ArticlePDF Available

Morphological phylogenetics of Puya subgenus Puya (Bromeliaceae)

Authors:

Abstract and Figures

Puya, a large genus mostly from South America, has been taxonomically divided into two subgenera: Puyopsis and Puya. The latter includes only eight species distributed mainly in Chile, extending to Argentina, Bolivia, and Peru. The species of subgenus Puya are recognized by the presence of a sterile apex of the inflorescence branches, whereas those of subgenus Puyopsis have fertile flowers all along the branches. The objectives of this article were to determine whether this diagnostic character was synapomorphic for subgenus Puya, and to explore the relationships between its species. Parsimony analyses were performed for 43 taxa and 93 morphological characters, 87 of which were discrete and six continuous. In the analysis that included all characters, a single most parsimonious tree was found that supported subgenus Puya by two synapomorphic character states, including the diagnostic character of a sterile inflorescence branch apex and a blooming pattern in which flowers open gradually from base to apex. The trees were better supported when the continuous characters were included. Further studies are suggested to resolve the infrageneric classification of Puya and the relationships of the species belonging to subgenus Puya. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 156, 93–110.
Content may be subject to copyright.
Morphological phylogenetics of Puya subgenus Puya
(Bromeliaceae)
CLAUDIA T. HORNUNG-LEONI and VICTORIA SOSA*
Departamento de Biología Evolutiva, Instituto de Ecología, A.C. Apartado Postal 63, 91000 Xalapa,
Veracruz, Mexico
Received 1 November 2006; accepted for publication 3 September 2007
Puya, a large genus mostly from South America, has been taxonomically divided into two subgenera: Puyopsis and
Puya. The latter includes only eight species distributed mainly in Chile, extending to Argentina, Bolivia, and Peru.
The species of subgenus Puya are recognized by the presence of a sterile apex of the inflorescence branches,
whereas those of subgenus Puyopsis have fertile flowers all along the branches. The objectives of this article were
to determine whether this diagnostic character was synapomorphic for subgenus Puya, and to explore the
relationships between its species. Parsimony analyses were performed for 43 taxa and 93 morphological characters,
87 of which were discrete and six continuous. In the analysis that included all characters, a single most
parsimonious tree was found that supported subgenus Puya by two synapomorphic character states, including the
diagnostic character of a sterile inflorescence branch apex and a blooming pattern in which flowers open gradually
from base to apex. The trees were better supported when the continuous characters were included. Further studies
are suggested to resolve the infrageneric classification of Puya and the relationships of the species belonging to
subgenus Puya. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 156,
93–110.
ADDITIONAL KEYWORDS: continuous characters morphology Puya subgenus Puyopsis.
INTRODUCTION
Puya Molina is a genus of Bromeliaceae that is almost
exclusive to South America only two taxa are found
in Costa Rica and includes approximately 199
species (Smith & Downs, 1974; Luther, 2002). The
description of Puya is based on diagnostic attributes,
such as petals spiralled and persistent after anthesis
(Smith & Downs, 1974). The genus was previously
divided into a number of subgenera, including
Chagualia,Pitcairniopsis, and Pourretia (Mez, 1896;
Smith & Looser, 1935). However, only two subgenera
are currently recognized: Puya and Puyopsis (Smith,
1970). Subgenus Puyopsis (Baker) L.B. Sm. has fertile
flowers along the branches of inflorescences, whereas
subgenus Puya lacks fertile flowers at the apex of
the branches of inflorescences (Smith, 1970; Smith &
Downs, 1974).
The majority of the species belong to subgenus
Puyopsis, and only nine have been included in sub-
genus Puya. Smith & Downs (1974) initially included
seven species in subgenus Puya:Puya chilensis
Molina (the type species of Puya), Puya boliviensis
Baker, Puya castellanosii L.B.Sm., Puya alpestris
(Poepp.) Gay, Puya berteroniana Mez.,Puya weddel-
liana Mez, and Puya raimondii Harms. Subsequently,
Puya quillotana W. Weber (1984) and Puya gilmar-
tiniae G.S. Varadarajan & A.R. Flores (1990) were
described. However, the only differentiating character
between P. quillotana and P. chilensis was the pubes-
cence of the leaves recorded from a single incomplete
specimen. Therefore, here it is considered as a
synonym of P. chilensis, and only eight species are
included in subgenus Puya.
The morphological variation in Puya is remarkable,
mainly in the size of plants and floral parts, the
branching patterns of the inflorescence, and the
arrangement of the flowers in the inflorescence.
*Corresponding author. E-mail: victoria.sosa@inecol.edu.mx
Botanical Journal of the Linnean Society, 2008, 156, 93–110. With 4 figures
© 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 156, 93–110 93
Some of these variable characters are found amongst
species of subgenus Puya. For example, the largest
bromeliad in the world, P. raimondii, reaches approxi-
mately 12 m in height, in comparison with P. alpestris
that only grows to approximately 1.5 m. Plants of
P. boliviensis lack a stem, whereas the plants of the
rest of the species of subgenus Puya have a well-
developed stem, which may be simple, as in P. rai-
mondii, or branched, as in P. chilensis.
The position of Puya has posed a problem in the
phylogenetic analyses of Bromeliaceae. It has been
included in Pitcairnioideae, related to Pitcairnia
by morphological characters and chloroplast DNA
restriction site variation (Varadarajan & Gilmartin,
1988; Ranker et al., 1990). However, current molecu-
lar approaches that have considered one or a few
species of Puya have indicated that the Bromelioideae
is the sister group of the genus (Terry, Brown &
Olmstead, 1997; Crayn et al., 2000, Crayn, Winter &
Smith, 2004; Givnish et al., 2004; Barfuss et al.,
2005). The traditional classification of the Bromeli-
aceae has recognized three subfamilies: Pitcairnio-
ideae, Bromelioideae, and Tillandsioideae (Smith &
Downs, 1974). Recent phylogenetic studies have not
agreed on the composition or position of these groups;
contradictory results are mainly related to which
groups emerged first (Clark & Clegg, 1990; Ranker
et al., 1990; Terry et al., 1997; Crayn et al., 2000;
Horres et al., 2000; Givnish et al., 2004; Barfuss et al.,
2005). The monophyly of the Pitcairnioideae has been
questioned, and therefore both new subfamilies and
tribes could be defined in the future (Ranker et al.,
1990; Terry et al., 1997; Givnish et al., 2004). By the
way of an example, a new tribe Puyeae has been
suggested (Terry et al., 1997; Benzing, 2000).
Phylogenetic analyses of Puya are still lacking. The
only study that evaluated morphological data
included only nine species (Varadarajan & Gilmartin,
1988), not sufficient to understand this varied and
complex group. Current molecular phylogenetic
approaches in the Bromeliaceae have included only
one or a few species of Puya (Terry et al., 1997; Crayn
et al., 2000, 2004; Givnish et al., 2004; Barfuss et al.,
2005).
The aims of this study were to carry out phyloge-
netic analyses based on morphological characters to
determine the characters that support subgenus
Puya, and to investigate the relationships between
the species of this subgenus. Molecular approaches in
Bromeliaceae have found very little variation in a
number of chloroplast DNA regions, such as trnK,
rps16,trnL,trnL-trnF atpB-rbcL,rbcL, and matK
(Terry et al., 1997; Crayn et al., 2000, 2004; Givnish
et al., 2004; Barfuss et al., 2005), and nuclear regions,
such as internal transcribed spacer (ITS), are only
just beginning to be explored (Horres et al., 2000).
Therefore, this study provides an initial estimate of
the phylogenetic relationships of the species of sub-
genus Puya until variable molecular characters are
found.
In addition to discrete morphological attributes,
continuous characters were considered in the analy-
ses. There is controversy over the use of these char-
acters for cladistic analysis. Arguments against the
use of these characters are threefold: (1) those related
to the concept of homology; (2) those against the way
in which continuous characters are broken down; and
(3) those against the concept that characters are
classes and not individuals (Archie, 1985; Pimentel &
Riggins, 1987; Cranton & Humphries, 1988; Chappill,
1989; Stevens, 1991; Thiele, 1993; Rae, 1998; Kluge,
2003; Grant & Kluge, 2004). In this study, six
continuous characters were coded according to their
range of measurement, utilizing the computer
program TNT (Goloboff, Farris & Nixon, 2003). TNT
deals with continuous characters as such, avoiding
the use of ad hoc methods that have been proposed to
discretize continuous distribution in phylogenetic
analysis (gap-coding, Thiele’s method, etc.) (Goloboff,
Mattoni & Quinteros, 2006). The inclusion of continu-
ous characters will allow for an understanding of the
evolution of the size of several floral and vegetative
elements in subgenus Puya.
MATERIAL AND METHODS
TAXON SAMPLING
In addition to the eight species of subgenus Puya,20
taxa of subgenus Puyopsis were included on the basis
of the following criteria: (1) species representative of
the entire range of distribution; and (2) species rep-
resentative of different morphological patterns, well
represented in herbaria. For the outgroups, 15 taxa
representative of the three traditional subfamilies
were selected: Pitcairnioideae, Bromelioideae, and
Tillandsioideae (Baker, 1889; Smith & Downs, 1974).
These taxa correspond to the different clades identi-
fied by molecular phylogenetic studies (Clark &
Clegg, 1990; Ranker et al., 1990; Terry et al., 1997;
Crayn et al., 2000; Horres et al., 2000; Givnish et al.,
2004; Barfuss et al., 2005). Forty-three terminal taxa
were included (see Appendix 1). From these, Broc-
chinia was used to root the tree, as it is the most
distantly related genus.
MORPHOLOGICAL DATASET
The data matrix (Appendix 2) consists of 93 charac-
ters: 87 discrete and six continuous characters. Veg-
etative as well as floral and micromorphological
characters were included. Some of these characters
are shown in Figures 1 and 2. Micromorphological
94 C. T. HORNUNG-LEONI and V. SOSA
© 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 156, 93–110
characters were observed with either an optical
microscope or a JEOL JSM-5600 LV scanning electron
microscope. Four hundred and sixty-six herbarium
specimens were examined, some of which were col-
lected for this project. They are listed in Appendix 1.
The characters and their states are given in Table 1.
For characters 25 and 26, the percentage of hairs on
both abaxial and adaxial surfaces was estimated by
dividing the microscope field into four.
Continuous characters (Table 2) were divided into
character states with TNT. The program considers
measurements as a range (minimum/maximum) of
the character for each species with values from 0 to
65, using up to three decimals. The characters were
optimized using Farris’ method for additive charac-
ters (Farris, 1970). During the optimization of a given
node, if the ranges of the descendant nodes over-
lapped, the method counted no steps; if the ranges did
not overlap, it counted the minimum distance from
one range to the other (i.e. the numeric difference
between the two closest values of the two descendant
ranges) (Goloboff et al., 2006). Measurements were
standardized by a log(x+1) transformation, because
of differences in scale (Table 2). There were up to 32
states for some of these characters, as implemented in
TNT (Goloboff et al., 2003).
PHYLOGENETIC ANALYSIS
The data matrix was constructed using WINCLADA
(Nixon, 2002). Cladistic analyses under parsimony
criteria were performed using the program TNT
(Goloboff et al., 2003). Separate analyses were per-
formed: the first dataset included only the discrete
characters, and the second included the discrete and
continuous characters. Parsimony analyses were per-
formed with 1000 starting trees with tree bisection–
reconnection (TBR), saving 50 trees per replication.
Support was estimated by jackknife by resampling
1000 times with the TBR set with a removal prob-
ability of 30%. Bremer support (Bremer, 1994) was
calculated only for the combined dataset as imple-
mented in TNT (Goloboff et al., 2003).
RESULTS
CLADISTIC ANALYSES
The analysis with discrete characters retrieved nine
most parsimonious trees (MPTs) [L=505 steps; con-
sistency index (CI), 0.250; retention index (RI), 0.522].
