Article
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Background and purpose: The non-psychotropic cannabinoid cannabichromene is known to activate the transient receptor potential ankyrin-type1 (TRPA1) and to inhibit endocannabinoid inactivation, both of which are involved in inflammatory processes. We examined here the effects of this phytocannabinoid on peritoneal macrophages and its efficacy in an experimental model of colitis. Experimental approach: Murine peritoneal macrophages were activated in vitro by LPS. Nitrite levels were measured using a fluorescent assay; inducible nitric oxide (iNOS), cyclooxygenase-2 (COX-2) and cannabinoid (CB1 and CB2 ) receptors were analysed by RT-PCR (and/or Western blot analysis); colitis was induced by dinitrobenzene sulphonic acid (DNBS). Endocannabinoid (anandamide and 2-arachidonoylglycerol), palmitoylethanolamide and oleoylethanolamide levels were measured by liquid chromatography-mass spectrometry. Colonic inflammation was assessed by evaluating the myeloperoxidase activity as well as by histology and immunohistochemistry. Key results: LPS caused a significant production of nitrites, associated to up-regulation of anandamide, iNOS, COX-2, CB1 receptors and down-regulation of CB2 receptors mRNA expression. Cannabichromene significantly reduced LPS-stimulated nitrite levels, and its effect was mimicked by cannabinoid receptor and TRPA1 agonists (carvacrol and cinnamaldehyde) and enhanced by CB1 receptor antagonists. LPS-induced anandamide, iNOS, COX-2 and cannabinoid receptor changes were not significantly modified by cannabichromene, which, however, increased oleoylethanolamide levels. In vivo, cannabichromene ameliorated DNBS-induced colonic inflammation, as revealed by histology, immunohistochemistry and myeloperoxidase activity. Conclusion and implications: Cannabichromene exerts anti-inflammatory actions in activated macrophages - with tonic CB1 cannabinoid signalling being negatively coupled to this effect - and ameliorates experimental murine colitis.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Several other studies have also found that CBC does not activate CB1, does not stimulate [ 35 S]-GTPγS binding, nor does it inhibit adenylate cyclase activity (Howlett, 1987;Romano et al., 2013). Furthermore, the lack of activation of CB1 is consistent with the observation that CBC is non-psychoactive (DeLong et al., 2010;Zagožen et al., 2021). ...
... The final version may differ from this version. lipopolysaccharide (LPS, a bacterial toxin)-stimulated, peritoneal macrophages, was found to reduce production of nitrite, INF-γ, and IL-10 ( Romano et al., 2013). A similar reduction in inflammatory cytokine production was found following CBC treatment of the macrophage cell line, RAW 267.2, after stimulation with LPS. ...
... CBC has also been shown to decrease inflammation driven hypermotility of the small intestine in the croton oil model, which was found to occur independently of both CB1 and CB2, as well as TRPA1 . Further supporting the anti-inflammatory activity of CBC, it was found that, in the dinitrobenzene sulfonic acid (DNBS) model of colitis, treatment with CBC reduces the severity of inflammation and tissue damage (Romano et al., 2013). Finally, inhaled CBC was shown to reduce cytokine production and inflammation in a mouse model of acute respiratory distress syndrome via TRPA1 and TRPV1 mediated mechanisms (Khodadadi et al., 2021). ...
Article
There is a growing interest in the use of medicinal plants to treat a variety of diseases, and one of the most commonly used medicinal plants globally is Cannabis sativa The two most abundant cannabinoids (Δ9-tetrahydrocannabinol and cannabidiol) have been governmentally approved to treat selected medical conditions; however, the plant produces over 100 cannabinoids, including cannabichromene (CBC). While the cannabinoids share a common precursor molecule, cannabigerol, they are structurally and pharmacologically unique. These differences may engender differing therapeutic potentials. In this review, we will examine what is currently known about CBC with regards to pharmacodynamics, pharmacokinetics, and receptor profile. We will also discuss the therapeutic areas that have been examined for this cannabinoid, notably antinociceptive, antibacterial, and anti-seizure activities. Finally, we will discuss areas where new research is needed and potential novel medicinal applications for CBC. Significance Statement Cannabichromene (CBC) has been suggested to have disparate therapeutic benefits such as anti-inflammatory, anticonvulsant, antibacterial, and antinociceptive effects. Most of the focus on the medical benefits of cannabinoids has been focused on THC and CBD. The preliminary studies on CBC indicate that this phytocannabinoid may have unique therapeutic potential that warrants further investigation. Following easier access to hemp, CBC products are commercially available over-the-counter and are being widely utilized with little or no evidence of their safety or efficacy.
... The modulation of TRPV1 and TRPA1 by CBC has been validated, highlighting their potential as therapeutic targets [36]. Additionally, the anti-inflammatory effects of CBC in activated macrophages further support this notion [37]. Moreover, it has been suggested that TRPA1 may play a role in mitigating the risk of ischemia-reperfusion-induced acute kidney injury via its orchestration of the macrophage-mediated inflammatory pathway [88]. ...
... TRPA1 is expressed in macrophages, microglia, and T lymphocytes. It confers an anti-inflammatory effect in T cells and macrophages but a pro-inflammatory effect in microglia [37,78,90]. TRPV1 exerts anti-inflammatory effects in macrophages and neutrophils but pro-inflammatory effects in microglia [22,40,91,92]. ...
... TRP ion channels distributed in various immune cells extend their function as nociceptors in both physiological and pathological conditions. Growing evidence supports the involvement of TRP ion channels in certain diseases through inflammatory responses, including sepsis, colitis, pain, itch, allergy, asthma, atherosclerosis, and Alzheimer's disease [28,37,62,77,97,98]. Moreover, TRP ion channels have also been implicated in obesity and diabetes as well as certain types of cancer via inflammation [5,64,85,99,100]. ...
Article
Full-text available
The transient receptor potential (TRP) ion channels act as cellular sensors and mediate a plethora of physiological processes, including somatosensation, proliferation, apoptosis, and metabolism. Under specific conditions, certain TRP channels are involved in inflammation and immune responses. Thus, focusing on the role of TRPs in immune system cells may contribute to resolving inflammation. In this review, we discuss the distribution of five subfamilies of mammalian TRP ion channels in immune system cells and how these ion channels function in inflammatory mechanisms. This review provides an overview of the current understanding of TRP ion channels in mediating inflammation and may offer potential avenues for therapeutic intervention.
... Furthermore, in the intestinal mucosa, an increased gene expression of synthesizing (NAPE-PLD and DAGL) and metabolizing (FAAH and MAGL) enzymes and a decreased transcription of CB1R were identified. 106 On the other hand, Di Sabatino et al. (2011) 59 found decreased levels of AEA in the inflamed mucosa of patients with IBD compared to non-inflamed tissue, which was concomitant with lower activity of the NAPE-PLD enzyme that synthesizes this endocannabinoid and higher activity of the FAAH enzyme that degrades this ligand. Some divergences were found between these studies, and those may be related to the different tissues evaluated and to the change in the expression of the ECS according to the stage of the disease. ...
... Furthermore, CBC reduced the effect of DNBS on cell proliferation, with mitotic activity being restricted to half of the mucosa, as identified by Ki-67 immunoreactivity. 106 In Table 3, we summarize the studies that investigated the applications of phytocannabinoids as potential treatments for intestinal inflammatory disorders. ...
... For instance, treatment with ACEA led to weight gain, shortening of the colon, and reduced macroscopic damage, diarrhea, intestinal hypermotility, MPO activity, inflammatory infiltrate, and nitrite production, demonstrating the protective effect of this drug. 102,106,124 The use of CP55,940 demonstrated a reduction in intestinal motility and inflammation. 117 CB2R agonists (AM-1241, β-caryophyllene, compound 26, HU-308, JHW-133) were also evaluated in experimental models of induced inflammation. ...
Article
Full-text available
The components of the endogenous cannabinoid system are widely expressed in the gastrointestinal tract contributing to local homeostasis. In general, cannabinoids exert inhibitory actions in the gastrointestinal tract, inducing anti-inflammatory, antiemetic, antisecretory, and antiproliferative effects. Therefore, cannabinoids are interesting pharmacological compounds for the treatment of several acute intestinal disorders, such as dysmotility, emesis, and abdominal pain. Likewise, the role of cannabinoids in the treatment of chronic intestinal diseases, such as irritable bowel syndrome and inflammatory bowel disease, is also under investigation. Patients with chronic intestinal inflammatory diseases present impaired quality of life, and mental health issues are commonly associated with long-term chronic diseases. The complex pathophysiology of these diseases contributes to difficulties in diagnosis and, therefore, in the choice of a satisfactory treatment. Thus, this article reviews the involvement of the cannabinoid system in chronic inflammatory diseases that affect the gastrointestinal tract and highlights possible therapeutic approaches related to the use of cannabinoids.
... Our findings revealed that both concentrations of CBC mitigated the level of IL-6, Pro-IL-1β, and COX-2 proteins while not exerting any modulation effect on the level of Pro-TNFα (Figures 1 and 2). Unlike our findings, Romano et al. (2013) reported that CBC did not reduce the increased IL-1β and COX-2 levels in LPS-induced macrophages. It is important to note that their experimental parameters including the CBC dosage, LPS duration, and concentration differed from those in our present study [50]. ...
... Unlike our findings, Romano et al. (2013) reported that CBC did not reduce the increased IL-1β and COX-2 levels in LPS-induced macrophages. It is important to note that their experimental parameters including the CBC dosage, LPS duration, and concentration differed from those in our present study [50]. To investigate whether these regulatory effects of CBC occurred at the transcriptional level, qRT-PCR was performed. ...
... Our findings revealed that both concentrations of CBC mitigated the level of IL-6, Pro-IL-1β, and COX-2 proteins while not exerting any modulation effect on the level of Pro-TNFα (Figures 1 and 2). Unlike our findings, Romano et al. (2013) reported that CBC did not reduce the increased IL-1β and COX-2 levels in LPS-induced macrophages. It is important to note that their experimental parameters including the CBC dosage, LPS duration, and concentration differed from those in our present study [50]. ...
... Unlike our findings, Romano et al. (2013) reported that CBC did not reduce the increased IL-1β and COX-2 levels in LPS-induced macrophages. It is important to note that their experimental parameters including the CBC dosage, LPS duration, and concentration differed from those in our present study [50]. To investigate whether these regulatory effects of CBC occurred at the transcriptional level, qRT-PCR was performed. ...
Article
Full-text available
Inflammation is a natural response of the body to signals of tissue damage or infection caused by pathogens. However, when it becomes imbalanced, it can lead to various disorders such as cancer, obesity, cardiovascular problems, neurological conditions, and diabetes. The endocannabinoid system, which is present throughout the body, plays a regulatory role in different organs and influences functions such as food intake, pain perception, stress response, glucose tolerance, inflammation, cell growth and specialization, and metabolism. Phytocannabinoids derived from Cannabis sativa can interact with this system and affect its functioning. In this study, we investigate the mechanisms underlying the anti-inflammatory effects of three minor phytocannabinoids including tetrahydrocannabivarin (THCV), cannabichromene (CBC), and cannabinol (CBN) using an in vitro system. We pre-treated THP-1 macrophages with different doses of phytocannabinoids or vehicle for one hour, followed by treating the cells with 500 ng/mL of LPS or leaving them untreated for three hours. To induce the second phase of NLRP3 inflammasome activation, LPS-treated cells were further treated with 5 mM ATP for 30 min. Our findings suggest that the mitigation of the PANX1/P2X7 axis plays a significant role in the anti-inflammatory effects of THCV and CBC on NLRP3 inflammasome activation. Additionally, we observed that CBC and THCV could also downregulate the IL-6/TYK-2/STAT-3 pathway. Furthermore, we discovered that CBN may exert its inhibitory impact on the assembly of the NLRP3 inflammasome by reducing PANX1 cleavage. Interestingly, we also found that the elevated ADAR1 transcript responded negatively to THCV and CBC in LPS-macrophages, indicating a potential involvement of ADAR1 in the anti-inflammatory effects of these two phytocannabinoids. THCV and CBN inhibit P-NF-κB, downregulating proinflammatory gene transcription. In summary, THCV, CBC, and CBN exert anti-inflammatory effects by influencing different stages of gene expression: transcription, post-transcriptional regulation, translation, and post-translational regulation.
... Preclinical research shows both CBC and CBCA have emerging therapeutic potential. CBC exhibits anti-inflammatory properties in mouse models of edema and colitis, and anti-cancer properties in in vitro cancer models (Anis et al., 2021;de Petrocellis et al., 2012de Petrocellis et al., , 2013DeLong et al., 2010;Izzo et al., 2012;Ligresti et al., 2006b;Romano et al., 2013). CBC also displays antidepressant activity in mouse models (El-Alfy et al., 2010). ...
... Two cannabinoids found in cannabis, CBC and CBCA, have therapeutic potential with preclinical research suggesting they have anticonvulsant, antidepressant, anti-inflammatory, anti-cancer and antibacterial activity (Anderson et al., 2021a;Anis et al., 2021;de Petrocellis et al., 2012de Petrocellis et al., , 2013DeLong et al., 2010;Galletta et al., 2020;Izzo et al., 2012;Ligresti et al., 2006b;Romano et al., 2013). The current study advances our understanding of these compounds by examining their interaction with the ABC transporters ABCB1 and ABCG2. ...
Article
Cannabichromene (CBC) and cannabichromenic acid (CBCA) are cannabis constituents currently under evaluation for their therapeutic potential, but their pharmacological properties have not been thoroughly investigated. The most studied ATP-binding cassette (ABC) transporters, ABC subfamily G member 2 (ABCG2) and ABC subfamily B member 1 (ABCB1) limit absorption of substrate drugs in the gut and brain. Moreover, inhibitors of these proteins can lead to clinically significant drug-drug interactions (DDIs). The current study sought to examine whether CBC and CBCA affect ABCB1 and ABCG2 to advance their basic pharmacological characterisation. The plant cannabinoids CBC and CBCA were screened in vitro in a bidirectional transport assay to determine whether they were substrates and/or inhibitors of ABCB1 and ABCG2. Transwells and polarized epithelial Madin-Darby Canine Kidney II (MDCK) cells expressing ABCB1 or ABCG2 were used. Samples were measured using liquid chromatography tandem mass spectrometry (LC-MS/MS). CBCA was found to be an ABCB1 substrate, but not an ABCG2 substrate. CBC was not a substrate of either transporter. Neither CBCA nor CBC inhibited ABCB1 transport of prazosin or ABCG2 transport of digoxin. In silico molecular docking suggested CBCA binds ABCB1 in the access tunnel and the central binding pocket. CBC, an agent with anticonvulsant, anti-inflammatory and anti-depressant properties, is not a substrate or inhibitor of ABCB1 or ABCG2, which is favourable to its therapeutic development. CBCA is an ABCB1 substrate in vitro which might contribute to its poor absorption. These findings provide important basic pharmacological data to assist the therapeutic development of these cannabis constituents.
... Macrophages 3.7.1. Expression TRPA1 was absent in naïve and activated murine peritoneal macrophages on the mRNA level [81][82][83] and protein level [83]. These cells also showed no increase in intracellular Ca 2+ levels upon AITC application [83]. ...
