ArticlePDF Available

Paecilomyces echinosporus sp. nov., a species isolated from soil in China

Authors:
  • International St. Mary's Hospital and college of medicine, Catholic Kwandong University

Abstract and Figures

During a survey of entomopathogenic fungi in China, a new species of Paecilomyces was isolated from a soil sample collected from Anhui province in China. It is differentiated from previously described species based on the morphology of its minutely echinulate conidia and conidiophores that possess penicillate phialides. Phylogenetic analyses with ITS region indicate that it is distantly related to Isaria and a close relative of P. carneus. The new species, Paecilomyces echinosporus, is presented with its Latin diagnosis, English description, and illustration. The type isolate and holotype are deposited in the Research Center for Entomogenous Fungi of Anhui Agricultural University (RCEF).
Content may be subject to copyright.
  
MYCOTAXON

Volume 114, pp. 25–32 October–December 2010

Paecilomyces echinosporus sp. nov.,
a species isolated from soil in China

chenmingjun2007@yahoo.cn zhouna0116@yahoo.com.cn
zzli@ahau.edu.cn bhuang@ahau.edu.cn
1 Anhui Provincial Key Laboratory of Microbial Control
Anhui Agricultural University, Hefei 230036, P. R. China
sung97330@korea.kr
2 Mushroom Research Division, Dept of Herbal Crop Research
National Institute of Horticultural and Herbal Science
Suwon 404-707, Republic of Korea
        
Paecilomyces 
           
       
Isaria
P. carneusPaecilomyces echinosporus, 

 


Introduction
Paecilomyces
Penicillium

  Paecilomyces        
Isaria  Spicaria        
P. variotiiPaecilomyces    
Paecilomyces
    P. Paecilomyces  P.  Isarioidea  


         
      Paecilomyces    
Paecilomyces 
SordariomycetesEurotiomycetesP.Isarioidea
   
Isaria    
  P  Isarioidea
PIsarioidea Isaria
         Paecilomyces  
   Paecilomyces        
        
        Taifanglania, 
   
      Paecilomyces       

         
    Paecilomyces    
Isaria Paecilomyces
echinosporus
Materials and methods
Sample collection and strain isolation
          
   
       
  
             
        


Strain identification


        





DNA extraction


Paecilomyces echinosporus... 
Paecilomyces 

   
 Cordyceps militaris   
 Isaria amoenerosea   
I. cateniannulata
  
 I. cicadae  
I. coleopterorum

 
 I. farinosa  
 I. fumosorosea  
I. javanica
  
 I. tenuipes  
 Mariannaea camptospora   
 Metarhizium anisopliae
 anisopliae
 
 M. cylindrosporum

 
 M. flavoviride 
 flavoviride
 
 Nomuraea rileyi   
Paecilomyces carneus 

 
P. cinnamomeus 

 
 P. echinosporus 

 
 P. gunnii   
 P. lilacinus   
 P. marquandii   
 P. niphetodes   
 P. penicillatus   
 P. viridis   
 Taifanglania curticatenata 

 
            
     


PCR amplification and determination of ITS sequencing








          
    

Sequence alignment and phylogenetic analysis
          


           
        


            


Results
Taxonomy
Paecilomyces echinosporus  

Coloniae in agaro Czapekii ad 30–37 mm diam post 14 dies 25°C, in medio modice
sulcatae, albae, pulverulentae, margine regulari; reversum luteolum; 35°C haud crescit.
Hyphae vegetativae hyalinae, septatae, ramosae, leves, 2.0–3.5 µm latae. Apparatus
conidialis elongatus vel compactus, seu phialides singulae seu capitula verticillos ramorum
et phialidum ferentia; stipites ex hyphis aeriis orientes, vulgo 45–95 × 2.5 μm. Phialides
ad quinae verticillatae, 9.5–15.5 × 2.0–3.0 μm, e basi cylindrica et collulo angusto minus
quam 0.5 µm lato composita. Conidia unicellularia, minute echinulata, subglobosa vel
elllipsoidea, 2.7–5.0 × 2.0–3.0 μm. Chlamydosporae absentes.