The strict consensus is shown in Figure 3. In the
analysis with discrete and continuous characters, a
single MPT was retrieved (Fig. 4) (L =530 steps; CI,
0.250; RI, 0.515). In the data matrix with discrete
characters, the 87 characters were parsimony infor-
mative. In the data matrix with continuous +discrete
characters, 93 characters were parsimony informa-
tive. Autapomorphic characters were scored but not
taken into account in the analyses.
PHYLOGENETIC RELATIONSHIPS
In the discrete character analysis, only a clade that
included two Pitcairnia species was well supported
Figure 1. Floral and epidermal characters: A, stamens adnate to petals; B, stellate hairs; C, trichomes with central disc
cells and wings; D, trichomes without a central disc but with wings.
PHYLOGENY OF PUYA SUBGENUS PUYA 95
© 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 156, 93–110
96 C. T. HORNUNG-LEONI and V. SOSA
© 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 156, 93–110
(jackknife 93%; Bremer support value, >2) (Fig. 3).
The species of Puya were grouped in a clade (Bremer
support value, >1). The species in subgenus Puya
were grouped in a subclade without support within
a larger clade together with Puya goudotiana and
Puya retrorsa (Bremer support value, >1). In the
discrete +continuous character analysis, more clades
received support (Fig. 4). The Puya clade received a
jackknife value of 51% and a Bremer support value of
>3. The single MPT retrieved by this analysis shows
species of Puya in two clades without support. The
first is the Puya laxa clade and the second has two
subclades: the subgenus Puya subclade and the Puya
aristeguietae subclade. The subgenus Puya clade
received a jackknife value of 52% and a Bremer
support value of >2 (Fig. 4).
SYNAPOMORPHIC CHARACTERS
In the discrete character analysis, the genus Puya
was supported by six synapomorphic character states,
two of which were unambiguous: petals spiralled and
twisted together after anthesis (77:1; CI, 100) and
petals spiralled persistent at the apex of fruit (91:1;
CI, 100) (Fig. 3). Subgenus Puya was supported by
two character states: presence of a sterile inflores-
cence branch apex (44:1; CI, 100) and flowers opening
sequentially from inflorescence branch base to apex
(47:0, CI, 100). In the analysis that included the
discrete +continuous characters, the genus Puya and
the subgenus Puya were supported by the same syna-
pomorphic states as in the discrete character analysis
(Fig. 4).
DISCUSSION
In this study, the species classified in subgenus Puya
were recovered in a clade supported by two synapo-
morphic character states. It was confirmed that the
diagnostic character for the subgenus (presence of a
sterile inflorescence branch apex) is a synapomorphy
that supports this clade. The other character state
that was synapomorphic was the blooming pattern, in
which the flowers open gradually from base to apex.
Johow (1898) suggested that a sterile apex on the
branches of the inflorescence is an adaptation that
provides support for perching birds. We have observed
in the field that, in P. raimondii, both hummingbirds
and passerine birds visit the flowers, and so the
sterile apex of branches in this species is not specifi-
cally for perching birds. However, more information
on the pollination system of the species in subgenus
Puya will clarify the importance of the sterile apex in
relation to pollinators.
Our results imply that subgenus Puyopsis is para-
phyletic. The studied species of this subgenus are
grouped into two clades, one of which is the sister
group of the species of subgenus Puya. Several other
subgenera have been proposed in the past, including
Chagualia Smith & Looser, Pourretia Mez, and
Pitcairniopsis Mez (Smith & Looser, 1935; Smith,
1970), and, most probably, some will have to be res-
urrected. Thus, further analyses with more taxa and
a larger number of characters are needed to recover
trees that are better resolved, and to determine the
infrageneric classification of Puya and the relation-
ships of its species. Such analyses will also clarify the
status of the group formed by northern South Ameri-
can species represented by the P. aristeguietae clade
that is closely related to subgenus Puya.
The topology of the cladograms was better sup-
ported when continuous characters were included.
None was synapomorphic. This coincides with the
results of previous analyses in which these characters
were taken into account (for example, Lehtonen,
2006). We did not break up the range of measure-
ments of the characters, as normally carried out (see
Garcia-Cruz & Sosa, 2006). Instead, we used TNT,
which analyses continuous characters as such. Our
results indicate that continuous characters contain
phylogenetic information, and justifies that they are
homologous.
When the continuous characters are visualized
in the single MPT (Fig. 4) retrieved by the discrete
+continuous character data matrix, the general
pattern of species of subgenus Puya is that of an
increase in plant, inflorescence, sepal, and petal size.
The species of subgenus Puya are in a grade, with the
Figure 2. Vegetative and floral characters. Rosette type: 1A, tank; 1B, cistern; 1C, tufted. Stem: 1A, acaulescent; 2A,
caulescent. Stem type: 2A, erect; 2B, prostrate. Stem branching: 2A, simple; 2B, branched. Inflorescence/rosette relative
length: 3A, same; 3B, once the length; 3C, twice the length; 3D, smaller. Leaf margin: 4A, entire; 4B, serrate. Thorn
orientation: 5A, antrorse; 5B, retrorse; 5C, antrorse and retrorse. Peduncle: 3D, included; 3B, emerging; 3A, equalling.
Peduncle covered with bracts: 3B, totally; 3C, partially. Inflorescence branching: 6A, simple; 6B, branched. Inflorescence
strobiliform: 6B, absent; 3B, present. Flower density: 6A, lax; 7A, dense. Inflorescence branch arrangement: 7B,
polystichous; 6A, distichous. Sterile apex of inflorescence branch: 6B, absent; 7B, present. Petal shape: 8A, oblong-elliptic;
8B, obovate. Petals spiralled and twisted: 9A, present. Petaloid appendices at base of petals: 8B, absent; 8C, present. Fruit
type: 10A, capsule; 10B, berry. Fruit dehiscence: 11A, septicidal; 11B, loculicidal and septicidal. Petals persistent at apex
of fruit: 11C, present. Seed: 12A, naked; 12B, plumose; 12C winged; 12D appendiculate.
PHYLOGENY OF PUYA SUBGENUS PUYA 97
© 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 156, 93–110
Table 1. Characters and character states for the cladistic analysis of subgenus Puya
1. Plant length
2. Leaf length
3. Inflorescence length
4. Floral bract length
5. Sepal length
6. Petal length
7. Rosette type: 0, tank; 1, cistern (tubular cylindrical); 2, tufted (graminoid). In the tank type, the leaves are at
an angle of 45° and water is retained; in the cylindrical or tubular type, the leaves overlap and they are
erect and form a container; the tufted type is similar to the habit of grasses
8. Stem: 0, acaulescent; 1, caulescent
9. Stem type: 0, erect; 1, prostrate
10. Stem branching: 0, simple; 1, branched
11. Reproduction: 0, monocarpic; 1, polycarpic
12. Inflorescence/rosette relative length: 0, same; 1, inflorescence once the length of rosette; 2, inflorescence twice
the length of rosette; 3, inflorescence smaller than rosette
13. Leaf position in the rosette during blooming: 0, erect; 1, recurved-reflexed; 2, ascendent
14. Leaf margin: 0, parallel; 1, convergent
15. Leaf blade apex: 0, acute or attenuate; 1, rounded; 2, mucronate or acuminate
16. Leaf capacity of leaves to retain water: 0, absent; 1, present
17. Leaf margin: 0, entire; 1, serrate
18. Leaf margin: thorn orientation: 0, one way, antrorse; 1, one way, retrorse; 2, with both orientations, antrorse
and retrorse
19. Leaf margin: thorn colour: 0, black-brownish; 1, brown-reddish or greenish; 2, yellow to red
20. Leaf nervation: 0, without a prominent median nerve; 1, with a prominent median nerve
21. Leaf petiole: 0, absent; 1, present
22. Leaf pubescence of adaxial surface: 0, glabrous; 1, with scales; 2, with hairs (pubescent)
23. Leaf pubescence of abaxial surface: 0, glabrous; 1, with scales; 2, with hairs (pubescent)
24. Leaf adaxial and abaxial surfaces: trichomes: 0, with central disc cells and wings; 1, without a central disc but
with wings; 2, irregular cells with neither central disc nor wings
25. Leaf adaxial surface: percentage of pubescence: 0, 25%; 1, 50–75%; 2, 100%
26. Leaf abaxial surface: percentage of pubescence: 0, 25%; 1, 50–75%; 2, 100%
27. Inflorescence: peduncle: 0, included in rosette; 1, emerging rosette; 2, equalling rosette
28. Inflorescence: 0, erect; 1, pendule or nutant
29. Inflorescence: peduncle diameter: 0, less than 2 cm; 1, 2–10 cm; 2, more than 10 cm
30. Inflorescence reddish coloration: 0, absent; 1, present
31. Inflorescence: peduncle covered with bracts: 0, totally; 1, partially
32. Inflorescence: peduncle bracts shape: 0, oblong-elliptic; 1, ovate
33. Inflorescence: bract margin: 0, entire; 1, serrate or serrulate
34. Inflorescence: bract pubescence: 0, glabrous; 1, with scales; 2, with hairs
35. Inflorescence: branching: 0, simple; 1, branched
36. Inflorescence position: 0, apical; 1, lateral
37. Inflorescence: consistency of the rachis of inflorescence: 0, nonfleshy; 1, fleshy
38. Inflorescence: strobiliform: 0, absent; 1, present
39. Inflorescence: flower disposition type: 0, spikes; 1, racemes
40. Inflorescence: flower density in the entire inflorescence: 0, lax; 1, dense
41. Inflorescence: branch arrangement: 0, polystichous; 1, distichous
42. Inflorescence: branch shape: 0, globose; 1, oblong-elliptic
43. Inflorescence: branch position: 0, alternate; 1, verticillate
44. Inflorescence: sterile apex of branches: 0, absent; 1, present
45. Inflorescence: density of flowers along branches: 0, lax; 1, dense
46. Inflorescence: shape: 0, triangular; 1, oblong
47. Inflorescence: blooming pattern: 0, flowers opening sequentially from inflorescence branch base to apex; 1,
flowers opening in any position
48. Inflorescence: bract/branch length: 0, bracts smaller or equalling branches; 1, bracts larger
49. Inflorescence: bract length: 0, larger than the axil of an inflorescence’s branch; 1, smaller than or equal to the