... In contrast, acrolein, a TRPA1 agonist and component of cigarette smoke, induced the release of TNFα from U-937 derived macrophages and Il-8 release in human alveolar macrophages, THP-1 monocytes, and U-937 derived macrophages [94]. TRPA1 ligands have also been found to reduce nitric oxide production in LPS-stimulated mouse macrophages, including the RAW264.7 cell line [95], J774.1 macrophage cell line [96], and peritoneal macrophages [81]. ...
Article
Full-text available
The non-selective cation channel TRPA1 is best known as a broadly-tuned sensor expressed in nociceptive neurons, where it plays key functions in chemo-, thermo-, and mechano-sensing. However, in this review we illustrate how this channel is expressed also in cells of the immune system. TRPA1 has been detected, mainly with biochemical techniques, in eosinophils, mast cells, macrophages, dendritic cells, T cells, and B cells, but not in neutrophils. Functional measurements, in contrast, remain very scarce. No studies have been reported in basophils and NK cells. TRPA1 in immune cells has been linked to arthritis (neutrophils), anaphylaxis and atopic dermatitis (mast cells), atherosclerosis, renal injury, cardiac hypertrophy and inflammatory bowel disease (macrophages), and colitis (T cells). The contribution of TRPA1 to immunity is dual: as detector of cell stress, tissue injury, and exogenous noxious stimuli it leads to defensive responses, but in conditions of aberrant regulation it contributes to the exacerbation of inflammatory conditions. Future studies should aim at characterizing the functional properties of TRPA1 in immune cells, an essential step in understanding its roles in inflammation and its potential as therapeutic target.
... In vitro functional data show that CBC increases viability of adult neural progenitor cells and inhibited their differentiation into astroglia, suggesting that CBC may be a candidate for treating neuroinflammatory diseases [12]. In rodents, CBC has displayed anti-microbial, anti-inflammatory, analgesic, and anti-depressant-like activity [13][14][15][16][17][18][19][20][21]. ...
... However, the present investigation was prompted by the observation that CBC was present in the clinical batch, and the studied doses (6.6-26.4 mg CBC daily) were not a priori based on doses found to be effective in published preclinical studies [13][14][15][16][17][18][19][20][21]. Future research evaluating the therapeutic potential of CBC may wish to study higher doses, and may need to collect data on safety at such doses. ...
Article
Full-text available
Purpose Cannabichromene (CBC) is a phytocannabinoid commonly found in cannabis, yet its acute post-dose pharmacokinetics (PK) have not been examined in humans. This is a secondary data analysis from a trial investigating Spectrum Yellow oil, an oral cannabis product used for medical purposes that contained 20 mg cannabidiol (CBD), 0.9 mg Δ⁹-tetrahydrocannabinol (THC), and 1.1 mg CBC, per 1 mL of oil. Methods Participants (N = 43) were randomized to one of 5 groups: 120 mg CBD, 5.4 mg THC, and 6.6 mg CBC daily; 240 mg CBD, 10.8 mg THC, and 13.2 mg CBC daily; 360 mg CBD, 16.2 mg THC, and 19.8 mg CBC daily; 480 mg CBD, 21.6 mg THC, and 26.4 mg CBC daily; or placebo. Study medication was administered every 12 h for 7 days. Plasma CBC concentrations were analyzed by a validated two-dimensional high-performance liquid chromatography–tandem mass spectrometry assay. Results After a single dose and after the final dose, the Cmax of CBC increased by 1.3–1.8-fold for each twofold increase in dose; the tmax range was 1.6–4.3 h. Based on the ratio of administered CBD, THC, and CBC to the plasma concentration, the dose of CBD was 18 times higher than the dose of CBC, yet the AUC0–t of CBD was only 6.6–9.8-fold higher than the AUC0–t of CBC; the dose of THC was similar to the dose of CBC, yet THC was quantifiable in fewer plasma samples than was CBC. Conclusions CBC may have preferential absorption over CBD and THC when administered together. Trial Registration: Australian New Zealand Clinical Trials Registry #ACTRN12619001450101, registered 18 October 2019.
... CBC is generally thought to be non-psychoactive in animal models [18,19]. In exploring non-CB receptor systems, CBC was shown to interact with a variety of transient receptor potential (TRP) channels including TRPA1 [20][21][22][23], TRPV1-4, and TRPV8, thereby having implications for pain and inflammation [2,24], and acute respiratory distress syndrome [25]. Another study showed the anti-inflammatory effects of CBC through a non-CB receptor mechanism in a model of edema [26]. ...
Article
Full-text available
Cannabichromene (CBC) is a minor cannabinoid within the array of over 120 cannabinoids identified in the Cannabis sativa plant. While CBC does not comprise a significant portion of whole plant material, it is available to the public in a purified and highly concentrated form. As minor cannabinoids become more popular due to their potential therapeutic properties, it becomes crucial to elucidate their metabolism in humans. Therefore, the goal of this was study to identify the major CBC phase I-oxidized metabolite generated in vitro following incubation with human liver microsomes. The novel metabolite structure was identified as 2′-hydroxycannabicitran using gas chromatography–mass spectrometry and nuclear magnetic resonance spectroscopy. Following the identification, in silico molecular modeling experiments were conducted and predicted 2′-hydroxycannabicitran to fit in the orthosteric site of both the CB1 and CB2 receptors. When tested in vitro utilizing a competitive binding assay, the metabolite did not show significant binding to either the CB1 or CB2 receptors. Further work necessitates the determination of potential activity of CBC and the here-identified phase I metabolite in other non-cannabinoid receptors.
... The present results are consistent with our earlier results by qRT-PCR analyses, where we also detected low levels of Trpa1 mRNA in monocytes and lymphocytes isolated from primary and secondary lymphoid organs of mice [39]. While the expression of Trpa1 mRNA was reported in mouse CD4 + splenocytes and thymocytes either by RT-PCR or qRT-PCR analyses [34,35,39], other studies did not support transcription of Trpa1 in lymphocytes or in peritoneal macrophages [83][84][85]. The differences in these findings may be explained by the methodical differences. ...
Article
Full-text available
Transient Receptor Potential Ankyrin 1 (TRPA1) is a non-selective cation channel involved in sensitivity to a plethora of irritating agents and endogenous mediators of oxidative stress. TRPA1 influences neuroinflammation and macrophage and lymphocyte functions, but its role is controversial in immune cells. We reported earlier a detectable, but orders-of-magnitude-lower level of Trpa1 mRNA in monocytes and lymphocytes than in sensory neurons by qRT-PCR analyses of cells from lymphoid organs of mice. Our present goals were to (a) further elucidate the expression of Trpa1 mRNA in immune cells by RNAscope in situ hybridization (ISH) and (b) test the role of TRPA1 in lymphocyte activation. RNAscope ISH confirmed that Trpa1 transcripts were detectable in CD14+ and CD4+ cells from the peritoneal cavity of mice. A selective TRPA1 agonist JT010 elevated Ca2+ levels in these cells only at high concentrations. However, a concentration-dependent inhibitory effect of JT010 was observed on T-cell receptor (TcR)-induced Ca2+ signals in CD4+ T lymphocytes, while JT010 neither modified B cell activation nor ionomycin-stimulated Ca2+ level. Based on our present and past findings, TRPA1 activation negatively modulates T lymphocyte activation, but it does not appear to be a key regulator of TcR-stimulated calcium signaling.
... Research has been conducted on the use of cannabis or individual cannabinoids to treat pain, including ∆ 9 -tetrahydrocannabinol (THC), cannabidiol (CBD), cannabigerol (CBG), and cannabinol (CBN) [5][6][7][8][9][10][11][12][13][14][15][16][17][18][19]. In addition to these cannabinoids, cannabichromene (CBC) is a non-psychoactive minor cannabinoid (cannabinoid compounds found in the cannabis plant at low concentrations) that has been reported to have anti-microbial and anti-inflammatory activities [20][21][22][23][24][25][26]. ...
Article
Full-text available
Cannabis sativa contains minor cannabinoids that have potential therapeutic value in pain management. However, detailed experimental evidence for the antinociceptive effects of many of these minor cannabinoids remains lacking. Here, we employed artificial intelligence (AI) to perform compound–protein interaction estimates with cannabichromene (CBC) and receptors involved in nociceptive signaling. Based on our findings, we investigated the antinociceptive properties of CBC in naïve or neuropathic C57BL/6 male and female mice using von Frey (mechanical allodynia), tail-flick (noxious radiant heat), formalin (acute and persistent inflammatory pain), and acetone (cold thermal) tests. For von Frey assessments, CBC dose (0–20 mg/kg, i.p.) and time (0–6 h) responses were measured in male and female neuropathic mice. For tail-flick, formalin, and acetone assays, CBC (20 mg/kg, i.p.) was administered to naïve male and female mice 1 h prior to testing. The results show that CBC (10 and 20 mg/kg, i.p.) significantly reduced mechanical allodynia in neuropathic male and female mice 1–2 h after treatment. Additionally, CBC treatment caused significant reductions in nociceptive behaviors in the tail-flick assay and in both phase 1 and phase 2 of the formalin test. Finally, we found a significant interaction in neuropathic male mice in the acetone test. In conclusion, our results suggest that CBC targets receptors involved in nociceptive signaling and imparts antinociceptive properties that may benefit males and females afflicted with diverse forms of acute or chronic/persistent pain.
... In contrast, the IL-1β expression in macrophages was suppressed by the TRPA1 agonist cinnamaldehyde [34] and the TRPA1 agonist cannabinoid reduces INF-γ in macrophages by inhibiting nitric oxide (NO), thus exerting an anti-inflammatory role in colitis in mice [35]. ...
Article
Full-text available
Transient receptor potential ankyrin 1 (TRPA1) channels are expressed on the surface of different cell types, including immune cells. However, TRPA1’s role in the context of innate and adaptive immune responses has not been fully elucidated so far. In this study, we aimed at investigating the expression and function of TRPA1 channels on NK cells. Among NK cells, TRPA1 was highly expressed by the CD56dimCD16+ subpopulation, but not by CD56brightCD16− cells, as detected by FACS. TRPA1 activation with the potent ligand allyl isothiocyanate (AITC) induces intracellular calcium flux in CD56dimCD16+ cells, which was prevented by the TRPA1 antagonist HC-030031. AITC treatment increased the membrane around NKp44 and strongly decreased CD16 and CD8 expression, while CD158a, CD159a, NKG2d, NKp46 were substantially unaffected. Importantly, AITC increased the granzyme production and CD107 expression and increased NK cell-mediated cytotoxicity towards the K562 cell line and two different melanoma cell lines. In parallel, TRPA1 activation also plays regulatory roles by affecting the survival of NK cells to limit uncontrolled and prolonged NK cell-mediated cytotoxicity. Our results indicate that the activation of TRPA1 is an important regulatory signal for NK cells, and agonists of TRPA1 could be used to strengthen the tumor response of the immune system.
... In the same settings, CBD given alone did not produce a significant improvement in IBD symptoms, suggesting that the CBD shows better action when combined with other minor cannabis constituents [108]. Other phytocannabinoids such as CBG [109], cannabichromene [110], and medicinal cannabis extract [111] have been shown to have beneficial effects on IBD. A recent study has shown that ∆ 9 -THC protects against colitis-associated colon cancer via the activation of CB2 receptors [112]. ...
Article
Full-text available
Humans have employed cannabis for multiple uses including medicine, recreation, food, and fibre. The various components such as roots, flowers, seeds, and leaves have been utilized to alleviate pain, inflammation, anxiety, and gastrointestinal disorders like nausea, vomiting, diarrhoea, and inflammatory bowel diseases (IBDs). It has occupied a significant space in ethnomedicines across cultures and religions. Despite multi-dimensional uses, the global prohibition of cannabis by the USA through the introduction of the Marijuana Tax Act in 1937 led to prejudice about the perceived risks of cannabis, overshadowing its medicinal potential. Nevertheless, the discovery of tetrahydrocannabinol (THC), the primary psychoactive compound in cannabis, and the endocannabinoid system renewed scientific interest in understanding the role of cannabis in modulating different conditions, including gastrointestinal disorders. Preparations combining cannabidiol and THC have shown promise in mitigating gut symptoms through anti-inflammatory and motility-enhancing effects. This review revisits the ethnomedicinal use of cannabis in gastrointestinal diseases and emphasizes the need for further research to determine optimal dosages, formulations, and safety profiles of cannabis-based medicines. It also underscores the future potential of cannabinoid-based therapies by leveraging the role of the expanded endocannabinoid system, an endocannabinoidome, in the modulation of gastrointestinal ailments.
... CBC is considered one of the main four cannabinoids in the Cannabis sativa plant. It has been shown to have therapeutic properties through activation of TRPA1 and inhibition of degradation of cannabinoids [84][85][86]. An increase in TNFα secretion was generally observed in J774A1 macrophages. ...
Article
Full-text available
Intestinal inflammation is mediated by a subset of cells populating the intestine, such as enteric glial cells (EGC) and macrophages. Different studies indicate that phytocannabinoids could play a possible role in the treatment of inflammatory bowel disease (IBD) by relieving the symptoms involved in the disease. Phytocannabinoids act through the endocannabinoid system, which is distributed throughout the mammalian body in the cells of the immune system and in the intestinal cells. Our in vitro study analyzed the putative anti-inflammatory effect of nine selected pure cannabinoids in J774A1 macrophage cells and EGCs triggered to undergo inflammation with lipopolysaccharide (LPS). The anti-inflammatory effect of several phytocannabinoids was measured by their ability to reduce TNFα transcription and translation in J774A1 macrophages and to diminish S100B and GFAP secretion and transcription in EGCs. Our results demonstrate that THC at the lower concentrations tested exerted the most effective anti-inflammatory effect in both J774A1 macrophages and EGCs compared to the other phytocannabinoids tested herein. We then performed RNA-seq analysis of EGCs exposed to LPS in the presence or absence of THC or THC-COOH. Transcriptomic analysis of these EGCs revealed 23 differentially expressed genes (DEG) compared to the treatment with only LPS. Pretreatment with THC resulted in 26 DEG, and pretreatment with THC-COOH resulted in 25 DEG. To evaluate which biological pathways were affected by the different phytocannabinoid treatments, we used the Ingenuity platform. We show that THC treatment affects the mTOR and RAR signaling pathway, while THC-COOH mainly affects the IL6 signaling pathway.
... Nevertheless, it appears that CB1R-mediated signaling can modulate CBC's activity [49]. ...
Preprint
Full-text available
Our findings indicate that all five phytocannabinoids reduce HG-HL-induced -cell loss likely through reducing apoptosis and pyroptosis. The protective effects of CBD, THCV, CBC, and CBN were seen in the GSIS impairment by HG-HL. Although all five phytocannabinoids tested in this research demonstrated the capability to inhibit β-cell dedifferentiation induced by HG-HL, CBD seems to be more effective compared to the other phytocannabinoids, as indicated by the specific biomarker responses of β-cells and progenitor cells to CBD.
... CBC is considered one of the main four cannabinoids in the Cannabis sativa plant. It has been shown to have therapeutic properties through activation of TRPA1 and inhibition of degradation of cannabinoids [106][107][108]. An increase in TNFα secretion was generaly observed in J774A1 macrophages. ...