         
     
         



      



Paecilomyces echinosporus... 
Paecilomycesechinosporus

Molecular Characteristics of Paecilomyces echinosporus
         
  
   
        

P. carneus  
P. echinosporus
       P. echinosporus    
P. marquandiiP. lilacinus
 P. carneus     
P. echinosporus
 
P. carneus
    
P. echinosporus, 

   
       Mariannaea
camptospora
Paecilomyces echinosporus... 
Discussion
Paecilomyces
    P. carneusP. gunniiP.marquandii, 
P. lilacinus 
P. carneusP. gunnii
P. carneus
P. gunnii        
    P. marquandii  P. lilacinus    
        
  P. marquandii  P. lilacinus    
  P. echinosporus     

    Paecilomyces  P. echinosporus
 P. carneus           
   
  P. carneus     P. echinosporus 
P. carneus
P. echinosporus  
           
P. carneus

      

Paecilomyces,P. echinosporus.
Acknowledgements


    
         
           

Literature cited
    Paecilomyces    Byssochlamys
        

           Metarhizium   





Isaria

Paecilomyces

        Metarhizium
cylindrospora Nomuraea viridula
 Isaria

           Cordyceps gunnii 

Paecilomyces

             Paecilomyces   
Taifanglania
Paecilomyces
Isarioidea
Paecilomyces

   Paecilomyces        

           Beauveria
bassianaDeuteromycotina: Hyphomycetes


  
    


              
    

  