axil of an inflorescence’s branch
98 C. T. HORNUNG-LEONI and V. SOSA
© 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 156, 93–110
exception of a small terminal clade formed by P. cas-
tellanosii and P. raimondii. Plants of the former are
medium sized, but the latter is the largest bromeliad
in the world, with a very large inflorescence (Foster,
1950; Varadarajan & Gilmartin, 1988). In addition,
P. raimondii’s flowers have larger petals in compari-
son with those of the other species of the subgenus,
but the inflorescence is gigantic, and thus holds
several thousands of flowers. Of all the species in
Bromeliaceae, P. raimondii produces the largest
number of flowers per inflorescence (Foster, 1950;
Varadarajan & Gilmartin, 1988). Puya raimondii does
not show clonal growth; it only reproduces by seeds
(Hornung-Leoni & Sosa, 2004). Therefore, it is sug-
gested that the reproductive strategy of this species is
to produce more flowers to increase seed set. The
results of a previous study have shown that there is
an allometric pattern in Puya in which plant size is
Table 1. Continued
50. Inflorescence: bract shape: 0, oblong-elliptic; 1, ovate
51. Inflorescence: apical zone of the inflorescence bracts apex: 0, acute-attenuate; 1, rounded; 2,
mucronate-apiculate
52. Inflorescence: margin of bract: 0, entire; 1, serrate or serrulate
53. Inflorescence: blade of bracts: 0, absent; 1, present
54. Inflorescence rachis pubescent: 0, absent; 1, present
55. Inflorescence: ferrugineous pubescence: 0, absent; 1, present
56. Inflorescence: bract apex: 0, acute-attenuate; 2, rounded or obtuse; 2, mucronate or apiculate
57. Floral bract: margin: 0, entire; 1, serrate or serrulate
58. Floral bract: carinate: 0, absent; 1, present
59. Floral bract shape: 0, oblong-elliptic; 1, ovate
60. Floral bract colour (fresh material): 0, greenish; 1, brownish; 2, red–orange
61. Floral sterile bracts among flowers: 0, absent; 1, present
62. Flower disposition: 0, distichous; 1, polystichous
63. Flower phyllotaxis: 0, opposite; 1, alternate; 2, verticillate
64. Flower: pedicel: 0, absent; 1, short (<2 mm); 2, medium (2–6 cm); 3, large (>6 cm)
65. Flower: length with regard to bracts: 0, larger; 1, smaller; 2, equal size
66. Flower: bract pubescence: 0, absent; 1, present
67. Flower: sepal length with regard to bracts: 0, larger; 1, smaller; 2, equal size
68. Flower: sepal symmetry: 0, symmetrical; 1, strongly asymmetrical
69. Flower: sepals carinate: 0, absent; 1, present
70. Flower: sepal union: 0, free; 1, sepals connate at least at half; 2, connate only at the base
71. Flower: sepal apex: 0, acute-attenuate; 1, rounded-obtuse; 2, mucronate-acuminate
72. Flower: sepal length with regard to petal: 0, 1/3 smaller; 1, 1/2 smaller or less; 2, equal size
73. Flower: sepal colour: 0, yellowish; 1, reddish or coloured; 2, greenish-white–cream; 3, brownish
74. Flower: sepal pubescence: 0, absent; 1, present
75. Flower: petal colour: 0, white–cream; 1, blue–violet; 2, dark green–blue; 3, red–rose; 4, yellow-greenish
76. Flower: petal shape: 0, oblong-elliptic; 1, obovate
77. Flower: petals spiralled and twisted together after anthesis: 0, absent; 1, present
78. Flower: petal apex: 0, acute-attenuate; 1, rounded-obtuse; 2, mucronate-acuminate
79. Flower: petal symmetry: 0, asymmetric; 1, symmetric
80. Flower: petaloid appendices at base of petals: 0, absent; 1, present
81. Flower: relative size of stamen with respect to the flowers: 0, inserted; 1, exerted
82. Flower: stamens adnate to petals: 0, absent; 1, present
83. Flower: stamens in a column: 0, absent; 1, present
84. Flower: anthers: 0, basifixed; 1, dorsifixed
85. Flower: stamen length with regard to style: 0, larger or equal size; 1, smaller
86. Flower: anther shape: 0, sagittate; 1, oblong-elliptic
87. Flower: ovary: 0, superior; 1, semi-inferior; 2, inferior
88. Flower: style size with regard to ovary: 0, larger; 1, smaller or equal
89. Fruit: type: 0, capsule; 1, berry; 2, drupe; 3, multiple fruit
90. Fruit: dehiscence of capsules: 0, septicidal; 1, loculicidal; 2, both
91. Fruit: petals persistent at apex of fruit: 0, absent; 1, present
92. Seed: 0, naked; 1, plumose; 2, winged; 3, appendiculate
93. Roots: wide radicular system: 0, absent; 1, present
PHYLOGENY OF PUYA SUBGENUS PUYA 99
© 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 156, 93–110
Table 2. Continuous characters and their logarithmic transformation
Species
012 345
Plant
length
(cm)
Log
(height +1)
Leaf length
(cm)
Log
(leaf +1)
Infl. length
(cm)
Log
(infl. +1)
Floral br.
length
(cm)
Log
(fl. br. +1)
Sepal
length
(cm)
Log
(sep. +1)
Petal
length
(cm)
Log
(pet. +1)
Brocchinia reducta 99–100 2.00 159–161 2.21 14.5–15.0 1.19–1.20 1.5–2.0 0.40–0.48 0.65–0.7 0.22–0.23 1.3–1.7 0.36–0.43
Ananas ananasioides 99–101 2.00 160.0 2.21 14.5–15.0 1.19–1.20 1.5–2.0 0.40–0.48 0.65–0.7 0.22–0.23 1.3–1.7 0.36–0.43
Bromelia penguin 100–200 2.00–2.30 30.0–200.0 1.49–2.30 30.0–60.0 1.49–1.79 1.6–3.0 0.41–0.60 1.2–3.0 0.34–0.60 1.5–3.0 0.40–0.60
Broemlia chrysantha 70–150 1.85–2.18 80.0–150.0 1.91–2.18 79.0–81.0 1.90–1.91 1.0–1.5 0.30–0.40 0.9–1.7 0.28–0.43 0.9–1.5 0.28–0.40
Aechmea spectabilis 99–101 2.00–2.01 100.0–140.0 2.00–2.15 60.0–100.0 1.79–2.00 0.1–0.2 0.04–0.04 0.9–2.0 0.28–0.48 2.4–2.5 0.53–0.54
Billbergia macrolepis 98–102 2.00–2.01 119–120 2.08 39.5–40.0 161.00 3.45–3.5 0.65 0.99–1.0 0.30 4.2–4.3 0.72
Cottendorfia florida 200–400 2.30–2.60 99–100 2.00 100.0–300.0 2.00–2.48 0.19–0.2 0.08 0.28–0.3 0.11 0.6–1.0 0.20–0.30
Guzmania monostachia 20–40 1.32–1.61 16.0–24.0 1.23–1.40 8.0–15.0 0.95–1.20 2.3–2.9 0.52–0.59 1.75–1.80 0.44–0.45 3.0–3.3 0.60–0.63
Tillandsia multicaulis 25–40 1.41–1.61 30.0–40.0 1.49–1.61 14.0–14.5 1.18–1.19 4.9–5.0 0.77–0.78 3.5–3.6 0.65–0.66 6.9–7.0 0.90
Tillandsia flexuosa 20–150 1.32–2.18 20.0–50.0 1.32–1.71 50–61 1.78–1.79 2.0–3.0 0.48–0.60 2.0–3.0 0.48–0.60 3.9–4 0.69–0.70
Vriesea espinosae 15–16 1.20–1.23 ? ? 6.9–7 0.90 2.4–2.5 0.53–0.54 1.19–1.2 0.34 2.9–3.0 0.59–0.60
Navia ignesicola 16.5–17 1.25–1.26 39–41 1.60–1.62 4.9–5.0 0.77–0.78 2.6–2.7 0.56–0.57 4.4–4.5 0.73–0.74 ? ?
Pitcairnia maidifolia 128–131 2.11–2.12 119–120 2.08 44–45 1.65–1.66 0.39–0.40 0.14–0.15 2.6–3.0 0.56–0.60 4.9–5.0 0.77–0.78
Pitcairnia meridensis 50–60 1.71–1.79 70.0–130.0 1.85–2.12 14.9–15 1.20 0.7–1.1 0.23–0.32 3.1–3.2 0.61–0.62 6.35–6.40 0.87
Dyckia ferox 58–62 1.77–1.79 20–60 1.32–1.79 ? ? 0.2–0.3 0.08–0.11 0.5–0.9 0.18–0.28 1.2–1.4 0.34–0.38
Puya alpestris 120–150 2.08–2.18 60–70 1.79–1.85 99–100 2.00 2.6–3.3 0.56–0.63 2.2–2.9 0.51–0.59 4.8–5.0 0.76–0.78
Puya berteroniana 495–505 2.70 99–100 2.00 99–100 2.00 4.4–4.8 0.73–0.76 2.2–2.3 0.51–0.52 5.0–5.6 0.78–0.82
Puya weddelliana ? ? ? ? ? ? 1.49–1.5 0.40 1.79–1.80 0.45 3.45–3.50 0.65
Puya chilensis 499–500 2.70 99–100 2.00 99–100 2.00 3.4–5.0 0.64–0.78 3.5–5.8 0.65–0.83 4.9–5.0 0.77–0.78
Puya gilmartiniae 149–151 2.18 10.0–20.0 1.04–1.32 50.0–60.0 1.71–1.79 1.5–2.5 0.40–0.54 1.7–2.4 0.43–0.53 3.0–4.8 0.60–0.76
Puya boliviensis 199–200 2.30 100.0 2.00 99–100 2.00 2.1–3.3 0.49–0.63 3.19–3.20 0.62 4.9–5.0 0.77–0.78
Puya castellanosii 100–300 2.00–2.48 39–40 1.60–1.61 39–40 1.60–1.61 3.2–3.5 0.62–0.65 2.9–3.0 0.59–0.60 3.9–4.0 0.69–0.70
Puya raimondii 950–1200 2.98–3.08 123–125 2.09–2.10 430–500 2.63–2.70 3.1–6.0 0.61–0.85 4.0–4.1 0.70–0.71 7.9–8.0 0.95
Puya retrorsa 200–300 2.30–2.48 40.0–60.0 1.61–1.79 40.0–80.0 1.61–1.69 3.0–3.5 0.60–0.65 1.99–2.0 0.48 3.7–4.0 0.67–0.70
Puya venusta 90–100 1.96–2.00 30.0–35.0 1.49–1.56 30.0–35.0 1.49–1.56 0.39–0.4 0.14–0.15 1.5–2.0 0.40–0.48 3.4–3.5 0.64–0.65
Puya spathacea 99–100 2.00 60.0–100.0 1.79–2.00 40.0–60.0 1.61–1.79 1.3–2.2 0.36–0.51 1.5–2.2 0.40–0.51 2.5–3.3 0.54–0.63
Puya pygmea 20–30 1.32 15.0–22.0 1.20–1.36 3.0–5.0 0.60–0.78 2.9–3.0 0.59–0.60 1.5–1.8 0.40–0.45 1.5–2.0 0.40–0.48
Puya coerulea 199–200 2.30 59–61 1.78–1.79 98–101 2.00–2.01 1.69–1.7 0.43 2.39–2.40 0.53 3.7–5.0 0.67–0.78
Puya aequatorialis 199–200 2.30 99–100 2.00 98–101 2.00–2.01 1.79–1.8 0.45 2.0–2.3 0.48–0.52 2.9–3.0 0.59–0.60
Puya laxa 79–81 1.90–1.91 27–28 1.45–1.46 70.0–80.0 1.85–1.91 1.3–2.0 0.36–0.48 1.69–1.70 0.43 2.9–3.0 0.59–0.60
Puya medica 20–37 1.32–1.58 20–20.5 1.32–1.33 10.0–20.0 1.04–1.32 1.5–1.6 0.40–0.41 1.8–2.0 0.45–0.48 3.4–4.0 0.64–0.70
Puya floccosa 50–200 1.71–2.30 100.0–110.0 2.00–2.05 30.0–100.0 1.49–2.00 1.3–1.7 0.36–0.43 2.5–3.3 0.54–0.63 3.9–4.0 0.69–0.70
Puya venezuelana 59–60 1.78–1.79 25.0–34.0 1.41–1.54 18.0–22.0 1.28–1.36 4.45–4.5 0.74 1.8–2.0 0.45–0.48 3.0–3.5 0.60–0.65
Puya aristeguietae 299–300 2.48 99–100 2.00 100.0–110.0 2.00–2.05 1.6–1.8 0.41–0.45 2.5–3.3 0.54–0.63 5.0–6.0 0.78–0.85
Puya trianae 40–200 1.61–2.30 24.0–28.0 1.40–1.46 15.0–30.0 1.20–1.49 5.0–6.0 0.78–0.85 2.0–2.5 0.48–0.54 3.10–3.20 0.61–0.62
Puya goudotiana 499–500 2.70 100.0–170.0 2.00–2.23 100.0–200.0 2.00–2.30 2.0–3.7 0.48–0.67 2.0–3.0 0.48–0.60 5.0–6.0 0.78–0.85
Puya ferruginea 250–400 2.40–2.60 99–100 2.00 199–200 2.30 4.45–4.5 0.74 1.2–4.5 0.34–0.74 8.0–14.0 0.95–1.18
Puya ferreyrae 150–200 2.18–2.30 55.0–100.0 1.75–2.00 60.0–75.0 1.79–1.88 5.0–7.0 0.78–0.90 3.2–3.7 0.62–0.67 3.9–4.0 0.69–0.70
Puya nitida 170–200 2.23–2.30 35.0–60.0 1.56–1.79 58.0–62.0 1.77–1.80 3.4–3.8 0.64–0.68 2.9–3.0 0.59–0.60 6.9–7.0 0.90
Puya westii 249–250 2.40 99–100 2.00 49–50 1.70–1.71 0.8–1.0 0.26–0.30 1.99–2.0 0.48 3.9–4.0 0.69–0.70
Puya nutans 55–70 1.75–1.85 15.0–23.5 1.20–1.39 29–30 1.48–1.49 1.99–2.0 0.48 1.79–1.80 0.45 3.9–4.0 0.69–0.70
Puya santosii 80–200 1.91–2.30 31.0–37.0 1.51–1.58 32.0–50.0 1.52–1.71 3.2–3.3 0.62–0.63 1.3–2.0 0.36–0.48 3.0–3.6 0.60–0.66
Puya cuatrecasasii 99–100 2.00 25–27 1.43 ? ? 2.59–2.6 0.56 2.35–2.4 0.53 4.90–5.0 0.77–0.78
100 C. T. HORNUNG-LEONI and V. SOSA
© 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 156, 93–110
correlated with petal length (Hornung-Leoni & Sosa,
2005). It is suggested that, in subgenus Puya, large
and giant plants have large inflorescences; this is
advantageous because, if the flowers are medium-
sized, there is an increase in flower number and a
larger seed set can be produced. Furthermore, it has
been demonstrated that large plants with a large
number of flowers are more attractive to pollinators
(Kawasaki & Hori, 1999).
