ArticlePDF Available

Abstract and Figures

The aim of this work is to update the scientific knowledge of Uruguayan amphibians. We address the trends of studies since the beginning of the 19 th century until today, describing the transition from descriptive studies focused on natural history to modern evolutionary and ecological perspectives. In order to assess the inventory completeness of the Uruguayan amphibians, we compiled 13,711 records from the main scientific collections in the country. Geographic distributions were derived from georeferenced records overlaid on a grid of 302 quadrants. We generated a cumulative species curve (quadrants as sampling units), which showed an asymptotic pattern with a maximum estimated value of 48 species (95%-confidence interval: 46-60), very close to the actual number of known species (50 species). The upper bound of the confidence interval reaches 60 species suggesting that 14 species could still remain unknown in the worst scenario. The data are heterogeneously distributed across the country: 43% of quadrants have no information, 50% are sub-sampled, and only 8% can be considered as well known. The extent of information gaps seriously challenges assessments of geographic distributions of the amphibian diversity at the quadrant resolution scale. Only the coastline borders of the Río de la Plata, the Atlantic coast, regions in the northern basaltic hills, and in the northwestern littoral zone, are relatively well known at this scale. We conclude that important sampling effort, mainly in the detected geographic information gaps, is needed to complete our knowledge about Uruguayan amphibian diversity.
Content may be subject to copyright.
2010] 12000] 1
Bol. Soc. Zool. Uruguay,
2ª época, 2010. 19: 1-19
AMPHIBIAN DIVERSITY OF URUGUAY: BACKGROUND KNOWLEDGE, INVENTORY
COMPLETENESS AND SAMPLING COVERAGE
Andrés Canavero1,2,3, Alejandro Brazeiro1, Arley Camargo4, Inés da Rosa5,
Raúl Maneyro5 and Diego Núñez5.
1. Grupo Biodiversidad y Ecología de la Conservación, Facultad de Ciencias, Universidad de
la República, Uruguay. acanavero@bio.puc.cl
2. Center for Advanced Studies in Ecology & Biodiversity (CASEB), and Departamento de
Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile.
3. Centro Universitario de Rivera, Universidad de la República, Uruguay, Ituzaingó 667.
4. Department of Biology, Brigham Young University, 177 WIDB, Provo, Utah 84602, USA.
5. Facultad de Ciencias, Universidad de la República, Uruguay.
ABSTRACT
The aim of this work is to update the scientific knowledge of Uruguayan amphibians. We address the
trends of studies since the beginning of the 19th century until today, describing the transition from
descriptive studies focused on natural history to modern evolutionary and ecological perspectives. In
order to assess the inventory completeness of the Uruguayan amphibians, we compiled 13,711 records
from the main scientific collections in the country. Geographic distributions were derived from georeferenced
records overlaid on a grid of 302 quadrants. We generated a cumulative species curve (quadrants as
sampling units), which showed an asymptotic pattern with a maximum estimated value of 48 species
(95%-confidence interval: 46-60), very close to the actual number of known species (50 species). The
upper bound of the confidence interval reaches 60 species suggesting that 14 species could still remain
unknown in the worst scenario. The data are heterogeneously distributed across the country: 43% of
quadrants have no information, 50% are sub-sampled, and only 8% can be considered as well known.
The extent of information gaps seriously challenges assessments of geographic distributions of the
amphibian diversity at the quadrant resolution scale. Only the coastline borders of the Río de la Plata, the
Atlantic coast, regions in the northern basaltic hills, and in the northwestern littoral zone, are relatively well
known at this scale. We conclude that important sampling effort, mainly in the detected geographic
information gaps, is needed to complete our knowledge about Uruguayan amphibian diversity.
Key Words: Amphibians, Biological Conservation, Geographic Distribution, Uruguayan Diversity.
RESUMEN
Diversidad de anfibios del Uruguay: estado de conocimiento, completitud del inventario y
cobertura de muestreo. La meta de este trabajo es poner en perspectiva el conocimiento científico
de los anfibios uruguayos. Analizamos las tendencias en el estudio de los anfibios desde principios
el siglo XIX hasta nuestros días, describiendo la transición desde estudios descriptivos enfocados
en la historia natural a modernos estudios evolutivos y ecológicos. A los efectos de evaluar la
completitud de inventario de los anfibios de Uruguay, compilamos 13711 registros depositados en
las principales colecciones científicas del país. La distribución geográfica de cada registro fue
georeferenciado en una cuadrícula de 302 cuadrantes. Generamos una curva acumulada de
2 BOL. SOC. ZOOL. URUGUAY (2ª época) [2010
especies (los cuadrantes como unidades de muestreo) que mostró un patrón asintótico, con un
máximo estimado de 48 especies (Intervalo de Confianza: 46-60). Considerando el límite superior
del intervalo de confianza del estimador (60 especies), 14 especies podrían permanecer desconoci-
das en el peor escenario. El grado de conocimiento se distribuye heterogéneamente en el país: 43%
de los cuadrantes carecen de información, 50% están submuestreados y solo 8% puede ser
considerado como bien conocido. La magnitud de los vacíos de información limita la capacidad de
conocer apropiadamente la diversidad de anfibios a la resolución de cuadrante. Sólo el litoral del Río
de la Plata, la costa atlántica, parte de la cuesta basáltica y el litoral Noroeste, están relativamente
bien conocidos a esta escala. En tal sentido, aún resta un importante esfuerzo de muestreo,
principalmente en los vacíos geográficos de información detectados, para completar nuestro conoci-
miento acerca de la diversidad de anfibios de Uruguay.
Palabras clave: Anfibios, Conservación Biológica, Distribución Geográfica, Diversidad Uru-
guaya.
INTRODUCTION
Conservation of biodiversity has to be based on a good knowledge of the taxonomy and
distribution of the fauna and flora (Lomolino & Heaney, 2004). This knowledge is compiled in two
basic forms: scientific publications and voucher specimens deposited in scientific collections
(see Langone (2007) for Uruguayan amphibians). To assess the scientific knowledge of Uruguayan
amphibians, (1) we reviewed the scientific publications to summarize a historical perspective of
the study of Uruguayan amphibians, and (2) we assessed the inventory completeness of this
threatened group of vertebrates (Blauustein & Wake 1995).
Taxonomy and Geographic Distributions
The first reference about the natural history of amphibians in Uruguay appeared at the
beginning of the 19th century (see Klappenbach & Langone, 1992). The priest and naturalist
Dámaso Antonio Larrañaga made the first descriptions of Uruguayan amphibians based on
drawings and field notes of several native species (Pseudis minuta, Hypsiboas pulchellus,
Limnomedusa macroglossa) that were published more than a century later (Larrañaga, 1823;
Mañé Garzón, 2000; Mañé Garzón & Islas, 2000). After Larrañaga’s pioneering work, several
famous European naturalists, like A. d’Orbigny and C. Darwin, visited Uruguay in the mid-19th
century. In the second half of the 19th century, several descriptive works included taxonomic
classifications (Günther, 1859; Burmeister, 1861; Cope, 1862; Jiménez de la Espada, 1875;
Boulenger, 1885; Berg, 1896). The first anuran species described from specimens collected in
Uruguay (Montevideo) was Pleurodema bibroni (Tschudi, 1838). Subsequently, Duméril and
Bibron (1841) described Rhinella dorbignyi, Hypsiboas pulchellus, Leptodactylus gracilis, and
Limnomedusa macroglossa (also based on specimens from Montevideo). Several years later,
Günther (1859) described Pseudis minuta from southern Uruguay and Jiménez de la Espada
(1875) described Leptodactylus latinatus, again using specimens from Montevideo. At the
beginning of the 20th century, Philippi (1902) described Melanophryniscus montevidensis with
specimens from Montevideo and four decades later, this time with specimens from inland
Uruguay, Schmidt (1944) described Dendropsophus sanborni (Departamento de Maldonado)
and Scinax uruguayus (Quebrada de los Cuervos, Departamento de Treinta y Tres). A more
2010] 3
CANAVERO et al.: Amphibian diversity of Uruguay
complete historical perspective of the growth in the knowledge of amphibians from Uruguay can
be found in Klappenbach and Langone (1992) and Maneyro and Carreira (2006).
The first species lists of amphibians from Uruguay are those of Langguth (1976, 34 species),
de Sá (1986, 35 species), and Achaval (1989, 38 species) who recounted. These lists were
based on the information from specimens deposited in collections as well as from publications
reporting the discovery of new species for Uruguay (Vaz-Ferreira et al., 1984), new species
descriptions (Prigioni & Langone, 1986), and detailed accounts of geographic distributions
(Prigioni, 1978; Prigioni, 1979; Prigioni & Langone, 1983; Langone & Basso, 1987). Another
important source were the field surveys reported in Sierra et al. (1977), Achaval et al. (1979),
and Prigioni and Langone (1984). Finally, Klappenbach and Langone (1992) reported 39
species and made an exhaustive compilation of the information available for each of these
species.
In the last decade of the 20th century, several field surveys were published from eastern
(Maneyro et al., 1995; Forni et al., 1995; Langone 1997), western (Cayssials et al., 2002), and
northern Uruguay (Achaval, 1998). An important series of reports referred to as “Relevamientos
de Biodiversidad”, was published since 1998. This series contains species lists with remarks on
the amphibians from Paso Baltasar, Departamento de Tacuarembó (González et al., 1998),
Laguna de Castillos and Aguas Dulces, Departamento de Rocha (Gambarotta, 1999; González
& Gambarotta, 2001), and Aguas Corrientes, Departamento de Canelones (Langone, 1999). All
these studies constituted the baseline information for an updated species list of amphibians in
Uruguay that reported a total of 43 species (Langone, 2003).
An intensification of field work, especially in northern and northwestern Uruguay (Departa-
mentos de Artigas, Cerro Largo, Rivera, Tacuarembó y Treinta y Tres), has resulted in the
discovery and/or description of 18.8% of all known amphibians from Uruguay in the last 11
years. Within this unprecedented boom of previously unknown biodiversity are included: Rhinella
achavali, Dendropsophus minutus, Hypsiboas albopunctatus, Leptodactylus furnarius,
Melanophryniscus pachyrhynus, Odontophrynus maisuma, Physalaemus cuvieri, Scinax
aromothyella, S. fuscovarius, Melanophryniscus langonei (Olmos et al., 1997; Arrieta & Maneyro,
1999; Canavero et al., 2001; Kwet et al., 2002; Maneyro et al., 2004a; Borteiro et al., 2005;
Prigioni et al., 2005; Maneyro & Beheregaray, 2007; Maneyro et al., 2008a; Rosset, 2008). In
addition to these recently discovered species, we also include Lithobates catesbeianus, which
is an exotic species introduced for commercial purposes and accidentally released to the wild
with the consequential risk of negative interactions with the native amphibians, other vertebrates,
and the ecosystem in general (Maneyro et al., 2005; Laufer et al., 2008).