... Paecilomyces is a hyphomycete fungus with more than 100 known species. This genus is one of the string fungi that has different habitats such as soil, decaying plant materials, food, and insects and it can even cause disease in humans (43,44). At first, this genus was described by Bainier (45) and is very similar to the Aspergillus. ...
Article
Full-text available
Introduction: Flavonoids are a group of polyphenolic compounds that are naturally found in plants and many flavonoids are the basis of herbal medicines and have effective pharmacological effects. Rutin is one of the flavonoids that is used as a reagent in the study of flavonoids and is also considered an antioxidant. This study was conducted to isolate and identify rutin-producing endophytic fungi from C. spinosa. Material and Methods: Sampling was performed in 10 regions of Iran and was taken from different tissues (including leaves, stems, roots, and fruits). After surface disinfection, explants were placed on PDA medium and the fungal isolates were purified. Molecular identification of isolates was performed by sequencing ITS1-5.8S-ITS2. Morphological identification of fungi was performed by microscopic slide preparation and fungus identification keys. Methanolic extract of fungi was prepared by the maceration method and the presence of rutin was investigated using the HPLC technique. Results: A total of 24 fungi were identified. HPLC analysis showed that the peak of standard flavonoids including rutin, quercetin, and apigenin appeared at 3.82, 7.60, and 12.40 min, respectively. Results showed that only two isolates were able to produce rutin. Comparison of the mean production of rutin showed a significant difference between the two fungi. Alternaria alternata M28 (22.94 ppm) had the highest amount of rutin production. Results also showed that rutin production in the mycelial tissue was more than in the extracellular medium, so that in A. alternata M28 and Paecilomyces maximus had rutin content of about 67.5 and 5.56 times, respectively. Discussion and Conclusion: Fungal rutin in methanolic extracts was characterized by HPLC. This is the first report that endophytic fungi have an acceptable potential for rutin production from C. spinosa and more research on these isolates can increase the amount of rutin production in them and lead to commercialization.
... Paecilomyces variotii is a species commonly found after being isolated on various media, including food, soil, indoor air, and wood 22,23 . Paecilomyces sp is a filamentous fungus, commonly found in soil, rotten plants, and food products 24,25,26 . ...
Article
Scotinophara sp is a major pest that damages rice fields in Bolaang Mongondow. The use of insecticides failed to stop the rice black bugs attacks. Entomopathogenic fungi can be used to reduce rice black bugs population. However, the function of the type of fungus that can eradicate rice black bugs was not yet identified. This experimental research was conducted to identify the types of fungus that attack rice black bugs by taking samples of nymphs and imago attacked by entomopathogenic fungi in Bolaang Mongondow Regency. Sampling of rice black bugs was done 3 times. Koch’s postulates test was employed to see the fungus that infect the rice black bugs. Samples were isolated on PDA media (Patato dextrose agar). Entomopathogenic fungi were purified, then inoculated on healthy rice black bugs. Rice black bugs infected with fungi were isolated again on PDA media. In a mass, of fungus colonies showed reddish white field and after being isolated on PDA media of the colony agregate, entomopathogenic Paecilomyces sp. fungus and Fusarium sp were found. Fungi as pathogenic agent was only found in Paecilomyces sp. The rice black bugs (Scotinophara sp.) were isolated on culture media and inoculation in healthy Scotinophara sp showed the same color of the colony during sampling of Scotinophara sp. infected with fungus. Both fungi were scattered at the location of Scotinophara sp infected with fungi.
... Paecilomyces variotii was the first species accepted in Paecilomyces, until now more than 100 species have been recognized in the genus (He et al. 2011). Paecilomyces is a common filamentous fungus usually found in soil, decaying plants, and food products (Chen et al. 2010;Gumus et al. 2010;Samson et al. 2009). Some species of Paecilomyces are isolated from insects, an it is even a cause of infection for man (Kalkar et al. 2006;Luangsa-ard et al. 2011;Schooneveld et al. 2008). ...
Article
Full-text available
A special purple filamentous fungus, TD16, was isolated from the contaminated culture broth of cyanobacteria (chroococcaceae sp). The sequence of the ITS1-5.8S-ITS2 region of its rDNA suggests that it belongs to the genus Paecilomyces with the highest homology of 99%. Further phylogenetic analysis (GenBank accession no: JN243772) indicates that the fungus is related more closely to Paecilomyces lilacinus than to other species of Paecilomyces. However, its phialides consist of a very thin neck (diameter less than 0.5 μm), approximately half that of the Paecilomyces lilacinus reported previously. Accordingly, the species is perhaps a variety or subspecies of Paecilomyces lilacinus. Furthermore, this special Paecilomyces secreted polysaccharides composing of galactose only and a lilac water-soluble pigment into the broth.
Article
Full-text available
Wildlife parks play a positive role in strengthening the publicity and education of wildlife protection, rational utilization of wildlife resources, and socioeconomic development. Due to anthropogenic influences, wildlife parks are characterized by highly heterogeneous environments, which inevitably harbor a great diversity of fungal taxa. Few systematic surveys of soil fungal taxa in wildlife parks have been reported. We investigated fungal taxa in the soil of Guizhou Wildlife Park, China, using culture-dependent methods to enrich the information on fungal diversity in such habitats. Preliminary internal transcribed spacer (ITS) analyses showed that 223 taxa were obtained in this study. Such taxa belonged to 126 genera, 10 undefined genera, 12 classes, and three phyla. This study identifies and describes one new order, one new family, two new genera, 21 new species, two new combinations, one new record from China and one asexual morph based on morphological and phylogenetic distinctions. Tuberculiformaceae is introduced as a new family, in the new order Tuberculiformales with Tuberculiforma as the type genus. In addition, a new genus, Paragongromeriza, with Paragongromeriza sinensis as the type species is introduced. Taxonomic novelties: New section, Guizhouorum is introduced in Penicillium. The novel species identified in this study are Amorocoelophoma Tuberculiforma catenatus. New record in China, Scolecobasidium longiphorum and the asexual morph of Nemania rubi are given as the first reports. This work further demonstrated that wildlife park encompasses a high fungal diversity, including many previously unknown species which enhances our comprehension of soil fungal diversity within urban environments.