In the clade of subgenus Puya, the flowers are
covered by small to large bracts. It is interesting that
P. alpestris and P. berteroniana, species that can be
confused, are differentiated by the size of their floral
bracts (in the latter species they are larger). Puya
chilensis,P. castellanosii, and P. raimondii have
flowers with large bracts. More information is needed
on the pollination system of the species in this group
to understand the evolution of this floral character.
It is concluded that, in order to corroborate the
infrageneric classification of Puya, an extended sam-
pling of the species is needed. Our results clearly
show that the species classified in subgenus Puya are
retrieved in a group; however, the results do not
conclusively determine the taxonomic status of these
species. More informative characters would also be
useful to resolve the relationships of the species
belonging to this large genus. Molecular datasets will
undoubtedly provide these variable characters.
ACKNOWLEDGEMENTS
Edmundo Saavedra kindly prepared the pen and ink
illustration. The first author thanks the ‘Red Lati-
noamericana de Botánica’ for a doctoral scholarship
and special funds to travel to Peru. We are grateful
for a grant from the International Association for
Plant Taxonomy (IAPT) to visit the Chilean herbaria
and to the Instituto de Ecología, A.C. for providing
support to visit the Colombian herbaria. Thanks are
Figure 3. Strict consensus tree of the nine most parsimonious trees based on discrete characters. Numbers above the
branches indicate jackknife support. Numbers below the branches indicate Bremer support [L =505 steps; consistency
index (CI), 0.250; retention index (RI), 0.522].
PHYLOGENY OF PUYA SUBGENUS PUYA 101
© 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 156, 93–110
due to J. Betancur, J. Manzanares, J. R. Grant, M.
Dillon, and B. Holst for their advice, and to G. Mon-
tenegro, D. Potojniak, and L. Martínez in Chile, Meri
Suni and Giovana Vadillo in Peru, and J. Gaviria, R.
Pabón, and J. Bueno in Venezuela, for their help with
fieldwork. We are grateful to Ivón Ramírez, Adolfo
Espejo, Helga Ochoterena, and two anonymous
reviewers for the revision of the manuscript, and also
to Anna María Leoni for reviewing a previous version
of this paper and Bianca Delfosse for assistance with
the English. We thank Pablo Goloboff for his advice
on the use of the TNT program. We are grateful to the
heads of the following herbaria for access to their
collection and the loan of specimens: COL, F, HAL,
HDCV, MERC, NY, SGO, US, USM, VEN, and XAL.
REFERENCES
Archie JW. 1985. Methods for coding variable morphological
features for numerical taxonomic analysis. Systematic
Zoology 34: 326–345.
Baker JG. 1889. Pitcairnia subgenus Puyopsis. Handbook of
the Bromeliaceae 91: 117.
Barfuss MJJ, Samuel R, Till W, Stuessy TF. 2005. Phy-
logenetic relationships in subfamily Tillandsioideae (Brome-
liaceae) based on DNA sequence data from seven plastid
regions. American Journal of Botany 92: 337–351.
Benzing H. 2000. Bromeliaceae. Profile of an adaptative
radiation. Cambridge: Cambridge University Press.
Bremer B. 1994. Branch support and tree stability. Cladis-
tics 10: 295–304.
Chappill JA. 1989. Quantitative characters in phylogenetic
analysis. Cladistics 5: 217–234.
Clark WD, Clegg MT. 1990. Phylogenetics comparison
among rbcL sequences in the Bromeliaceae. American
Journal of Botany 71: 115 (Abstract).
Cranton P, Humphries C. 1988. Cladistics and computers:
a chironomid conundrum? Cladistics 4: 72–92.
Crayn DM, Terry RG, Smith JAC, Winter K. 2000.
Molecular systematics investigations in Pitcairnioideae
(Bromeliaceae) as a basis for understanding the evolution
of crassulasean acid metabolism (CAM). In: Wilson KL,
Figure 4. Single most parsimonious tree based on discrete +continuous characters. Numbers above the branches
indicate jackknife support. Numbers below the branches indicate Bremer support [L =530 steps; consistency index (CI),
0.250; retention index (RI), 0.515]. Synapomorphic characters for genus Puya and subgenus Puya are illustrated.
102 C. T. HORNUNG-LEONI and V. SOSA
© 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 156, 93–110
Morrison DA, eds. Monocots: systematics and evolution.
Melbourne: CSIRO, 569–579.
Crayn DM, Winter K, Smith JAC. 2004. Multiple origins of
crassulacean acid metabolism and the epiphytic habit in
the Neotropical family Bromeliaceae. Proceedings of the
National Academy of Science 101: 3703–3708.
Farris J. 1970. Methods for computing Wagner trees.
Systematic Zoology 19: 83–92.
Foster MB. 1950. Puya, the Pineapple’s Andean ancestor.
National Geographic Magazine 98: 463–480.
Garcia-Cruz J, Sosa V. 2006. Coding quantitative character
data for phylogenetic analysis: a comparison of five
methods. Systematic Botany 31: 302–309.
Givnish TJ, Millam KC, Evans TM, Hall JC, Pires JC,
Berry PE, Sytsma KJ. 2004. Ancient vicariance or
recent long-distance dispersal? Inferences about phylogeny
and South American–African disjunctions in Rapateaceae
and Bromeliaceae based on ndhF sequence data. Interna-
tional Journal of Plant Science 164 (Suppl.):S35–S54.
Goloboff PA, Farris J, Nixon K. 2003. TNT: tree analysis
using new technology. Program and documentation avail-
able from the authors. URL http://www.zmuc.dk/public/
phylogeny [accessed on 20 April 2007].
Goloboff PA, Mattoni CI, Quinteros AS. 2006. Continuous
characters analyzed as such. Cladistics 22: 589–601.
Grant T, Kluge GA. 2004. Transformation series as an
ideographic character concept. Cladistics 20: 23–31.
Hornung-Leoni C, Sosa V. 2004. Uses of the Giant Brome-
liad, Puya raimondii.Journal of the Bromeliad Society 54:
3–8.
Hornung-Leoni C, Sosa V. 2005. Morphological variation in
Puya (Bromeliaceae): an allometric study. Plant Systematics
and Evolution 256: 35–53.
Horres R, Zizka G, Kahl G, Weising K. 2000. Molecular
phylogenetics of Bromeliaceae: evidence from trnL (UAA)
intron sequences of the chloroplast genome. Plant Biology 2:
306–315.
Johow F. 1898. Ueber Ornithophilie in der chilenischen
Flora. Sitzungsber. Akademie der Wissenschaften zu Berlin
28: 338–341.
Kawasaki S, Hori Y. 1999. Effect of flower number on the
pollinator attractiveness and the threshold plant size for
flowering in Pertya triloba (Asteraceae). Plant Species
Biology 14: 69–74.
Kluge GA. 2003. The repugnant and the mature in phyloge-
netic inference: atemporal similarity and historical identity.
Cladistics 19: 356–368.
Lehtonen S. 2006. Phylogenetics of Echinodorus (Alismata-
ceae) based on morphological data. Botanical Journal of the
Linnean Society 150: 291–305.
Luther H. 2002. An alphabetical list of bromeliad binomials,
8th edn. Sarasota: Marie Selby Botanical Garden.
Manzanares JM. 2005. Joyas en la Selva, Bromeliaceae
del Ecuador, Parte II. Pitcairnioideae. Quito, Ecuador:
Imprenta Mariscal.
Mez C. 1896. Bromeliaceae, Puya subgenus pitcairniopsis.In:
de Candolle X, ed. Monographiae phanerogamarum, Vol. 9.
Paris: G. Manson, 475.
Nixon K. 2002. Winclada (BETA), Version 0.9.9. Ithaca, NY:
published by the author.
Pimentel RA, Riggins RR. 1987. The nature of cladistic
data. Cladistics 3: 201–209.
Rae TC. 1998. The logical basis for the use of continuous
characters in phylogenetic systematics. Cladistics 14: 221–
228.
Ranker TA, Soltis DE, Soltis PS, Gilmatin AJ. 1990.
Subfamilial phylogenetic relationships of the Bromeliaceae:
evidence from chloroplast DNA restriction site variation.
Systematic Botany 15: 425–434.
Smith LB. 1970. Notes on bromeliaceae, XXX. Phytologia 19:
281–291.
Smith LB, Downs RW. 1974. Pitcairnioideae (Bromeliaceae).
Flora neotropica monograph, Vol. 14. New York: Hafner
Press, 189–191.
Smith LB, Looser G. 1935. Las especies chilenas del género
Puya.Revista Universitaria 3: 241–279.
Stevens PF. 1991. Character states, morphological variation
and phylogenetic analysis: a review. Systematic Botany 16:
553–583.
Terry RG, Brown GK, Olmstead RG. 1997. Examination of
subfamily phylogeny in Bromeliaceae using comparative
sequencing of plastid locus ndhF. American Journal of
Botany 84: 664–670.
Thiele K. 1993. The Holy Grail of the perfect character: the
cladistic treatment of morphometric data. Cladistics 9: 275–
304.
Varadarajan GS, Gilmartin GK. 1988. Morphological varia-
tion of some floral features of the subfamily Pitcairnioideae
(Bromeliaceae) and their significance in pollination biology.
Botanical Gazette 149: 82–91.
APPENDIX 1
HERBARIUM SPECIMENS USED FOR THIS STUDY
Aechmea spectabilis Brongn. ex Houllet. VENEZUELA:
Edo. Trujillo, Entre Trujillo y Boconó, E. Graf s.n. (F).
Edo. Mérida, Mpio. Tovar, C. Hornung 209 (MERC).
Edo. Mérida, C. Hornung 219 (MERC). Edo. Mérida,
Mpio Justo Briceño, P.López 3472 (MERF). COLOM-
BIA: Dpto. Magdalena, about 11 km south-east of
Molino, O. Haught 4051 (F).