The information generated by investigators associated to the Colección de Zoología
Vertebrados of Facultad de Ciencias and the Museo Nacional de Historia Natural has been
synthesized in the “Lista de los vertebrados del Uruguay” (Achaval, 2009), which allows its
immediate update and easy access for a general public in an internet website. We also should
add the records of new localities that provide useful data for more accurate estimates of
geographic distributions within Uruguay (Prigioni & Langone, 1983; Naya & Maneyro, 2001;
Borteiro & Kolenc, 2007). Lastly, we highlight the publications “Distribución geográfica de la
fauna de anfibios del Uruguay” (Núñez et al., 2004) and the synthesis by Maneyro and Kwet
(2008) about bufonids from the border region between Uruguay and Brazil that summarized all
the information available up to the moment, which represent the baseline data for the preparation
of this work.
4 BOL. SOC. ZOOL. URUGUAY (2ª época) [2010
Natural History
The larval stage of anurans, the tadpole, is mostly aquatic and therefore the study of the
terrestrial adult stage alone is insufficient to understand the life history of amphibians (McDiarmid
& Altig, 1999). In contrast to the adult stage, the progress in the knowledge of the larval life
history of Uruguayan amphibians is still incipient. In spite of few examples, studies of larval
biology are of major importance due to the unique reproductive biology of some species such as
the tadpoles of Leptodactylus ocellatus, which aggregate to form schools and receive their
mother’s parental care (Vaz-Ferreira & Gerhau, 1975, 1986; Laufer & Maneyro, 2008). There
has been a considerable surge in the study of anuran larvae in recent years in Uruguay, which is
reflected in the description and re-description of the tadpoles of several species: Hypsiboas
pulchellus, Leptodactylus gracilis, L. latinasus, L. mystacinus, Melanophryniscus montevidensis,
M. orejasmirandai, M. sanmartini, Physalaemus biligonigerus, P. riograndensis, P. fernandezae,
P. gracilis, P. henselii, P. riograndensis, Pleurodema bibroni, Pseudopaludicola falcipes, Rhinella
dorbignyi, Scinax aromothyella, S. uruguayus (Garrido-Yrigaray, 1989; Langone, 1989; Prigioni
& Langone, 1990; Prigioni & Arrieta, 1992; Prigioni & García Sánchez, 2002; Kolenc et al., 2003;
Langone & de Sá, 2005; Alcalde et al., 2006; Borteiro et al., 2006; Kolenc et al., 2006; Borteiro
& Kolenc, 2007; Borteiro et al., 2007; Kolenc et al., 2008; Laufer & Barreneche, 2008; Kolenc et
al., 2009). We highlight a series of studies that described larval anatomical features and
generated evolutionary inferences upon their descriptive work (Lavilla & Langone, 1995; de Sá
& Lavilla, 1997; Langone & Cardoso, 1997; Larson & de Sá, 1998; Lavilla & de Sá, 1999; Kolenc
et al., 2003; Larson et al., 2003). The discovery of albino larva of Melanophryniscus montevidensis
(Maneyro and Achaval, 2004), and the confirmation of chytridiomycosis in frogs from Uruguay
represent relevant reports with conservation implications. Borteiro et al. (2009) reported this
fungal disease caused by Batrachochytrium dendrobatidis for the first time in histological
analyses of larval Hypsiboas pulchellus, Odontophrynus maisuma, Physalaemus henselii, and
Scinax squalirostris (Borteiro et al., 2009). Moreover, Mazzoni et al., (2003) reported
chytridiomycosis in Uruguay in farms of Lithobates catesbeianus).
Other aspects of the biology of amphibians from Uruguay, beyond their morphology and
geographic distribution, started with the first behavioral studies of Vaz-Ferreira and Gerhau
(1974, 1975, 1986). The research of foreign herpetologists (e.g. Barrio, 1964; Gallardo, 1964)
contributed extensively to the knowledge of the Uruguayan anuran fauna because their work
included many species present in Uruguay. More recently, a number of studies were published
about the biology of Phyllomedusa iheringii and Limnomedusa macroglossa (Gudynas &
Gerhau, 1981; de Sá & Gerhau, 1983; Langone et al., 1985; Langone, 1993), the gametogenesis
in Chthonerpeton indistinctum (de Sá & Berois, 1985, 1986), the pelvic osteology in the genera
Bufo (actually Rhinella) and Elachistocleis (Prigioni & Langone, 1992), and the ecology of
herpetological communities including analyses of resource partitioning (Gudynas, 1985; Gudynas
& Rudolf, 1987). Rinderknecht (1998) is probably the more relevant reference from the
paleontological perspective.
In the beginning of the 21st century, a remarkable increase in ‘functional’ studies of amphibians
included analyses of adult’s diets (da Rosa et al., 2002; Maneyro & da Rosa, 2004; Maneyro et
al., 2004b; Berazategui et al., 2007), ecophysiology (Naya et al., 2002; Naya et al., 2003), and
reproductive biology (Camargo et al., 2005; Kwet et al., 2005; Maneyro et al., 2008b; Camargo
2010] 5
CANAVERO et al.: Amphibian diversity of Uruguay
et al., 2008) of several anurans of Uruguay. More recently, there are numerous anatomical and
chemical analyses of skin gland secretions of several bufonids (Naya et al., 2004; Mebs et al.,
2005; Mebs et al., 2007a; Mebs et al., 2007b), karyotype descriptions of species in the P.
henselii group (Tomatis et al., 2009), the spatio-temporal structure of assemblages (Canavero et
al., 2008; Canavero & Arim, 2009; Canavero et al., 2009; Maneyro, 2008), and a synthetic work
of population and community ecology in a well studied frog community in Espinas Creek,
Departamento de Maldonado (da Rosa et al., 2006). Among the most comprehensive, relevant
publications are those of Cei (1980, 1987), Lavilla and Cei (2001), and the species accounts of
the “Catalogue of American Amphibians and Reptiles” made for Chthonerpeton indistinctum
(Gudynas & Williams, 1992), Hypsiboas albopunctatus (de Sá, 1995), Leptodactylus mystacinus
(Heyer et al., 2003), and Leptodactylus furnarius (Heyer & Heyer, 2004). One of the first books
for the general public that reviewed and summarized all information about the Uruguayan
herpetofauna is Klappenbach and Orejas-Miranda (1969), followed by another book with more
scientific rigor that provided a necessary update of the systematics and biology of anurans
(Langone, 1995). Two years later, a photographic field guide for amphibians and reptiles of
Uruguay with two subsequent editions (Achaval & Olmos, 1997, 2003, 2007) became a source
of basic information, identification, and conservation for the general public. The first key of
amphibians of Uruguay was Prigioni & Achaval (1992), which served as the basis for a recent
updated version (Ziegler & Maneyro, 2008).
Conservation
Several methodologies have been used for evaluating the conservation status of Uruguayan
amphibians. An example is the method proposed by Langone (1995) and Achaval and Olmos
(2007), but the analyses of Maneyro and Langone (1999, 2001) have broader interest because
they used the standardized SUMIN index Reca et al. ,1994), which was calculated for all 42
species known at that moment. At the present, all amphibian species from Uruguay are
categorized using IUCN criteria via the “Global Amphibian Assessment” (GAA) (IUCN 2010)
and there has been a recent summary of the conservation status in Uruguay published by the
“Declining Amphibian Population Task Force” (Langone, in press). More recently and based on
the application of IUCN criteria (IUCN 2003) within the Uruguayan territory, Canavero et al.
(2010) published the Red List of Amphibians (and also Reptiles) of Uruguay.
Synthesis
In general terms, the progress of the study of amphibians has followed the trends of the
zoological studies in Uruguay where the discipline went from an idiographic phase (dominated
by descriptive studies of taxonomy and natural history) to a nomothetic phase with an emphasis
in the search for general patterns and processes (Hess, 1997). This focal change does not imply
a rejection of the taxonomy and natural history since the advances in the nomothetic phase lead
necessarily to the description of new species, revision of existing species, and progress in the
study of their natural history (Davyt et al., 2006).
6 BOL. SOC. ZOOL. URUGUAY (2ª época) [2010
MATERIAL AND METHODS
In Uruguay, the Class Amphibia Gray, 1825 includes 50 known species belonging to two
orders and nine families (Table 1). In order to assess the completeness of the amphibians
inventory, we reanalyzed the data from Uruguayan scientific collections in the Museo Nacional
de Historia Natural (MUNHINA) and the Zoología Vertebrados de la Facultad de Ciencias,
Universidad de la República (ZVCB), as well as from records of Uruguayan specimens stored in
the Colección Herpetológica del Instituto Nacional Malbrán (now Museo Argentino de Ciencias
Naturales “Bernardino Rivadavia”), published by Nuñez et al. (2004). We also updated the
database with the new records housed at ZVCB until 2006.
To analyze the geographic distribution of this information, every record was georeferenced
on a grid of 302 quadrants of about 30x22 km each based on the National Cartographic Plan
and integrated into a Geographic Information System (GIS). The records with undefined
geographic positions were removed from the analyses. A total of 13,711 records of amphibians
were included from 46 out of the 50 species known in Uruguay. Four species were not included
in the analyses because one of them is an introduced species (Lithobates catesbeianus;
Maneyro et al., 2005; Laufer et al., 2008), and the other three species have not been described
or cited yet for Uruguay at the time the databases were analyzed for this study (Physalaemus
cuvieri, Maneyro & Beheregaray, 2007; Odontophrynus maisuma, Rosset, 2008;
Melanophryniscus langonei, Maneyro et al., 2008a).
We made species accumulation curves for the complete dataset to determine how close the
observed records account for the number of species estimated to occur in Uruguay. We used
the software ESTIMATES (Colwell, 2006) to analyze the recorded species richness per quadrant
and fit the model ‘Chao 2’ for estimating the maximum richness (with confidence interval of
95%).
To estimate the optimal sampling effort based on records per quadrant (i.e., number of
records needed to get an accurate estimate of the richness in a quadrant), we fit a moving
average smoothing (lag = 10) to the relationship between the observed richness and the
sampling effort (number of records) on each quadrant. The optimal sampling effort was defined
in the point where the curve reaches the asymptote.