Article
Full-text available
Background Especially on commodities crops like soybean, maize, cotton, coffee and others, high yields are reached mainly by the intensive use of pesticides and fertilizers. The biological management of crops is a relatively recent concept, and its application has increased expectations about a more sustainable agriculture. The use of fungi as plant bioinoculants has proven to be a useful alternative in this process, and research is deepening on genera and species with some already known potential. In this context, the present study focused on the analysis of the plant growth promotion potential of Purpureocillium lilacinum , Purpureocillium lavendulum and Metarhizium marquandii aiming its use as bioinoculants in maize, bean and soybean. Methods Purpureocillium spp. and M. marquandii strains were isolated from soil samples. They were screened for their ability to solubilize phosphorus (P) and produce indoleacetic acid (IAA) and the most promising strains were tested at greenhouse in maize, bean and soybean plants. Growth promotion parameters including plant height, dry mass and contents of P and nitrogen (N) in the plants and in the rhizospheric soil were assessed. Results Thirty strains were recovered and characterized as Purpureocillium lilacinum (25), Purpureocillium lavendulum (4) and Metarhizium marquandii (1). From the trial for P solubilization and IAA production, seven strains were selected and inoculated in maize, bean and soybean plants. These strains were able to modify in a different way the evaluated parameters involving plant growth in each crop, and some strains distinctly increased the availability of P and N, for the last, an uncommon occurrence involving these fungi. Moreover, the expected changes identified at the in vitro analysis were not necessarily found in planta . In addition, this study is the first to evaluate the effect of the isolated inoculation of these fungi on the growth promotion of maize, bean and soybean plants.
Article
An appropriate cell response to implant surface is essential for tissue integration and regeneration. The implant material is precoated with proteins such as elastin, fibronectin, vitronectin, laminin or Arg–Gly–Asp (RGD) to improve the cell adhesive properties and tissue integration and accelerated bone healing. In the present work, the first principle calculations are performed to investigate the adsorption of arginine, aspartic acid, glycine and RGD tripeptide on anatase TiO2 (0 0 1) surface. The adsorption energies are calculated using PBE, PBEsol and DFT-D2 methods. For arginine, the adsorption with anatase TiO2 is occurring through hydrogen bonds between amino groups of arginine and oxygen atom of TiO2 surface. The zwitterionic form of aspartic acid has strong interaction with anatase TiO2 (0 0 1) surface. The adsorption strength of glycine in dissociative adsorption configuration is higher than that of molecular and zwitterionic adsorption configurations. For RGD tripeptide, RGD-4 configuration is having maximum adsorption energy of −1.19, −1.46 and −1.62 eV at PBE, PBEsol and DFT-D2 methods. Analysis of the electron density difference plot and Bader charge analysis shows that the carboxyl groups of aspartic acid furnish the maximum contribution for the adsorption of RGD tripeptide on TiO2.
Article
Full-text available
Growth of Beauveria bassiana at various pHs was investigated and the fungus was found to be able to grow well at high pHs of more than 10. The fungus was also resistant to CuCl2 and to low sugar content. New selective media for the isolation of B. bassiana were developed by integrating CuCl2, low sugar, and either crystal violet or brilliant green in the media. Beauveria bassiana was isolated from soil samples using the developed media, and isolation efficiency was found to be higher using one of our newly developed media than by using that of VEEN and FERRON which has commonly been used for the selective isolation of B. bassiana.
Article
Thirty-two taxon of Paecilomyces known to China are briefly reviewed. Paecilomyces cylindricosporus sp. nov from the soil of ShenLongJia Mountains, Hubei Province is described and illustrated and compared with similar species. This fungus can be distinguished by narrowly cylindrical conidia, obtuse ends and phialides consisting of a narrowly cylindrical basal portion and fusiform or cylindrical middle portion from allied species. Biotechnological research and applications are discussed. A key to Chinese Paecilomyces species is provided.
Article
Two new species, Paecilomyces stipitatus and P. vinaceus, isolated respectively from soil samples of Wuhan City, Hubei province and Yantai city, Shangdong Province, China, are described and illustrated. The former species is characterized by its white colony, cylindrical or ellipsoidal phialides bases above typically long and septate thin stalks, and subglobose conidia. P. vinaceus is distinguished by white colony with a vinaceous reverse, clavate phialides bases, and subglobose to ellipsoidal conidia.
Article
The nomenclatural status and history of the generic name Isaria are reviewed. Authorship and typification are discussed, and we conclude that Isaria Pers.: Fr. is a validly published generic name that has previously been effectively and appropriately lectotypified by Isaria farinosa (Holm: Fr.) Fr. A lectotype illustration and an epitype specimen are designated for I. farinosa. We suggest that the name Isaria be used for species previously assigned to Paecilomyces section Isarioidea Samson. Further taxonomic studies are required to determine the appropriate circumscription of Isaria. Our conclusions preserve a Friesian genus in a familiar sense.
Book
— We studied sequence variation in 16S rDNA in 204 individuals from 37 populations of the land snail Candidula unifasciata (Poiret 1801) across the core species range in France, Switzerland, and Germany. Phylogeographic, nested clade, and coalescence analyses were used to elucidate the species evolutionary history. The study revealed the presence of two major evolutionary lineages that evolved in separate refuges in southeast France as result of previous fragmentation during the Pleistocene. Applying a recent extension of the nested clade analysis (Templeton 2001), we inferred that range expansions along river valleys in independent corridors to the north led eventually to a secondary contact zone of the major clades around the Geneva Basin. There is evidence supporting the idea that the formation of the secondary contact zone and the colonization of Germany might be postglacial events. The phylogeographic history inferred for C. unifasciata differs from general biogeographic patterns of postglacial colonization previously identified for other taxa, and it might represent a common model for species with restricted dispersal.