Ananas ananassoides (Baker) L.B. Sm. BOLIVIA: Santa
Cruz, Nuflo de Chavez, Rancho Zapoco, 90 km de
Concepcion, T. Killleen 1479 (NY). GUYANE FRANCAISE:
Roche Touatou Basin d’inselberg, J.J.Granville
12988 (NY). BRAZIL: Edo. Amazonia, Municipality if
Humaitá, Rio Madeira, road to Humaitá to Labrea, km
20, Savana margin, G.T. Prance 3407 (F). Minas
Gerais, Br 153, 20 km S de Frutal, A. Krapocickas
33048 (F). In Cerrado, along Anhuma Creek, 300 km
past Cuiaba en route to Goiania, Mato Grosso, B.
Maguire (F1769731). Mato Grosso, Pantanal de
Paiaguas, Fazenda Buriti, 65–70 km de estrada
Cuiaba-Campo Grande, A. Krapovickas 29916 (F).
PHYLOGENY OF PUYA SUBGENUS PUYA 103
© 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 156, 93–110
3–4 km SW of Mutumparaná on railroad to Abuna,
G.T.Prance 5453 (F). VENEZUELA: Edo. Bolívar, Basin
of Río Parguaza, Croizat 40 (F).
Billbergia macrolepis L.B.Sm. BRAZIL:T.F.DoRon-
donia, Mpio. De Ariquemes, Mineracao Mibrasa,
Setor Alto Candeias, km 128, Sudoeste de Ariquemes,
L.O.A.Teixeira 611(NY).V
ENEZUELA: Edo. Amazonas,
Cerro Sipapo (Paráque), B. Maguire 28053 (NY). Bajo
el Río Guaramacal, R. Liesner 10610 (VEN).
Brocchinia acuminata L.B.Sm. VENEZUELA: Edo. Ter-
ritorio Federal Amazonas, Summint to cerro Duida,
on high moist ridge top, J.A. Steyermark 58363 (F).
Edo. Bolívar, Chimantá Massif, moist forest along
quebrada, vicinity of camp 4, south-western edge of
Apacará–Tepuí, J. A. Steyermark 75007 (F). Edo.
Bolívar, Cerro Guanacoco, cumbre, porción nor-oeste
cerca del borde riscoso, J.A. Steyermark 109715 (F).
Amazonas, Dpto. Río Negro, Cerro de la Neblina,
Camp XI, 6.2 km NNE of Pico Phelps (=Neblina), M.
Nee 31098 (NY). Edo. Bolivar, Dto. Piar, summit of
Amaruay-tepui, SE quarter of tepui, R. Liesner 20869
(NY). Territorio Federal Amazonas, Sierra Parima, J.
Steyermark 107507 (US).
Brocchinia reducta Baker. VENEZUELA: Edo. Bolívar,
Gran Sabana, Roraima, J. Pruski 1413 (NY). Edo.
Bolívar, Dto. Roscio: Valle del Río Aponguao, O. Huber
14.vi.1985 (NY). Edo. Bolívar, Qda. Pacheco, approx.
70 km N de Sta. Elena, N. Xena 313 (NY).
Bromelia crysantha Jacq. VENEZUELA: Edo. Mérida,
Mpio. Sucre, vía Las Coloradas, C. Hornung 89
(MERC). Edo. Mérida, Mpio. Sucre, San Juna-Las
Gonzalez, R. Rico 335 (MERC).
Bromelia pinguin L. HONDURAS: Dpto. El Paraíso, Río
Choluteca near bridge of Ojo de Agua, L.O. Williams
42888 (NY). MÉXICO: Veracruz, Mozomboa, Mun.
Actopan, J. Dorantes 837 (XAL). Veracruz, Chavarillo,
1.5 km delante de la estación de Chavarillo, Mpio.
Emiliano Zapata, G. Castillo-Campos 12413 (XAL).
Veracruz, La Mancha, Mpio. Actopan, G. Castillo-
Campos 12339 (XAL). Veracruz, 3 km ak E de Santa
Fe, Mpio. Veracruz, V.E. Luna 305 (XAL). Veracruz,
Estación biológica El Morro de La Mancha, Mpio.
Actopan, B. Guerrero C. 1673 (XAL). Veracruz, 5 km al
NO de Panuco, L.I. Nevling 401 (XAL). Veracruz, Carro
Topila ejido ‘Benito Juarez’, Mpio. Panuco, C. Gutierrez
1999 (XAL). Veracruz, Ocozotepec, Mpio. Soteapan, H.
Cruz Ramírez 11 (XAL). Yucatán, km 4 del crucero
rumbo a San Felipe, Mpio. Río Lagartos, E. Ucan 789
(XAL). Yucatán, a 90 km del Crucero, rumbo a Tizimin,
Mpio. Río Lagartos, E. Ucan 1155 (XAL), G. Castillo
5762 (XAL). Bahia de Banderas, Mpio. Bahia de Ban-
deras, Nayarit (XAL 16364). México, Islas Marietas,
Mpio. Bahia de Banderas, Nayarit, G. Castillo 5914
(XAL). PANAMÁ: Prov. Los Santos, between Limon and
Punta Mala, T.B. Croat 9746 (NY).
Cottendorfia florida Schult. f. BRAZIL: Mpio. De
Macujê, 10–17 km ao NW de Mucujê, na estrada para
Andaraí, S.A. Mori (US 2854490); Mpio. De Macujê,
10–17 km ao NW de Mucujê, na estrada para
Andaraí, S.A. Mori (US 2854493). Bahia, Mun. Rio de
Contas Pico das Almas, Vertente leste, Na parte norte
do vale abaixo do pico, R.M. Harley 26196 (F). South
of Andarí, along road to Mucugé near small town of
Xique-Xique, R.M. Harley 18687 (NY). Río Apiaba
(mun. Mucugê), Bahia, G. Hatschbach 47534 (NY).
Dyckia ferox Mez. ARGENTINA: Dpto. Capital, Prov.
Corrientes, Procedente de San Roque, A. Schinini
13850 (F). Dpto. Capital, Ruta 12 y Ayo, Richuelo, A.
Schinini 12439 (F).
Guzmania monostachya Rusby ex Mez. COSTA RICA:
H.E. Stork 2933 (F). NICARAGUA:G.S. Bunting 352
(F). La Selva, U. Rowlatt 1851 (F). ECUADOR: Prov.
Carchi, environs of Chical, 12 km below Maldonado
on the río San Juan, M.T. Madison 4484 (F). Dpto.
Tumbez, Prov. Tumbez, mts E of Hacienda Chicama,
A. Weberbauer 7643 (F). PERÚ: Dpto. Cajamarca, Prov.
Santa Cruz, alrededores de Monteseco, A. Sagástegui
12362 (F). Dpto Cajamarca, Prov. Santa Cruz, Distr.
Catache, Upper Río Zaña valley, M. Dillon 4371 (F).
(L.Rusby) ex Mez; Dpto. San Martin, San Roque, L.
Williams 7238 (F). VENEZUELA: Edo. Mérida, Mpio.
Libertador, C. Hornung 210 (MERC). Edo. Mérida,
Mpio. Libertador, C. Hornung 236 (MERC). Edo.
Mérida, Mpio Libertador, Campo de Oro, T. Ruiz
14662 (MERF). Edo. Mérida, Mpio. Libertador,
Campo de Oro, T. Ruiz 14656 (MERF). USA: Florida,
s.c, s.n (F 167005). Prov. De Heredia, Finca La Selva,
the OTS Field Station on the Río Puerto Viejo just E
of its junction with the Río Sarapiquí, T. McDowell
353 (F). USA: Subtropical Florida, N.L. Buten 257 (F).
Navia igneosicola L.B.Sm., Steyerm. & H.Rob. VEN-
EZUELA: Territorio Federal Amazonas, Dpto. Atures:
forested areas and igneous outcrops along Río Coro-
moto, at Tobogán de la Selva, J. Steyermark 122478
(US).
Pitcairnia maidifolia Decne. ex Planch. COLOMBIA:
Dpto Antioquia, Mpio. De Cocorná (Ant.), camino
entre ‘la Piñuela’ y ‘La Vega’, margen izquierda del
Río Santo Domingo, R. Fonnegra s.n. (F 2181034);
Mpio. Amalfi, Verede El Oso, Cordillera Central, J.
Betancur 916 (F). COSTA RICA: San José, Dota, Zona
Protectora Cerro Nara, Faldas del Cerro Nara,
104 C. T. HORNUNG-LEONI and V. SOSA
© 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 156, 93–110
O. Valverde 515 (F). Prov. San José, F. Montgomery
G. 5052 (F). GUIANAS: Region Cuyuni-Mazaruni, Mt.
Holitipu, below peak, T. McDowell 3027 (F). HONDU-
RAS: Dpto. Morazán, Agua Amarilla, L.O. Williams
10814 (F). Dpto. Morazán, Region of Agua Amarilla,
above El Zamorano, P.C. Standley 5061 (F). Dpto.
Morazán, north-west of El Zamorano, P.C. Standley
22890 (F). Dpto. Morazán, along and near Río Agua
Amarilla, above El Zamorano, P.C. Standley 12813
(F). El Paraiso, 3 km north of Las Manos, L.O.Will-
iams 42265 (F). Dpto. Morazán, Region of Agua Ama-
rilla, above El Zamorano in pine–oak forest, P. C .
Standley 10 (F). VENEZUELA: Edo. Bolivar, Massif
of Chimantá, J.A. Steyermark 75475 (F). Territorio
Federal Amazonas, Sierra Parima, J.A. Steyermark
105910 (F). Territorio Federal Amazonas, Cero Duida.
J.A. Steyermark 57969 (F). Edo. Mérida, between El
Molino and ridge above San Isidro, J.A. Steyermark
56519 (F). Edo. Mérida, Mpio. Libertador, C. Hornung
(MERC). Edo. Mérida, Mpio. Cardenal Quintero,
C. Hornung 136 (MERC). Edo. Mérida, Mpio.Tovar,
C. Hornung 174 (MERC). Edo. Mérida, Mpio. Tovar,
C. Hornung 175 (MERC). Edo. Mérida, Mpio. Tovar,
C. Hornung 176 (MERC). Edo. Mérida, Mpio. Tovar,
via Zea, C. Hornung 177 (MERC). Edo. Mérida, Mpio.
Arzobispo Chacón, C. Hornung 196 (MERC). Edo.
Mérida, C. Hornung 221 (MERC). Edo. Mérida, Mpio.
Tovar, Zea, P. López 1236 (MERF). Edo. Mérida, Dtto.
Justo Briceño, López 3513 (MER, MERF).
Pitcairnia meridensis Klotzsch ex Mez. VENEZUELA:
Edo. Mérida, between El Molino and ridge above
San Isidro, J.A. Steyermark 56519 (F). Edo. Mérida,
Mpio. Campo Elías, L. Aristeguieta 2485 (VEN); Edo.
Mérida, Ca. Jají, F. Oliva 263 (VEN). Edo. Mérida,
Mpio. Rivas Dávila, B. Marcano 1743 (VEN). Edo.
Mérida, Mpio. Rivas Dávila, C. Benitez 2072 (VEN).
Edo. Mérida, J.A. Steyermark 56519 (VEN). Edo.
Mérida, Mpio. Campo Elías, F.Oliva 228 (VEN). Edo.
Mérida, Carbonera-Azulita, J. de Brujin 1131 (VEN).
Mpio. Dávila, B. Marcano 1743 (MER). Edo. Mérida,
Estación teleférico La Montaña, D.L. Kelly 9099
(MER). Edo. Mérida, Mpio. Rivas Dávila, P.S. López
10 (MERF). Edo. Mérida, Mpio. Libertador, T. Ruiz
8741 (MERF). Edo. Mérida, Mpio. Sucre, T. Ruiz 811
(MERF). Edo. Mérida, Mpio. Libertador, C. Hornung
74 (MERC). Edo. Mérida, Minas de Bailadores, C.