Preprint
Full-text available
Inflammatory bowel diseases (IBD) includes Crohn's disease and ulcerative colitis, are idiopathic chronic relapsing inflammatory disorders of the intestinal tract. Different studies indicate that phytocanna-binoids, could play a possible role in the treatment of IBD by relieving the symptoms involved in the dis-ease. Phytocannabinoids act through the endocannabinoid system, which is distributed throughout the mammalian body in the cells of the immune system and in the intestinal cells. Our in vitro study analyzed the putative-anti-inflammatory effect of nine-selected pure cannabinoids in J774A1 macrophages cells and enteric glial cells (EGC’s) triggered to undergo inflammation with lipopolysaccharide (LPS). The an-ti-inflammatory effect of several phytocannabinoids was measured by their ability to reduce TNF tran-scription and translation in J774A1 macrophages and to diminish S100B and GFAP secretion and tran-scription in EGC’s. Our results demonstrate that THC at the lower concentrations tested exerted the most effective anti- inflammatory effect in both J774A1 macrophages and EGC’s compared to the other phy-tocannabinoids tested herein. We then performed RNA-seq analysis of EGC’s exposed to LPS in the presence or absence of THC or THC-COOH. Transcriptomic analysis of these EGC’s revealed 23 differ-entially expressed genes (DEG) compared to treatment with only LPS. Pretreatment with THC resulted in 26 DEG and pretreatment with THC-COOH resulted in 25 DEG. To evaluate which biological pathways were affected by the different phytocannabinoid treatments we used the Ingenuity platform. We show that THC treatment affected the mTOR and RAR signaling pathway while THC-COOH affected mainly the IL6 signaling pathway.
... CBC showed anti-inflammatory potential in activated macrophages (Romano et al., 2013) and exhibited strong effects against acne in vitro (Oláh et al., 2016). Recent studies demonstrated that CBC shows remarkable brain penetration and anticonvulsant efficacy in mouse models, suggesting that the anticonvulsant action of medicinal cannabis preparations may be mediated by the presence of this compound in the phytocomplex (Anderson et al., 2021). ...
Article
Cannabis sativa (L.) is characterized by great genetic and phenotypic diversity, also expressed in the array of bioactive compounds synthesized. Despite its great potential economic interest, knowledge of the biology and genetics of this crop is incomplete, and still many efforts are needed for a complete understanding of the molecular mechanisms regulating its key traits. To better understand the synthesis of these compounds, we analysed the transcription levels of cannabinoid pathway genes, during early phases of plant development, then comparing the transcriptional results with a chemical characterization of the same samples. The work was conducted on both industrial and medicinal C. sativa plants, using samples belonging to three different chemotypes. Genes coding for the cannabinoid synthases, involved in the last step of the cannabinoid biosynthetic pathway, were found to be already expressed in the seed, providing a measure of the importance of this metabolism for the plant. Cannabichromenic acid is known as the first cannabinoid accumulating in the seedlings, shortly after emergence, and it was found that there is a good correspondence between transcript accumulation of the cannabichromenic acid synthase gene and accumulation of the corresponding metabolite.
... Since BBB disruption occurs in neuroinflammation and underlies MDD and AD, CBD is highly probable to be useful in these pathologies. Already CBC significantly decreased IFN-γ levels in murine peritoneal macrophages activated by LPS pretreated thirty minutes before (Romano et al. 2013).These results reported in in vitro cell studies have been corroborated in vivo, particularly in mouse models of depression and AD. For instance, Florensa-Zanuy, E. et al evidenced that CBD exerts antidepressant-like effects in the lipopolysaccharide (LPS) model of depression in mice, through the reduction of the activation of brain NF-kB pathway and through the decrease of IL-6 levels in plasma and brain (Florensa-Zanuy et al. 2021). ...
Article
Full-text available
Depression and Alzheimer´s disease (AD) are two disorders highly prevalent worldwide. Depression affects more than 300 million people worldwide while AD affects 60% to 80% of the 55 million cases of dementia. Both diseases are affected by aging with high prevalence in elderly and share not only the main brain affected areas but also several physiopathological mechanisms. Depression disease is already ascribed as a risk factor to the development of AD. Despite the wide diversity of pharmacological treatments currently available in clinical practice for depression management, they remain associated to a slow recovery process and to treatment-resistant depression. On the other hand, AD treatment is essentially based in symptomatology relieve. Thus, the need for new multi-target treatments arises. Herein, we discuss the current state-of-art regarding the contribution of the endocannabinoid system (ECS) in synaptic transmission processes, synapses plasticity and neurogenesis and consequently the use of exogenous cannabinoids in the treatment of depression and on delaying the progression of AD. Besides the well-known imbalance of neurotransmitter levels, including serotonin, noradrenaline, dopamine and glutamate, recent scientific evidence highlights aberrant spine density, neuroinflammation, dysregulation of neurotrophic factor levels and formation of amyloid beta (Aβ) peptides, as the main physiopathological mechanisms compromised in depression and AD. The contribution of the ECS in these mechanisms is herein specified as well as the pleiotropic effects of phytocannabinoids. At the end, it became evident that Cannabinol, Cannabidiol, Cannabigerol, Cannabidivarin and Cannabichromene may act in novel therapeutic targets, presenting high potential in the pharmacotherapy of both diseases.
... Activation of TRPA1 restored the integrity of the colonic epithelial mucosa, inhibited the production of nitric oxide, IL-10, and IFN-γ, and significantly reduced nitrite levels. 309 These data suggest the significant role of TRPA1 in restoring intestinal mucosal integrity and reducing inflammatory factors after IBD. It may also be used to provide a new therapeutic strategy for the relief of IBD. ...
Article
Full-text available
Transient receptor potential (TRP) channels are sensors for a variety of cellular and environmental signals. Mammals express a total of 28 different TRP channel proteins, which can be divided into seven subfamilies based on amino acid sequence homology: TRPA (Ankyrin), TRPC (Canonical), TRPM (Melastatin), TRPML (Mucolipin), TRPN (NO-mechano-potential, NOMP), TRPP (Polycystin), TRPV (Vanilloid). They are a class of ion channels found in numerous tissues and cell types and are permeable to a wide range of cations such as Ca ²⁺ , Mg ²⁺ , Na ⁺ , K ⁺ , and others. TRP channels are responsible for various sensory responses including heat, cold, pain, stress, vision and taste and can be activated by a number of stimuli. Their predominantly location on the cell surface, their interaction with numerous physiological signaling pathways, and the unique crystal structure of TRP channels make TRPs attractive drug targets and implicate them in the treatment of a wide range of diseases. Here, we review the history of TRP channel discovery, summarize the structures and functions of the TRP ion channel family, and highlight the current understanding of the role of TRP channels in the pathogenesis of human disease. Most importantly, we describe TRP channel-related drug discovery, therapeutic interventions for diseases and the limitations of targeting TRP channels in potential clinical applications.
... Similarly, TRPA1 is associated with lipopolysaccharide (LPS) induced inflammatory responses, including lung inflammation, neurogenic inflammation, and Osteoarthritic Fibroblast-Like Synoviocytes [24][25][26]. Activation of TRPA1 alleviates the LPS-induced nitric oxide (NO) production in peritoneal macrophages [27]. Like other TRP superfamily members, TRPA1 is associated with various cellular proteins essential for cell survival, including Hsp90, Hsp27, and Hsp70 [28][29][30][31]. ...
Article
Full-text available
Background Transient receptor potential ankyrin 1 (TRPA1) channels are known to be actively involved in various pathophysiological conditions, including neuronal inflammation, neuropathic pain, and various immunological responses. Heat shock protein 90 (Hsp90), a cytoplasmic molecular chaperone, is well-reported for various cellular and physiological processes. Hsp90 inhibition by various molecules has garnered importance for its therapeutic significance in the downregulation of inflammation and are proposed as anti-cancer drugs. However, the possible role of TRPA1 in the Hsp90-associated modulation of immune responses remains scanty. Results Here, we have investigated the role of TRPA1 in regulating the anti-inflammatory effect of Hsp90 inhibition via 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) in lipopolysaccharide (LPS) or phorbol 12-myristate 13-acetate (PMA) stimulation in RAW 264.7, a mouse macrophage cell lines and PMA differentiated THP-1, a human monocytic cell line similar to macrophages. Activation of TRPA1 with Allyl isothiocyanate (AITC) is observed to execute an anti-inflammatory role via augmenting Hsp90 inhibition-mediated anti-inflammatory responses towards LPS or PMA stimulation in macrophages, whereas inhibition of TRPA1 by 1,2,3,6-Tetrahydro-1,3-dimethyl-N-[4-(1-methylethyl)phenyl]-2,6-dioxo-7 H-purine-7-acetamide,2-(1,3-Dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7 H-purin-7-yl)-N-(4-isopropylphenyl)acetamide (HC-030031) downregulates these developments. LPS or PMA-induced macrophage activation was found to be regulated by TRPA1. The same was confirmed by studying the levels of activation markers (major histocompatibility complex II (MHCII), cluster of differentiation (CD) 80 (CD80), and CD86, pro-inflammatory cytokines (tumor necrosis factor (TNF) and interleukin 6 (IL-6)), NO (nitric oxide) production, differential expression of mitogen-activated protein kinase (MAPK) signaling pathways (p-p38 MAPK, phospho-extracellular signal-regulated kinase 1/2 (p-ERK 1/2), and phosphor-stress-activated protein kinase/c-Jun N-terminal kinase (p-SAPK/JNK)), and induction of apoptosis. Additionally, TRPA1 has been found to be an important contributor to intracellular calcium levels toward Hsp90 inhibition in LPS or PMA-stimulated macrophages. Conclusion This study indicates a significant role of TRPA1 in Hsp90 inhibition-mediated anti-inflammatory developments in LPS or PMA-stimulated macrophages. Activation of TRPA1 and inhibition of Hsp90 has synergistic roles towards regulating inflammatory responses associated with macrophages. The role of TRPA1 in Hsp90 inhibition-mediated modulation of macrophage responses may provide insights towards designing future novel therapeutic approaches to regulate various inflammatory responses.
... Whereas TRPM8 activation induced the opposite effect in vivo, activating TRPM8 by repeated menthol enemas protects mice from experimental colitis (25). The non-psychoactive cannabis constituent Cannabichromeene reduces NO, IL-10, and INFg levels in LPS-activated peritoneal macrophages depending on TRPA1 activation (66).TRPA1 is upregulated in colitis, and its activation exerts a protective effect by reducing the expression of cytokines IL-1b and chemokine MCP-1 (67). Altogether, TRP channels exist in normal gastrointestinal macrophages, and the changes in their expression and function on macrophages play crucial roles in the development of gastrointestinal disease. ...
Article
Full-text available
The transient receptor potential channel (TRP channel) family is a kind of non- specific cation channel widely distributed in various tissues and organs of the human body, including the respiratory system, cardiovascular system, immune system, etc. It has been reported that various TRP channels are expressed in mammalian macrophages. TRP channels may be involved in various signaling pathways in the development of various systemic diseases through changes in intracellular concentrations of cations such as calcium and magnesium. These TRP channels may also intermingle with macrophage activation signals to jointly regulate the occurrence and development of diseases. Here, we summarize recent findings on the expression and function of TRP channels in macrophages and discuss their role as modulators of macrophage activation and function. As research on TRP channels in health and disease progresses, it is anticipated that positive or negative modulators of TRP channels for treating specific diseases may be promising therapeutic options for the prevention and/or treatment of disease.
... Furthermore, supplementation with omega-3-fatty acids, which reduce the levels of both AEA and 2-AG in several tissues, are able to decrease the severity of experimentally induced colitis [21]. Finally, the eCBome has been shown to be a target of phytocannabinoids extracted from Cannabis sativa [10] and several studies have shown the antiinflammatory effects of these compounds (CBD, CBG, CBDV and CBC) in different models of intestinal inflammation in mice and rats [22][23][24][25][26]. ...
Article
Full-text available
Background Gut microbiota are involved in the onset and development of chronic intestinal inflammation. The recently described endocannabinoidome (eCBome), a diverse and complex system of bioactive lipid mediators, has been reported to play a role in various physio-pathological processes such as inflammation, immune responses and energy metabolism. The eCBome and the gut microbiome (miBIome) are closely linked and form the eCBome - miBIome axis, which may be of special relevance to colitis. Methods Colitis was induced in conventionally raised (CR), antibiotic-treated (ABX) and germ-free (GF) mice with dinitrobenzene sulfonic acid (DNBS). Inflammation was assessed by Disease Activity Index (DAI) score, body weight change, colon weight-length ratio, myeloperoxidase (MPO) activity and cytokine gene expression. Colonic eCBome lipid mediator concentrations were measured by HPLC-MS /MS. Results GF mice showed increased levels of anti-inflammatory eCBome lipids (LEA, OEA, DHEA and 13- HODE-EA) in the healthy state and higher MPO activity. DNBS elicited reduced inflammation in GF mice, having lower colon weight/length ratios and lower expression levels of Il1b, Il6, Tnfa and neutrophil markers compared to one or both of the other DNBS-treated groups. Il10 expression was also lower and the levels of several N-acyl ethanolamines and 13-HODE-EA levels were higher in DNBS-treated GF mice than in CR and ABX mice. The levels of these eCBome lipids negatively correlated with measures of colitis and inflammation. Conclusions These results suggest that the depletion of the gut microbiota and subsequent differential development of the gut immune system in GF mice is followed by a compensatory effect on eCBome lipid mediators, which may explain, in part, the observed lower susceptibility of GF mice to develop DNBS-induced colitis.
... In a different study, it was observed that cannabigerol had a curative effect in patients with diabetes (21,22). In another study, it was determined that a phytocannabinoid compound had an anti-inflammatory effect (23). ...
... The TRPA1 agonist cinnamaldehyde significantly suppressed the IL-1β expression in phorbol 12-myristate 13acetate-stimulated macrophages, while TRPA1-KO aggravated macrophage infiltration, renal tubular damage, and renal dysfunction in mice (Ma et al., 2019). Moreover, it has been reported that the TRPA1 agonist cannabinoid reduces INF-γ in macrophages by inhibiting nitric oxide (NO) production to ameliorate colitis in mice (Romano et al., 2013). Therefore, the activation of the TRPA1 channel exerts an anti-inflammatory effect by regulating the release of inflammatory factors from macrophages. ...
Article
Full-text available
Recently, increasing numbers of studies have demonstrated that transient receptor potential ankyrin 1 (TRPA1) can be used as a potential target for the treatment of inflammatory diseases. TRPA1 is expressed in both neuronal and non-neuronal cells and is involved in diverse physiological activities, such as stabilizing of cell membrane potential, maintaining cellular humoral balance, and regulating intercellular signal transduction. TRPA1 is a multi-modal cell membrane receptor that can sense different stimuli, and generate action potential signals after activation via osmotic pressure, temperature, and inflammatory factors. In this study, we introduced the latest research progress on TRPA1 in inflammatory diseases from three different aspects. First, the inflammatory factors released after inflammation interacts with TRPA1 to promote inflammatory response; second, TRPA1 regulates the function of immune cells such as macrophages and T cells, In addition, it has anti-inflammatory and antioxidant effects in some inflammatory diseases. Third, we have summarized the application of antagonists and agonists targeting TRPA1 in the treatment of some inflammatory diseases.