RESULTS AND DISCUSSION
The curve of accumulated richness showed an asymptotic value at 46 species, and the
estimated richness curve also reached an asymptote indicating that the estimation procedure
converged (Fig. 1). The estimated maximum richness (mean) based on the model Chao2 was
48 species, which was only two species greater than the observed richness (46), meaning that
96% of the species present in Uruguay have been accounted for in scientific collections.
However, considering the upper bound of the confidence interval, the maximum species
richness could be as high as 60 species, and therefore 14 species could be still unknown, and
the degree of knowledge would be as low as 77%. It should be noted that recently two new
species of amphibians were described from Uruguay that were not included in this study:
Odontophrynus maisuma and Melanophryniscus langonei (Maneyro et al., 2008a; Rosset,
2008), and a third one Physalaemus cuvieri, was cited for the first time for the country (Maneyro
& Beheregaray, 2007).
2010] 7
CANAVERO et al.: Amphibian diversity of Uruguay
Number
Order Family Genus of
species
GYMNOPHIONA Müller, 1832 Caeciliidae Rafinesque, 1814 Chthonerpeton Peters, 1880 1
ANURA Fischer von Waldheim, 1813 Bufonidae Gray, 1825 Melanophryniscus Gallardo, 1961 7
Rhinella Fitzinger, 1826 5
Ceratophryidae Tschudi, 1838 Ceratophrys Wied, 1824 1
Cycloramphidae Bonaparte, 1850 Limnomedusa Fitzinger, 1843 1
Odontophrynus Reinhardt & Lütken,
1862 2
Hylidae Rafinesque, 1815 Argenteohyla Trueb, 1970 1
Dendropsophus Fitzinger, 1843 3
Hypsiboas Wagler, 1830 2
Lysapsus Cope, 1862 actually 1
Pseudis, Wagler 1830 1
Phyllomedusa Wagler, 1830 1
Scinax Wagler, 1830 7
Leiuperidae Bonaparte, 1850 Physalaemus Fitzinger, 1826 6
Pleurodema Tschudi, 1838 1
Pseudopaludicola Miranda-Ribeiro,
1926 1
Leptodactylidae Werner, 1896 Leptodactylus Fitzinger, 1826 7
Microhylidae Günther, 1858 (1843) Elachistocleis Parker, 1927 1
Ranidae Rafinesque, 1814 Lithobates Fitzinger, 1814 1
Table 1. Amphibian fauna of Uruguay. The list of genera is based on Achaval (2009) with the additions of Maneyro
& Beheregaray (2007), Maneyro et al. (2008a), and Rosset (2008).
The observed richness per quadrant shows an asymptotic curve but it is highly influenced by very
well surveyed quadrants with 1,000 to 3,000 records and high species richness (e.g., Departamento
de Rivera) (Fig. 2). In the range of 0-500 records, there is also an asymptotic pattern where the
observed richness increases up to 100 records and then becomes independent from the sampling
effort. This suggests that the minimal sampling effort is about 100 records per quadrant (Fig. 2).
We found that 43% of the quadrants have no information (number of records = 0) and 50% of
all quadrants can be classified as sub-sampled because they have less than 100 records (Fig.
3). Only 8% of the quadrants have more than 100 records and can be considered as well known.
8 BOL. SOC. ZOOL. URUGUAY (2ª época) [2010
Fig. 1. Accumulated number of known species
of amphibians in Uruguay based on records
from scientific collections. The estimated
richness was calculated with the Chao 2 index
in the program Estimates. CI = confidence
interval.
Fig. 2. Relationship between the observed
richness per cell and the sampling effort
(number of records) for all records (left) and
for cells with 0-500 records (right). The
relationship fit was done with moving average
smoothing (lag = 10).
2010] 9
CANAVERO et al.: Amphibian diversity of Uruguay
Fig. 4. Geographic distribution
of the sampling effort of
amphibians in Uruguay.
Fig. 3. Histogram of the sampling effort (number
of records) of amphibians. Category 0: cells
without records, category <100: undersampled
cells, category>100: well-sampled cells.
10 BOL. SOC. ZOOL. URUGUAY (2ª época) [2010
This indicates that the degree of knowledge of the amphibian diversity at the quadrant resolution,
in terms of voucher specimens stored in scientific collections, is very limited (Fig. 3).
Because only 8% of the quadrants have been well sampled, it is clear that the geographic
distribution of amphibians in most parts of the Uruguayan territory is unknown or poorly known.
The quadrants with good sampling densities are associated with the coastline border of the Río
de la Plata (Departamentos de San José, Montevideo, Canelones and western Maldonado), the
Atlantic coast (mainly Rocha), parts of the basaltic hills (western Rivera and Tacuarembó),
northwestern littoral zone (western Artigas and Salto), and some isolated quadrants sampled in
a few intensive field surveys (e.g., Espinas Stream, in Maldonado).
CONCLUSION
The voucher specimens preserved in scientific collections, the digitized information from
collection catalogs, and the syntheses made in previous studies (Maneyro & Langone, 2001;
Núñez et al., 2004; Maneyro & Kwet, 2008) provide vast amounts of distributional data in
Uruguay and allows the generation of scientifically-informed conservation strategies. Herein,
these data allowed us to detect the existence of information gaps in a large portion of Uruguay,
which constitutes a useful guidance for planning the resources and efforts to fill these gaps in
future field work.
Based on our estimates, a high percentage of the total richness in Uruguay is known,
although new species may still remain undiscovered. However, this scenario is very different
when we assess the degree of knowledge of geographic distributions at the scale of the
quadrant. In this case, the sampling density showed considerable variation, where large regions
had a deficit or show an absolute lack of information. In general terms, we conclude that the
geographic distribution of the amphibian diversity in Uruguay has been surveyed in less than
50% at the analyzed resolution scale, especially in the central region of the country.
It is important to point out that a large portion of the information from scientific collections is
based on historical records that do not demonstrate the occurrence of the species at the
present. However, this information is critical for the analysis of long-term patterns in populations
that appear to be declining: Ceratophrys ornata (this species could be considered extinct in
future evaluations), Melanophryniscus montevidensis, and Pleurodema bibroni (Maneyro &
Langone, 2001; Canavero et al. 2010). On the other hand, this kind of historical information
might generate difficulties for inferring the present day distributions of species that can be used
in conservation planning.
We should note that, although the knowledge of Uruguayan amphibian biology is broad, it is
mostly restricted to the analysis of geographic distributions. There are far fewer studies about
population dynamics, genetic and phenotypic variability, developmental biology, and other discipli-
nes, especially in the case of the larval stage of these organisms, which in most species is virtually
unknown. Given the complexity of the study of amphibians, due to their aquatic vs. terrestrial life
histories and the lack of a complete knowledge of their geographic distributions, the generation of
conservation strategies for amphibians in Uruguay is extremely difficult. In order to develop
conservation plans, we suggest that it is essential to undertake field inventories in selected grid
quadrants to survey largely unsampled regions of the country, especially those that have been
proposed as candidate protected areas. We hope this article will become a tool for monitoring the
status of conservation of Uruguayan amphibians and will work as baseline data for the
2010] 11
CANAVERO et al.: Amphibian diversity of Uruguay
implementation of a national system of protected areas in Uruguay (Hilton-Taylor, 2000). Moreover,
long-term monitoring in protected areas as well as more research of the life history of most species
will be required to contribute toward the conservation of amphibians for future generations.
ACKNOWLEDGMENTS
This work received partial financial support from the Programa de Desarrollo Tecnológico
(DICYT, Uruguay), Project PDT 32-26 (Responsible: AB). RM acknowledges support from
Comisión Sectorial de Investigación Científica (CSIC), Agencia Nacional de Investigación e
Innovación (ANII) and Programa de Desarrollo de Ciencias Básicas (PEDECIBA). AC is grateful
for the support of FONDECYT-FONDAP grant 1501-0001 and received a fellowship from the
“Vicerrectoría Adjunta de Investigación y Doctorado-PUC, Chile”.
REFERENCES
Achaval F. 1989. Lista de las especies de vertebrados del Uruguay. Parte 2: Anfibios, Reptiles,
Aves y Mamíferos. Departamento de Publicaciones de la Facultad de Humanidades y
Ciencias, Montevideo. 41 pp.
Achaval F. 1998. Anfibios. In Berrini, R. (Ed.). Cuenca Superior del Arroyo Lunarejo, pp. 66-69.
Ministerio de Vivienda, Ordenamiento Territorial y Medio Ambiente y Sociedad Zoológica
del Uruguay. Tecnograf, Montevideo. 153 pp.
Achaval F. 2009. Lista de vertebrados de Uruguay. In. http://zvert.fcien.edu.uy.
Achaval F., González J.G., Meneghel M. & Melgarejo A. 1979. Lista comentada del material
recogido en costas uruguayas, transportado por camalotes desde el Río Paraná. Acta
Zoológica Lilloana 35.
Achaval F. & Olmos A. 1997. Anfibios y Reptiles del Uruguay. Barreiro y Ramos, Montevideo.
128 pp.
Achaval F. & Olmos A. 2003. Anfibios y Reptiles del Uruguay, Segunda Edición. Graphis,
Impresora, Montevideo, Uruguay. 136 pp.
Achaval F. & Olmos A. 2007. Anfibios y Reptiles del Uruguay, Tercera Edición. Biophoto,
Montevideo. 160 pp.
Alcalde L., Natale G.S. & Cajade R. 2006. The tadpole of Physalaemus fernandezae (Anura:
Leptodactylidae). Herpetological Journal 16: 203-211.
Arrieta D. & Maneyro R. 1999. Sobre la presencia de Scinax fuscovaria (A. Lutz, 1925) (Anura:
Hylidae) en Uruguay. Boletín de la Sociedad Zoológica del Uruguay 10: 15-19.
Barrio A. 1964. Relaciones morfológicas, eto-ecológicas y zoogeográficas entre Physalaemus
henseli (Peters) y P. fernandezae (Müller) (Anura, Leptodactylidae). Acta Zoológica
Lilloana 20: 285-305.
Berazategui M., Camargo A. & Maneyro R. 2007. Environmental and Seasonal Variation in the
Diet of Elachistocleis bicolor (Guérin-Méneville 1838) (Anura: Microhylidae) from Northern
Uruguay. Zoological Science 24: 225-231.