Hornung 107 (MERC). Edo. Mérida, Mpio. Andrés
Bello, C. Hornung 143 (MERC). Edo. Mérida, Mpio.
Arzobisco Chacón, C. Hornung 194 (MERC). Edo.
Mérida, Mpio. Arzobispo Chacón, C. Hornung 198
(MERC). Edo. Mérida, C. Hornung 216 (MERC).
Puya aequatorialis Ed. André. ECUADOR: Azuay, Prov.
Azuay, between ríos Azogues and Gualaceo, valley of
the río Paute, between Puate and Cuenca, W.H. Camp
2322 (US). A 15 km de Quito, Otavalvo-70 m terreno
volcanico, A. J. Gilmartin 1084 (US). André 3594 (F).
Loja, Cuenca-Ona-Zaraguro, M.B. Foster 2608 (F).
Azuay, valley of the río Paute, between Paute and
Cuenca, W.H. Camp 3222 (US). Vicinity of Cumbe, J.N.
Rose 22954 (NY). Prov. Azuay, valley of the río Paute,
between Paute and Cuenca, W.H. Camp 2322 (NY).
Puya alpestris (Poepp.) Gay.CHILE: 1877. SGO
(046422); J. West 4981 (US); F (739422); F
(1670523). N. Floy Bracelin 2802 (F). N. Floy Brace-
lin 2766 (F). La Hermida, cerca de Santiago, G.
Looser 2104 (F). Cordillera de Colchagua (SGO
046423). Cerro Sur Baños Flaco, M. L. Espinosa (leg)
s.n. xii.1937 (SGO). Coordillera de Colchagua, s.n.
(SGO 046425). Reiche s.n. dic/91 (SGO 061082).
Fundo Fray Jorge, SGO (060188); s.n. V/1884 (US
photo). Prov. Concepción, Hills north to Concepción,
J. West 4981 (US). Cerro San Cristóbal, Germain
s.n., 1854 (SGO). Coquimbo, M. Muñoz 909 (SGO).
Coquimbo, C. Muñoz 1552 (SGO). Coquimbo, C.
Muñoz 1302 (SGO). Cerro Fray Jorge, Philippi s.n.
(SGO). Fray Jorge, Ovalle, Philippi s.n., I/1883
(SGO). Cordillera de La Dehesa, Philippi s.n.,
XI/1861 (SGO). Región metropolitana, Carr.
Santiago-Farellones, C. Hornung 1109 (HDCV).
Puya aristeguietae L.B.Sm. VENEZUELA: Edo. Trujillo,
Dto. Boconó, Páramo de Guaramacal, L.J. Dorr 5000
(NY). Edo. Trujillo, Alrededores de Guirigay, L.
Aristeguieta 3539 (NY). Edo. Trujillo, Dto. Boconó,
Páramo de Guaramacal, SE of Boconó, L.J. Dorr 7326
(NY). Edo. Mérida, Bosque exp. ‘San Eusebio’, Dpto.
Campo Elías, J.P. Schulz 388 (NY). Edo. Mérida,
Dtto. Rangel, Quebrada ‘Puya’ (unnamed Qba.) c.
3–4 km S of the mouth of the Rio Los Granates,
Parque Nacional Sierra Nevada, L.J. Dorr 5598 (NY).
Edo. Trujillo, Páramo de Guirigay, L. Aristeguieta
3539 (US). Edo. Mérida, Mpio. Rangel, C. Hornung
161 (MERC). Edo. Mérida, Mpio. Páramo Gaviria,
C. Hornung 208 (MERC). Edo. Mérida, Mpio. Rangel,
T. Ruiz 7310 (MERF). Edo. Mérida, Mpio. Miranda,
T. Ruiz 12267 (MERF). Edo. Mérida, Mpio. Miranda,
T. Ruiz 12268 (MERF). Edo. Mérida, Parque Nacional
Sierra Nevada, A.P. Yañez 1719 (MER). Edo. Trujillo,
Páramo Guirigay, L. Aristeguieta 3539 (VEN).
Puya berteroniana Mez. BOLIVIA(?): near La Paz
(probably the label is an error), Rusby 2850 (US).
CHILE: Prov. Curicó, Hacienda Monte Grande, E. Wed-
ermann 563 (F). IIX Región, Prov. Santiago, Peñaflor
cerro, G. Montero 768 (F). CHILE: Limache, Belen s.n.
10.ii.1917 (F). Rancagua, Bertero 115 (F photo). Viña
del Mar, 16.xii.1923 (F). Cuesta de La Dorminda,L.
Gonzalez s.n. 26.v.1983 (HDCV). Cuesta La Dormida,
bajando del Roble, C. Hornung 1111 (HDCV). Haci-
PHYLOGENY OF PUYA SUBGENUS PUYA 105
© 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 156, 93–110
enda Rinconada La Cesda, Maipu, Qda La Plata, F.
Schlegel 1664 (SGO). Prov. Santiago, Región Metro-
politana, Reserva Forestal Río Clarillo, J. Yañez s.n.
3.viii.1993 (SGO). Prov. Valparaiso, four km south-
west of Valparaiso, P.C. Hutchison 22 (SGO). Prov.
Coquimbo, IV Región, Coquimbo, M. Muñoz S. 908
(SGO). IV Región, Playa Las Tacas, 20 km al Sur de
Coquimbo, A.R. Flores s.n. 15.viii.1986 (SGO). Ran-
cagua, Bertero 115 (US). Valparaiso, Weber 3252 (US).
Concón, Miers 347 (US).
Puya boliviensis Baker. BOLIVIA (now Chile): Cobija,
Gaudichau, Julliet s.n. 1836–1837 (F 1435100). Cobija,
Gaudichaud s.n. (F 741178). Gaudichaud s.n. (US
2144992). Gaudichau s.n. (F1435081). CHILE: Antofa-
gasta región II, Prov. Antofagasta, Cero Perales, c.
5 km E of Taltal, M.O. Dillon 5377 (F). Quebrada
Paposo, c. 5–7 km E of Caleta, M.O. Dillon 5242 (F).
CHILE: Antofagasta región II, Prov. Antofagasta, Cerro
Perales, c. 5 km E of Taltal, M.O. Dillon 5377 (F). II
Región, Qda. Rinconada de Paposo, A. Hoffmann s.n.
2.xii.1988 (SGO). CHILE: II Región, Mirador de Paposo,
subiendo por quebrada Los Yales, A. Hoffmann s.n.
1.xii.1988 (SGO). II Región, qda. en camino a Cifuncho,
A. Hoffmann s.n. 1.xii.1988 (SGO). II Región, Qda.
Matancilla, A. Hoffmann s.n. 3.xii.1988 (SGO). II
Región, Taltal, Qda. Matancilla, A. Hoffmann s.n.
3.xii.1988 (SGO). Morro de Caldera (SGO), Paposo,
Reich 360 (SGO). Gaudichaud s.n. (US 21449992).
Region II, Antofagasta, Prov. Antofagasta, Cerro
Perales, c. 5 km E of Taltal, M.O. Dillon 5377 (F).
Puya castellanosii L.B.Sm. ARGENTINA: Cachi, Prov.
Salta, Dpto. Chachi: Brealito, G.S. Varadarajan 1476
(US). Dpto. Cachi, Prov. Salta, Brealito, G.S. Vara-
darajan 1476 (US). Prov. Salta, Catellanos s.n. [type],
1897 (US). Dpto. Molinos, Prov. Salta, Brealito, T.
Meyer 9164 (US). Salta, Laguna del Brealito (Valle
Calchaqui), Castellanos 45819 (US).
Puya chilensis Molina. BOLIVIA (now CHILE): Gaud-
ichaud, s.n. (F 1370754). CHILE: Limache, Frisco (F
633928). 1837 (F 1435147). Viña del Mar, 7.ix.1922
(F). Viña del Mar, 7.ix.1922 (F). Prov. Elqui, T.G .
Lammers,C.M. Baeza P. & P. Peñalillo B. 7653 (F).
Angol, Philippi s.n., i.1877 (SGO). Constitución, K.
Reiche s.n., xii.1891 (SGO). Fundo Fray Jorge, C.
Carrizo s.n., 10.iii.1947 (SGO). Cordillera de Col-
chagua, L. Landbeck s.n., xii.1860 (SGO). Cordillera
de Colchagua, Philippi s.n. (SGO 6425). Cerro, Sur
Baños Flacos, M. Espinosa s.n., xii.1937 (SGO).
Zapallar, Philippi s.n., ix.1875 (SGO). Aconcagua:
Zapallar, Philippi s.n., ix.1865 (SGO). Paposo, K.
Reiche s.n., ix.1909 (SGO). Cordillera de Cauquenes,
K. Reiche s.n., x.1907 (SGO). Angol, Philippi s.n.,
1877 (SGO). Constitución, K. Reiche s.n., xii.1891
(SGO). Chillan, Philippi s.n., xii.1869 (SGO). Llico,
Philippi s.n., xii.1861 (SGO).
Puya coerulea Miers. CHILE: Angostura de Praine, G.
Looser s.n., 4.xii.1932 (F). s.n. (F1668607), Angostura
de Praine, G. Looser 2553 (F). Angostura de Praine,
Looser 2550 (F). Angostura de Praine, G. Looser 2549
(F). Angostura de Praine, G. Looser 2551 (F). Prov.
Santiago, P.C. Hutchinson 202 (F). Phillipii s.n. (F
741265). Prov. Curicó: Hacienda Monte Grande, E.
Wedermann 539 (F). s.n. (F 835815). Río Clarillo, s.n.
(HDCV 949), Vía El Roble, C. Hornung 1110 (HDCV).
Baños de Cauquenes, Philippi s.n., iii.1875 (SGO).
Llico, Philippi s.n., xii.1861 (SGO). Inter Poblacion El
Cueva, Philippi s.n. (SGO 46407). Chillan, Philippi
s.n., xii.1869 (SGO). Cordillera de Popeta, Philippi
s.n., i.1884 (SGO 46413). Angol, Philippi s.n., i.1877
(SGO). Complejo Turistico La Leonera, M. Muñoz &
S. Moreira 2393 (SGO). Complejo Turistico La
Leonera, M. Muñoz &S. Moreira 2394 (SGO). Las
Tacas, A. Flores s.n., 15.viii.1986 (SGO). Taltal, A.
Hoffmann &A. Flores s.n., 3.xii.1988 (SGO). Que-
brada Camino a Cifuncho, A. Hoffmann &A. Flores
s.n., 1.xii.1988 (SGO).
Puya cuatrecasasii L.B.Sm. COLOMBIA: Dpto. Valle,
Cordillera Central: entre Pan de Azúcar, J. Cuatreca-
sas 27573 (COL). Cordillera Central, vertiente occi-
dental, J. Cuatrecasas 18962 (COL). Dpto. Cauca,
Macizo Colombiano, Páramo de las Papas, J. Idrobo
4062 (COL). Dpto. del Cauca, Cordillera Central, ver-
tiente occidental, Cabeceras del Río Palo. J. Cuatre-
casas 18962 (F). Tolima, above ‘Ampilio’, Cabeceras
río Ereje, E. L. Core s.n. 21.xi.1944 (F).
Puya ferreyrae L.B.Sm. ECUADOR: Prov. Loja: Las
Chinchas, Reg. Central, M. Acosta S. 7803 (F). PERU:
Dpto. La Libertad, Prov. Otuzco, road to Huamachuco,
11 km above Samne, P. C. Hutchinson 6124 (F). Dpto
Cajamarca, Sangal (San Pablo), Prov. San Pablo,
A. Sagástegui 15367 (F). PERU: Dpto. Cajamarca,
c. 7 km E of Magdalena, M.O. Dillon 6206 (F). Dpto.
