Caudites levis Hartmann, p. 117, pl. 55, figs. 311-316.
Family: Campylocytheridae Puri, 1960
Genus: Alocopocythere Siddiqui, 1971
Alocopocythere reticulata (Hartmann, 1964)
1964 Bradleya reticulata. Hartmann, p. 108, pl. 46, fig. 269; pl. 47-49, figs. 274-288.
1971 Alocopocythere reticulata (Hartmann).-Bate, p. 246, pl. 1, fig. 2PP.
Family: Cytheruridae Müller, 1894
Genus: Tuberculocythere Colalongo & Pasini, 1980
Tuberculocythere sp. 1 BCMMP, 1983
1983 Tuberculocythere sp. 1 Bonaduce, Ciliberto, Minichelli, Masoli & Pugliese, p. 485, fig. 7:
12.
OSTRACODA COMMUNITIES ON THE EGYPTIAN RED SEA COAST 1691
Family: Trachyleberididae Sylvester-Bradley, 1948
Subfamily: Trachyleberidinae Sylvester-Bradley, 1948
Genus: Quadracythere Hornibrook, 1952
Quadracythere borchersi (Hartmann, 1964)
1964 Hemicythere ? borchersi sp. Hartmann, p. 119, pl. 56, figs. 318-221; pl. 57, figs. 322-323;
pl. 58, figs. 324-330.
1983 Quadracythere borchersi (Hartmann). Bonaduce, Ciliberto, Minichelli, Masoli & Pugliese,
p. 478.
Genus: Ruggieria Keij, 1957
Ruggieria ? danielopoli BMP, 1976
1983 Ruggieria? danielopoli Bonaduce, Masoli & Pugliese (BMP). Bonaduce, Ciliberto, Mini-
chelli, Masoli & Pugliese, p. 482, fig. 6: 4-8.
Genus: Hiltermannicythere Bassiouni, 1970
Hiltermannicythere rubrimaris (Hartmann, 1964)
1964 Cythereis ? rubrimaris Hartmann, p. 115, pl. 54, figs. 306-310; pl. 56, figs. 317.
1983 Hiltermannicythere rubrimaris (Hartmann).-Bonaduce, Ciliberto, Minichelli, Masoli &
Pugliese, p. 481.
Genus: Moosella Hartmann, 1964
Moosella striata Hartmann, 1964
1964 Moosella striata Hartmann, pl. 46, figs. 270-273; pl. 50-51, figs. 289-297.
Genus: Lankacythere Bhatia & Kumar, 1979
Lankacythere sp. BCMMP, 1983
1983 Lankacythere sp. Bonaduce, Ciliberto, Minichelli, Masoli & Pugliese, p. 482, fig. 6: 9-12.
Family: Cytherideidae Sars, 1925
Subfamily: Cytherideinae Sars, 1925
Genus: Cyprideis Jones, 1857
Cyprideis littoralis G. S. Brady, 1868
1964 Cyprideis littoralis G. S. Brady. Hartmann, p. 46, pl. 10, figs. 41-45.
Cyprideis torosa (Jones, 1850)
1985 Cyprideis torosa (Jones). Guillaume, Peypouquet & Tetart, p. 342, figs. 1-2.
Genus: Miocyprideis Kollmann, 1960
Miocyprideis cf. spinulosa (G. S. Brady, 1868)