Berg C. 1896. Batracios argentinos. Enumeración sistemática, sinonímica y bibliográfica de los
batracios de la República Argentina. Anales del Museo Nacional de Historia Natural de
Buenos Aires 5: 147-226.
12 BOL. SOC. ZOOL. URUGUAY (2ª época) [2010
Blaustein A. & Wake D. 1995. Declive de las poblaciones de anfibios. Investigación y Ciencia
225: 8-13.
Borteiro C., Cruz J.C., Kolenc F. & Aramburu A. 2009. Chytridiomycosis in frogs from Uruguay.
Diseases of Aquatic Organisms 84: 159-162.
Borteiro C. & Kolenc F. 2007. Redescription of the tadpoles of three species of frogs from
Uruguay (Amphibia: Anura: Leiuperidae and Leptodactylidae), with notes on natural
history. Zootaxa 1638: 1-20.
Borteiro C., Kolenc F., Tedros M. & Gutiérrez F. 2005. Melanophryniscus pachyrynus. [Geographic
distribution]. Herpetological Review 36: 199-200.
Borteiro C., Kolenc F., Tedros M. & Prigioni C. 2006. The tadpole of Chaunus dorbignyi (Duméril
& Bibron) (Anura, Bufonidae). Zootaxa 1308: 49-62.
Borteiro C., Nieto C. & Kolenc F. 2007. Amphibia, Anura, Hylidae, Scinax aromothyella:
Distribution extension and habitat. Check List 3: 98-99.
Boulenger G.A. 1885. Second list of reptiles and batrachians from the Province Rio Grande do
Sul, Brasil, sent to the Natural History Museum by Dr. H. von Ihering. Annals and
Magazine of Natural History (Ser.5) 16: 85-88.
Burmeister H. 1861. Reise durch die La Plata-Staaten mit bessonderer. Röcksincht auf die
physiche Beschaffenheit und den Culturzunstand der Argentinische Republik. Ausgeführt
in den Jahren 1857, 1858, 1859 und 1860. H.W. Schmidt Halle. iv + 538 pp.
Camargo A., Naya D.E., Canavero A., da Rosa I. & Maneyro R. 2005. Seasonal activity and the
body size-fecundity relationship in a population of Physalaemus gracilis (Boulenger,
1883) (Anura, Leptodactylidae) from Uruguay. Annales Zoologici Fennici 42: 513-521.
Camargo A., Sarroca M. & Maneyro R. 2008. Reproductive effort and the egg number vs. size
trade-off in Physalaemus frogs (Anura: Leiuperidae). Acta Oecologica 34: 163-171.
Canavero A. 2008. Patrones de actividad en comunidades de anuros neotropicales:
estacionalidad local y gradientes latitudinales MSc. Tesis. PEDECIBA. Universidad de la
República, Montevideo, Uruguay. 1-74 pp.
Canavero A. & Arim M. 2009. Clues supporting photoperiod as the main determinant of
seasonal variation in amphibian activity. Journal of Natural History 43: 2975-2984.
Canavero A., Arim M. & Brazeiro A. 2009. Geographic variations of seasonality and coexistence
in communities: the role of diversity and climate. Austral Ecology 34: 741-750.
Canavero A., Arim M., Naya D.E., Camargo A., da Rosa I. & Maneyro R. 2008. Calling activity
patterns in an anuran assemblage: the role of seasonal trends and weather determinants.
North-Western Journal of Zoology 4: 29-41.
Canavero A., Carreira S., Langone J.A., Achaval F., Borteiro C., Camargo A., da Rosa I.,
Estrades A., Fallabrino A., Kolenc F., López-Mendilaharsu M.M., Maneyro R., Meneghel
M., Nuñez D., Prigioni C.M. & Ziegler L. 2010. Conservation status assessment of the
amphibians and reptiles of Uruguay. Iheringia, Série Zoologica 100: 5-12.
Canavero A., Naya D.E. & Maneyro R. 2001. Leptodactylus furnarius Sazima & Bokerman,
1978 (Anura: Leptodactylidae). Cuadernos de Herpetología 15: 89.
Cayssials R., Pérez F. & Maneyro R. 2002. Pautas para la elaboración de un Plan de Manejo
para el Área de Esteros de Farrapos; Primera Parte: Medio Físico y Fauna. DINAMA-
UDELAR. 148 pp.
Cei J.M. 1980. Amphibians of Argentina. Monitore Zoologico Italiano, Monografia 2: 1-609.
Cei J.M. 1987. Additional notes to “Amphibians of Argentina”: an update, 1980 - 1986. Monitore
Zoologico Italiano (N.S.) 21: 209-272.
2010] 13
Colwell R.K. 2006. EstimateS 8.2: statistical estimation of species richness and shared species
from samples. (http:// viceroy.eeb.uconn.edu/estimates).
Cope E.D. 1862. Catalogues of the reptiles obtained during the explorations of the Paraná,
Paraguay, Vermejo and Uruguay Rivers by Capt. Thos. J. Page, U.S.N.; and of the
procured by Lieut N. Michler, U.S. Top. Eng., Commander of the Expedition conducting
the survey of the Atrato River. Proceedings of the Academy of Natural Sciences of
Philadelphia 14: 346-359.
da Rosa I. 2008. Efecto de la temperatura y la humedad relativa sobre la actividad anual de
canto de Hypsiboas pulchellus (Anura, Hylidae) y efecto del tamaño corporal sobre el
comportamiento de los machos. MSc. Tesis. PEDECIBA. Universidad de la República,
Montevideo, Uruguay. 1-79 pp.
da Rosa I., Camargo A., Canavero A., Naya D.E. & Maneyro R. 2006. Ecología de un ensamble
de anuros en un humedal costero del sudeste del Uruguay. Pages 447-455 in Menagra
R., Rodríguez-Gallego L., Sacarabino F. & Conde D. (Eds.). Bases para la conservación
y el manejo de la costa uruguaya. Vida Silvestre Uruguay, Montevideo.
da Rosa I., Canavero A., Maneyro R., Naya D.E. & Camargo A. 2002. Diet of four sympatric
anuran species in a temperate environment. Boletín de la Sociedad Zoológica del
Uruguay 13: 12-20.
Davyt A., Maneyro R. & Bardier C. 2006. Caracterización preliminar de la actividad de los
zoólogos en Uruguay: una aproximación desde la producción científica en vertebrados
tetrápodos. Boletín de la Sociedad Zoológica del Uruguay 15: 8-18.
de Sá R.O. 1986. Lista de las especies de vertebrados del Uruguay. Anfibios. Dirección General
de Extensión Universitaria. División Publicaciones y Ediciones. Universidad de la Repú-
blica, Montevideo.
de Sá R.O. 1995. Hyla albopunctata Spix, 1824. Catalogue of American Amphibians and
Reptiles 602: 1-5.
de Sá R.O. & Berois N. 1985. Gametogénesis en Chthonerpeton indistinctum (Reinhardt &
Lutken, 1862) (Amphibia: Gymnophiona). Boletin de la Sociedad Zoologica del Uruguay
3: 25-30.
de Sá R.O. & Berois N. 1986. Spermatogenesis and histology of the testes of Chthonerpeton
indistinctum (Gymnophiona: Typhlonectidae). Journal of Herpetology 20: 510-514.
de Sá R.O. & Gerhau A. 1983. Observaciones sobre la biología de Phyllomedusa iheringii
Boulenger, 1885, (Anura, Hylidae). Boletín de la Sociedad Zoológica del Uruguay 1: 44-
49.
de Sá R.O. & Lavilla E.O. 1997. The tadpole of Pseudis minuta (Anura: Pseudidae): an apparent
case of heterochrony. Amphibia-Reptilia 18: 229-240.
Duméril A. & Bibron G. 1841. Erpétologie générale, ou histoire naturelle des Reptiles. Libraire
Encyclopédique de Roret, Paris. 792 pp.
Forni F., Maneyro R. & Santos, M. 1995. Anfibios y Reptiles. Serie de Cuadernos del Potrerillo.
PROBIDES, Rocha. 16 pp.
Gallardo J.M. 1964. Leptodactylus prognathus Boul. y L. mystacinus (Burm.) con sus respecti-
vas especies aliadas (Amphibia, Leptodactylidae del grupo Cavicola). Revista del Museo
Argentino de Ciencias Naturales “Bernardino Rivadavia”, (Zoología) 9: 91-121.
Gambarotta J.C. 1999. Aves, Reptiles y Anfibios. Pages 1-31 in Gambarotta J.C., Saralegui A.
& González E.M. (Eds.). Vertebrados tetrápodos del Refugio de Fauna Laguna de
Castillos, Departamento de Rocha. Relevamientos de Biodiversidad 3: 1-31.
CANAVERO et al.: Amphibian diversity of Uruguay
14 BOL. SOC. ZOOL. URUGUAY (2ª época) [2010
Garrido-Yrigaray R.R. 1989. Descripción de la larva de Melanophryniscus stelzneri montevidensis
(Philippi,1902) (Anura: Bufonidae). Boletín de la Sociedad Zoológica del Uruguay 5: 7-8.
González E.M. & Gambarotta J.C. 2001. Anfibios de Aguas Dulces, Departamento de Rocha,
Uruguay (Amphibia: Anura). Relevamientos de Biodiversidad 5: 1-7.
González E.M., Saralegui A. & Arrieta D. 1998. Anfibios y reptiles de Paso Baltasar, Departamen-
to de Tacuarembó, Uruguay (Amphibia; Reptilia). Relevamientos de Biodiversidad 1: 1-6.
Gudynas E. 1985. Estructura ecológica de la comunidad herpetológica y evaluación del
impacto ambiental en un ecosistema periurbano satélite. Actas de las Jornadas de
Zoología del Uruguay 23-24.
Gudynas E. & Gerhau A. 1981. Notas sobre la distribución y la ecología de Limnomedusa
macroglossa (Duméril & Bibron, 1841) en Uruguay (Anura, Leptodactylidae). Iheringia,
Série Zoologia 60: 81-99.
Gudynas E. & Rudolf J.C. 1987. La herpetofauna de la localidad costera de “Pajas Blancas”
(Uruguay): Lista sistemática comentada y estructura ecológica de la comunidad.
Comunicações do Museu de Ciências da PUCRS 46: 173-194.
Gudynas E. & Williams J.D. 1992. Chthonerpeton indistinctum. Catalogue of American
Amphibians and Reptiles 531: 1-2.
Günther A. 1859. Catalogue of the Batrachia Salientia in the collection of the British Museum,
London. 160 pp.
Hess D. 1997. Science studies. An advanced introducction. New York University Press, New
York .
