ArticlePDF Available

Description of a mixed-species colony of Humboldt (Spheniscus humboldti) and Magallanic Penguin (S. magellanicus) at Metalqui Island, Chiloé, southern Chile.

Authors:

Abstract

We describe the mixed-species colony of Humboldt (Spheniscus humboldti) and Magellanic (S. magellanicus) penguins at Metalqui Island in Chiloe, southern Chile. The colony was visited on 8 December 2008 and nests (mostly dirt burrows) were individually checked for contents. Our survey included nearly 24% of the island’s suitable nesting habitat for penguins and indicated a breeding population of 28 and 203 Humboldt and Magellanic Penguins pairs, respectively. Nests contained either adults alone or adults attending chicks (no nests with eggs were observed) suggesting that breeding season was advanced at that time. This represents a species ratio of 1:7, similar to what has been reported for the mixed colony at Puñihuil Islands, 35 km to the north of Metalqui. The present data extends the breeding range of the Humboldt penguin to the south and adds a third mixed-species colony of both penguin species along its overlapping range.
42
CONTRIBUCIONES BREVES
Boletín Chileno de Ornitología 16(1): 42-47
Unión de Ornitólogos de Chile 2010
DESCRIPCIÓN DE UNA COLONIA MIXTA DE PINGÜINO
DE HUMBOLDT (Spheniscus humboldti) Y DE MAGALLANES
(S. magellanicus) EN ISLA METALQUI, CHILOÉ, SUR DE CHILE
Description of a mixed-species colony of Humboldt (Spheniscus humboldti) and
Magellanic Penguin (S. magellanicus) at Metalqui Island, Chiloe, southern Chile
LUCIANO HIRIART-BERTRAND1, ALEJANDRO SIMEONE2, RONNIE REYES-ARRIAGADA3,
VICTORIA RIQUELME3, KLEMENS PÜTZ4 & BENNO LÜTHI4
1Center for Advanced Studies in Ecology and Biodiversity (CASEB), Departamento de Ecología, Facultad
de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile.
2Departamento de Ecología y Biodiversidad, Facultad de Ecología y Recursos Naturales, Universidad
Andrés Bello. República 470, Santiago, Chile.
3Instituto de Zoología, Facultad de Ciencias, Universidad Austral de Chile. Casilla 567, Valdivia, Chile.
4Antarctic Research Trust, c/o Zoo Zurich. Zurichbergstr. 221, 8044, Zurich, Suiza.
: L. Hiriart-Bertrand, lhiriart@bio.puc.cl
A
BSTRACT
.- We describe the mixed-species colony of Humboldt (Spheniscus humboldti) and
Magellanic (S. magellanicus) penguins at Metalqui Island in Chiloe, southern Chile. The colony
was visited on 8 December 2008 and nests (mostly dirt burrows) were individually checked for
contents. Our survey included nearly 24% of the island’s suitable nesting habitat for penguins
and indicated a breeding population of 28 and 203 Humboldt and Magellanic Penguins pairs,
respectively. Nests contained either adults alone or adults attending chicks (no nests with eggs
were observed) suggesting that breeding season was advanced at that time. This represents a
species ratio of 1:7, similar to what has been reported for the mixed colony at Puñihuil Islands,
35 km to the north of Metalqui. The present data extends the breeding range of the Humboldt
penguin to the south and adds a third mixed-species colony of both penguin species along its
overlapping range.
Manuscrito recibido el 16 de abril de 2010, aceptado el 17 de mayo de 2010. Editor asociado: Flavio Quintana.