... Carcieri and colleagues conducted an interesting study on Cannabis oil, concluding that due to the absence of a standard extraction method, the final cannabinoids concentrations in the preparations are highly variable and it is, therefore, necessary to titrate these pharmaceutical preparations [61]. Romano and Hazekamp published a research paper that describes and compares the extraction processes from Bedrocan plant material made with solvents like naphtha, petroleum ether, ethanol, olive oil-water emulsion and pure olive oil [62]. The adopted extraction method consists of a pre-heating step at 145 °C for 30 min, which is necessary for the de-carboxylation of the acid forms, followed by heating in the specific solvent at 98 °C for 60 min and solvent evaporation at 98 °C under a stream of nitrogen. ...
... Yine farklı bir çalışmada aynı bileşiğin diyabet hastalarında iyileştirici etki gösterdiği görülmüştür (31,32). Yapılan bir çalışmada yine bir fitokannabinoid bileşiğinin antienflamatuvar aktivite gösterdiği tespit edilmiştir (33). ...
Chapter
Full-text available
Kenevir yüzyıllardır insanlık tarafından bilinen önemli bir bitkidir. Son yıllarda yapılan çalışmalar ile kullanım alanları da artmaktadır. Özellikle endüstrideki kullanımı dikkate değerdir. Biyolojik aktivite olarak ise birçok hastalığın tedavi yöntemlerinde Kullanıldığı görülmektedir. Bu aktiviteler içinde en önde gelenler şunlardır: Kardiyovasküler, antiemetik, antiepileptik, immunosupresif, iştah açıcı, antinosiseptif, antienflamatuvar, antineoplastik, noroprotektif, antioksidan, antikanser, antibiyotik, psikiyatrik sendromlar (anksiyete, depresyon, uyku bozuklukları vb.). Bu etkiler nedeni ile kenevir çok fazla araştırmaya konu olmaktadır. Ülkemizde, tıbbi olarak kullanımı eskiden yasak olan kenevir son yıllarda yapılan çalışmalar ile çok geniş bir alanda kullanıldığı ve ihtiyaç duyulduğu belirlendikten sonra düzenlemeye gidilerek kullanım ve üretim izni belirli şartlarda verilmiştir. Bu gelişme ülkemiz ve insanlık açısından sevindirici olmuştur. Kenevirin daha geniş kapsamlı biyolojik aktivitelerinin hem in vivo hem de in vitro olarak belirlenmesine ihtiyaç olduğu gözlenmektedir. Kenevir uyuşturucu olarak da kullanıldığı için üretimi ve tüketimi kontrollü bir şekilde yapılmalıdır. Kötü amaçlarla kullanılmasının önüne geçilmeli ancak faydalı yönlerinden de istifade edilmelidir. Bu nedenle endüstri, tekstil, kozmetik, ilaç, mobilya ve inşaat sektörlerinde kullanımı arttırılmalıdır. Biyolojik olarak birçok ilacın yapımında kenevir esktraktlarının kullanıldığı görülmektedir. Bu amaç doğrultusunda hem mevcut ilaç potansiyeli hem de yeni ilaçlar da kullanım potansiyeli oldukça önemli görülmektedir. Halk arasında da geleneksel olarak tıbbi amaçla kullanılan kenevir oldukça önemli bir bitki olup, doğru kullanımı teşvik edilmelidir. Bu bölümde kenevirin biyolojik aktiviteleri ve özellikle bazı hastalıklardaki etkileri yer almaktadır.
... CB 2 is mainly expressed in all tissues and circulating cells of the immune system with a degree of expression and activity that depends on the type and activation of cells, as well as on the stimulus. For example, although almost absent in resting macrophages, CB 2 expression drastically increases during their priming phase, then decreases again in the fully activated state [21][22][23][24]; a similar trend has also been described for microglia [25]. In mice, CB 2 genetic ablation leads to abnormal T-and B-cell subset expansion and exacerbates inflammatory behavior in response to lipopolysaccharide exposure; nonetheless, physiological (by eCBs) and pharmacological (by selective agonists) activation of CB 2 exerts either anti-inflammatory and immunosuppressive or pro-inflammatory and immunostimulant effects [8,20,26]. ...
Article
In the last decade, selective modulators of type-2 cannabinoid receptor (CB2) have become a major focus to target endocannabinoid signaling in humans. Indeed, heterogeneously expressed within our body, CB2 actively regulates several physio-pathological processes, thus representing a promising target for developing specific and safe therapeutic drugs. If CB2 modulation has been extensively studied since the very beginning for the treatment of pain and inflammation, the more recent involvement of this receptor in other pathological conditions has further strengthened the pursuit of novel CB2 agonists in the last five years. Against this background, here we discuss the most recent evidence of the protective effects of CB2 against pathological conditions, emphasizing central nervous system disorders, bone and synovial diseases, and cancer. We also summarize the most recent advances in the development of CB2 agonists, focusing on the correlation between different chemical classes and diverse therapeutic applications. Data mining includes a review of the CB2 ligands disclosed in patents also released in the last five years. Finally, we discuss how the recent elucidation of CB2 tertiary structure has provided new details for the rational design of novel and more selective CB2 agonists, thus supporting innovative strategies to develop effective therapeutics. Our overview of the current knowledge on CB2 agonists provides pivotal information on the structure and function of different classes of molecules and opens possible avenues for future research.
... The main pharmacological target for CBC in the body is the TRPA1 receptor, which CBC displays affinity for (Zagzoog et al. 2020;De Petrocellis et al. 2010). CBC has anti-inflammatory properties and has been shown to have therapeutic potential in animal models of colitis and acne (Wirth et al. 1980;Romano et al. 2013;Olah et al. 2016). CBC also displays high antibacterial and antifungal activity (Turner and ElSohly 1981). ...
Chapter
Full-text available
Cannabis is the most versatile species. Hemp and marijuana have been used for fibre, oil, medicinal and recreational purposes from millennia. Throughout the last century, the plant has been generally outlawed because of its psychotropic effects in many nations. In recent past, the studies on cannabis revealed the evidence of its high medicinal properties and its uses in treating life threatening diseases, which leads to the relaxation of legislation in many counties. Now, the genetic and genomics as well as the cannabis derived products enjoys renewed attention. In this chapter, the discussion was made on the advent of genomics and breeding strategies to improve various traits of cannabis. This will bring insights on future direction of cannabis breeding.
... CBC also activates the TRPA1, TRPV3, and TRPV4 channels [210]. CBC has anti-inflammatory, anti-nociceptive, and neuroprotective activities [220][221][222][223][224][225]. CBC reduces the activity of both the ON and OFF Biomedicines 2022, 10, 631 9 of 48 neurons in the rostral ventromedial medulla (RVM) and elevates the endocannabinoid levels in the ventrolateral periaqueductal gray matter [221]. ...
Article
Full-text available
Antibiotic resistance has become an increasing challenge in the treatment of various infectious diseases, especially those associated with biofilm formation on biotic and abiotic materials. There is an urgent need for new treatment protocols that can also target biofilm-embedded bacteria. Many secondary metabolites of plants possess anti-bacterial activities, and especially the phytocannabinoids of the Cannabis sativa L. varieties have reached a renaissance and attracted much attention for their anti-microbial and anti-biofilm activities at concentrations below the cytotoxic threshold on normal mammalian cells. Accordingly, many synthetic cannabinoids have been designed with the intention to increase the specificity and selectivity of the compounds. The structurally unrelated endocannabinoids have also been found to have anti-microbial and anti-biofilm activities. Recent data suggest for a mutual communication between the endocannabinoid system and the gut microbiota. The present review focuses on the anti-microbial activities of phytocannabinoids and endocannabinoids integrated with some selected issues of their many physiological and pharmacological activities.
Article
Background Renal proximal tubule plays a pivotal role in regulating sodium reabsorption and thus blood pressure. Transient receptor potential ankyrin 1 (TRPA1) has been reported to protect against renal injury by modulating mitochondrial function. We hypothesize that the activation of TRPA1 by its agonist cinnamaldehyde may mitigates high salt intake induced hypertension by inhibiting urinary sodium reabsorption through restoration of renal tubular epithelial mitochondrial function. Methods Trpa1-deficient (Trpa1-/-) mice and wild-type (WT) mice were fed standard laboratory chow [normal diet (ND) group, 0.4% salt], standard laboratory chow with 8% salt [high-salt diet (HS) group] or standard laboratory chow with 8% salt plus 0.015% cinnamaldehyde [high-salt plus cinnamaldehyde diet (HSC) group] for six months. Urinary sodium excretion, ROS production, mitochondrial function and the expression of NHE3 and Na+/K+-ATPase of renal proximal tubules were determined. Results Chronic dietary cinnamaldehyde supplementation reduced tail systolic blood pressure and 24-hour ambulatory arterial pressure in HS-fed WT mice. Compared with the mice fed HS, cinnamaldehyde supplementation significantly increased urinary sodium excretion, inhibited excess ROS production and alleviated mitochondrial dysfunction of renal proximal tubules in WT mice. However, these effects of cinnamaldehyde were absent in Trpa1-/- mice. Furthermore, chronic dietary cinnamaldehyde supplementation blunted HS-induced upregulation of NHE3 and Na+/K+-ATPase in WT mice but not Trpa1-/- mice. Conclusion The present study demonstrated that chronic activation of Trpa1 attenuates HS-induced hypertension by inhibiting urinary sodium reabsorption through restoring renal tubular epithelial mitochondrial function. Renal TRPA1 may be a potential target for the management of excessive dietary salt intake-associated hypertension.
Article
Cannabichromene (CBC) is a nonpsychoactive phytocannabinoid well-known for its wide-ranging health advantages. However, there is limited knowledge regarding its human metabolism following CBC consumption. This research aimed to explore the metabolic pathways of CBC by various human liver cytochrome P450 (CYP) enzymes and support the outcomes using in vivo data from mice. The results unveiled two principal CBC metabolites generated by CYPs: 8′-hydroxy-CBC and 6′,7′-epoxy-CBC, along with a minor quantity of 1″-hydroxy-CBC. Notably, among the examined CYPs, CYP2C9 demonstrated the highest efficiency in producing these metabolites. Moreover, through a molecular dynamics simulation spanning 1 μs, it was observed that CBC attains stability at the active site of CYP2J2 by forming hydrogen bonds with I487 and N379, facilitated by water molecules, which specifically promotes the hydroxy metabolite’s formation. Additionally, the presence of cytochrome P450 reductase (CPR) amplified CBC’s binding affinity to CYPs, particularly with CYP2C8 and CYP3A4. Furthermore, the metabolites derived from CBC reduced cytokine levels, such as IL6 and NO, by approximately 50% in microglia cells. This investigation offers valuable insights into the biotransformation of CBC, underscoring the physiological importance and the potential significance of these metabolites.
Article
In recent years, the enantiomeric ratio of cannabichromene (CBC) within the cannabis plant has attracted significant attention. Cannabichromene is one of the well-known cannabinoids found in cannabis, along with THC (tetrahydrocannabinol) and CBD (cannabidiol). Cannabichromene exists as a scalemic mixture, meaning it has two enantiomers, (S)-cannabichromene and (R)-cannabichromene, with the ratio between these enantiomers varying among different cannabis strains and even within individual plants. This study presents an accurate and robust chiral NMR method for analyzing cannabichromene’s enantiomeric ratio, a well-investigated cannabinoid with numerous pharmacological targets. The use of Pirkle’s alcohol as the chiral solvating agent (CSA) or, alternatively, the use of (S)-ibuprofen as a chiral derivatizing agent (CDA) facilitated this analysis. Moreover, the chiral NMR method proves to be a user-friendly tool, easily applicable within any NMR facility, and an expanded investigation of cannabichromene chirality may provide insights into the origin, cultivation, treatment, and processing of Cannabis sativa plants. This study also undertakes a pharmacological examination of the (R)- and (S)-cannabichromenes concerning their most extensively studied pharmacological target, the TRPA1 channels, with the two enantiomers showing the same strong agonistic effect as the racemic mixture.
Article
Cannabis and cannabis products are becoming increasingly popular options for symptom management of inflammatory bowel diseases, particularly abdominal pain. While anecdotal and patient reports suggest efficacy of these compounds for these conditions, clinical research has shown mixed results. To date, clinical research has focused primarily on delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD). THC is a ligand of classical cannabinoid receptors (CBRs). CBD is one of a large group of nonintoxicating cannabinoids (niCBs) that mediate their effects on both CBRs and through non-CBR mechanisms of action. Because they are not psychotropic, there is increasing interest and availability of niCBs. The numerous niCBs show potential to rectify abnormal intestinal motility as well as have anti-inflammatory and analgesic effects. The effects of niCBs are frequently not mediated by CBRs, but rather through actions on other targets, including transient receptor potential channels and voltage-gated ion channels. Additionally, evidence suggests that niCBs can be combined to increase their potency through what is termed the entourage effect. This review examines the pre-clinical data available surrounding these niCBs in treatment of abdominal pain with a focus on non-CBR mechanisms.
Article
Full-text available
The ‘entourage effect’ term was originally coined in a pre-clinical study observing endogenous bio-inactive metabolites potentiating the activity of a bioactive endocannabinoid. As a hypothetical afterthought, this was proposed to hold general relevance to the usage of products based on Cannabis sativa L. The term was later juxtaposed to polypharmacy pertaining to full-spectrum medicinal Cannabis products exerting an overall higher effect than the single compounds. Since the emergence of the term, a discussion of its pharmacological foundation and relevance has been ongoing. Advocates suggest that the ‘entourage effect’ is the reason many patients experience an overall better effect from full-spectrum products. Critics state that the term is unfounded and used primarily for marketing purposes in the Cannabis industry. This scoping review aims to segregate the primary research claiming as well as disputing the existence of the ‘entourage effect’ from a pharmacological perspective. The literature on this topic is in its infancy. Existing pre-clinical and clinical studies are in general based on simplistic methodologies and show contradictory findings, with the clinical data mostly relying on anecdotal and real-world evidence. We propose that the ‘entourage effect’ is explained by traditional pharmacological terms pertaining to other plant-based medicinal products and polypharmacy in general (e.g., synergistic interactions and bioenhancement).