1868 Cytheridea spinulosa G. S. Brady, p. 182-183, pl. 8, figs. 1-6.
1960 Miocyprideis spinulosa (Brady). Kollmann, p. 178, pl. 18, figs. 12-13, pl. 19, fig. 16.
Family: Cytheridea Baird, 1850
Subfamily: Loxoconchinae Sars, 1825
Genus: Loxoconcha Sars, 1866
Loxoconcha idkui Hartmann, 1964
1964 Loxoconcha idkui Hartmann, p. 55, pl. 18, figs. 83-85; pl. 19, figs. 86-91.
Loxoconcha ornatovalvae Hartmann, 1964
1964 Loxoconcha ornatovalvae Hartmann, p. 58, pl. 20, figs. 92-100.
Loxoconcha sp. 1 BCMMP, 1983
1983 Loxoconcha sp. 1 Bonaduce, Ciliberto, Minichelli, Masoli & Pugliese, p. 489, fig. 9: 1-4.
Loxoconcha sp. A Bate, 1971
1971 Loxoconcha sp. A Bate, p. 246, pl. 1, fig. 1, l.
Genus: Loxocorniculum Benson & Coleman, 1963
Loxocorniculum ghardaquensis (Hartmann, 1964)
1964 Loxoconcha ghardaquensis Hartmann, p. 52, pl. 15, figs. 67-72; pl. 16, figs. 73-76; pl. 17,
figs. 77-79; pl. 18, figs. 80-82.
1692 SOBHI A. HELAL & MOHAMED ABD EL-WAHAB
1971 Loxocorniculum ghardaquensis (Hartmann). Bate, p. 254.
Loxocorniculum aff. L. algicola (Hartmann, 1964)
1983 Loxocorniculum aff. L. algicola (Hartmann). Bonaduce, Ciliberto, Minichelli, Masoli &
Pugliese, p. 489, fig. 8: 5-8.
Loxocorniculum sp. 1 BCMMP, 1983
1983 Loxocorniculum sp. 1 Bonaduce, Ciliberto, Minichelli, Masoli & Pugliese, p. 486, fig. 8:
1-4.
Family: Paracytherideidae Puri, 1957
Subfamily: Paracytherideinae Puri, 1957
Genus: Paracytheridea G. W. Müller, 1894
Paracytheridea aqabaensis Bonaduce, Masoli & Pugliese, 1976
1983 Paracytheridea aqabaensis Bonaduce, Masoli & Pugliese. Bonaduce, Ciliberto, Minichelli,
Masoli & Pugliese, p. 482, fig. 6: 13.