El pingüino de Humboldt
(Spheniscus humboldti Meyen 1834) es una
de las dos especies de pingüinos del género
Spheniscus que habitan en las costas de Chi-
le, encontrándose colonias de esta especie
desde isla Foca en Perú (5ºS) hasta los islotes
de Puñihuil (41º55'S) en el sur de Chile (Ellis
et al. 1998). La otra especie, el pingüino de
Magallanes (S. magellanicus), nidifica en la
costa Atlántica de Argentina entre Islote Re-
dondo (41º26'S) en Río Negro hasta Isla Mar-
tillo (54º54'S) en Tierra del Fuego (Schiavini
et al. 2005), subiendo por el Pacífico hasta el
islote Pájaro Niño (Algarrobo 33º27'S) en
Chile central (Simeone et al. 2003). En la zona
centro-sur de Chile ambas especies sobrepo-
nen su rango reproductivo y en al menos dos
localidades se han descrito colonias mixtas:
Islote Pingüinos (40º56'S), en la costa de
Osorno (Cursach et al. 2009) e islotes
Puñihuil, en la costa expuesta de Chiloé
(Wilson et al. 1995, Simeone & Schlatter
43
CONTRIBUCIONES BREVES
1998). La presencia del pingüino de Humboldt
al sur de Puñihuil fue documentada por
Simeone & Hucke-Gaete (1997), quienes ob-
servaron individuos en isla Metalqui (42º12'S;
74º10'W) y Reyes-Arriagada et al. (2009) con-
firmaron la presencia de esta especie en isla
Guafo (43º36'S; 74º43'W). Recientemente,
Simeone et al. (2009) confirmaron la existen-
cia de una colonia mixta de ambas especies
de pingüino en isla Metalqui, comprobando
incluso la formación de parejas
heteroespecíficas e hibridación. Estos auto-
res, sin embargo, no entregaron mayores de-
talles de dicha colonia. En la presente nota
describimos esta colonia mixta de pingüinos
de Humboldt y de Magallanes.
El 8 de diciembre de 2008 realiza-
mos una visita a la Isla Metalqui (Fig. 1). La
navegación se realizó a bordo de una embar-
cación de pesca artesanal (eslora 8 m) con
motor fuera de borda de 70 HP. Tras una hora
y media aproximadamente de navegación se
realizó un primer desembarco en el lado Sur
(sector denominado ´ ´ La Poza´ ´ ) y posterior-
mente en el lado NW. El hábitat fue similar al
encontrado en los islotes de Puñihuil (ver
Simeone & Schlatter 1998), con una vegeta-
ción predominante de quila (Chusquea spp.),
nalca (Gunnera chilensis) y chupalla
(Fascicularia bicolor). En ambos sitios se
realizó un conteo absoluto de nidos, consti-
tuidos principalmente por cuevas excavadas
en el suelo (de tierra). Se consideraron como
nidos todas aquellas cuevas que contenían
aves (adultos y/o crías) o signos de haber sido
usadas recientemente (vegetación removida,
fecas, excavación) (Bibby et al. 2000). La re-
visión individual de los nidos se realizó con
la ayuda de linternas para facilitar la visibili-
dad al interior de las cuevas. Los nidos se
encontraron dispersos en un área de aprox. 2
ha en el lado Sur y en aprox. 1 ha en el lado
NW, todos ubicados entre el límite de la más
alta marea y la pared de los acantilados.
Nuestros resultados indican que
Metalqui sostiene una población de al menos
28 parejas de pingüino de Humboldt y 203 de
pingüino de Magallanes (Tabla 1), lo que es-
tablece una razón entre ambas especies de 1:7.
Estos valores coinciden con lo registrado por
Simeone (2004) en los islotes de Puñihuil don-
de las razones variaron entre 1:5 y 1:7. La to-
talidad de los nidos que presentaba actividad
reproductiva, presentaba pollos (no se obser-
vó ninguno con huevos), lo que indica que la
temporada reproductiva se encontraba bastan-
te avanzada. Los muestreos fueron obtenidos
de una superficie cercana a las 3 ha lo que
representa cerca del 18% de la superficie to-
tal de la isla, estimada en 17 ha (Saavedra
1980). Excluidas las playas rocosas (sitios
donde no anidan pingüinos), que cubren
aproximadamente 4,3 ha, la superficie
muestreada representaría el 24% de hábitat
potencial de nidificación para pingüinos.
Adicionalmente en el lado NW con-
tabilizamos un grupo de aproximadamente 97
pingüinos en la playa compuesto por 58 adul-
tos (9 Humboldt y 49 Magallanes) y 39 juve-
niles (Figs. 2 y 3). Cabe destacar que en esta
visita se constató al menos dos individuos con
características intermedias entre ambas espe-
cies de pingüinos, lo que ha sido interpretado
como evidencia de hibridación entre ambas
especies (ver Simeone et al. 2009).