Heyer W.R. & Heyer M.M. 2004. Leptodactylus furnarius (Burmeister). Catalogue of American
Amphibians and Reptiles 785: 1-5.
Heyer M.M., Heyer W.R. & de Sá R.O. 2003. Leptodactylus mystacinus (Burmeister). Catalogue
of American Amphibians and Reptiles 767: 1-11.
Hilton-Taylor C. 2000. IUCN Red List of Threatened Species. Gland and Cambridge, IUCN.
IUCN. 2003. Guidelines for Application of IUCN Red List Criteria at Regional Levels: Version
3.0.ii + 26.
IUCN 2010. IUCN Red List of Threatened Species. Version 2010.1. <http://www.iucnredlist.org>.
Downloaded on 11 March 2010.
Jiménez de la Espada M. 1875. Vertebrados del viaje al Pacífico verificado de 1862 a 1865 por
una comisión de naturalistas enviada por el gobierno español. Batracios, Madrid.
Klappenbach M.A. & Langone J.A. 1992. Lista sistemática y sinonímica de los anfibios del
Uruguay con comentarios y notas sobre su distribución. Anales del Museo Nacional de
Historia Natural de Montevideo (2ª Serie) 8: 163-222.
Klappenbach M.A. & Orejas-Miranda B. 1969. Anfibios y Reptiles. Editorial Nuestra Tierra.
Montevideo.
Kolenc F., Borteiro C. & Tedros M. 2003. La larva de Hyla uruguaya Schmidt, 1944 (Anura:
Hylidae), con comentarios sobre su biología en Uruguay y su status taxonómico.
Cuadernos de Herpetología 17: 87-100.
Kolenc F., Borteiro C., Tedros M., Núñez D. & Maneyro R. 2006. The tadpole of Physalaemus
henselii (Peters) (Anura: Leiuperidae). Zootaxa 1360: 41-50.
Kolenc F., Borteiro C., Baldo D., Ferraro D.P. & Prigioni C. 2009. The tadpoles and advertisement
calls of Pleurodema bibroni Tschudi and Pleurodema kriegi (Müller), with notes on their
geographic distribution and conservation status (Amphibia, Anura, Leiuperidae). Zootaxa
1969: 1-35.
2010] 15
Kolenc F., Borteiro C., Alcalde L., Baldo D., Cardozo D. & Faivovich J. 2008. Comparative larval
morphology of eight species of Hypsiboas Wagler (Amphibia, Anura, Hylidae) from
Argentina and Uruguay, with a review of the larvae of this genus. Zootaxa 1927: 1-66.
Kwet A., Maneyro R., Zillikens A. & Mebs D. 2005. Advertisement calls of Melanophryniscus
dorsalis (Mertens, 1933) and M. montevidensis (Philippi, 1902), two parapatric species
from southern Brazil and Uruguay, with comments on morphological variation in the
Melanophryniscus stelzneri group (Anura: Bufonidae). Salamandra 41: 1-18.
Kwet A., Solé M., Miranda T., Melchiors J., Naya D.E. & Maneyro R. 2002. First record of Hyla
albopunctata Spix, 1824 (Anura: Hylidae) in Uruguay, with comments on the advertisement
call. Boletín de la Asociación Herpetológica Española 13: 15-19.
Langguth A. 1976. Lista de las especies de vertebrados del Uruguay. Anfibios, Montevideo.
Museo Nacional de Historia Natural y Facultad de Humanidades y Ciencias, Dapartamento
de Zoología Vertebrtados. Montevideo. 30-32 pp.
Langone J.A. 1989. Descripción de la larva de Physalaemus gracilis (Boulenger, 1883) (Amphibia,
Anura, Leptodactylidae). Comunicaciones Zoológicas del Museo de Historia Natural de
Montevideo 12: 1-11.
Langone J.A. 1993. Notas sobre Phyllomedusa iheringii Boulenger, 1885 (Amphibia, Anura,
Hylidae). Comunicaciones Zoológicas del Museo de Historia de Montevideo 12: 1-7.
Langone J.A. 1995. Ranas y sapos del Uruguay (reconocimiento y aspectos biológicos). Museo
Zoológico Municipal Dámaso Antonio Larrañaga, Montevideo.
Langone J.A. 1997. El componente faunístico de vertebrados tetrápodos marinos y terrestres.
Anfibios. In PROBIDES (Ed.). Reserva de Biósfera Bañados del Este. Avances del Plan
Director. Pp. 120- 121.
Langone J.A. 1999. Anfibios de Aguas Corrientes, Departamento de Canelones, Uruguay
(Amphibia). Relevamientos de Biodiversidad 4: 1-6.
Langone J.A. 2003. Diversidad de la Biota Uruguaya. Amphibia. Anales del Museo Nacional de
Historia Natural y Antropología (2ª Serie) 10: 1-12.
Langone J.A. 2007. Bibliografía asociada a especímenes depositados en las colecciones
herpetológicas uruguayas (Amphibia). Publicación extra. Museo Nacional de Historia
Natural y Antropología. 3: 1-22.
Langone J.A. in press. [Conservation of] Amphibia of Uruguay. in Heatwole, H., (Ed.). Amphibian
Biology.
Langone J.A. & Basso N.G. 1987. Distribución geográfica y sinonimia de Hyla nana
Boulenger,1889 y de Hyla sanborni Schmidt, 1944 (Anura, Hylidae) y observaciones
sobre formas afines. Comunicaciones Zoológicas del Museo de Historia Natural de
Montevideo 11: 1-17.
Langone J.A. & Cardoso A.J. 1997. Morfología larval externa de Scinax eringhiophila (Gallardo,
1961) (Amphibia, Anura, Hylidae). Comunicaciones Zoológicas del Museo de Historia
Natural de Montevideo 12: 1-9.
Langone J.A. & de Sá R.O. 2005. Redescripción de la morfología larval externa de dos
especies del grupo de Leptodactylus fuscus (Anura, Leptodactylidae). Phyllomedusa 4:
49-59.
Langone J.A., Prigioni C.M. & Venturino L. 1985. Informe preliminar sobre el comportamiento
reproductor y otros aspectos de la biología de Phyllomedusa iheringi, Boulenger, 1885
(Anura, Hylidae). Comunicaciones Zoológicas del Museo de Historia Natural de Montevi-
deo 9: 1-12.
CANAVERO et al.: Amphibian diversity of Uruguay
16 BOL. SOC. ZOOL. URUGUAY (2ª época) [2010
Larrañaga D.A. 1823. Escritos. Instituto histórico y geográfico del Uruguay. Imprenta Nacional,
Montevideo. 512 pp.
Larson P.M., & de Sá, R. O. 1998. Chondrocranial morphology of Leptodactylus larvae
(Leptodactylidae: Leptodactylinae): its utility in phylogenetic reconstruction. Journal of
Morphology 238: 287-305.
Larson P.M., de Sá R.O. & Arrieta D. 2003. Chondrocranial, hyobranchial and internal oral
morphology in larvae of the basal bufonid genus Melanophryniscus (Amphibia: Anura).
Acta Zoologica 84: 145-154.
Laufer G. & Barreneche J.M. 2008. Re-description of the tadpole of Pseudopaludicola falcipes
(Anura: Leiuperidae), with comments on larval diversity of the genus. Zootaxa 1760: 50-58.
Laufer G., Canavero A., Núñez D. & Maneyro R. 2008. Bullfrog (Lithobates catesbeianus)
invasion in Uruguay. Biological Invasions 10: 1183-1189.
Laufer G. & Maneyro R. 2008. Experimental Test of Intraspecific Competition Mechanisms
Among Tadpoles of Leptodactylus ocellatus (Anura: Leptodactylidae). Zoological Science
25: 286-290.
Lavilla E.O. & Cei J.M. 2001. Amphibians of Argentina. A second update, 1987-2000. Museo
Regionale di Scienze Naturali, Torino 28: 1-178.
Lavilla E.O. & de Sá R.O. 1999. Estructura del condrocráneo y esqueleto visceral de larvas de
Pseudis minuta (Anura, Pseudidae). Alytes 16: 139-147.
Lavilla E.O. & Langone J.A. 1995. Estructura del condrocráneo y esqueleto visceral de larvas
de Elachistocleis bicolor (Valenciennes, 1838) (Anura, Microhylidae). Cuadernos de
Herpetología 9: 45-49.
Lomolino, M.V. & Heaney L.R. 2004. Frontiers of Biogeography: New Directions in the Geography
of Nature. Sunderland, Massachusetts. 436 pp.
Maneyro R. 2000. Análisis del nicho trófico de tres especies de anfibios en un grupo de cuerpos
de agua lénticos. MSc. Tesis. PEDECIBA. Universidad de la República, Montevideo,
Uruguay. 1-99 pp.
Maneyro R. 2008. Padrões de atividade espaço - temporais em uma comunidade neotropical
de anuros. PhD. Tesis. Pontifícia Universidade Catolica de Rio Grande do Sul, Porto
Alegre, Brasil. 1-146 pp.
Maneyro R. & Achaval F. 2004. Melanophryniscus montevidensis (Darwin’s Toad). Albino
larvae. Herpetological Review 35: 261.
Maneyro R., Arrieta D. & de Sá R.O. 2004a. A new toad (Anura: Bufonidae) from Uruguay.
Journal of Herpetology 38: 161-165.
Maneyro R. & Beheregaray M. 2007. First record of Physalaemus cuvieri Fitzinger, 1826 (Anura,
Leptodactylidae) in Uruguay, with comments on the anuran fauna along the borderline
Uruguay-Brazil. Boletín de la Sociedad Zoológica del Uruguay 16: 36-41.
Maneyro R. & Carreira S. 2006. Herpetofauna de la costa uruguaya. In R. Menafra, L.
Rodríguez-Gallego, F. Scarabino & D. Conde (Eds.). Bases para la conservación y
manejo de la Costa Uruguaya, pp. 233-246. Vida Silvestre Uruguay, Montevideo.
Maneyro R. & da Rosa I. 2004. Temporal and spatial changes in the diet of Hyla pulchella.
Phyllomedusa 3: 101-113.
Maneyro R., Forni F. & Santos M. 1995. Los anfibios del departamento de Rocha. PROBIDES.
Divulgación Técnica 1:1-24.
Maneyro R. & Kwet A. 2008. Amphibians in the border region between Uruguay and Brazil:
Updated species list with comments on taxonomy and natural history (Part I: Bufonidae).
2010] 17
Stuttgarter Beiträge zur Naturkunde A, Neue Serie 1: 95-121.