Paracytheridea remanei Hartmann, 1964
1964 Paracytheridea remanei Hartmann, p. 65, pl. 23, figs. 114-120; pl. 24, figs. 121-124.
Family: Paradoxostomidae
Subfamily: Paradoxostominae
Genus: Paradoxostoma Fischer, 1885
Paradoxostoma breve G. W. Müller, 1894
1964 Paradoxostoma breve G. W. Müller. Hartmann, p. 83, pl. 36, figs. 204-209.
Paradoxostoma parabreve Hartmann, 1964
1964 Paradoxostoma parabreve Hartmann, p. 84, pl. 38, figs. 222-225; pl. 39, figs. 231-233.
Paradoxostoma longum Hartmann, 1964
1964 Paradoxostoma longum Hartmann, p. 87, pl. 37, figs. 210-216.
Paradoxostoma punctatum Hartmann, 1964
1964 Paradoxostoma punctatum Hartmann, p. 89, pl. 39, figs. 226-230.
Genus: Cytherois G. W. Müller, 1894
Cytherois gracilis Hartmann, 1964
1964 Cytherois gracilis Hartmann, p. 91, pl. 40, figs. 234-239; pl. 41, figs. 240-241.
Genus: Sclerochilus G. O. Sars, 1866
Sclerochilus rectomarginatus Hartmann, 1964
1964 Sclerochilus rectomarginatus Hartmann, p. 93, pl. 41, figs. 242-243; pl. 42, figs. 244-250.
Subfamily: Cytherominae
Genus: Cytheroma G. W. Müller, 1894
Cytheroma dimorpha Hartmann, 1964
1964 Cytheroma dimorpha Hartmann, p. 96, pl. 43, figs. 251-255; pl. 44, figs. 256-259.
Genus: Abditacythere Hartmann, 1964
Abditacythere subterranea Hartmann, 1964
1964 Abditacythere subterranea Hartmann, p. 100, pl. 45, pl. 260-268.
Family: Xestoleberididae Sars, 1928
Subfamily: Xestoleberidinae G. O. Sars, 1928
Genus: Xestoleberis G. O. Sars, 1866
Xestoleberis ghardaqae Hartmann, 1964
1964 Xestoleberis ghardaqae Hartmann, p. 71, pl. 27, figs. 142-148; pl. 28, figs. 149-153.
Xestoleberis multiporosa Hartmann, 1964
1964 Xestoleberis multiporosa n. sp. Hartmann, p. 69, pl. 25, figs. 132-134, pl. 26, figs. 135-141.
Xestoleberis simplex Hartmann, 1964
1964 Xestoleberis simplex Hartmann, p. 80, pl. 25, figs. 125-131.
OSTRACODA COMMUNITIES ON THE EGYPTIAN RED SEA COAST 1693
Xestoleberis rhomboidea Hartmann, 1964
1964 Xestoleberis rhomboidea Hartmann, p. 75, pl. 32, 33, figs. 177-186.
Xestoleberis rotunda Hartmann, 1964
1964 Xestoleberis rotunda Hartmann, p. 81, pl. 24, figs. 162-163; pl. 29, figs. 156-161; pl. 28,
figs. 154-155.
Xestoleberis rubrimaris Hartmann, 1964
1964 Xestoleberis rubrimaris Hartmann, p. 77, pl. 34-35, figs. 187-203.
Suborder: Platycopina Sars, 1866
Family: Cytherellidae Sars, 1866
Genus: Cytherella Jones, 1849
Cytherella cf. punctata Brady, 1868
1971 Cytherella cf. punctata Brady.-Bate, 1971: 246, pl. l, fig. 1u.
Genus: Cytherelloidea Alexander, 1929
Cytherelloidea sp. A Bate, 1971
1971 Cytherelloidea sp. A Bate, p. 246, pl. l, fig. 1s.
SUMMARY AND CONCLUSIONS
The Red Sea mangrove ecosystem is inhabited by a unique ostracod fauna.
The ostracod community and factors controlling its distribution are studied in
two mangrove sites on the Egyptian Red Sea coast. The natural protected areas at
Wadi El Gemal and Wadi Abu Ghoson comprise four subenvironments which are
inhabited by four distinctive ostracod assemblages, i.e., intertidal, swamp, lagoon
and downstream assemblages.
The Ostracoda are dominated by phytal, plant dwelling and shallow water
forms. The distribution patterns of the Ostracoda species, abundance and diversity
are found to be controlled mostly by the vegetation and/or the bottom conditions.
From our study the following conclusions can be drawn:
1. Some locations occupied by the turtle seagrass Thalassia hemprichii and
Halophila stipulacea have yielded dense communities of Ghardaglaia triebeli,
followed by Hiltermannicythere rubrimaris and Sclerochilus rectomarginatus
(e.g., samples C3 and E10).
2. The areas with the green creeping algae Caulerpa racemosa have yielded
dense communities of Xestoleberis spp. followed by Loxoconcha spp. and
Loxocorniculum spp. (e.g., samples A2, B3 and C4).
3. The scattered vegetations of Cystoseira myrica and Sargassum dentifolium are
inhabited by fairly high numbers of Xestoleberis spp., Ghardaglaia triebeli,
Quadracythere borchersi,Loxoconcha ornatovalvae,Moosella striata and Hil-
termannicythere rubrimaris (samples D2 and D3).
4. The dense vegetations of Halophila stipulacea,Cystoseira myrica,Caulerpa
racemosa and Sargassum dentifolium are inhabited by high numbers of Ghar-
daglaia triebeli,Hiltermannicythere rubrimaris,Xestoleberis spp., Miocypri-
deis cf. spinulosa and Loxoconcha spp. (e.g., samples D4 and D5).
1694 SOBHI A. HELAL & MOHAMED ABD EL-WAHAB
5. The presence of Turbinaria triquetra is accompanied by a fairly high number
of Callistocythere arcuata,Ghardaglaia and Hiltermannicythere (e.g., sample
D6). Also, this is associated with less abundant occurrences of Callistocythere
arenicola,Neonesidea spp., Paranesidea spp. and Triebelina sp.