Chapter
Chromene is a naturally abundant heterocyclic compound found in alkaloids, tocopherols, terpenes and other compounds. Its derivatives can be used as a scaffold that exhibits pharmacological activity in the human body. Chromene drugs and related bioactive molecules are the prime focus of this reference. It presents 13 thoroughly researched chapters that comprehensively cover all aspects about the molecule. Starting with a detailed introduction to its role and importance in drug discovery, the book goes into the details of chromene structure, synthesis and pharmacology. Readers can gain knowledge of different commercial medicines based on chromene and its pharmacological activity against different diseases. The elaborate topics in the book will help researchers working on chromene based drugs. Key highlights of the book include: - Complete coverage of chromene's role in nature and drug development with references to historical background and current developments - References to commercial and preclinical drugs and patents of interest - Explanation of chromene bioacivity in different diseases (antioxidant, antidiabetic, antinflammatory, antibacterial and antifungal activities, antitumour, immunomodulatory activity) - Explanation of chromene activity against SARS-Cov2
Book
Full-text available
Kenevir ve sağlık
Book
Full-text available
Cannabidiol ve tıp
Book
Full-text available
Practical guide about endocannabinoid medicine and its clinical applications. Guia prático sobre medicina endocanabinoide e suas aplicações clínicas. #medicalcannabis #endocannabinology
Article
The number of people diagnosed with diabetes mellitus and its complications is markedly increasing worldwide, leading to a worldwide epidemic across all age groups, from children to older adults. Diabetes is associated with premature aging. In recent years, it has been found that peripheral overactivation of the endocannabinoid system (ECS), and in particular cannabinoid receptor 1 (CB1R) signaling, plays a crucial role in the progression of insulin resistance, diabetes (especially type 2), and its aging-related comorbidities such as atherosclerosis, nephropathy, neuropathy, and retinopathy. Therefore, it is suggested that peripheral blockade of CB1R may ameliorate diabetes and diabetes-related comorbidities. The use of synthetic CB1R antagonists such as rimonabant has been prohibited because of their psychiatric side effects. In contrast, phytocannabinoids such as cannabidiol (CBD) and tetrahydrocannabivarin (THCV), produced by cannabis, exhibit antagonistic activity on CB1R signaling and do not show any adverse side effects such as psychoactive effects, depression, or anxiety, thereby serving as potential candidates for the treatment of diabetes and its complications. In addition to these phytocannabinoids, cannabis also produces a substantial number of other phytocannabinoids, terpenes, and flavonoids with therapeutic potential against insulin resistance, diabetes, and its complications. In this review, the pathogenesis of diabetes, its complications, and the potential to use cannabinoids, terpenes, and flavonoids for its treatment are discussed.
Article
Given the high rate of nonresponse or resistance to current inflammatory bowel disease (IBD) treatments, novel drug targets and biomarkers that aid in therapeutic prediction are eagerly demanded. Transient receptor potential (TRP) channels are distributed in the gastrointestinal tract (GI) and visceral sensory nervous systems with multiple functions. An upsurge is observed in the amount of research that implicates TRP channels in several physiological and pathological process of IBD, suggesting the therapeutic potential of the TRP channels as drug targets for combating IBD. In this review, we focus on the expression levels and functions of TRP channels in GI and discuss their potential roles in IBD, including neuropeptide modulation, immune response, and the effect of TRP channels on the IBD-related pathological activities, and some experimental methods for TRP, aimed to providing theoretical support for future research.
Chapter
Although humans have used the hemp Cannabis sativa plant for thousands of years, recently there has been a shift in the availability of hemp products that are high in secondary metabolites while maintaining low levels of the intoxicating phytocannabinoid Δ9-tetrahydrocannabinol (Δ9-THC). Historically, there have been many therapeutic applications of hemp in ethnobotanical formulations for a range of conditions. The primary compound of interest is cannabidiol (CBD), which demonstrates powerful antiepileptic properties and is the rationale behind the change in legal status enabling further production and research of hemp. The plant also contains additional phytocannabinoids, as well as other bioactive molecules including terpenes and flavonoids. There is sufficient preliminary evidence for a molecular mechanism through both the endocannabinoid system and the serotonin system; additionally, there may be non-specific interactions that occur when combinations of complex formulations are administered. The interconnected nature of the endocannabinoid system with other signaling systems in the central nervous system, immune system, and other essential peripheral functions complicates the discrete identification of specific molecular mechanisms. When evaluating the potential pharmaceutical applications of the hemp Cannabis sativa plant as a whole, it is found to be well-tolerated in human clinical settings and have vast therapeutic applications across a wide range of symptoms.KeywordsEndocannabinoid systemCannabidiol (CBD)TerpenesFlavonoidsPhytocannabinoidsCannabigerol (CBG)Pharmacology
Article
Full-text available
The medicinal use of Cannabis sativa L. can be traced back thousands of years to ancient China and Egypt. While marijuana has recently shown promise in managing chronic pain and nausea, scientific investigation of cannabis has been restricted due its classification as a schedule 1 controlled substance. A major breakthrough in understanding the pharmacology of cannabis came with the isolation and characterization of the phytocannabinoids trans-Δ⁹-tetrahydrocannabinol (Δ⁹-THC) and cannabidiol (CBD). This was followed by the cloning of the cannabinoid CB1 and CB2 receptors in the 1990s and the subsequent discovery of the endocannabinoid system. In addition to the major phytocannabinoids, Δ⁹-THC and CBD, cannabis produces over 120 other cannabinoids that are referred to as minor and/or rare cannabinoids. These cannabinoids are produced in smaller amounts in the plant and are derived along with Δ⁹-THC and CBD from the parent cannabinoid cannabigerolic acid (CBGA). While our current knowledge of minor cannabinoid pharmacology is incomplete, studies demonstrate that they act as agonists and antagonists at multiple targets including CB1 and CB2 receptors, transient receptor potential (TRP) channels, peroxisome proliferator-activated receptors (PPARs), serotonin 5-HT1a receptors and others. The resulting activation of multiple cell signaling pathways, combined with their putative synergistic activity, provides a mechanistic basis for their therapeutic actions. Initial clinical reports suggest that these cannabinoids may have potential benefits in the treatment of neuropathic pain, neurodegenerative diseases, epilepsy, cancer and skin disorders. This review focuses on the molecular pharmacology of the minor cannabinoids and highlights some important therapeutic uses of the compounds.
Article
Cannabis, a genus of perennial indigenous plants is well known for its recreational and medicinal activities. Cannabis and its derivatives have potential therapeutic activities to treat epilepsy, anxiety, depression, tumors, cancer, Alzheimer's disease, Parkinson's disease, to name a few. This article reviews some recent literature on the bioactive constituents of Cannabis, commonly known as phytocannabinoids, their interactions with the different cannabinoids and non-cannabinoid receptors as well as the significances of these interactions in treating various diseases and syndromes. The biochemistry of some notable cannabinoids such as tetrahydrocannabinol, cannabidiol, cannabinol, cannabigerol, cannabichromene and their carboxylic acid derivatives is explained in the context of therapeutic activities. The medicinal features of Cannabis-derived terpenes are elucidated for treating several neuro and non-neuro disorders. Different extraction techniques to recover cannabinoids are systematically discussed. Besides the medicinal activities, the traditional and recreational utilities of Cannabis and its derivatives are presented. A brief note on the legalization of Cannabis-derived products is provided. This review provides comprehensive knowledge about the medicinal properties, recreational usage, extraction techniques, legalization and some prospects of cannabinoids and terpenes extracted from Cannabis.
Article
Full-text available
Colon cancer affects millions of individuals in Western countries. Cannabidiol, a safe and non-psychotropic ingredient of Cannabis sativa, exerts pharmacological actions (antioxidant and intestinal antinflammatory) and mechanisms (inhibition of endocannabinoid enzymatic degradation) potentially beneficial for colon carcinogenesis. Thus, we investigated its possible chemopreventive effect in the model of colon cancer induced by azoxymethane (AOM) in mice. AOM treatment was associated with aberrant crypt foci (ACF, preneoplastic lesions), polyps, and tumour formation, up-regulation of phospho-Akt, iNOS and COX-2 and down-regulation of caspase-3. Cannabidiol-reduced ACF, polyps and tumours and counteracted AOM-induced phospho-Akt and caspase-3 changes. In colorectal carcinoma cell lines, cannabidiol protected DNA from oxidative damage, increased endocannabinoid levels and reduced cell proliferation in a CB(1)-, TRPV1- and PPARγ-antagonists sensitive manner. It is concluded that cannabidiol exerts chemopreventive effect in vivo and reduces cell proliferation through multiple mechanisms.
Article
Full-text available
The marijuana plant cannabis is known to have therapeutic effects, including improvement of inflammatory processes. However, no report of patients using cannabis for Crohn's disease (CD) was ever published. To describe the effects of cannabis use in patients suffering from CD. In this retrospective observational study we examined disease activity, use of medication, need for surgery, and hospitalization before and after cannabis use in 30 patients (26 males) with CD. Disease activity was assessed by the Harvey Bradshaw index for Crohn's disease. Of the 30 patients 21 improved significantly after treatment with cannabis. The average Harvey Bradshaw index improved from 14 +/- 6.7 to 7 +/- 4.7 (P < 0.001). The need for other medication was significantly reduced. Fifteen of the patients had 19 surgeries during an average period of 9 years before cannabis use, but only 2 required surgery during an average period of 3 years of cannabis use. This is the first report of cannabis use in Crohn's disease in humans. The results indicate that cannabis may have a positive effect on disease activity, as reflected by reduction in disease activity index and in the need for other drugs and surgery. Prospective placebo-controlled studies are warranted to fully evaluate the efficacy and side effects of cannabis in CD.
Article
Full-text available
Transient receptor potential (TRP) cation channels have been among the most aggressively pursued drug targets over the past few years. Although the initial focus of research was on TRP channels that are expressed by nociceptors, there has been an upsurge in the amount of research that implicates TRP channels in other areas of physiology and pathophysiology, including the skin, bladder and pulmonary systems. In addition, mutations in genes encoding TRP channels are the cause of several inherited diseases that affect a variety of systems including the renal, skeletal and nervous system. This Review focuses on recent developments in the TRP channel-related field, and highlights potential opportunities for therapeutic intervention.
Article
Full-text available
Tetrahydrocannabinol (THC) has been the primary focus of cannabis research since 1964, when Raphael Mechoulam isolated and synthesized it. More recently, the synergistic contributions of cannabidiol to cannabis pharmacology and analgesia have been scientifically demonstrated. Other phytocannabinoids, including tetrahydrocannabivarin, cannabigerol and cannabichromene, exert additional effects of therapeutic interest. Innovative conventional plant breeding has yielded cannabis chemotypes expressing high titres of each component for future study. This review will explore another echelon of phytotherapeutic agents, the cannabis terpenoids: limonene, myrcene, α-pinene, linalool, β-caryophyllene, caryophyllene oxide, nerolidol and phytol. Terpenoids share a precursor with phytocannabinoids, and are all flavour and fragrance components common to human diets that have been designated Generally Recognized as Safe by the US Food and Drug Administration and other regulatory agencies. Terpenoids are quite potent, and affect animal and even human behaviour when inhaled from ambient air at serum levels in the single digits ng·mL -1. They display unique therapeutic effects that may contribute meaningfully to the entourage effects of cannabis-based medicinal extracts. Particular focus will be placed on phytocannabinoid-terpenoid interactions that could produce synergy with respect to treatment of pain, inflammation, depression, anxiety, addiction, epilepsy, cancer, fungal and bacterial infections (including methicillin-resistant Staphylococcus aureus). Scientific evidence is presented for non-cannabinoid plant components as putative antidotes to intoxicating effects of THC that could increase its therapeutic index. Methods for investigating entourage effects in future experiments will be proposed. Phytocannabinoid-terpenoid synergy, if proven, increases the likelihood that an extensive pipeline of new therapeutic products is possible from this venerable plant.
Article
Full-text available
The hallucinogenic compound, salvinorin A, is a potent κ-opioid receptor (KOR) agonist. However, other target(s) than the KOR, such as the cannabinoid CB1 receptor, have been proposed to explain its multiple pharmacological actions. Here, we have evaluated the effect of salvinorin A in lipopolysaccharide (LPS)-stimulated macrophages as well as in models of inflammation in vivo. Salvinorin A (0.1-10 pM) reduced LPS-stimulated nitrite, TNF-α and IL-10 (but not IL-1β) levels as well as iNOS (but not COX-2) LPS-induced hyperexpression. The effect of salvinorin A on nitrite levels was reverted by the opioid antagonist naloxone, the KOR antagonist nor-binaltorphimine and by the CB1 antagonist rimonabant Salvinorin A also prevented KOR and CB1 hyperexpression induced by LPS. In vivo, salvinorin A reduced the LPS- and the carrageenan-induced paw oedema and formalin-induced inflammatory pain, in a nor-binaltorphimine and rimonabant-sensitive manner. It is concluded that salvinorin A-via KORs and CB1 receptors-exerts ultrapotent actions on macrophages and also shows moderate antinflammatory effects in vivo.
Article
Full-text available
Approximately 20 of the 30 mammalian transient receptor potential (TRP) channel subunits are expressed by specific neurons and cells within the alimentary canal. They subserve important roles in taste, chemesthesis, mechanosensation, pain and hyperalgesia and contribute to the regulation of gastrointestinal motility, absorptive and secretory processes, blood flow, and mucosal homeostasis. In a cellular perspective, TRP channels operate either as primary detectors of chemical and physical stimuli, as secondary transducers of ionotropic or metabotropic receptors, or as ion transport channels. The polymodal sensory function of TRPA1, TRPM5, TRPM8, TRPP2, TRPV1, TRPV3 and TRPV4 enables the digestive system to survey its physical and chemical environment, which is relevant to all processes of digestion. TRPV5 and TRPV6 as well as TRPM6 and TRPM7 contribute to the absorption of Ca²⁺ and Mg²⁺, respectively. TRPM7 participates in intestinal pacemaker activity, and TRPC4 transduces muscarinic acetylcholine receptor activation to smooth muscle contraction. Changes in TRP channel expression or function are associated with a variety of diseases/disorders of the digestive system, notably gastro-esophageal reflux disease, inflammatory bowel disease, pain and hyperalgesia in heartburn, functional dyspepsia and irritable bowel syndrome, cholera, hypomagnesemia with secondary hypocalcemia, infantile hypertrophic pyloric stenosis, esophageal, gastrointestinal and pancreatic cancer, and polycystic liver disease. These implications identify TRP channels as promising drug targets for the management of a number of gastrointestinal pathologies. As a result, major efforts are put into the development of selective TRP channel agonists and antagonists and the assessment of their therapeutic potential.
Article
Full-text available
Journal of Cerebral Blood Flow & Metabolism stands at the interface between basic and clinical neurovascular research, and features research on experimental, theoretical, and clinical aspects of brain circulation, metabolism and imaging. The journal is relevant to any physician or scientist with an interest in brain function, cerebrovascular disease, cerebral vascular regulation and brain metabolism, including neurologists, neurochemists, physiologists, pharmacologists, anesthesiologists, neuroradiologists, neurosurgeons, neuropathologists and neuroscientists.
Article
Full-text available
Two non-psychoactive cannabinoids, cannabidiol (CBD) and cannabichromene (CBC), are known to modulate in vitro the activity of proteins involved in nociceptive mechanisms, including transient receptor potential (TRP) channels of vanilloid type-1 (TRPV1) and of ankyrin type-1 (TRPA1), the equilibrative nucleoside transporter and proteins facilitating endocannabinoid inactivation. Here we have tested these two cannabinoids on the activity of the descending pathway of antinociception. Electrical activity of ON and OFF neurons of the rostral ventromedial medulla in anaesthetized rats was recorded extracellularly and tail flick latencies to thermal stimuli were measured. CBD or CBC along with various antagonists were injected into the ventrolateral periaqueductal grey. Cannabidiol and CBC dose-dependently reduced the ongoing activity of ON and OFF neurons in anaesthetized rats, whilst inducing antinociceptive responses in the tail flick-test. These effects were maximal with 3 nmol CBD and 6 nmol CBC, and were antagonized by selective antagonists of cannabinoid CB(1) adenosine A(1) and TRPA1, but not of TRPV1, receptors. Both CBC and CBD also significantly elevated endocannabinoid levels in the ventrolateral periaqueductal grey. A specific agonist at TRPA1 channels and a synthetic inhibitor of endocannabinoid cellular reuptake exerted effects similar to those of CBC and CBD. CBD and CBC stimulated descending pathways of antinociception and caused analgesia by interacting with several target proteins involved in nociceptive control. These compounds might represent useful therapeutic agents with multiple mechanisms of action.