Maneyro R. & Langone J.A. 1999. Advances in the conservation status of Uruguayan amphibians.
Froglog 34:3.
Maneyro R. & Langone J.A. 2001. Categorización de los anfibios del Uruguay. Cuadernos de
Herpetología 15: 107-118.
Maneyro R., Laufer G., Nuñez D. & Canavero A. 2005. Especies invasoras: Primer registro de
rana toro, Rana catesbeiana (Amphibia, Anura, Ranidae) en Uruguay. Actas VIII Jorna-
das Zoológicas del Uruguay: 139.
Maneyro R., Naya D.E. & Baldo D. 2008a. A new species of Melanophryniscus (Anura,
Bufonidae) from Uruguay. Iheringia, Série Zoologia 98: 189-192.
Maneyro R., Naya D.E., da Rosa I., Canavero A. & Camargo A. 2004b. Diet of the South
American frog Leptodactylus ocellatus (Anura, Leptodactylidae) in Uruguay. Iheringia,
Série Zoologia 94: 57- 61.
Maneyro R., Núñez D., Borteiro C., Tedros M. & Kolenc F. 2008b. Advertisement call and female
sexual cycle in Uruguayan populations of Physalaemus henselii (Peters, 1872) (Anura:
Leiuperidae). Iheringia, Série Zoologia 98: 210-214.
Mañé Garzón F. 2000. Un manuscrito inédito de Dámaso Antonio Larrañaga. Cuadernos de
Marcha 59-64.
Mañé Garzón F. & Islas A. 2000. Viaje de Dámaso Antonio Larrañaga de Toledo a la villa de
Florida. Cuadernos de Marcha 25-37.
Mazzoni R., Cunningham A.A., Daszak P., Apolo A., Perdomo E. & Speranza G. 2003.
Emerging pathogen of wild amphibians in frogs (Rana catesbeiana) farmed for international
trade. Emerging Infectious Diseases 9: 995-998.
McDiarmid R.W. & Altig R. 1999. Tadpoles: the biology of anuran larvae. The University of
Chicago, Chicago. 444 pp.
Mebs D., Maneyro R. & Pogoda W. 2007a. Further studies on the pumiliotoxin 251D and
hydroquinone content of the skin secretion of Melanophryniscus species (Anura,
Bufonidae) from Uruguay. Toxicon 50: 166-169.
Mebs D., Pogoda W., Maneyro R. & Kwet A. 2005. Studies on the poisonous secretion of
individual red bellied toads, Melanophryniscus montevidensis (Anura, Bufonidae), from
Uruguay. Toxicon 46: 641-650.
Mebs D., Wagner M., Pogoda W., Kauert G., Maneyro R. & Kwet A. 2007b. Lack of bufadienolides
in the skin secretion of red bellied toads, Melanophryniscus spp. (Anura, Bufonidae),
from Uruguay. Comparative Biochemistry and Pharmacology 144: 398-402.
Naya D.E., Camargo A., Maneyro R., da Rosa I. & Canavero A. 2002. Intestinal length of four
South American anuran species. Cuadernos de Herpetología 16: 165-167.
Naya D.E., Langone J.A. & de Sá R.O. 2004. Caracteristicás histologicás de la tumefacció
frontal de Melanophryniscus (Amphibia: Anura: Bufonidae). Revista Chilena de Historia
Natatural 77: 593-598.
Naya D.E. & Maneyro R. 2001. Melanophryniscus sanmartini Klappenbach, 1968 (Anura:
Bufonidae). Cuadernos de Herpetología 15: 89-90.
Naya D.E., Maneyro R., Camargo A., Canavero A. & da Rosa I. 2003. Seasonal changes in gut
length of the South American common frog Leptodactylus ocellatus (Amphibia, Anura).
Biociências 11: 47-52.
Núñez D., Maneyro R., Langone J.A. & de Sá R.O. 2004. Distribución geográfica de la fauna de
anfibios del Uruguay. Smithsonian Herpetological Information Service 134: 1-34.
CANAVERO et al.: Amphibian diversity of Uruguay
18 BOL. SOC. ZOOL. URUGUAY (2ª época) [2010
Olmos A., Prigioni C.M. & Achaval F. 1997. Hyla minuta Peters, 1872. Un nuevo hylidae para el
Uruguay (Amphibia: Anura: Hylidae). Acta Zoológica Platense 1: 1-7.
Philippi R.A. 1902. Suplemento a los Batracios Chilenos descritos en la Historia Física y Política
de Chile de Don Claudio Gray. Imp. E. Blanchard-Chessi, Santiago. 161pp.
Prigioni C.M. 1978. Los verdaderos “escuerzos”. Boletín del Museo Nacional de Historia Natural
2: 4-6.
Prigioni C.M. 1979. Nuestra “Cecilia”. Boletín del Museo Nacional de Historia Natural 2: 8-10.
Prigioni C.M. & Achaval F. 1992. Clave para determinación de los anfibios de Uruguay. Servicio
de Publicaciones Docentes Internas. Facultad de Ciencias. Universidad de la República,
Montevideo.
Prigioni C.M. & Arrieta D. 1992. Descripción de la larva de Melanophryniscus sanmartini
Klappenbach, 1968 (Amphibia: Anura: Bufonidae). Boletín de la Sociedad Zoologica del
Uruguay 7: 57-58.
Prigioni C.M., Borteiro C., Tedros M. & Kolenc F. 2005. Scinax aromothyella. [Geographic
distribution]. Herpetological Review 36: 464.
Prigioni C.M. & García Sánchez J.E. 2002. Descripción de la larva de Physalaemus riograndensis
Milstead, 1960 (Anura, Leptodactylidae). Acta Zoológica Platense 5: 1-5.
Prigioni C.M. & Langone J.A. 1983. Nuevo hallazgo de Physalaemus riograndensis Milstead,
1960 (Anura, Leptodactylidae). Boletín de la Sociedad Zoológica del Uruguay 1: 81-84.
Prigioni C.M. & Langone J.A. 1984. Notas sobre la batracofauna de los bañados de Carrasco,
Uruguay. I. Comunicaciones Zoológicas del Museo de Historia Natural de Montevideo
11: 1-4.
Prigioni C.M. & Langone J.A. 1986. Melanophryniscus orejasmirandai n. sp., un nuevo Bufonidae
(Amphibia, Anura) de Uruguay con una clave para las especies del grupo tumifrons.
Comunicaciones Zoológicas del Museo de Historia Natural de Montevideo 11: 1-11.
Prigioni C.M. & Langone J.A. 1990. Descripción de la larva de Melanophryniscus orejasmirandai
Prigioni & Langone, 1986 (Amphibia, Anura, Bufonidae). Comunicaciones Zoológicas
del Museo Nacional de Historia Natural 12: 1-9.
Prigioni C.M. & Langone J.A. 1992. Osteología pélvica de anfibios uruguayos I. Los géneros
Bufo Laurenti, 1768 y Elachistocleis Parker, 1927 (Amphibia, Anura). Boletín de la
Sociedad Zoologica del Uruguay 7: 96-97.
Reca A., Úbeda C. & Grigera D. 1994. Conservación de la fauna de tetrápodos. I. Un índice
para su evaluación. Mastozoología Neotropical 1: 17-28.
Rinderknecht A. 1998. Nuevos microvertebrados fósiles para el Pleistoceno Superior del
Uruguay (Amphibia, Reptilia, Aves). Comunicaciones Paleontológicas del Museo de
Historia Natural de Montevideo 2: 133-143.
Rosset S.D. 2008. New Species of Odontophrynus Reinhardt and Lütken 1862 (Anura:
Neobatrachia) from Brazil and Uruguay. Journal of Herpetology 42: 134–144.
Schmidt K.P. 1944. New frogs from Misiones and Uruguay. Field Museum of Natural History
(Zoological Series) 29: 153-160.
Sierra B., Osorio H., Langguth A., Soriano J., Maciel E., Mora O., Ayup R., Lombardo A., Palerm
E., Gonzalez J. & Achaval F. 1977. Ecosistemas afectados por la construcción de la
represa de Salto Grande. Introducción a su prospección ecológica en territorio uruguayo.
Seminario Medio Ambiente y Represas 1: 89-130.
Tomatis C., Baldo D., Kolenc F. & Borteiro C. 2009. Chromosomal variation in the species of the
Physalaemus henselii group (Anura: Leiuperidae). Journal of Herpetology 43: 555–560.
2010] 19
Tschudi J.J.V. 1838. Classification der Batrachier, mit Bercksichtigung der Fossilien Thiere
dieser Abtheilung der Reptilien. Mémories de la Société des Sciences Naturelles de
Neuchâtel 1: 1-102.
Vaz-Ferreira R., de Sá R.O., Achaval F. & Gerhau A. 1984. Leptodactylus podicipinus (COPE,
1862) y Leptodactylus chaquensis CEI, 1959 (Anura, Leptodactylidae) en el Uruguay.
Boletín de la Sociedad Zoológica del Uruguay 2: 72-77.
Vaz-Ferreira R. & Gerhau A. 1974. Protección de la prole en leptodactílidos. Revista de Biología
del Uruguay 2: 59-62.
Vaz-Ferreira R. & Gerhau A. 1975. Comportamiento epimelético de la rana común Leptodactylus
ocellatus (L.) (Amphibia, Leptodactylidae) I. Atención de la cría y actividades alimentarias
y agresivas relacionadas. Physis 34: 1-14.
Vaz-Ferreira R. & Gerhau A. 1986. Comportamiento de los renacuajos gregarios de Leptodactylus
ocellatus. Universidad de la República. Facultad de Humanidades y Ciencias. Dirección
General de Extensión Universitaria. División Publicaciones y Ediciones. Montevideo. 23
pp.
Ziegler L. & Maneyro R. 2008. Clave para la identificación de los anfibios del Uruguay. DIRAC -
Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay. 72 pp.
CANAVERO et al.: Amphibian diversity of Uruguay
... Sensibilidad Componente del CC Atributo ecológico clave degradado Impacto en atributos ecológicos clave Hipótesis del cambio Anfibios (bibliografía general): Achaval & Olmos, 2003;Arrieta et al., 2013;Canavero et al., 2010b;Kolenc et al., 2003;Maneyro & Langone, 2001;Maneyro & Carreira, 2006;Nuñez et al., 2004;Prigioni et al., 2011 Escenarios CC: Castaño et al., 2007;Nagy, 2012 De hábitos diurnos y especialista de ambientes abiertos (dunas costeras), lo que deja a esta especie muy expuesta a la desecación y con escasa posibilidad de escapar a un aumento en la temperatura ambiente. ...