Si bien Simeone & Hucke-Gaete
(1997) ya habían descrito la presencia de pin-
güinos de Humboldt en isla Metalqui, estos
autores no pudieron confirmar su reproduc-
ción en la isla. Estas observaciones represen-
tan dos importantes contribuciones: 1) amplía
el límite meridional de nidificación de esta
especie que hasta este momento se ubicaba
en las islas Puñihuil (41°43'S; 74°02'W) y 2)
se confirma una tercera colonia de
nidificación en simpatría con el pingüino de
Magallanes a lo largo de su extenso rango de
distribución en la costa Pacífica.
44
CONTRIBUCIONES BREVES
Figura 1. Mapa de la Isla Grande de Chiloé indicando la posición de Isla Metalqui (S), donde
fueron realizados los conteos de nidos de pingüino de Humboldt y de Magallanes.
Sector Sur (Poza) Sector NW TOTAL
S. humboldti
Sólo adultos 5 2 7
Adultos + pollos 7 14 21
Total 12 16 28
S. magellanicus
Sólo adultos 26 10 36
Adultos + pollos 89 78 167
Total 115 88 203
TOTAL 127 104 231
Tabla 1. Número de nidos activos de pingüino de Humboldt (S. humboldti) y de Magallanes (S.
magellanicus) contabilizados en Isla Metalqui.
45
CONTRIBUCIONES BREVES
Figura 3. En primer plano, detalle de un pingüino adulto de Magallanes (izquierda) de Humboldt
(derecha) en isla Metalqui.
Figura 2. Grupo de Pingüinos (adultos y juveniles) de Humboldt y Magallanes en playa NW de Isla
Metalqui.
46
CONTRIBUCIONES BREVES
Inicialmente las colonias de Chiloé
fueron postuladas como áreas marginales y
disjuntas en la distribución del pingüino de
Humboldt, presumiblemente forzadas en tiem-
pos recientes por eventos El Niño (Araya &
Todd 1988, Simeone et al. 2002). Schlosser et
al. (2009), sin embargo, han refutado esta hi-
pótesis ya que la población de Puñihuil no pre-
senta indicios de haber sufrido cuellos de bo-
tella poblacional o efecto fundador, presentan-
do por el contrario altos índices de
heterocigosis. Estos autores plantean, por tan-
to, que la llegada de la especie a estas latitudes
se habría producido por otros mecanismos y
que su presencia aquí sería de larga data.
Finalmente, es de interés destacar que
Reyes-Arriagada et al. (2009) registraron la
presencia de pingüinos de Humboldt en Isla
Guafo. Si bien estos autores no clarifican el
estatus de la especie en la isla, los individuos
observados estaban asociados a colonias de
pingüino de Magallanes lo que no descarta
que puedan existir colonias mixtas aún más
al sur que Chiloé, ampliando así la zona de
potencial hibridación entre ambas especies.
A
GRADECIMIENTOS
.- La Corporación Nacional
Forestal (CONAF) autorizó nuestros estudios
de pingüinos en Chiloé (un especial recono-
cimiento al Sr. Hernán Rivera). Francisco
Altamirano facilitó nuestro traslado a isla
Metalqui con su embarcación, Pablo Agüero
prestó valiosa colaboración en terreno y Katja
Siemund fue de gran ayuda en coordinar nues-
tra estadía en Puñihuil. La colaboración del
proyecto FONDAP-FONDECYT 1501-0001.
El financiamiento fue otorgado por Antarctic
Research Trust. A todos ellos nuestros since-
ros agradecimientos.
LITERATURA CITADA
A
RAYA
, B. & F. S. T
ODD
. 1988. Status of the
Humboldt Penguin in Chile following the
1982-83 El Niño. Spheniscid Penguin
Newsletter 1: 8-10.
B
IBBY
, C. J., N. D. B
URGESS
, D. A. H
ILL
& S.
H. M
USTOE
. 2000. Bird census techniques.
Academic Press, London.
C
URSACH
, J., J. V
ILUGRÓN
, C. T
OBAR
, J. O
JEDA
,
J. R
AU
, C. O
YARZÚN
& O. S
OTO
. 2009.