Article
Full-text available
The omega-3 fatty acid ethanolamides, docosahexaenoyl ethanolamide (DHEA) and eicosapentaenoyl ethanolamide (EPEA), displayed greater anti-proliferative potency than their parent omega-3 fatty acids, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), in LNCaP and PC3 prostate cancer cells. DHEA and EPEA activated cannabinoid CB(1) and CB(2) receptors in vitro with significant potency, suggesting that they are endocannabinoids. Both LNCaP and PC3 cells expressed CB(1) and CB(2) receptors, and the CB(1)- and CB(2)-selective antagonists, AM281 and AM630, administered separately or together, reduced the anti-proliferative potencies of EPEA and EPA but not of DHEA or DHA in PC3 cells and of EPA but not of EPEA, DHEA or DHA in LNCaP cells. Even so, EPEA and EPA may not have inhibited PC3 or LNCaP cell proliferation via cannabinoid receptors since the anti-proliferative potency of EPEA was well below the potency it displayed as a CB(1) or CB(2) receptor agonist. Indeed, these receptors may mediate a protective effect because the anti-proliferative potency of DHEA in LNCaP and PC3 cells was increased by separate or combined administration of AM281 and AM630. The anandamide-metabolizing enzyme, fatty acid amide hydrolase (FAAH), was highly expressed in LNCaP but not PC3 cells. Evidence was obtained that FAAH metabolizes EPEA and DHEA and that the anti-proliferative potencies of these ethanolamides in LNCaP cells can be enhanced by inhibiting this enzyme. Our findings suggest that the expression of cannabinoid receptors and of FAAH in some tumour cells could well influence the effectiveness of DHA and EPA or their ethanolamide derivatives as anticancer agents.
Article
Full-text available
Inflammatory bowel disease affects millions of individuals; nevertheless, pharmacological treatment is disappointingly unsatisfactory. Cannabidiol, a safe and non-psychotropic ingredient of marijuana, exerts pharmacological effects (e.g., antioxidant) and mechanisms (e.g., inhibition of endocannabinoids enzymatic degradation) potentially beneficial for the inflamed gut. Thus, we investigated the effect of cannabidiol in a murine model of colitis. Colitis was induced in mice by intracolonic administration of dinitrobenzene sulfonic acid. Inflammation was assessed both macroscopically and histologically. In the inflamed colon, cyclooxygenase-2 and inducible nitric oxide synthase (iNOS) were evaluated by Western blot, interleukin-1beta and interleukin-10 by ELISA, and endocannabinoids by isotope dilution liquid chromatography-mass spectrometry. Human colon adenocarcinoma (Caco-2) cells were used to evaluate the effect of cannabidiol on oxidative stress. Cannabidiol reduced colon injury, inducible iNOS (but not cyclooxygenase-2) expression, and interleukin-1beta, interleukin-10, and endocannabinoid changes associated with 2,4,6-dinitrobenzene sulfonic acid administration. In Caco-2 cells, cannabidiol reduced reactive oxygen species production and lipid peroxidation. In conclusion, cannabidiol, a likely safe compound, prevents experimental colitis in mice.
Article
Full-text available
The exact role of the endocannabinoid system (ECS) during spermatogenesis has not been clarified. We used purified germ cell fractions representative of all phases of spermatogenesis and primary cultures of spermatogonia. This approach allowed the precise quantification of the cannabinoid receptor ligands, anandamide and 2-arachidonoylglycerol, and of the expression at transcriptional and transductional levels of their metabolic enzymes and receptors. Our data indicate that male mouse germ cells possess an active and complete ECS, which is modulated during meiosis, and suggest the presence of an autocrine endocannabinoid signal during spermatogenesis. Mitotic cells possess higher levels of 2-arachidonoylglycerol, which decrease in spermatocytes and spermatids. Accordingly, spermatogonia express higher and lower levels of 2-arachidonoylglycerol biosynthetic and degrading enzymes, respectively, as compared to meiotic and postmeiotic cells. This endocannabinoid likely plays a pivotal role in promoting the meiotic progression of germ cells by activating CB(2) receptors. In fact, we found that the selective CB(2) receptor agonist, JWH133, induced the Erk 1/2 MAPK phosphorylation cascade in spermatogonia and their progression toward meiosis, because it increased the number of cells positive for SCP3, a marker of meiotic prophase, and the expression of early meiotic prophase genes.
Article
Full-text available
Emerging evidence suggests that cannabinoids may exert beneficial effects in intestinal inflammation and cancer. Adaptive changes of the endocannabinoid system have been observed in intestinal biopsies from patients with inflammatory bowel disease and colon cancer. Studies on epithelial cells have shown that cannabinoids exert antiproliferative, antimetastatic and apoptotic effects as well as reducing cytokine release and promoting wound healing. In vivo, cannabinoids - via direct or indirect activation of CB(1) and/or CB(2) receptors - exert protective effects in well-established models of intestinal inflammation and colon cancer. Pharmacological elevation of endocannabinoid levels may be a promising strategy to counteract intestinal inflammation and colon cancer.
Article
Full-text available
This review covers reports published in the last 5 years on the anti-inflammatory activities of all classes of cannabinoids, including phytocannabinoids such as tetrahydrocannabinol and cannabidiol, synthetic analogs such as ajulemic acid and nabilone, the endogenous cannabinoids anandamide and related compounds, namely, the elmiric acids, and finally, noncannabinoid components of Cannabis that show anti-inflammatory action. It is intended to be an update on the topic of the involvement of cannabinoids in the process of inflammation. A possible mechanism for these actions is suggested involving increased production of eicosanoids that promote the resolution of inflammation. This differentiates these cannabinoids from cyclooxygenase-2 inhibitors that suppress the synthesis of eicosanoids that promote the induction of the inflammatory process.
Article
Full-text available
The therapeutic potential of cannabidiol (CBD), the major nonpsychoactive component of cannabis, was explored in murine collagen-induced arthritis (CIA). CIA was elicited by immunizing DBA/1 mice with type II collagen (CII) in complete Freund's adjuvant. The CII used was either bovine or murine, resulting in classical acute CIA or in chronic relapsing CIA, respectively. CBD was administered after onset of clinical symptoms, and in both models of arthritis the treatment effectively blocked progression of arthritis. CBD was equally effective when administered i.p. or orally. The dose dependency showed a bell-shaped curve, with an optimal effect at 5 mg/kg per day i.p. or 25 mg/kg per day orally. Clinical improvement was associated with protection of the joints against severe damage. Ex vivo, draining lymph node cells from CBD-treated mice showed a diminished CII-specific proliferation and IFN-gamma production, as well as a decreased release of tumor necrosis factor by knee synovial cells. In vitro effects of CBD included a dose-dependent suppression of lymphocyte proliferation, both mitogen-stimulated and antigen-specific, and the blockade of the Zymosan-triggered reactive oxygen burst by peritoneal granulocytes. It also was found that CBD administration was capable of blocking the lipopolysaccharide-induced rise in serum tumor necrosis factor in C57/BL mice. Taken together, these data show that CBD, through its combined immunosuppressive and anti-inflammatory actions, has a potent anti-arthritic effect in CIA.
Article
Delta(9)-tetrahydrocannabinol binds cannabinoid (CB(1) and CB(2)) receptors, which are activated by endogenous compounds (endocannabinoids) and are involved in a wide range of physiopathological processes (e.g. modulation of neurotransmitter release, regulation of pain perception, and of cardiovascular, gastrointestinal and liver functions). The well-known psychotropic effects of Delta(9)-tetra hydrocannabinol, which are mediated by activation of brain CB(1) receptors, have greatly limited its clinical use. However, the plant Cannabis contains many cannabinoids with weak or no psychoactivity that, therapeutically, might be more promising than Delta(9)-tetra hydrocannabinol. Here, we provide an overview of the recent pharmacological advances, novel mechanisms of action, and potential therapeutic applications of such non-psychotropic plant-derived cannabinoids. Special emphasis is given to cannabidiol, the possible applications of which have recently emerged in inflammation, diabetes, cancer, affective and neurodegenerative diseases, and to Delta(9)-tetrahydrocannabivarin, a novel CB(1) antagonist which exerts potentially useful actions in the treatment of epilepsy and obesity.
Article
Interleukin-10 (IL-10), first recognized for its ability to inhibit activation and effector function of T cells, monocytes, and macrophages, is a multifunctional cytokine with diverse effects on most hemopoietic cell types. The principal routine function of IL-10 appears to be to limit and ultimately terminate inflammatory responses. In addition to these activities, IL-10 regulates growth and/or differentiation of B cells, NK cells, cytotoxic and helper T cells, mast cells, granulocytes, dendritic cells, keratinocytes, and endothelial cells. IL-10 plays a key role in differentiation and function of a newly appreciated type of T cell, the T regulatory cell, which may figure prominently in control of immune responses and tolerance in vivo. Uniquely among hemopoietic cytokines, IL-10 has closely related homologs in several virus genomes, which testify to its crucial role in regulating immune and inflammatory responses. This review highlights findings that have advanced our understanding of IL-10 and its receptor, as well as its in vivo function in health and disease.
Article
Crohn's disease and ulcerative colitis are two major forms of inflammatory bowel diseases (IBD), which are chronic inflammatory disorders of the gastrointestinal tract. These pathologies are currently under investigation to both unravel their etiology and find novel treatments. Anandamide and 2-arachidonoylglycerol are endogenous bioactive lipids that bind to and activate the cannabinoid receptors, and together with the enzymes responsible for their biosynthesis and degradation [fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL)] constitute the endocannabinoid system (ECS). The ECS is implicated in gut homeostasis, modulating gastrointestinal motility, visceral sensation, and inflammation, as well as being recently implicated in IBD pathogenesis. Numerous subsequent studies investigating the effects of cannabinoid agonists and endocannabinoid degradation inhibitors in rodent models of IBD have identified a potential therapeutic role for the ECS.
Article
In recent years, the use of anthraquinone laxatives, in particular senna, has been associated with damage to the intestinal epithelial layer and an increased risk of developing colorectal cancer. In this study, we evaluated the cytotoxicity of rhein, the active metabolite of senna, on human colon adenocarcinoma cells (Caco-2) and its effect on cell proliferation. Cytotoxicity studies were performed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), neutral red (NR) and trans-epithelial electrical resistance (TEER) assays whereas 3H-thymidine incorporation and Western blot analysis were used to evaluate the effect of rhein on cell proliferation. Moreover, for genoprotection studies Comet assay and oxidative biomarkers measurement (malondialdehyde and reactive oxygen species) were used. Rhein (0.1–10 μg/ml) had no significant cytotoxic effect on proliferating and differentiated Caco-2 cells. Rhein (0.1 and 1 μg/ml) significantly reduced cell proliferation as well as mitogen-activated protein (MAP) kinase activation; by contrast, at high concentration (10 μg/ml) rhein significantly increased cell proliferation and extracellular-signal-related kinase (ERK) phosphorylation. Moreover, rhein (0.1–10 μg/ml): (i) did not adversely affect the integrity of tight junctions and hence epithelial barrier function; (ii) did not induce DNA damage, rather it was able to reduce H2O2-induced DNA damage and (iii) significantly inhibited the increase in malondialdehyde and reactive oxygen species (ROS) levels induced by H2O2/Fe2+. Rhein was devoid of cytotoxic and genotoxic effects in colon adenocarcinoma cells. Moreover, at concentrations present in the colon after a human therapeutic dosage of senna, rhein inhibited cell proliferation via a mechanism that seems to involve directly the MAP kinase pathway. Finally, rhein prevents the DNA damage probably via an anti-oxidant mechanism.
Article
The University of Mississippi has a contract with the National Institute on Drug Abuse (NIDA) to carry out a variety of research activities dealing with cannabis, including the Potency Monitoring (PM) program, which provides analytical potency data on cannabis preparations confiscated in the United States. This report provides data on 46,211 samples seized and analyzed by gas chromatography-flame ionization detection (GC-FID) during 1993–2008. The data showed an upward trend in the mean Δ9-tetrahydrocannabinol (Δ9-THC) content of all confiscated cannabis preparations, which increased from 3.4% in 1993 to 8.8% in 2008. Hashish potencies did not increase consistently during this period; however, the mean yearly potency varied from 2.5–9.2% (1993–2003) to 12.0–29.3% (2004–2008). Hash oil potencies also varied considerably during this period (16.8 ± 16.3%). The increase in cannabis preparation potency is mainly due to the increase in the potency of nondomestic versus domestic samples.
Article
We have investigated the inhibition of lipopolysaccharide stimulated nitric oxide production in RAW264.7 macrophages by the cannabinoids and the putative cannabinoid CB2-like receptor ligand, palmitoylethanolamide. (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo-[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone mesylate ((+)-WIN55212) and, to a lesser extent (−)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hydroxy-propyl)cyclohexan-1-ol (CP55940), significantly inhibited lipopolysaccharide stimulated nitric oxide production. The level of inhibition was found to be dependent on the concentration of lipopolysaccharide used to induce nitric oxide production. Palmitoylethanolamide significantly inhibited nitric oxide production induced by lipopolysaccharide. The inhibition of nitric oxide production by (+)-WIN55212 but not palmitoylethanolamide was significantly attenuated in the presence of the cannabinoid CB2 receptor antagonist, N-[(1S)-endo-1,3,3-trimethyl bicyclo [2.2.1] heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide (SR144528). (+)-WIN55212 produced a pertussis toxin-sensitive parallel rightward shift in the log concentration–response curve for lipopolysaccharide, causing a fivefold increase in the EC50 value for lipopolysaccharide with no change in the Emax value. (−)-WIN55212 had no effect on the log concentration–response curve for lipopolysaccharide. Palmitoylethanolamide did not produce a rightward shift in the lipopolysaccharide concentration–response curve. However, it did produce a pertussis toxin-insensitive reduction in the Emax value. The results suggest that the inhibition of lipopolysaccharide mediated nitric oxide release by (+)-WIN55212 in murine macrophages is mediated by cannabinoid CB2 receptors. In contrast, the inhibition by palmitoylethanolamide does not appear to be mediated by cannabinoid receptors.