... Reptiles (bibliografía general): Achaval, 2001;Achaval & Olmos, 2003;Canavero et al., 2010b;Carreira & Estrades, 2013;Etheridge, 2000;Maneyro & Carreira, 2006;Martori et al., 1998;Ramírez Pinilla, 1991 Predicciones CC: Castaño et al., 2007;Nagy, 2012 Modificaciones en el régimen de precipitaciones. ...
... Es importante tener en cuenta el escaso conocimiento acerca de las dinámicas poblacionales de M. montevidensis (Toranza & Maneyro, 2013). Hasta la fecha, las observaciones que se han registrado notan que la aparición de la especie es explosiva y altamente variable, vinculada a fuertes lluvias (Toranza & Maneyro, 2013), aunque el análisis de patrones poblacionales en el largo plazo ha mostrado un decaimiento poblacional de esta especie (Maneyro & Langone, 2001;Canavero et al., 2010b). Por lo antedicho, se refuerza la idea de que la mayoría de las medidas de conservación que se adopten habrán de complementarse con un fuerte monitoreo y estudio de la biología de la especie. ...
Thesis
Full-text available
En este trabajo se identifican 1) los componentes del cambio climático (CC) que afectarán a las especies de anfibios y reptiles vulnerables al CC en Uruguay y qué atributos ecológicos de las especies se ven afectados por esos componentes; 2) qué amenazas antrópicas están presentes en las áreas de distribución de las especies en estudio y qué grado de amenaza representan para las especies; y 3) se generan estrategias para la conservación de las especies frente a las amenazas antrópicas y los componentes del CC reconocidos. Las especies sobre las que se enfoca el trabajo son Melanophryniscus montevidensis, M. atroluteus, M. sanmartini, M. langonei, M. devincenzii, M. pachyrhynus y Liolaemus wiegmannii. Para la evaluación de amenazas e identificación se aplicó la metodología de Estándares Abiertos para la Práctica de la Conservación desarrollada por la Alianza para las Medidas de Conservación (CMP, por su sigla en inglés).
... reproducción (Camargo et al. 2005a) y estructura temporal de comunidades (da Rosa et al. 2006;Canavero et al. 2008), conservación (Maneyro y Langone, 2001;Canavero et al. 2010) entre otros. En lo que refiere al estudio de patrones espaciales en ensambles de anfibios, los antecedentes son muy escasos. ...
... A escala nacional el único antecedente es el trabajo de Núñez et al. (2004), donde se reporta la distribución observada de las especies de anfibios que habitan el territorio uruguayo, en base al mapeo del material depositado en colecciones nacionales. También cabe citar el trabajo de Maneyro y Kwet (2008), dónde se hacen consideraciones de la influencia de cinco biotas regionales sobre la fauna de bufónidos en la frontera entre Uruguay y Brasil y un artículo reciente sobre el estado de conocimiento y los vacíos de información en el grupo (Canavero et al. 2010). ...
Thesis
Full-text available
Several studies suggest that geographical variation in species richness is related to climate and environmental heterogeneity. At the same time, there is a global consensus that climate is changing. The Intergovernmental Panel of Climate Change (IPCC) predicts changes in temperature and precipitation over the XXI century. In addition, effects of climate change (CC) on biological systems have been detected, which could intensify in the future. In this context, changes in species’ distribution and richness are expected. Assessing these changes is particularly important in threatened ectotherm organisms such as the amphibians. This study analyzes the environmental determinants of the amphibian richness spatial pattern in Uruguay, and evaluates potential modifications of the distribution and richness of the species under CC scenarios. We used 18956 records belonging to 38 native amphibian species from Uruguayan herpetological collections. Present and future climatic projections of the Global Circulation Model HadCM3 (scenarios A2 and B2), for the periods 2050 and 2080 were obtained from the Global Biodiversity Information Facility (GBIF). Using climate envelope modeling (MAXENT), we estimated present and future potential distribution of amphibian species. Then, to analyze the environmental determinant of the species richness pattern, we applied regression models including environmental variables and spatial filters. Finally, we explored potential changes in the species distribution and richness, under both CC scenarios (A2 and B2). Spatial variation in amphibian richness was explained by climatic variables such as potential evapotranspiration and precipitation variation, and also by habitat diversity. Additionally, spatial structure in richness pattern unrelated to environmental factors was detected. Under both studied IPCC scenarios, the results of the modeling process suggest that most species will keep their current distribution or expand it by 2050, a trend that would intensify towards the end of the century. Local amphibian richness would increase throughout the country, primary in the northeast. However, some species may experience retractions or even loose completely their actual environmental conditions range.
... In our study, ponds in the sampled properties harbored half of the anuran species richness normally found in conservation areas of the Brazilian Pampa (André, Cechin, & Santos, 2019;Bolzan, Saccol, & Santos, 2016) and about 30% of the species registered at the Uruguayan savanna ecoregion (Canavero et al., 2010;Maneyro, 2008). Such impoverishment could be due to a sampling effect, because of low detection probabilities of many anuran spe- It is interesting to note that the species registered as adults only have the southern limit of their geographical distribution in the border between Brazil and Uruguay (P. ...
Article
Although habitat modification is considered one of the main causes of biodiversity loss, the relative contribution of different rural land uses to biodiversity conservation is far less known. Additionally, the realization of the multidimensionality of biodiversity demands studies integrating variation of functional traits and phylogenetic information as complements to address the effects of land use on the structure of animal communities. Herein, we investigated the effects of land use (i.e., intensive agricultural and extensive livestock rearing) on functional and phylogenetic diversity of anuran communities in farmland ponds from the Uruguayan savanna ecoregion, while considering the effects of local factors (i.e., water depth) on species composition. We surveyed adults and tadpoles in 22 ponds and quantified five traits related to tadpole feeding, habitat use, and predator avoidance. Tadpole identification was corroborated by DNA barcoding based on a fragment of the mitochondrial 16S rRNA gene. We observed a decline in phylogenetic mean nearest taxon distance associated with increase of surrounding agricultural land use. While land use intensification did not affect richness (functional or phylogenetic), ponds in livestock ranches hosted about four times more tadpoles than agricultural ponds. Functional evenness decreased with water depth, although such relationship disappeared when considering phylogenetic non‐independence. Our results indicated that specific anuran clades were more sensitive to intensification in land use, reinforcing a recent view of phylogenetic homogenization following habitat conversion. Additionally, our study suggests that extensive cattle grazing over wide native pastures may provide an alternative more compatible with conservation than short‐term crops in subtropical grasslands. Abstract in Portuguese is available with online material.
... The records and potential occurrences (obtained from models and expert opinions) of species are given over a grid of 302 cells of 33 x 20 km, covering the entire Uruguayan territory. Previous version of this database have been used in other publications (e.g., Canavero et al. 2010, Haretche et al. 2012, Pérez-Quesada and Brazeiro 2013, Brazeiro et al. 2015a and to design the management plan of the National System of Protected Areas of Uruguay (SNAP 2015). From this species assemblage, we selected all species that use grasslands and/or shrublands as exclusive (i.e., habitat specialists) or secondary habitats (i.e., habitat generalists), according to recent local bibliography on woody plants ( To obtain FGS, we defined as focal grassland species those grasslands woody plants and terrestrial vertebrates included in the national list of priority species for conservation (Soutullo et al. 2013). ...
Article
Full-text available
Habitat loss due to land-use change is the greatest threat to biodiversity on a global scale, and agriculture has been the principal driver of change. In Uruguay, the conversion of native grasslands to croplands (e.g., soybean) and exotic forest plantations (Eucalyptus and Pinus) has accelerated during the last two decades. We studied the vulnerability of vertebrate and woody plant diversity to the loss of grassland areas, driven by agricultural and forestry expansion, to identify priority areas for conservation. We assessed the spatial variability of biodiversity vulnerability in function of species richness and number of focal species (i.e., prioritized species) of woody plants and terrestrial vertebrates that use grassland ecosystem as habitat. The top 17% of vulnerable sites (51 of 302 cells) were selected as priority conservation areas for Uruguay, following Aichi Target number 11. Approximately 36 % of the original continental territory of Uruguay, mainly grasslands, was converted to cropland (28%) and exotic forest plantations (8%) in 2015. Approximately 27% of the priority cells for conservation of vertebrates and woody plant diversity have been transformed, especially in three ecoregions in which habitat loss was between 35-45%. We simulated a land-use scenario for 2030, based on national production goals of soybean and exotic forest plantations, projecting that: (1) the overall loss of original habitat (mainly grasslands) would reach 48% of the country’s land area, and (2) 45% of the priority cells would be converted to agricultural lands, especially in four ecoregions, with habitat losses greater than 50%. Our results suggest an urgent need to develop strategies to reduce the rate of natural grassland loss in Uruguay, as well as to conserve biodiversity and ecosystem services associated with these systems. Conservation efforts should focus on prioritized cells, especially those with no protection status and a high likelihood of agricultural conversion in 2030, through expanding public and private protected areas and promoting wildlife-friendly agricultural alternatives, such as beef production in natural grasslands.
... Ziegler and Maneyro [100]. Canavero et al. [101]. Canavero et al. [102]. ...
Article
Full-text available
The genus Scinax currently includes more than 120 species, recovered in two major clades, the S. catharinae and the S. ruber clades. The latter comprises 75 species, most of which remain unassigned to any species groups, while 12 are included in the S. rostratus and S. uruguayus groups. In this paper we present a taxonomic review of the two species currently included in the S. uruguayus group, discussing some putative phenotypic synapomorphies of this group. Although S. pinima and S. uruguayus have been considered as distinct species , this has been based on scant evidence, and several authors doubted of their distinc-tiveness. Our study of available specimens of S. pinima and S. uruguayus corroborates that both are valid and diagnosable species based on phenotypic evidence. Furthermore, our results show that S. pinima previously known only from its type locality, has a much widespread distribution than previously thought (including the Brazilian states of Paraná , Santa Catarina, and Rio Grande do Sul), which, added to the biological information presented here allows to suggest the removal of this species from the "Data Deficient" IUCN Red List category to "Least Concern". Also, we describe a new species formerly reported as S. aff. pinima and S. uruguayus from NE Argentina and some localities from the Brazilian State of Rio Grande do Sul. All species are diagnosed and characterized using adult and larval morphology , osteology, vocalizations, cytogenetics, and natural history.