Nuevos sitios de nidificación para cua-
tro especies de aves marinas en la pro-
vincia de Osorno, centro-sur de Chile.
Boletín Chileno de Ornitología 15: 17-
22.
E
LLIS
, S, J. P. C
ROXALL
& J. C
OOPER
(eds).
1998. Penguin conservation assessment
and management Plan, pp. 95-112.
IUCN/SSC Conservation Breeding
Specialist Group, Apple Valley.
R
EYES
-A
RRIAGADA
, R, P. C
AMPOS
-E
LLWANGER
&
R.P. S
CHALTTER
. 2009. Avifauna de Isla
Guafo. Boletín Chileno de Ornitología
15: 35-43.
S
AAVEDRA
, R. 1980. Isla Metalqui, una lobería
que necesita protección. Medio Ambien-
te 4: 35-40.
S
CHIAVINI
, A., P. Y
ORIO
, P. G
ANDINI
, A. R
AYA
R
EY
& P. D. B
OERSMA
. 2005. Los pingüi-
nos de las costas argentinas: estado
poblacional y conservación. Hornero 20:
5-23.
S
CHLOSSER
, J. A, J. M. D
UBACH
, T. W. J.
G
ARNER
, B. A
RAYA
, M. B
ERNAL
, A.
S
IMEONE
, K. A. S
MITH
& R. S. W
ALLACE
.
2009. Evidence for gene flow differs from
observed dispersal patterns in the
Humboldt Penguin, Spheniscus
humboldti. Conservation Genetics 10:
839-849.
S
IMEONE
, A. 2004. Evaluación de la población
reproductiva del pingüino de Magallanes
y del pingüino de Humboldt en los islo-
tes Puñihuil, Chiloé. Informe final. Estu-
dio financiado por la Fundación Otway
(Chile) y Zoo Landau in der Pfalz (Ale-
mania). Viña del Mar, 49 pp.
47
CONTRIBUCIONES BREVES
S
IMEONE
, A, L. H
IRIART
-B
ERTRAND
, R. R
EYES
-
A
RRIAGADA
, M. H
ALPERN
, J. D
UBACH
, R.
W
ALLACE
, K. P
UTZ
& B. L
ÜTHI
. 2009.
Heterospecifing pairing and
hybridization between wild Humboldt
and Magellanic penguin in southern
Chile. Condor 11: 544-550.
S
IMEONE
, A. & R. H
UCKE
-G
AETE
. 1997. Pre-
sencia de pingüino de Humboldt
(Spheniscus humboldti) en Isla
Metalqui, Parque Nacional Chiloé, Sur
de Chile. Boletín Chileno de Ornitología
4: 34-35.
S
IMEONE
, A. & R. S
CHLATTER
. 1998. Threats to
mixed-species colony of Spheniscus
penguins in southern Chile. Colonial
Waterbirds 21: 418-421.
S
IMEONE
, A., B. A
RAYA
, M. B
ERNAL
, E. N.
D
IEBOLD
, K. G
RZYBOWSKI
, M. M
ICHAELS
,
J. A. T
EARE
, R. S. W
ALLACE
& M. J.
W
ILLIS
. 2002. Oceanographic and
climatic factors influencing breeding and
colony attendance patterns of Humboldt
Penguins Spheniscus humboldti in cen-
tral Chile. Marine Ecology Progress Se-
ries 227: 43-50.
S
IMEONE
, A, G. L
UNA
-J
ORQUERA
, M. B
ERNAL
,
S. G
ARTHE
, F. S
EPÚLVEDA
, R. V
ILLABLANCA
,
U. E
LLENBERG
, M. C
ONTRERAS
, J. M
UÑOZ
& T. P
ONCE
. 2003. Breeding distribution
and abundance of seabirds on islands off
north-central Chile. Revista Chilena de
Historia Natural 76: 323-333.
W
ILSON
, R. P., D. C. D
UFFY
, M. P. W
ILSON
&
B. A
RAYA
. 1995. Aspects of the ecology
of species replacement in Humboldt and
Magellanic penguins in Chile. Le Gerfaut
85: 49-61.