Cajamarca, Prov. Cajamarca. Entre Magdalena
Chilete, en la parte alta de la hacienda la Viña, I.
Sanchez V. 3574 (F). Dpto. Cajamarca, Prov. Cajama-
rca, Dist. Jesús, a 1 km de la localidad de Jesús,
siguiendo la carretera, I. Sanchez V. 6153 (F). Dpto.
La Libertad, Prov. Otuzco, Casmiche (Ssmne-Otuzco).
A. Sagastegui 11515 (F). Road to Huamachuco, 11 km
above Samne, J. Kenneth 6124 (F).
Puya ferruginea (Ruiz & Pav.) L.B.Sm. BOLIVIA:
Nequejahuira,SC634, 15.v.1926 (NY). Dpto. La Paz,
Prov. Murillo, 1 km SW of Mallasilla Golf Course,
9 km SSE of centre of La Paz, M. Nee 34161 (NY).
Dpto. La Paz, Province of Murillo, J.C. Solomon 6668
106 C. T. HORNUNG-LEONI and V. SOSA
© 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 156, 93–110
(NY). Dpto. La Paz, Prov. Murillo, c. 0.4 km NE of
Alto Irpavi, Solomon J.C. 6093 (NY). O. Kuntze s.n.
13–21.iv.1892 (NY). La Paz, s.n. 152, 1890 (NY). H.H.
Rusby 2845, iv.1885 (NY). Yungas, H.H. Rusby 2847,
1885 (NY). Dpto. La Paz, Prov. Nor Yungas, 3.6 km
NE of (below) Chupipata on road to Yolosa, J.J.
Solomon 15642 (NY). Dpto. La Paz, Prov. Nor Yungas,
4.7 km al NE (abajo) de Chuspipata, J.C. Solomon
17336 (NY). Dpto. La Paz, Prov. Murillo, M. Nee
34161 (NY). Nequejahuira, G.H.Tate 634, 15.v.1926
(NY). Yungas, H.H. Rusby 2847 (F). Dpto. La Paz, O.
Buchtien s.n. iii.1913 (F). Dpto. La Paz, O. Buchtien,
iii.1923 (F). Dpto. La Paz, 1890 (F 162549). Dpto. La
Paz, O. Buchtien s.n. iii.1913 (NY). Prov. Huaura,
Lomas de Lachay, A. Cano 7081 (USM). ECUADOR:
Prov. Loja, Valle Seco de Playas, Catacocha, M. Costa
Solís 7998 (F). E. Andre 4019 (NY). PERU: Dpto.
Junin, Tarma, E.P. Killip 21806 (NY). G. Mandon
1173 (NY). Yungas, H.H. Rusby 2847 (NY). La Paz,
R.S. Williams 2355 (NY). Cordillera Real, Neque-
jahuira, H.H. Tate 634 (NY). Dpto. Cusco, Prov. Calca,
Pisaq ruins, J.D. Boeke 1532 (NY). Dpto. Lima, Prov.
Huarochiri, Rio Blanco, P.C. Hutchinson 573 (NY).
Dpto. Cusco, Prov. Calca, Lares Valley above Mantoc,
A. Weberbauer 7915 (NY). Cordillera Yanachaga, A.
Gentry 35919 (NY). Dpto Ancash, Prov. Huaylas,
Pueblo Libre, A. Cano 8882 (USM). Dpto. Lima, Prov.
Huarochirí, Sangallaya, E. Cerrate 1775 (USM). Dpto.
Lima, Prov. Huarochirí, Sangallaya, R. Ferreyra 9200
(USM). Pasco, Cordillera Yanachaga, A. Gentry 35919
(USM). Prov. Huaura, Lomas de Lachay, A. Cano 7081
(USM). Dpto. Cuzco, Prov. Urubamba, E.W. Davis
1774 (USM). Dpto. Cuzco, Prov. Urubamba, W. Davis
1488 (USM). Cuzco, Prov. Urubamba, Sist. Huaylla-
bamba, A.Tupayachi 931 (NY). Dpto. La Libertad,
Prov. Trujillo, Cerro Campana. A. Sagástegui 12957
(F). Dpto Lima, Prov. Huarochiri, Río Blanco, Canyon
of the Río Rimac, P.C. Hutchinson 573 (F). Dpto. La
Libertad, Prov. Trujillo, A. Sagástegui 10980a (F); J.
Francis Macbride 3148 (F); Dpto. Yucay, J. Soukup,
xii.1937 (F); Dpto. Cuzco, Prov. Urubamba, Chicon
Canyon, on rocky slopes, C. Vargas 11091 (F); Cuzco,
Colinas de Sacsahuaman, J. Soukup 42 (F). Río
Blanco, J.F. Macbridge 3005 (F). Dpto. Lima, Prov.
Huarochiri, Infiernillo, T.H. Goodspeed 110601 (F).
Dpto. Cuzco, Prov. Urubamba, Chincheros, E.W.
Davis 1774 (F). Yanano, J. Francis Macbride 3812 (F).
Río Blanco, J. Francis Macbride 711 (F). Dpto. La
Libertad, Prov. Otuzco, Cascasday (Collambay-
Sinsicap), A. Sagástegui 15638 (F). Lima, Prov. Hua-
rochiri, Río Blanco, canyon of the río Rimac, P. C .
Hutchinson 573 (F). Cusco, Prov. Paucartambo, valle
del Pilcopata, road from Patria to Pillahuata, R.
Foster &T. Watcher 7482 (F). Prov. Yanachaga, A.
Gentry 35919 (F). Dto. Huayllabamba, Cuzco: Prov.
Urubamba, A. Tupayachi 931 (NY). Prov. Huarochiri,
Río Blanco, canyon of the río Rimac, P. C .Hutchinson
573 (F).
Puya floccosa E. Morren. BRAZIL: Amazonia,
Territorio do Roraima, G.T. Prance 4532 (NY). Serra
Tepequem, terr. Do Rio Branco, B. Maguire 40039
(NY). COLOMBIA: Dpto. Cundinamarca, Cordillera
Oriental, Chuneca Creek, 5 km from Ubalá, M.L.
Grant 10189 (NY). Dpto. Huila, Cordillera Oriental,
east of Neiva, H.H. Rusby 1122 (NY). Dpto.
Santander, northern slope of Mesa de los Santos,
Eastern Cordillera, E.P. Killip 15002 (NY). Dpto.
Cundinamarca, Cordillera Oriental, vertiente
Magdalenense, J. Betancur 3975 (COL). VENEZUELA:
Edo. Barinas, San Isidro, 27 km de Barinitas, Dtto
Bolivar, G. Aymard 2190 (NY). Edo. Bolívar, Dtto.
Roscio, sabanas en el valle del Río Kukenán inferior,
en la región de Campo Alegre, a aprox. 14 km al SW
de S. Ignacio de Yuruaní, O. Hubber 7592 (NY). Edo.
Táchira, Dtto. Uribante, S base of Cerro El Morro,
J.L. Dorr 7086 (NY). Edo. Bolívar, 17 km E of
Canaima, G.T. Prance 28461 (NY). Edo. Bolívar, 3 km
S of El Paují, R.L. Liesner 19875 (NY). Edo. Bolivar,
Uaipan-tepui, plateau at SE foot of the peak of
Uaipan, exposed sandstone shield, T. Koyama 7371
(NY). Edo. Bolívar, Dtto. Rosci, O. Huber 9201 (NY).
Edo. Mérida, C. Hornung 206 (MERC). Edo. Mérida,
C. Hornung 81 (MERC).
Puya gilmartiniae G.S.Varadarajan & A.R.Flores.
CHILE: Region IV, Coquimbo, Prov. Elqui, Punta
Arrayán, c. 20 km N of La Serena, M.O. Dillon 5449
(F). Region IV, El Olivar, N de La Serena, A. Flores
s.n. 16.viii.1986 (SGO).
Puya goudotiana Mez. COLOMBIA: Dpto. Cundinama-
rca, Macizo de Bogotá, cerro Diego Largo, vert. E., J.
Cuatrecasas 5162 (F). Dpto. Cundinamarca, Eastern
Cordillera, municipality of Calera, Hacienda La
Siberia, Páramo de Palacio, R. Merril K. 6039 (F).
Dpto. Cundinamarca, Cordillera Oriental, Chocontá,
J. Cuatrecasas 9660 (F). Dpto. Cundinamarca,
Cordillera Oriental, Páramo de Guasca, J. Cuatreca-
sas 13547 (F). Dpto. Norte de Santander, Cordillera
Oriental, J. Cuatrecasas 10039 (F). Dpto. Cundi-
namarca, Cordillera Oriental, Macizo de Bogotá, J.
Cuatrecasas 7969 (F). Dpto. Cundinamarca, Eastern
Cordillera, Municipality of Calera, Hacienda La
Siberia, Páramo de Palacio, R. Merrill K. 6039 (F).
Dpto. Cundinamarca, Cordillera Oriental, vertiente
oriental, Páramo de Guasca, J. Cuatrecasas 9506 (F).
Dpto. Cundinamarca, Cordillera Oriental, Páramo de
Guasca, vertiente oriental, J. Cuatrecasas 13547 (F).
Dpto. Cundinamarca, Cordillera Oriental, Páramo de
Chocontá, J. Cuatrecasas 9660 (COL). Dpto. Amazo-
nas, Páramo de Guasca, A. Fernández P. 5760
PHYLOGENY OF PUYA SUBGENUS PUYA 107
© 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 156, 93–110
(COL). Dpto. Cundinamarca, Mpio. La Calera, C.
García R. 85 (COL). Dpto. Cundinamarca, Eastern
Cordillera, Municipality of Calera, Hacienda La
Siberia, Páramo de Palacio, R. Merrill K. 6039 (NY).
G. Gutierrez 247 (NY). Bogotá 26.xi.1852 (NY). Dpto.
Santander, Vicinity of Charta, E.P. Killip 18930
(NY).
Puya laxa L.B.Sm. BOLIVIA: About Pulquina, Santa
Cruz, M. Cardenas 5092 (US). About Pulquina, Santa
Cruz, M. Cardenas 5092 (US).
Puya medica L.B.Sm. PERU: Shorey, Prov. Santiago de
Chuco, Sagástegui, Aldave, Fernandez &Fukushima
6175 (XAL).
Puya nitida Mez. COLOMBIA: Dpto. Cundinamarca,
Cordillera Oriental, Páramo de Guasca, J. Cuatreca-
sas 13539 (F). Macizo de Bogotá, Cerro entre que-
brada de Las Delicias y la de Las Ninfas, J.
Cuatrecasas 5629 (F). Dpto. Cundinamarca, Cood-
illera Oriental, Páramo de Zipaquirá, J. Cuatrecasas
9529 (F). Macizo de Bogotá: Cerro de Guadalupe, J.
Cuatrecasas 7958 (F). Dpto. Cundinamarca, Mpio.
Guatavita, Laguna de Guatavita, Páramo de Guata-
vita, J. Betancur 2713 (COL, NY). Dpto. Cundinama-
rca, Páramo de Cruz Verde, Cordillera Oriental,
vertiente occidental, G. Gutierrez V. 366 (F). Boyaca,
Paramo de Guina, Sta. Rosita, A.M. Cleff 9740 (NY).
M.J. Goudot, 1844 (NY). Cundinamarca, Macizo de
Bogotá, Mpio. De Calera, Páramo del Palacio, R.E.
Schultes 18727 (NY). Dpto. Boyacá, Páramo de Guina,
Sta. Rosita, A. M. Cleef 9740 (COL).
Puya nutans L.B.Sm.ECUADOR:Azuay, Campo, W. H.
E. 2291 (NY, US). PERU:Cuzco, Cano, A. 4324 (F).
Puya pygmaea L.B.Sm. BOLIVIA: Lchmamb 589 (F).