6. With respect to the bottom facies, it is generally observed that samples with
gravelly muddy sand substrates are inhabited by dense communities of benthic
ostracods (e.g., samples D9, D8, D5, E10, E9, E8, C3, C4 and B5).
7. The samples with gravelly sandy mud substrates showed a low number of
benthic Ostracoda communities (e.g., samples F3, F4, G1, G2 and G3).
8. Ostracods in sandy muddy gravels are very low to totally absent. The recorded
carapaces are mostly reworked or badly worn (e.g., samples W1, W2 and W3).
9. Statistical analysis showed three clusters at each site. These results coincide
with the physiographic assemblages, except at Wadi El Gemal where we have
three clusters and only two assemblages. This is explained by the more dense
growth of mangroves in the southeastern and southwestern parts. Also, the
substrate is muddy sand instead of sand substrate in the northern parts.
REFERENCES
ABD ELWAHAB,M.,A.MELEGY &S.HELAL, 2011. Distribution and enrichment of heavy
metals in Recent sediments of Safaga Bay, Egypt. Marine Georesources & Geotechnology, 29:
364-375.
BASSIOUNI, M. A., 1970. Falunia (Hiltermannicythere), a new subgenus from the Gulf of Naples,
and related fossil forms. Revista Espaniola Micropaleont., 2(2): 117-130.
BATE, R. H., 1971. The distribution of recent Ostracoda in the Abu Dhabi Lagoon, Persian Gulf.
In: H. J. OERTLI (ed.), Paleoecologie des Ostracodes. Colloque Pau 1970, Bulletin Centre de
Recherches, Pau-SNPA, 5Supplément: 239-256.
BENSON, R. H., 1961. Ecology of ostracode assemblage. In: R. C. MOORE (ed.), Treatise on
Invertebrate Paleontology, Pt. Q, Arthropoda 3: Q56-Q63. (Geological Society of America and
University of Kansas Press, Lawrence, KS).
BENZIE, J. A. H., 1989. The distribution and habitat preference of ostracods (Crustacea: Ostracoda)
in a coastal sand-dune lake, Loch of Strathbeg, north-east Scotland. Freshwater Biology, 22:
309-321.
BONADUCE,G.,B.CILIBERTO,G.MINICHELLI,M.MASOLI &N.PUGLIESE, 1983. The
Red Sea benthic ostracodes and their geographical distribution. In: R. F. MADDOCKS (ed.),
Applications of Ostracoda: 472-491. (Department of Geosciences, University of Houston,
University Park, Houston, TX).
BONADUCE,G.,M.MASOLI,G.MINICHELLI &N.PUGLIESE, 1980. Some new benthic
Ostracoda species from the Gulf of Aqaba (Red Sea). Bollettino Societa Paleontologica
Italiana, 19: 143-178.
BONADUCE,G.,M.MASOLI &N.PUGLIESE, 1976. Benthic Ostracoda from the Gulf of Aqaba.
Pubblicazioni Stazione Zoologica di Napoli, 40: 372-428.
BRADY, G. S., 1868. A monograph of the recent British Ostracoda. Transactions Linnean Society,
London, 26: 353-495.
OSTRACODA COMMUNITIES ON THE EGYPTIAN RED SEA COAST 1695
BRASIER, M. D., 1979. Phylum Crustacea. Ostracods. In: H. ARMSTRONG &M.BRASIER (eds.),
Microfossils: 219-248. (Blackwell, Oxford).
DOR,I.&I.LEVY, 1984. Primary productivity of the benthic algae in the hard bottom mangal
of Sinai. In: F. D. POR &I.DOR (eds.), Hydrobiology of the mangal: 179-191. (Dr. W. Junk
Publishers, The Hague).
DOR,I.&F.D.POR, 1977. Preliminary data on the productivity of the mangrove environments of
Sinai. Rapp. P.-v. Réun. Commn int. Explor. scient. Mer Méditerr., 24: 193-194.