... Several seabird species, in turn, are affected in various ways: increased mortality, nest desertions and large-scale movements (Tovar & Guillén 1987, Valle et al. 1987). Humboldt Penguin Spheniscus humboldti is distributed along the edge of the HCS, ranging from La Foca Island (05°12′S, 81°12′W) in Peru (Paredes et al. 2003) to Metalqui Island (42°12′S, 74°09′W) in Chile (Hiriart-Bertrand et al. 2010) population decline of 65% in Peru, where a surviving population in 1984 was estimated to be 2 100–3 000 individuals (Hays 1986). The 1997/98 EN, another intense event, had a great impact in the northern end of the species' range, with populations in central Chile affected to a somewhat lesser extent. ...
... In Chile, the northernmost breeding colony is a sea cave called Cueva del Caballo (, Araya & Todd 1987). The southernmost location was first described as Pupuya Island (34°S;), later Puñihuil Island (41°S; Wilson 1995 ) and more recently Metalqui Island (42°S, Bertrand et al. 2010). The two main areas of abundance lie between 12°S and 17°S in Peru and between 25°S and 33°S in Chile, with three areas of low abundance (Fig. 1): 7°S to 11°S, 17°S to 20°S and 33°S to 40°S. ...
Article
Full-text available
Patterns of species abundance distribution (SAD) are driven by a given species’ physiology, life history attributes and environmental variables, and this is true of the Humboldt Penguin Spheniscus humboldti. Climate variability such as El Niño Southern Oscillation (ENSO) has impacted this species and other marine fauna in the eastern South Pacific Ocean. After reviewing manuscripts and reports, we identified 80 Humboldt Penguin breeding colonies, distributed from La Foca Island (05°12′S, 81°12′W) in Peru to Metalqui Island (42°12′S, 74°09′W) in Chile, but reduced the number to 73 after fieldwork surveys in northern Chile. At least three Humboldt Penguin colonies at the southern end of the Humboldt Penguin’s range also include Magellanic Penguins S. magellanicus. The Humboldt Penguin population of the main breeding colony in Peru, Punta San Juan, decreased 51% from 1980 to 2008, with notable decreases during El Niño. On the other hand, the population of Chañaral Island to the south increased 89% during the same period, which could be a result of irruption from more northern populations as well as past underestimation. The SAD does not follow the expected unimodal log-normal shaped model, and its shape has recently shifted significantly southward. This change is consistent with the species’ pattern of long distance movement during ENSO, reduced population genetic structure and long-distance gene flow between colonies, indicating the absence of philopatry, a decrease in population size in the main colonies in Peru and an increase in population size in colonies along northern Chile. The change in SAD might result from interactions between consecutive El Niño events, human activities and climate change. To better understand this pattern, further studies are required in population genetic structure, species physiology, and environmental variables in space and time.
... The Humboldt penguin is endemic to the Humboldt Current (also known as the Peru Current) region and is restricted to more than 4,700 km along coasts and offshore islands of Chile and Peru (see maps Appendix II). The species' reproductive range includes Foca Island (5 o 12'S) in Peru though Metalqui Island in Chile (42 o 11'S) (Hiriart- Bertrand et al. 2010), which almost exactly matches the distribution of Peruvian anchovy (Engraulis ringens) and the upwelling ecosystem (Jahncke et al. 2004). The primary concentration of the species between Islas Guañape (8 o 33'S) and Isla Pajaro Niño (33º 21'S). ...
Technical Report
Full-text available
Humboldt penguin (Spheniscus humboldti) Population and Habitat Viability Assessment Workshop Final Report
... In the case of MHC class I, gene diversity has been recently evaluated for passeriform birds (Alcaide, Liu, & Edwards, 2013) Puente et al., 2013;Hiriart-Bertrand et al., 2010;Paredes, Zavalaga, Battistini, Majluf, & Mc Gill, 2003;Vianna et al., 2014). ...