... Como los modelos de distribución de especies se basan principalmente en datos de presencias (Franklin 2010), para obtener distribuciones más cercanas a la distribución realizada y disminuir los errores de omisión y de comisión aplicamos la metodología propuesta por Pineda and Lobo (2009), que se basa en la selección de celdas bien muestreadas que permitan identificar "ausencias verdaderas". Inicialmente, pre-seleccionamos aquellas celdas del Plan Cartográfico Nacional que cuentan con 100 ó más registros de anfibios, lo cual ha sido indicado como un buen esfuerzo de muestreo en el grupo (Canavero et al. 2010a). Luego, para cada celda se construyó una matriz de registros por especie y se aplicaron distintos estimadores de riqueza (Chao1, Chao2 y Jackknife) usando el programa EstimateS v8.2 (ver Información Suplementaria). ...
Article
Full-text available
Climate change (CC) constitutes one of the main biodiversity threats. The effects of CC on species are apparent worldwide, with primarily poleward and upward shifts in species distribution. Due to their narrow distribution, threatened species are highly vulnerable to CC. In this context, protected areas (PA) could be key tools for adaptation to CC. Our aims were to study the effects of CC on the distribution and richness of the threatened and near threatened amphibians of Uruguay; and to evaluate the effectiveness of the National Network of Protected Areas (NNPA) at present and under future climate scenarios. To model the distribution of nine species, we obtained records from herpetological collections, scientific publications and GBIF, as well as current data and future climate projections of the General Circulation Model HadCM3 under the A2 and B2 IPCC scenarios from Worldclim. To model species distribution we applied maximum entropy techniques (MAXENT). To evaluate the effectiveness of NNPA we conducted a gap analysis by overlaying PA with the distribution of species. The models indicate that the distribution of most amphibian species could expand in Uruguay in the future; except for Pleurodema bibroni y Melanophryniscus montevidensis. Local amphibian richness is predicted to increase, mainly in the northwest and east of the country. While amphibians studied are included in at least one PA, less than 2% of the distribution is actually covered by the NNPA, both currently and under CC scenarios; which it is a strong indicator of the inefficiency of the system. Although projected CC for this region would not constitute a major threat to amphibians studied, the scarce protection by the NNPA represents a risk to the conservation of herpetofauna facing the other components of global change.
... Como los modelos de distribución de especies se basan principalmente en datos de presencias (Franklin 2010), para obtener distribuciones más cercanas a la distribución realizada y disminuir los errores de omisión y de comisión aplicamos la metodología propuesta por Pineda and Lobo (2009), que se basa en la selección de celdas bien muestreadas que permitan identificar "ausencias verdaderas". Inicialmente, pre-seleccionamos aquellas celdas del Plan Cartográfico Nacional que cuentan con 100 ó más registros de anfibios, lo cual ha sido indicado como un buen esfuerzo de muestreo en el grupo (Canavero et al. 2010a). Luego, para cada celda se construyó una matriz de registros por especie y se aplicaron distintos estimadores de riqueza (Chao1, Chao2 y Jackknife) usando el programa EstimateS v8.2 (ver Información Suplementaria). ...
Article
Full-text available
Climate change (CC) constitutes one of the main biodiversity threats. The effects of CC on species are apparent worldwide, with primarily poleward and upward shifts in species distribution. Due to their narrow distribution, threatened species are highly vulnerable to CC. In this context, protected areas (PA) could be key tools for adaptation to CC. Our aims were to study the effects of CC on the distribution and richness of the threatened and near threatened amphibians of Uruguay; and to evaluate the effectiveness of the National Network of Protected Areas (NNPA) at present and under future climate scenarios. To model the distribution of nine species, we obtained records from herpetological collections, scientific publications and GBIF, as well as current data and future climate projections of the General Circulation Model HadCM3 under the A2 and B2 IPCC scenarios from Worldclim. To model species distribution we applied maximum entropy techniques (MAXENT). To evaluate the effectiveness of NNPA we conducted a gap analysis by overlaying PA with the distribution of species. The models indicate that the distribution of most amphibian species could expand in Uruguay in the future; except for Pleurodema bibroni y Melanophryniscus montevidensis. Local amphibian richness is predicted to increase, mainly in the northwest and east of the country. While amphibians studied are included in at least one PA, less than 2% of the distribution is actually covered by the NNPA, both currently and under CC scenarios; which it is a strong indicator of the inefficiency of the system. Although projected CC for this region would not constitute a major threat to amphibians studied, the scarce protection by the NNPA represents a risk to the conservation of herpetofauna facing the other components of global change.
Article
Full-text available
RESUMEN El monitoreo de especies y comunidades es clave en la gestión de la conservación de la biodiversidad, la elaboración y la planificación de políticas de conservación. Los anfibios experimentan a nivel global una importante crisis de diversidad. En el caso de Uruguay se cuenta con un registro de 47 especies nativas, donde el 34% de ellas se encuentran en alguna categoría de amenaza. Este trabajo tuvo como objetivo aportar a la generación de información sobre la diversidad de anfibios a través de un monitoreo acústico pasivo en la Alameda de San Carlos. Durante este estudio se obtuvieron 511 grabaciones, con un total de 2555 minutos de grabación. Se registraron e identificaron un total de 14 especies de anfibios. Durante los 22 días de muestreo, fue notoria la variación temporal en el registro de especies, Boana pulchella y Scinax squalirostris fueron las únicas que estuvieron activas durante todo el muestreo, mientras que el resto de las especies lo hicieron de forma intermitente. Este estudio destaca por estar basado en el monitoreo acústico pasivo de los cantos de anfibios, aportando información inexistente para el área de estudio y mostrando un gran potencial en actividades de enseñanza además del científico. Palabras Claves: Arroyo Maldonado, humedales, diversidad de anfibios, biomonitoreo ABSTRACT Preliminary assessment of the diversity of amphibians in the Alameda de San Carlos (Maldonado, Uruguay), through passive acoustic monitoring. Biological monitoring, from species to communities, is key to biodiversity conservation management, policy development and planning. Globally, amphibians are experiencing a major diversity crisis. In the case of Uruguay, there is a record of 47 native species, 34% of which have been assigned to some category of threat. The objective of this work was to contribute to the generation of information on amphibian diversity through passive acoustic monitoring in the Alameda de San Carlos. During this study, 511 recordings were obtained, with a total of 2555 minutes of recording. A total of 14 amphibian species were recorded and identified. During the 22 days of sampling, temporal variation in the activity of recorded species was notorious. Boana pulchella and Scinax squalirostris were the only ones that were active during the entire sampling, while the rest of the species were active intermittently. This study represents the first work based on passive acoustic monitoring of anuran calls in our country, providing novel information that was not available for the study area and showing great potential for teaching activities in addition to scientific ones.
Article
Full-text available
The uneven spatial distribution of biodiversity is a defining feature of nature. In fact, the implementation of conservation actions both locally and globally has progressively been guided by the identification of biodiversity ‘hotspots’ (areas with exceptional biodiversity). However, different regions of the world differ drastically in the availability of fine‑scale data on the diversity and distribution of species, thus limiting the potential to assess their local environmental priorities. Within South America—a megadiverse continent—Uruguay represents a peculiar area where multiple tropical and non‑tropical eco‑regions converge, creating highly heterogeneous ecosystems, but where the systematic quantification of biodiversity remains largely anecdotal. To investigate the constraints posed by the limited access to biodiversity data, we employ the most comprehensive database for tetrapod vertebrates in Uruguay (spanning 664 species) assembled to date, to identify hotspots of species‑richness, endemism and threatened species for the first time. Our results reveal negligible spatial congruence among biodiversity hotspots, and that tetrapod sampling has historically concentrated in only a few areas. Collectively, our study provides a detailed account of the areas where urgent biodiversity monitoring efforts are needed to develop more accurate knowledge on biodiversity patterns, offering government and environmental bodies a critical scientific resource for future planning.
Article
Full-text available
The continental and marine territories of Uruguay are characterised by a rich convergence of multiple biogeographic ecoregions of the Neotropics, making this country a peculiar biodiversity spot. However, despite the biological significance of Uruguay for the South American subcontinent, the distribution of biodiversity patterns in this country remain poorly understood, given the severe gaps in available records of geographic species distributions. Currently, national biodiversity datasets are not openly available and, thus, a dominant proportion of the primary biodiversity data produced by researchers and institutions across Uruguay remains highly dispersed and difficult to access for the wider scientific and environmental community. In this paper, we aim to fill this gap by developing the first comprehensive, open-access database of biodiversity records for Uruguay (Biodiversidata), which is the result of a large-scale collaboration involving experts working across the entire range of taxonomic diversity found in the country. As part of the first phase of Biodiversidata, we here present a comprehensive database of tetrapod occurrence records native from Uruguay, with the latest taxonomic updates. The database provides primary biodiversity data on extant Amphibia, Reptilia, Aves and Mammalia species recorded within the country. The total number of records collated is 69,380, spanning 673 species and it is available at the Zenodo repository: https://doi.org/10.5281/zenodo.2650169. This is the largest and most geographically and taxonomically comprehensive database of Uruguayan tetrapod species available to date and it represents the first open repository for the country.
Article
Full-text available
Forty three amphibians species are listed for Uruguay. The order Gymnophiona isrepresented by only one species, the rest are included in the order Anura, with five families andsixteen genera. Is presented a taxonomic list of all species including the originals descriptions, first record in the country and synonymous with type locality in Uruguay.
Article
As was explained in the Introduction, the purpose of these «Additional notes is to present the new information that has appeared since the publication of the Monograph «Amphibians of Argentina» (CEI, 1980a). These notes update the systematics of Argentine amphibians and briefly describe the new species that have been reported. In this analysis several genera stand out as poorly known and consequently probably subject to future changes in nomenclature. The most obvious examples of this are Elacbistocleis, Alsodes, Telmatobius, Leptodacty/us, Pbysalaemus, Odontophrynus and the supergenus Hyla. Other genera that may be suject to lesser modifications arc Bufo, Melanophtyniscus, Ceratopbrys, Lepidobatraebus, Pleurodema, Pscudopaludicola, Atelognatbus, Batracbyla, Pseudis, Gastrotbeca or Pbyllomedusa. Some of the monotypic or relictual genera such as Dermatonotus, Rbinoderma, Cbacopbrys, Crossodactylus, Somuncuria, Hylorina, Eupsopbus, Limnomedusa, Argenteobyla, Osteocepbalus, Phrynohyas and Centrolcnella unlikely will be the subject of future revisions.