FOUDA, M. M., 1995. Status of mangrove resources in the Sultanate of Oman. Journal Faculty of
Science, U.A.E. University, 8: 169-183.
GEF WORLD BANK, 1998. Egyptian Red Sea Coastal and Marine Resource Management Project.
Scientific Report: 1-38.
GOLLEY,F.B.,H.T.ODUM &R.F.WILSON, 1962. The structure and metabolism of a Puerto
Rican red mangrove forest in May. Ecology, 43: 9-19.
GUILLAUME,M.,J.PEYPOUQUET &J.TETART, 1985. Atlas des ostracodes de France: Quaternaire
et Actuel. Memoires Elf-Aquitane, 9.
HARTMANN, G., 1964. Zur Kenntnis der Ostracoden des Roten Meeres. Kieler Meeresforschungen,
20, Sonderheft.
HARTMANN, G., 1974. Zur kenntnis des Eulitorals des afrikanischen westk˝uste zwischen Angola
und Kap der Guten Hoffnung und der afrikanischen Ostküste von Südafrika und Mozambique
unter besonderer Berücksichtigung der Polychaeten und Ostracoden. Teil III. Die Ostracoden
des Untersuchungsgebiets. Mitteilungen des Hamburgischen Zoologischen Museum und Insti-
tut, 69: 229-520.
HEALD, E. J., 1971. The production of organic detritus in a south Florida estuary. Univ. Miami, Sea
Grant Technology Bulletin, 3(6): 1-110.
HELAL,S.A.&M.ABD EL-WAHAB, 2004. Recent ostracodes from marine sediments of Safaga
Bay, Red Sea, Egypt. Egyptian Journal of Paleontology, 4: 75-93.
& —, 2010. Zoogeography and taxonomy of the Recent marine Ostracoda in the Egyptian
Red Sea Mangrove protected areas. Fifth International Conference on the Geology of the Tethys
Realm, South Valley University, January 2010: 55-70.
JONES, T. R., 1857. A monograph of the Tertiary Entomostraca of England. Annual Volumes
(Monographs) of the Paleontographical Society, 9(2): 1-68.
KASSAS,M.&M.A.ZAHRAN, 1967. On the ecology of the Red Sea littoral salt marsh, Egypt.
Ecology Management, 37: 297-316.
KISS, A., 2007. Factors affecting spatial and temporal distribution of Ostracoda assemblages in
different macrophyte habitats of a shallow lake (Lake Fehér, Hungary). Hydrobiologia, 585:
89-98.
KOLLMANN, K., 1960. Cytherideinae and Schulerideinae n. subfam. (Ostracoda) aus dem Neogen
des Ostlichen Österreich. Mitt. Geol. Ges. Wien, 51: 98-195.
MADDOCKS, R. F., 1969. Revision of recent Bairdiidae (Ostracoda). United States National
Museum Bulletin, 295: 1-126.
MADKOUR,H.A.&A.W.MOHAMMED, 2005. Nature and geochemistry of surface sediments
of the mangrove environment along the Egyptian Red Sea coast. Sedimentology of Egypt, 13:
371-384.
MALZ,H.&A.LORD, 1988. Recent ornate bairdiid Ostracoda: origin and distribution. In: T.
HANAI,N.IKEYA &K.ISHIZAKI (eds.), Evolutionary biology of Ostracoda, its fundamentals
and applications: 63-74. (Elsevier, Amsterdam).
MANSOUR, A. M., 1992. Sedimentological investigation of mangrove environment along the
western coast of the Red Sea, Egypt. Aswan Science & Technology Bulletin, 13: 25-36.
MICHAEL,J.&J.KENNISH, 1994. Practical handbook of marine science (2nd ed.): 1-566. (CRC
Press, Boca Raton, FL).
1696 SOBHI A. HELAL & MOHAMED ABD EL-WAHAB
MÜLLER, G. W., 1894. Die Ostracoden des Golfes von Neapel und der angrenzenden Meeresab-
schnitte. Fauna Flora Golf. Neapel, 21: i-viii, 1-404, pls. 1-40.