Article
Full-text available
The evolutionary and adaptive potential of populations or species facing an emerging infectious disease depends on their genetic diversity in genes, such as the major histocompatibility complex (MHC). In birds, MHC class I deals predominantly with intracellular infections (e.g., viruses) and MHC class II with extracellular infections (e.g., bacteria). Therefore, patterns of MHC I and II diversity may differ between species and across populations of species depending on the relative effect of local and global environmental selective pressures, genetic drift, and gene flow. We hypothesize that high gene flow among populations of Humboldt and Magellanic penguins limits local adaptation in MHC I and MHC II, and signatures of selection differ between markers, locations, and species. We evaluated the MHC I and II diversity using 454 next-generation sequencing of 100 Humboldt and 75 Magellanic penguins from seven different breeding colonies. Higher genetic diversity was observed in MHC I than MHC II for both species, explained by more than one MHC I loci identified. Large population sizes, high gene flow, and/or similar selection pressures maintain diversity but limit local adaptation in MHC I. A pattern of isolation by distance was observed for MHC II for Humboldt penguin suggesting local adaptation, mainly on the northernmost studied locality. Furthermore, trans-species alleles were found due to a recent speciation for the genus or convergent evolution. High MHC I and MHC II gene diversity described is extremely advantageous for the long-term survival of the species.
... Penguins have been found to be extremely susceptible to avian malaria, and due to their extensive South American distribution, Magellanic and Humboldt penguins inhabit areas where other avian species have been found to be positive to these haemoparasites. The breeding range of the Humboldt penguin extends from Isla Foca (5°S) in northern Peru to Metalqui (42°S) on the southern Pacific coast of Chile (Paredes et al. 2003;Hiriart-Bertrand et al. 2010;De la Puente et al. 2013). The breeding range of Magellanic penguins extends from 41°S on the eastern coast of South America, down around Cape Horn and north to 40°S on the Pacific coast, and includes the Malvinas-Falkland Islands (Boersma et al. 2013). ...
Article
Full-text available
Avian malaria is a disease caused by species of the genera Haemoproteus, Leucocytozoon, and Plasmodium. It affects hundreds of bird species, causing varied clinical signs depending on the susceptibility of the host species. Although high mortality has been reported in captive penguins, limited epidemiological studies have been conducted in wild colonies, and isolated records of avian malaria have been reported mostly from individuals referred to rehabilitation centers. For this epidemiological study, we obtained blood samples from 501 adult Humboldt and 360 adult Magellanic penguins from 13 colonies throughout South America. To identify malaria parasitaemia, we amplified the mtDNA cytochrome b for all three parasite genera. Avian malaria was absent in most of the analyzed colonies, with exception of the Punta San Juan Humboldt penguin colony, in Peru, where we detected at least two new Haemoproteus lineages in three positive samples, resulting in a prevalence of 0.6% for the species. The low prevalence of avian malaria detected in wild penguins could be due to two possible causes: A low incidence, with high morbidity and mortality in wild penguins or alternatively, penguins sampled in the chronic stage of the disease (during which parasitaemia in peripheral blood samples is unlikely) would be detected as false negatives.
... Niche separation may be related to the competitive advantages of one species over another (Wilson 2010 ). One possible explanation for the differences between species may be that Humboldt Penguins at Islotes Puñihuil are at the extreme southern edge of their distributional range (Duffy 1987; Wilson et al. 1995; Simeone and HuckeGaete 1997; Hiriart-Bertrand et al. 2010), which may mean the species is at a competitive disadvantage compared with Magellanic Penguins. The differences between sexes we observed in diving behaviour were consistent with the results of previous studies conducted during the chick-rearing period (Raya Rey et al. 2012) but our analysis of the foraging areas of sexes was the first such study and showed that sexes adopted different strategies , although further study is needed given the small sample size of our study. ...
Article
Full-text available
How closely related marine organisms mitigate competition for resources while foraging at sea is not well understood, particularly the relative importance of interspecific and intraspecific mitigation strategies. Using location and time–depth data, we investigated species-specific and sex-specific foraging areas and diving behaviour of the closely related Humboldt (Spheniscus humboldti) and Magellanic (S. magellanicus) Penguins breeding in sympatry at Islotes Puñihuil in southern Chile during the chick-rearing period. The average duration of foraging trips was <20 h and did not differ significantly between species or between sexes of each species. Magellanic Penguins made significantly deeper and longer dives than Humboldt Penguins. Males of both species made significantly longer dives than females. Total distance travelled per foraging trip was significantly greater for males than for females, and females made more direct trips (less sinuous) than males. Foraging effort was concentrated in waters up to 15 km to the west and south-west of the colony. The overlap in density contours was lower between species than between sexes within a species. In general, dive characteristics and foraging areas differed more between Magellanic and Humboldt Penguins than between the sexes of each species. In contrast to the findings of studies of flying seabirds, the foraging behaviour of these penguins differs more between species than between sexes.