Article
Compounds of Cannabis sativa are known to exert anti-inflammatory properties, some of them without inducing psychotropic side effects. Cannabidiol (CBD) is such a side effect-free phytocannabinoid that improves chemically induced colitis in rodents when given intraperitoneally. Here, we tested the possibility whether rectal and oral application of CBD would also ameliorate colonic inflammation, as these routes of application may represent a more appropriate way for delivering drugs in human colitis. Colitis was induced in CD1 mice by trinitrobenzene sulfonic acid. Individual groups were either treated with CBD intraperitoneally (10 mg/kg), orally (20 mg/kg) or intrarectally (20 mg/kg). Colitis was evaluated by macroscopic scoring, histopathology and the myeloperoxidase (MPO) assay. Intraperitoneal treatment of mice with CBD led to improvement of colonic inflammation. Intrarectal treatment with CBD also led to a significant improvement of disease parameters and to a decrease in MPO activity while oral treatment, using the same dose as per rectum, had no ameliorating effect on colitis. The data of this study indicate that in addition to intraperitoneal application, intrarectal delivery of cannabinoids may represent a useful therapeutic administration route for the treatment of colonic inflammation.
Article
Cannabichromene (CBC) is a major non-psychotropic phytocannabinoid that inhibits endocannabinoid inactivation and activates the transient receptor potential ankyrin-1 (TRPA1). Both endocannabinoids and TRPA1 may modulate gastrointestinal motility. Here, we investigated the effect of CBC on mouse intestinal motility in physiological and pathological states. Inflammation was induced in the mouse small intestine by croton oil. Endocannabinoid (anandamide and 2-arachidonoyl glycerol), palmitoylethanolamide and oleoylethanolamide levels were measured by liquid chromatography-mass spectrometry; TRPA1 and cannabinoid receptors were analysed by quantitative RT-PCR; upper gastrointestinal transit, colonic propulsion and whole gut transit were evaluated in vivo; contractility was evaluated in vitro by stimulating the isolated ileum, in an organ bath, with ACh or electrical field stimulation (EFS). Croton oil administration was associated with decreased levels of anandamide (but not 2-arachidonoyl glycerol) and palmitoylethanolamide, up-regulation of TRPA1 and CB₁ receptors and down-regulation of CB₂ receptors. Ex vivo CBC did not change endocannabinoid levels, but it altered the mRNA expression of TRPA1 and cannabinoid receptors. In vivo, CBC did not affect motility in control mice, but normalized croton oil-induced hypermotility. In vitro, CBC reduced preferentially EFS- versus ACh-induced contractions. Both in vitro and in vivo, the inhibitory effect of CBC was not modified by cannabinoid or TRPA1 receptor antagonists. CBC selectively reduces inflammation-induced hypermotility in vivo in a manner that is not dependent on cannabinoid receptors or TRPA1.
Article
The Fifth Edition of the 'Guide to Receptors and Channels' is a compilation of the major pharmacological targets divided into seven sections: G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, nuclear receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside suggestions for further reading. Available alongside this publication is a portal at http://www.GuideToPharmacology.org which is produced in close association with NC-IUPHAR and allows free online access to the information presented in the Fifth Edition.
Article
Inflammatory bowel disease (IBD) patients suffer from significant morbidity and diminished life quality. The plant cannabis is beneficial in various gastrointestinal diseases, stimulating appetite and causing weight gain. Our aims were to assess whether treatment with inhaled cannabis improves quality of life, disease activity and promotes weight gain in these patients. Patients with long-standing IBD who were prescribed cannabis treatment were included. Two quality of life questionnaires and disease activity indexes were performed, and patient's body weight was measured before cannabis initiation and after 3 months' treatment. Thirteen patients were included. After 3 months' treatment, patients reported improvement in general health perception (p = 0.001), social functioning (p = 0.0002), ability to work (p = 0.0005), physical pain (p = 0.004) and depression (p = 0.007). A schematic scale of health perception showed an improved score from 4.1 ± 1.43 to 7 ± 1.42 (p = 0.0002). Patients had a weight gain of 4.3 ± 2 kg during treatment (range 2-8; p = 0.0002) and an average rise in BMI of 1.4 ± 0.61 (range 0.8-2.7; p = 0.002). The average Harvey-Bradshaw index was reduced from 11.36 ± 3.17 to 5.72 ± 2.68 (p = 0.001). Three months' treatment with inhaled cannabis improves quality of life measurements, disease activity index, and causes weight gain and rise in BMI in long-standing IBD patients.
Article
Allyl isothiocyanate (AITC, mustard oil), a constituent of many common cruciferous vegetables (Brassicaceae), activates transient receptor potential of ankyrin type-1 (TRPA1) channels, claimed to regulate gastrointestinal contractility. In this study, we have investigated the effect of AITC on intestinal motility. Effects of AITC were investigated in vivo on upper gastrointestinal transit in mice and in mouse isolated ileum [contractions induced by electrical field stimulation (EFS), acetylcholine and spontaneous contractility]. The contractor activity of AITC was studied in mouse isolated colon. The ability of TRPA1 channel antagonists to block AITC-induced elevation of intracellular Ca(2+) [Ca(2+)](i) was assessed in HEK293 cells transfected with rat TRPA1 channels. AITC increased [Ca(2+)](i) in HEK293 cells, reduced ileal contractility (acetylcholine-, EFS-induced contractions and spontaneous contractility), but contracted the isolated colon. Gentamicin and camphor (non-selective TRPA1 channel antagonists), HC-030031 and AP18 (selective TRPA1 channel agonists) inhibited AITC-induced effects in HEK293 cells but not in the ileum or colon. AITC-induced contractions were reduced by tetrodotoxin and strongly reduced by nifedipine, cyclopiazonic acid and ryanodine. In vivo, AITC reduced (following i.p. administration) or increased (following intragastric administration) upper gastrointestinal transit in mice These effects were not affected by HC-030031. AITC, depending, in vitro, on the regions of gut examined and, in vivo, on the route of administration, exerted both stimulatory and inhibitory effects on intestinal motility, which were not sensitive to TRPA1 channel antagonists. The proposition that TRPA1 channels are the primary targets for AITC to induce contraction should be revised.
Article
Experimental evidence suggests the endogenous cannabinoid system may protect against colonic inflammation, leading to the possibility that activation of this system may have a therapeutic role in inflammatory bowel disease (IBD). Medicinal use of cannabis for chronic pain and other symptoms has been reported in a number of medical conditions. We aimed to evaluate cannabis use in patients with IBD. One hundred patients with ulcerative colitis (UC) and 191 patients with Crohn's disease (CD) attending a tertiary-care outpatient clinic completed a questionnaire regarding current and previous cannabis use, socioeconomic factors, disease history and medication use, including complimentary alternative medicines. Quality of life was assessed using the short-inflammatory bowel disease questionnaire. A comparable proportion of UC and CD patients reported lifetime [48/95 (51%) UC vs. 91/189 (48%) CD] or current [11/95 (12%) UC vs. 30/189 (16%) CD] cannabis use. Of lifetime users, 14/43 (33%) UC and 40/80 (50%) CD patients have used it to relieve IBD-related symptoms, including abdominal pain, diarrhoea and reduced appetite. Patients were more likely to use cannabis for symptom relief if they had a history of abdominal surgery [29/48 (60%) vs. 24/74 (32%); P=0.002], chronic analgesic use [29/41 (71%) vs. 25/81 (31%); P<0.001], complimentary alternative medicine use [36/66 (55%) vs. 18/56 (32%); P=0.01] and a lower short inflammatory bowel disease questionnaire score (45.1±2.1 vs. 50.3±1.5; P=0.03). Patients who had used cannabis [60/139 (43%)] were more likely than nonusers [13/133 (10%); P<0.001 vs. users] to express an interest in participating in a hypothetical therapeutic trial of cannabis for IBD. Cannabis use is common amongst patients with IBD for symptom relief, particularly amongst those with a history of abdominal surgery, chronic abdominal pain and/or a low quality of life index. The therapeutic benefits of cannabinoid derivatives in IBD may warrant further exploration.
Article
The neuropeptides calcitonin gene-related peptide (CGRP) and substance P, and calcium channels, which control their release from extrinsic sensory neurons, have important roles in experimental colitis. We investigated the mechanisms of colitis in 2 different models, the involvement of the irritant receptor transient receptor potential of the ankyrin type-1 (TRPA1), and the effects of CGRP and substance P. We used calcium-imaging, patch-clamp, and neuropeptide-release assays to evaluate the effects of 2,4,6-trinitrobenzene-sulfonic-acid (TNBS) and dextran-sulfate-sodium-salt on neurons. Colitis was induced in wild-type, knockout, and desensitized mice. TNBS induced TRPA1-dependent release of colonic substance P and CGRP, influx of Ca2+, and sustained ionic inward currents in colonic sensory neurons and transfected HEK293t cells. Analysis of mutant forms of TRPA1 revealed that TNBS bound covalently to cysteine (and lysine) residues in the cytoplasmic N-terminus. A stable sulfinic acid transformation of the cysteine-SH group, shown by mass spectrometry, might contribute to sustained sensitization of TRPA1. Mice with colitis had increased colonic neuropeptide release, mediated by TRPA1. Endogenous products of inflammatory lipid peroxidation also induced TRPA1-dependent release of colonic neuropeptides; levels of 4-hydroxy-trans-2-nonenal increased in each model of colitis. Colitis induction by TNBS or dextran-sulfate-sodium-salt was inhibited or reduced in TRPA1-/- mice and by 2-(1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-yl)-N-(4-isopro-pylphenyl)-acetamide, a pharmacologic inhibitor of TRPA1. Substance P had a proinflammatory effect that was dominant over CGRP, based on studies of knockout mice. Ablation of extrinsic sensory neurons prevented or attenuated TNBS-induced release of neuropeptides and both forms of colitis. Neuroimmune interactions control intestinal inflammation. Activation and sensitization of TRPA1 and release of substance P induce and maintain colitis in mice.
Article
Plant cannabinoids, like Δ(9)-tetrahydrocannabinol (THC) and cannabidiol (CBD), activate/desensitize thermosensitive transient receptor potential (TRP) channels of vanilloid type-1 or -2 (TRPV1 or TRPV2). We investigated whether cannabinoids also activate/desensitize two other 'thermo-TRP's', the TRP channels of vanilloid type-3 or -4 (TRPV3 or TRPV4), and if the TRPV-inactive cannabichromene (CBC) modifies the expression of TRPV1-4 channels in the gastrointestinal tract. TRP activity was assessed by evaluating elevation of [Ca(2+)](i) in rat recombinant TRPV3- and TRPV4-expressing HEK-293 cells. TRP channel mRNA expression was measured by quantitative RT-PCR in the jejunum and ileum of mice treated with vehicle or the pro-inflammatory agent croton oil. (i) CBD and tetrahydrocannabivarin (THCV) stimulated TRPV3-mediated [Ca(2+)](i) with high efficacy (50-70% of the effect of ionomycin) and potency (EC(50∼) 3.7 μm), whereas cannabigerovarin (CBGV) and cannabigerolic acid (CBGA) were significantly more efficacious at desensitizing this channel to the action of carvacrol than at activating it; (ii) cannabidivarin and THCV stimulated TRPV4-mediated [Ca(2+)](i) with moderate-high efficacy (30-60% of the effect of ionomycin) and potency (EC(50) 0.9-6.4 μm), whereas CBGA, CBGV, cannabinol and cannabigerol were significantly more efficacious at desensitizing this channel to the action of 4-α-phorbol 12,13-didecanoate (4α-PDD) than at activating it; (iii) CBC reduced TRPV1β, TRPV3 and TRPV4 mRNA in the jejunum, and TRPV3 and TRPV4 mRNA in the ileum of croton oil-treated mice. Cannabinoids can affect both the activity and the expression of TRPV1-4 channels, with various potential therapeutic applications, including in the gastrointestinal tract.
Article
Oxidative stress with reactive oxygen species generation is a key weapon in the arsenal of the immune system for fighting invading pathogens and initiating tissue repair. If excessive or unresolved, however, immune-related oxidative stress can initiate further increasing levels of oxidative stress that cause organ damage and dysfunction. Targeting oxidative stress in various diseases therapeutically has proven more problematic than first anticipated given the complexities and perversity of both the underlying disease and the immune response. However, growing evidence suggests that the endocannabinoid system, which includes the CB₁ and CB₂ G-protein-coupled receptors and their endogenous lipid ligands, may be an area that is ripe for therapeutic exploitation. In this context, the related nonpsychotropic cannabinoid cannabidiol, which may interact with the endocannabinoid system but has actions that are distinct, offers promise as a prototype for anti-inflammatory drug development. This review discusses recent studies suggesting that cannabidiol may have utility in treating a number of human diseases and disorders now known to involve activation of the immune system and associated oxidative stress, as a contributor to their etiology and progression. These include rheumatoid arthritis, types 1 and 2 diabetes, atherosclerosis, Alzheimer disease, hypertension, the metabolic syndrome, ischemia-reperfusion injury, depression, and neuropathic pain.
Article
Cannabidiol (CBD) and Δ(9) -tetrahydrocannabinol (THC) interact with transient receptor potential (TRP) channels and enzymes of the endocannabinoid system. The effects of 11 pure cannabinoids and botanical extracts [botanical drug substance (BDS)] from Cannabis varieties selected to contain a more abundant cannabinoid, on TRPV1, TRPV2, TRPM8, TRPA1, human recombinant diacylglycerol lipase α (DAGLα), rat brain fatty acid amide hydrolase (FAAH), COS cell monoacylglycerol lipase (MAGL), human recombinant N-acylethanolamine acid amide hydrolase (NAAA) and anandamide cellular uptake (ACU) by RBL-2H3 cells, were studied using fluorescence-based calcium assays in transfected cells and radiolabelled substrate-based enzymatic assays. Cannabinol (CBN), cannabichromene (CBC), the acids (CBDA, CBGA, THCA) and propyl homologues (CBDV, CBGV, THCV) of CBD, cannabigerol (CBG) and THC, and tetrahydrocannabivarin acid (THCVA) were also tested. CBD, CBG, CBGV and THCV stimulated and desensitized human TRPV1. CBC, CBD and CBN were potent rat TRPA1 agonists and desensitizers, but THCV-BDS was the most potent compound at this target. CBG-BDS and THCV-BDS were the most potent rat TRPM8 antagonists. All non-acid cannabinoids, except CBC and CBN, potently activated and desensitized rat TRPV2. CBDV and all the acids inhibited DAGLα. Some BDS, but not the pure compounds, inhibited MAGL. CBD was the only compound to inhibit FAAH, whereas the BDS of CBC > CBG > CBGV inhibited NAAA. CBC = CBG > CBD inhibited ACU, as did the BDS of THCVA, CBGV, CBDA and THCA, but the latter extracts were more potent inhibitors. These results are relevant to the analgesic, anti-inflammatory and anti-cancer effects of cannabinoids and Cannabis extracts.