ODUM, W., 1971. Pathway of energy flow in a South Florida estuary. University of Miami, Sea
Grant Technology Bulletin 7: i-xi, 1-162.
PATERSON, M. J., 1993. The distribution of microcrustacea in the littoral zone of a freshwater lake.
Hydrobiologia, 263: 173-183.
POKORNY, V., 1978. Ostracoda. In: B. HAQ &A.BOERSMA (eds.), Introduction to marine
micropaleontology: 109-149. (Elsevier Biomedical, Amsterdam).
POR,F.D.,I.DOR &A.AMIR, 1977. The mangal of Sinai: limits of an ecosystem. Helgoländer
wiss. Meeresunters., 30: 295-314.
PRICE, A. R. G., P. A. H. MEDLEY,R.J.MCDOWALL,A.R.DAWSO N -SHEPHERD,P.J.
HOGARH &R.F.G.ORMOND, 1987. Aspects of mangal ecology along the Red Sea coast
of Saudi Arabia. Journal of Natural History, 21: 64-449.
SCHMIT,O.,G.ROSSETTI,J.VANDEKERKHOVE &F.MEZQUITA, 2007. Food selection in
Eucypris virens (Crustacea: Ostracoda) under experimental conditions. Hydrobiologia, 585:
135-140.
TEETER, J. W., 1975. Distribution of Holocene marine Ostracoda from Belize. Stud. Geol. Amer.
Assoc. Petroleum Geologists, 2: 400-499.
TRIEBEL, E., 1948. Zur Kenntnis der Ostracoden Gattung Triebelina. Senckenbergiana, 31(5/6),
17-22, 5 figs.
VAN MORKHOVEN, E. P. C. M., 1962. Post-Paleozoic Ostracoda, 1: 1-204, 79 figs., 9 pls. (Elsevier,
Amsterdam).
ZAHRAN, M. A., 1965. Distribution of the mangrove vegetation in U.A.R. Egypt. Bulletin Institute
Desert d’Egypt, 15: 6-11.
—, 1967. On the ecology of the east coast of the Gulf of Suez. 1. Littoral salt marsh. Bulletin
Institute Desert d’Egypt, 17: 225-251.
—, 1974. Biogeography of mangrove vegetation along the Red Sea coasts. In: Proceedings of
the International Symposium on Biology and Management of Mangroves, East-West Center
Honolulu, HI: 43-51.
NOTE ADDED IN PROOF
The extensive authorship of some species names has been abbreviated in various places where
the authorities have been indicated, as follows:
BCMMP =Bonaduce, Ciliberto, Minichelli, Masoli & Pugliese, 1983
BMMP =Bonaduce, Masoli, Minichelli & Pugliese, 1980
BMP =Bonaduce, Masoli & Pugliese, 1976
First received 22 March 2011.
Final version accepted 14 November 2011.
ResearchGate has not been able to resolve any citations for this publication.
Article
Taxonomic interpretations of Recent ornate bairdiids are reviewed and monophyletic and polyphyletic origins for these forms discussed in the light of new material and new distributional data. Triebelina sertata Triebel, considered to include T. rectangulata Hu and T. lata Hu as junior synonyms, is recorded from Pleistocene deposits in Taiwan and from (Sub-)Recent bottom samples from the Taiwan Strait. The species is widely distributed in circum-tropical regions and its occurrence in the Mediterranean is regarded as a relict from the Tethyan history of the region. -A new large Triebelina species (T.j ellineki sp. nov.) is described from the Phillipines, where it is associated with T. amicitiae Keij. New records of T. raripila (G.W. Muller) indicate that it is an endemic Mediterranean species. The type species of Havanardia (H. havanensis Pokorny) is recorded by new material with associated adults and juveniles from Cozumel Island, off Mexico. In addition, new records of Glyptobairdia coronata (Brady) and Pterobairdia maddocksae McKenzie and Keij are presented. G. coronata is restricted to the Caribbean. P. maddocksae, from off W. Sumatra, has certainly suffered transport from shallow to deeper waters.