Technical Report
Full-text available
Results of the 2016 IUCN Regional Red List Workshop for Species of the Patagonian Sea: SEABIRDS. Last version of the report: January 2019
Article
Full-text available
En las costas de Argentina se reproducen tres especies de pingüinos: el Pingüino de Magallanes (Spheniscus magellanicus), el Pingüino Penacho Amarillo (Eudyptes chrysocome) y el Pingüino Papúa (Pygoscelis papua). El Pingüino Rey (Aptenodytes patagonica) se reproducía históricamente en Isla de los Estados y recientemente ha sido registrado allí un individuo incubando un huevo. Este trabajo recopila la información disponible a la fecha sobre la distribución y el estado poblacional de estas especies. Se presenta una síntesis de la información disponible sobre el ciclo reproductivo, la ecología alimentaria y los requerimientos de hábitat del Pingüino de Magallanes y del Pingüino Penacho Amarillo, y una evaluación sobre sus interacciones con actividades humanas y su actual estado de conservación. La revisión está orientada a los aspectos de relevancia para el desarrollo de programas de monitoreo, planes de acción y estrategias regionales de conservación. Finalmente, se presenta una lista de recomendaciones de investigación, conservación y manejo.
Article
Full-text available
The Humboldt penguin, once common throughout its range, is today listed as Vulnerable by the IUCN. Mark-recapture and telemetry studies indicate that adult Humboldt penguins are sedentary, suggesting strong genetic differentiation between colonies. We developed genotypes for 336 individuals at 12 microsatellite loci sampled at four different localities spanning the entire range of this species. Results show that long-term gene flow has occurred but appears to be affected by geographic distance as pairwise F ST comparisons involving the colony at Punta San Juan (Peru) and the two colonies at Algarrobo (central Chile) and Puñihuil (southern Chile) are significant. Bayesian estimates of recent migration rates indicate substantial dispersal among all colonies. Despite the dramatic decline in numbers, we did not observe a bottleneck in any population. Furthermore, we did not detect a founder effect in the recently discovered colony at Puñihuil. As our indirect estimates signal strong gene flow between populations, we suggest that Humboldt penguin colonies need to be managed as a metapopulation rather than as discrete management units.
Article
The Puñihuil islands, off the coast of Chiloé, southern Chile, have the only known mixed colony of Humboldt (Spheniscus humboldti) and Magellanic penguins (S. magellanicus). Since first reported in 1985, the colony has experienced heavy human disturbance, mainly caused by non-regulated tourist activities and the introduction of domestic goats. On the island closest to shore and most frequently visited by tourists, 28% of dirt burrows have collapsed, mainly by accidental trampling and goat activity. In addition, goats browse the vegetation used by penguins to build their nests. On the island located farthest offshore, with no goats and fewer tourists, only 10% of dirt burrows have collapsed. Comparison with previous population estimates suggests that the colony has declined over the last decade. Considering the important biological value as a mixed colony of Spheniscus penguins, we propose that these islands be officially protected.
Evaluación de la población reproductiva del pingüino de Magallanes y del pingüino de Humboldt en los islotes Puñihuil, Chiloé. Informe final
  • A Simeone
SIMEONE, A. 2004. Evaluación de la población reproductiva del pingüino de Magallanes y del pingüino de Humboldt en los islotes Puñihuil, Chiloé. Informe final. Estudio financiado por la Fundación Otway (Chile) y Zoo Landau in der Pfalz (Alemania ). Viña del Mar, 49 pp.
Isla Metalqui, una lobería que necesita protección
SAAVEDRA, R. 1980. Isla Metalqui, una lobería que necesita protección. Medio Ambiente 4: 35-40.