Article
Kyoto University (京都大学) 0048 新制・課程博士 博士(医学) 甲第15713号 医博第3501号 新制/医/984 28258 2010-11-24 京都大学大学院医学研究科医学専攻 (主査)教授 長田 重一, 教授 坂井 義治, 教授 生田 宏一 学位規則第4条第1項該当
Article
Tacrolimus is a novel immunomodulator for inflammatory bowel diseases. Immunosuppressive effects of tacrolimus on T cells are well known; however, the effects of tacrolimus on macrophages remain unclear. The aim of this study was to investigate the effects of tacrolimus on activated macrophages and to examine its efficacy in murine colitis models. Proinflammatory cytokine production from lipopolysaccharide (LPS)-stimulated peritoneal macrophages of IL-10-knockout (KO) mice with and without tacrolimus was measured. We investigated the effects of tacrolimus on nuclear factor-κB (NF-κB), mitogen-activated protein kinase (MAPK), and caspase activation in macrophages and the induction of apoptosis in macrophages in vitro and examined the in vivo apoptotic effect of tacrolimus on colonic macrophages in IL-10-KO mice. We evaluated the effect of the rectal administration of tacrolimus on colonic inflammation in IL-10-KO mice and dextran sulfate sodium (DSS)-induced colitis in CB.17/SCID mice. Proinflammatory cytokine production from tacrolimus-treated macrophages was significantly lower than that from untreated cells. Tacrolimus suppressed LPS-induced activation of both NF-κB and MAPK in macrophages and induced apoptosis of macrophages via activation of caspases 3 and 9. Rectal administration of tacrolimus evoked apoptosis of colonic macrophages in IL-10-KO mice. Moreover, the rectal administration of tacrolimus ameliorated colitis in IL-10-KO mice and DSS-induced colitis in CB.17/SCID mice. Gene expression of inflammatory cytokines in colonic mucosa was significantly lower in tacrolimus-treated mice than in untreated mice. Tacrolimus suppresses the function of activated macrophages and promotes their apoptosis, which may lead to the amelioration of colonic inflammation.
Article
British Journal of Pharmacology (BJP) is pleased to publish a new set of guidelines for reporting research involving animals, simultaneously with several other journals; the 'ARRIVE' guidelines (Animals in Research: Reporting In Vivo Experiments). This editorial summarizes the background to the guidelines, gives our view of their significance, considers aspects of specific relevance to pharmacology, re-states BJP's guidelines for authors on animal experiments and indicates our commitment to carrying on discussion of this important topic. We also invite feedback via the British Pharmacological Society website.
Article
In contrast to the numerous reports on the pharmacological effects of Δ(9)-tetrahydrocannabinol (THC), the pharmacological activity of another substituent of Cannabis sativa, cannabichromene (CBC) remains comparatively unknown. In the present study, we investigated whether CBC elicits cannabinoid activity in the tetrad assay, which consists of the following four endpoints: hypomotility, antinociception, catalepsy, and hypothermia. Because cannabinoids are well documented to possess anti-inflammatory properties, we examined CBC, THC, and combination of both phytocannabinoids in the lipopolysaccharide (LPS) paw edema assay. CBC elicited activity in the tetrad that was not blocked by the CB(1) receptor antagonist, rimonabant. Moreover, a behaviorally inactive dose of THC augmented the effects of CBC in the tetrad that was associated with an increase in THC brain concentrations. Both CBC and THC elicited dose-dependent anti-inflammatory effects in the LPS-induced paw edema model. The CB(2) receptor, SR144528 blocked the anti-edematous actions of THC, but not those produced by CBC. Isobolographic analysis revealed that the anti-edematous effects of these cannabinoids in combination were additive. Although CBC produced pharmacological effects, unlike THC, its underlying mechanism of action did not involve CB(1) or CB(2) receptors. In addition, there was evidence of a possible pharmacokinetic component in which CBC dose-dependently increased THC brain levels following an i.v. injection of 0.3mg/kg THC. In conclusion, CBC produced a subset of behavioral activity in the tetrad assay and reduced LPS-induced paw edema through a noncannabinoid receptor mechanism of action. These effects were augmented when CBC and THC were co-administered.
Article
Cannabis is taken as self-medication by patients with inflammatory bowel disease for symptomatic relief. Cannabinoid receptor agonists decrease inflammation in animal models of colitis, but their effects on the disturbed motility is not known. (-)-Cannabidiol (CBD) has been shown to interact with Delta(9)-tetrahydrocannabinol (THC) in behavioural studies, but it remains to be established if these cannabinoids interact in vivo in inflammatory disorders. Therefore the effects of CBD and THC alone and in combination were investigated in a model of colitis. The 2,4,6-trinitrobenzene sulphonic acid (TNBS) model of acute colitis in rats was used to assess damage, inflammation (myeloperoxidase activity) and in vitro colonic motility. Sulphasalazine was used as an active control drug. Sulphasalazine, THC and CBD proved beneficial in this model of colitis with the dose-response relationship for the phytocannabinoids showing a bell-shaped pattern on the majority of parameters (optimal THC and CBD dose, 10 mg.kg(-1)). THC was the most effective drug. The effects of these phytocannabinoids were additive, and CBD increased some effects of an ineffective THC dose to the level of an effective one. THC alone and in combination with CBD protected cholinergic nerves whereas sulphasalazine did not. In this model of colitis, THC and CBD not only reduced inflammation but also lowered the occurrence of functional disturbances. Moreover the combination of CBD and THC could be beneficial therapeutically, via additive or potentiating effects.
Article
A selection of seven phytocannabinoids representative of the major structural types of classic cannabinoids and their corresponding cannabivarins was investigated for in vivo topical anti-inflammatory activity in the Croton oil mouse ear dermatitis assay. Differences in the terpenoid moiety were far more important for anti-inflammatory activity than those at the C-3 alkyl residue, suggesting the involvement not only of cannabinoid receptors, but also of other inflammatory end-points targeted by phytocannabinoids.
Article
Delta(9)-tetrahydrocannabinol binds cannabinoid (CB(1) and CB(2)) receptors, which are activated by endogenous compounds (endocannabinoids) and are involved in a wide range of physiopathological processes (e.g. modulation of neurotransmitter release, regulation of pain perception, and of cardiovascular, gastrointestinal and liver functions). The well-known psychotropic effects of Delta(9)-tetrahydrocannabinol, which are mediated by activation of brain CB(1) receptors, have greatly limited its clinical use. However, the plant Cannabis contains many cannabinoids with weak or no psychoactivity that, therapeutically, might be more promising than Delta(9)-tetrahydrocannabinol. Here, we provide an overview of the recent pharmacological advances, novel mechanisms of action, and potential therapeutic applications of such non-psychotropic plant-derived cannabinoids. Special emphasis is given to cannabidiol, the possible applications of which have recently emerged in inflammation, diabetes, cancer, affective and neurodegenerative diseases, and to Delta(9)-tetrahydrocannabivarin, a novel CB(1) antagonist which exerts potentially useful actions in the treatment of epilepsy and obesity.
Article
The data show marked variation within a specific geographical location as well as geographical origin in general. The presence of cannabichromene (II) and the absence of cannabidiol (I) in variants reputed to produce potent marijuana (Costa Rican and Mexican) seem to indicate that some interaction is occurring between II and tetrahydrocannabinol. It is clear that II is more abundant in some variants than I and that II can no longer arbitrarily be considered a minor cannabinoid.
Article
Pulmonary leukostasis can be associated with acute lung injury. We studied lung peroxidase activity using myeloperoxidase (MPO) as a granulocyte marker to quantitate pulmonary leukostasis in rabbits. Lungs were homogenized in detergent, freeze-thawed, sonified, and centrifuged, and supernatants were assayed for MPO. Seven extractions were performed, and greater than 80% of cumulative MPO was found in the first three extractions. By use of a three-extraction procedure, the mean lung MPO (delta A X min-1 X g tissue-1) was determined in normal [20.9 +/- 5.2 (SE)], granulocyte-depleted (6.5 +/- 2.0), saline-injected (22.2 +/- 5.6), and pneumococcus (PNC)-challenged (69.7 +/- 10.6) animals. Lung MPO was significantly decreased in granulocyte-depleted compared with normal animals (P less than 0.005) and significantly increased in PNC-challenged compared with saline-injected animals (P less than 0.001). MPO extracted from granulocytes and lungs from normal as well as PNC-challenged animals were all biochemically identical. Lung extract did not inhibit MPO, and no MPO was detected in bronchoalveolar lavage fluid obtained from leukostatic lungs. Lung MPO significantly (P less than 0.01) correlated with intravascular intrapulmonary granulocytes. Determination of lung MPO is a relatively simple quantitative method that can be used to detect pulmonary leukostasis.
Article
The anti-edema activity of THC has been directly compared to that of hydrocortisone and aspirin in rat paw edemas produced by eleven different phlogistic agents. A significant effective dose for THC could only be achieved in carrageenan, dextran, formalin, kaolin and Na urate induced edemas, while hydrocortisone and aspirin were active against all edemas except that produced by serotonin. Based on these data it is suggested that the anti-edema effects of THC most likely occur by a different mode of action than either the classic steroid or non-steroidal anti-inflammatory agents.
Article
An assay was devised to quantitate acute intestinal inflammation based on the assessment of myeloperoxidase activity. Myeloperoxidase is an enzyme found in neutrophils and, in much smaller quantities, in monocytes and macrophages. Myeloperoxidase was solubilized with hexadecyltrimethylammonium bromide and myeloperoxidase activity was measured with a dianisidine-H2O2 assay. In neutrophil suspensions, myeloperoxidase activity was directly related to cell number down to as few as 500 cells. Myeloperoxidase activity was assayed in two animal models of inflammation: acetic acid-induced colitis in rats and Clostridium difficile enterotoxin-induced enteritis in hamsters. In both models, the activity of myeloperoxidase solubilized from the inflamed tissue was directly proportional to the number of neutrophils seen in histologic sections. Histologic evaluation of neutrophil accumulation was performed by counting the number of neutrophils in a histologic section 0.18 mm long and 5 micron thick. In both animal models, myeloperoxidase activity was linearly related to neutrophil number from 400 and 4000 cells/mm. Myeloperoxidase activity from chronically inflamed colon, in which both neutrophils and histiocytes were present, was directly related to neutrophil content. Histiocytes did not contribute significantly to myeloperoxidase activity. The determination of myeloperoxidase activity in the intestine is a simple biochemical assay that can be used to quantitate inflammation.
Article
Cannabichromene (CBC) is one of four major cannabinoids in Cannabis sativa L. and is the second most abundant cannabinoid in drug-type cannabis. Cannabichromene and some of its homologs, analogs, and isomers were evaluated for antiinflammatory, antibacterial, and antifungal activity. Antiinflammatory activity was evaluated by the carrageenan-induced rat paw edema and the erythrocyte membrane stabilization method. In both tests, CBC was superior to phenylbutazone. Antibacterial activity of CBC and its isomers and homologs was evaluated using gram-positive, gram-negative, and acid-fast bacteria. Antifungal activity was evaluated using yeast-like and filamentous fungi and a dermatophyte. Antibacterial activity was strong, and the antifungal activity was mild to moderate.
Article
It was not known if Cannabichromene (CBC), which is a major constituent of drug types of , has anti-inflammatory properties as do other cannabinoids. CBC was tested using the rat paw edema test and using the erythrocyte membrane stabilization assay. CBC was as effective as phenylbutazone (PBZ) at equivalent doses. Since CBC is less toxic than PBZ, larger doses may be given to produce a greater therapeutic effect.
Article
N-Arachidonoylethanolamine (anandamide, AEA) is a putative endogenous ligand of the cannabinoid receptor. Intact cerebellar granule neurons in primary culture rapidly accumulate AEA. [3H]AEA accumulation by cerebellar granule cells is dependent on incubation time (t(1/2) of 2.6 +/- 0.8 min at 37 degrees C) and temperature. The accumulation of AEA is saturable and has an apparent Km of 41 +/- 15 microM and a Vmax of 0.61 +/- 0.04 nmol/min/10(6) cells. [3H]AEA accumulation by cerebellar granule cells is significantly reduced by 200 microM phloretin (57.4 +/- 4% of control) in a noncompetitive manner. [3H]AEA accumulation is not inhibited by either ouabain or removal of extracellular sodium. [3H]AEA accumulation is fairly selective for AEA among other naturally occurring N-acylethanolamines; only N-oleoylethanolamine significantly inhibited [3H]AEA accumulation at a concentration of 10 microM. The ethanolamides of palmitic acid and linolenic acid were inactive at 10 microM. N-Arachidonoylbenzylamine and N-arachidonoylpropylamine, but not arachidonic acid, 15-hydroxy-AEA, or 12-hydroxy-AEA, compete for AEA accumulation. When cells are preloaded with [3H]AEA, temperature-dependent efflux occurs with a half-life of 1.9 +/- 1.0 min. Phloretin does not inhibit [3H]AEA efflux from cells. These results suggest that AEA is accumulated by cerebellar granule cells by a protein-mediated transport process that has the characteristics of facilitated diffusion.
Article
IL-10 is an antiinflammatory cytokine secreted by activated macrophages and Th2 cells. IL-10 secretion promotes the down-regulation of proinflammatory cytokine synthesis and the development of Th2 responses. In macrophages, proinflammatory cytokines appear to be induced by similar mechanisms, but the IL-10 induction mechanisms have not been examined. We have analyzed the murine IL-10 promoter in the RAW264.7 macrophage line activated with LPS. A comprehensive mutant analysis revealed only one element upstream of the core promoter that was essential for promoter induction. A refined mutant analysis localized this element to nucleotides -89 to -78, and gel shift experiments revealed that it represents a nonconsensus binding site for Sp1. The functional relevance of Sp1 was supported by the high affinity of the interaction, the close correlation between the nucleotides required for Sp1 binding and promoter function, and the ability of an Sp1 consensus sequence to substitute for the -89/-78 promoter sequence. Evidence that Sp1 may be a target of signaling pathways involved in IL-10 induction was provided by the exclusive requirement for the Sp1 binding site, by the ability of the Sp1 site to confer induction to a heterologous promoter, and by the delineation of an Sp1 domain that can mediate induction. No relevant contribution from Rel, C/EBP (CCAAT/enhancer-binding protein), or AP-1 binding sites, which regulate most proinflammatory cytokine promoters, was observed. Together, these results demonstrate that IL-10 gene regulation is distinct from the regulation of proinflammatory cytokine genes, and suggest that Sp1 may be a central mediator of IL-10 induction.
Article
Inflammation causes the induction of cyclooxygenase-2 (Cox-2), leading to the release of prostanoids, which sensitize peripheral nociceptor terminals and produce localized pain hypersensitivity. Peripheral inflammation also generates pain hypersensitivity in neighbouring uninjured tissue (secondary hyperalgesia), because of increased neuronal excitability in the spinal cord (central sensitization), and a syndrome comprising diffuse muscle and joint pain, fever, lethargy and anorexia. Here we show that Cox-2 may be involved in these central nervous system (CNS) responses, by finding a widespread induction of Cox-2 expression in spinal cord neurons and in other regions of the CNS, elevating prostaglandin E2 (PGE2) levels in the cerebrospinal fluid. The major inducer of central Cox-2 upregulation is interleukin-1beta in the CNS, and as basal phospholipase A2 activity in the CNS does not change with peripheral inflammation, Cox-2 levels must regulate central prostanoid production. Intraspinal administration of an interleukin-converting enzyme or Cox-2 inhibitor decreases inflammation-induced central PGE2 levels and mechanical hyperalgesia. Thus, preventing central prostanoid production by inhibiting the interleukin-1beta-mediated induction of Cox-2 in neurons or by inhibiting central Cox-2 activity reduces centrally generated inflammatory pain hypersensitivity.