ECUADOR: Prov. Azuay, Páramo de Tinajillas, W.H.
Camp 2236 (F, US). Prov. Morona-Santiago, Páramo
de Castillo, G.S. Varadarajan 1433 (US). Prov. Azuay,
Páramo de Tinajillas, S.E. Clemants 2199 (US). PERU:
Dpto. Cusco, Prov. Paucartambo, Tres Cruces, Parque
Nacional Manu, A. Cano 4563 (F). Prov. Paucartambo,
Dpto. Cusco, Tres Cruces P.N.M, A. Cano 3455 (USM).
Dpto. Cusco, Prov. Paucartambo, Altura de Teleban
P.N.M., A. Cano 3782 (USM). Dpto. Cusco, Prov.
Paucartambo, Tres Cruces P.N.Manu, A. Cano 4563
(USM). Dpto. Cusco, Prov. Paucartambo, Acjanaco,
PN Manu, A. Cano 3393 (USM). In this study, we
extend the distribution of this species to Bolivia and
Peru, following the determination from H. Luther, A.
Cano, and L. B. Smith, and confirm the characteris-
tics specific to this species (Manzanares, 2005) as the
presence of floral bracts erect (vs. reflexes), amongst
others.
Puya raimondii Harms. BOLIVIA: Huacanqui, M.
Cárdenas 4380 (US). Comanche, M.B. Foster 2566
(US). Cochabamba, M.B. Foster 2546 (US). Dpto.
Cochabamba, Prov. Arani, G. Schmitt &D. Schmitt
84 (US). La Paz, Prov. Pacajes, Comanche, J.N. Rose
&Mrs Rose 18875 (US). La Paz, Pacajes, Comanche,
J. Luteyn, L. Dorr, D. Smith &M. Buddensick 13840
(US). Dpto. La Paz, Prov. Pacajes, Comanche, St.G.
Beck 2353 (US). PERÚ: La Libertad, Prov. Otuzco, A.
Sagástegui,S. Leiva &C. Tellez 14510 (F). Weber-
bauer 2955 (F). La Libertad, Prov. Otuzco, S. Leiva,
P. Leiva &E. Zavaleta 292 (F). Estation 30 miles
from Huaraz, Pomopampa, Macbride &Featherstone
s.n, 4.xii.1922 (F). Dpto. Puno, Prov. Melgar, H. Ilties
&Don Ugent 1288 (US). Prov. Bolognesi, Huishcash-
pampa, E. Cerrate 2072 (USM). Prov. Huaylas, Dpto.
Ancash, A. Cano 6405 (USM). 1/2 km SE of Haci-
enda Santa Rosa de Achaco, s.n. (USM 159980).
Dpto. Huancavelica, carretera Castrovirreyna-
Ayacucho, s.n. (USM 159979). Dpto. Ancash, P.N.
Huascarán, C. Hornung 1118 (USM). Dpto. Ancash,
Canchayllo, C.Hornung 1120 (USM). Dpto. Ancash,
P.N. Huascarán, C. Hornung 1121 (USM). Dpto.
Ancash, P.N. Huascarán, C. Hornung 1122 (USM).
Dpto. Ancash, P.N. Huascarán, Pumapashimin, C.
Hornung 1123 (USM). Dpto. Ancash, Cordillera
Negra, C. Hornung 1124 (USM). Dpto. Ancash, C.
Hornung 1126 (USM).
Puya retrorsa A.J.Gilmartin. ECUADOR: Prov. Chimbo-
razo, between Cajabamba and Pallatanga, G.S. Vara-
darajan 1440 (US). Prov. Pichincha, Paramo de
Huamani, G.S. Varadarajan 1420 (US). Tunguragua,
A.J. Gilmartin 1103 (US).
Puya santosii Cuatrec. COLOMBIA: Dpto. Cundinama-
rca, Cordillera Oriental, Páramo de Cruz Verde,
J. Cuatrecasas 9518 (F). Dpto. de Cundinamarca,
Macizo de Bogotá, Páramo de Usaquén, J. Cuatreca-
sas 9441 (F). Dpto de Cundinamarca, Páramo
de Usaquén, J. Cuatrecasas 7996 (F). Dpto. de
Cundinamarca, Páramo de Cruz Verde, Cordillera
Oriental, J. Cuatrecasas 10468 (F). Dpto. Cundi-
namarca, Macizo de Bogotá, Páramo de Uraquén, J.
Cuatrecasas 9441 (COL). Meta: Páramo de Sumapáz,
Hoya El Nevado, A. Cleef 1503 (COL). Dpto. Cundi-
namarca, Cordillera Oriental, Páramo de Cruz Verde,
J. Cuatrecasas 10468 (COL). Dpto. Cundinamarca,
Cordillera Oriental, extremo sudeste de la Sabana de
Bogotá, en San Miguel, J. Cuatrecasas 12042 (F).
Dpto. Cundinamarca, Cordillera Oriental, Páramo de
Cruz Verde, G. Gutierrez 386 (F). Dpto. Cundinama-
rca, Cordillera Oriental, J. Cuatrecasas 9518 (F).
Puya spathacea (Griseb.) Mez. ARGENTINA:Prov.De
Cordoba, Sierra Grande, A.P. Rodrigo 458 (NY).
108 C. T. HORNUNG-LEONI and V. SOSA
© 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 156, 93–110
Jujuy, O. Kuntze s.n. x.1892 (NY). Prov. de Córdoba,
Sierra chica, G. Hieronymus, s.n. 9.viii.1876 (NY). O.
Kuntze, s.n. x.1892 (F). Prov. Córdoba, La Cumbre, A.
Haurteig 203 (F). Jujuy, O. Kuntze x.1892 (NY). La
Rioja, Guanchín, Castellanos 27/1902 (NY). Prov.
Cordoba, Las Cumbres, A. Haurteig 263 (F). BOLIVIA:
Troll 661 (F). ARGENTINA: Jujuy, O. Kuntze s.n. x.1892
(F). Hieronymus s.n. (F). Prov. de Cordoba, Loc. La
Falda, Cerro El Chorrito, M.M. Job 453 (F). Jujuy, O.
Kuntze s.n. ix.1892 (NY).
Puya trianae Baker. COLOMBIA: Dpto. Cundinamarca,
Macizo de Bogotá, Páramo de Chisacá, Laguna Negra,
J. Cuatrecasas 25924 (COL, F). Dpto. Cundinamarca,
Páramo de Chisacá, T.R. Soderstrom 1286 (F). Dpto.
Cundinamarca, Andes de Bogotá, Páramo de Cruz
Verde, s.n. (COL). Dpto. Cundinamarca, Páramo de
Chisacá, T.R. Soderstrom 1286 (F). Dpto. Cundinama-
rca, Páramo de Cruz Verde, Cordillera Oriental. J.
Cuatrecasas 10474 (F). Dpto. Antioquia, Mpio. Urrao,
Páramo de Frontino, J. Betancur 1166 (F). Dpto.
Cundinamarca, Páramo de Chisacá, en pendientes y
colinas, J.M. Idrobo 6525 (F). Cundinamarca, Triana
1314 (F). Dpto. Cundinamarca, Macizo de Bogotá,
Páramo de Chisacá, J. Cuatrecasas 25745 (NY). Dpto.
Cundinamarca, Macizo de Sumapaz, J. Cuatrecasas
27030 (NY). Dpto. Boyacá, Páramo de la Rusia, Ser-
ranía Peña Negra, A.M. Cleef 7430 (COL). VENEZU-
ELA: Edo. Mérida, Mpio. Campo Elías, T.Ruiz 8000
(MERF).
Puya venezuelana L.B.Sm. COLOMBIA: Dpto. del
Arauca, Sierra Nevada del Cocuy, Quebrada el
Playón, Casa Piedra, A.M. Cleef 10124 (COL). Línea
divisoria entre Dpto. Santander del Norte y Cesar, H.
García-Barriga 19737 (COL). VENEZUELA: Edo.
Mérida, Páramo de Pozo Negro, between San José
and Beguilla, J. Steyermark 56285 (F); Edo. Trujillo,
L. Aristeguieta 3538 (US). Edo. Mérida, Páramo de
Pozo Negro, between San José and Beguilla, J.A.
Steyermark 56285 (F). Edo. Mérida, Páramo Gaviria,
C. Hornung 204 (MERC). Edo. Mérida, Páramo
Gaviria, C. Hornung 205 (MERC). Edo. Mérida, Mpio
Sucre, T. Ruiz 44 (MERF). Edo. Mérida, Mpio. Sucre,
T. Ruiz 1708 (MERF). Edo. Mérida, Mpio. Libertador,
T.Ruiz 8476 (MERF).
Puya venusta Phil. ex Baker. CHILE: Gaudichau s.n.
(F 741180). Gaudichau s.n. (F 835821). Quilliman
8/9/9 (HDCV). Huentelauquén, poco al sur de la
desembocadura del río Choapa, H. González Villalón
s.n. 5.xi.1966 (F). Philipii s.n. (F 741266). Prov. Acon-
cagua, Zapallar, G. Looser 2542 (F). Prov. Aconcagua,
Zapallar, G. Looser 2548 (F).
Puya weddelliana Mez. BOLIVIA: Dpto. Chuquisaca,
D.S. Correll 644 (US). Tarija, Weddell 4001 (US
photo).
Puya westii L.B.Sm. PERÚ: Dpto. La Libertad, Prov.
Huamachuco, road to Quiruvilca, 18 km above and
west of Huamachuco, P.C. Hutchison 6146 (NY). La
libertad, near Huamachuco, J. West 8353 (US). Dpto.
La Libertad, Prov. Huamachucho, road to Quiruvilca,
P. C . Hutchinson 6146 (F).
Tillandsia flexuosa Sw. COLOMBIA: Vaupes, Río Kudu-
yarí, Yapobodá, sandstone savannah near headwa-
ters, R.E. Shultes 18487 (F). PANAMÁ: Prov. Cocle, s.n.
(F 1693109). Prov. Panamá, Las Sabanas, s.n. (F
686341). VENEZUELA: Mpio Sucre, Edo. Mérida, C.
Hornung 48 (MERC). Mpio Livertador, C. Hornung 84
(MERC). Mpio Sucre, Edo. Mérida, C. Hornung 150
(MERC). Edo. Mérida, Mpio. Libertador, E. Arellano
s.n. (MERC). Edo. Mérida, Mpio. Sucre, R. Rico 275
(MERC). Edo. Mérida, Mpio. Sucre, R. Rico 399
(MERC). Edo. Mérida, Laguna de Caparú, A. Rondón
202 (MER).
Tillandsia multicaulis Steud. MÉXICO: Edo. Ver-
acruz, Loma Alta. Mpio. Coatepec, V.E. Luna 1006
(XAL). Edo. Veracruz, Ahuihuixtla, Mpio. Calcahua-
lco, J.L. Martínez 704 (XAL). Edo. Veracruz, Camino
Xico a Tonalaco, Mpio Xico, M. Xhazaro 1504 (XAL).
Edo. Veracruz, Naolinco, Mpio. Naolinco, F. Ventura
13214 (XAL). Edo. Veracruz, a 2 km de Ahuihutle,
camino a tres Aguas (Coscomatepec), Mpio Cal-
cahualco s.n. (XAL). Edo. Veracruz, Alrededores de
la represa Xocollolapa, A. Flores-Palacios 941 (XAL).
Edo. Veracruz, Jardín Botánico Francisco Javier
Clavijero, K. Fabian 346 (XAL). Edo. Veracruz, El
Esquilon, Mpio. Jilotepec, R. Ortega 526 (XAL). Ver-
acruz, Tenejapa, S. Avendaño R. 260 (XAL). Edo.
Veracruz, J. Martínes G. 187 (XAL). Edo. Veracruz,
Etlantepec-Tlacolulan, I. García-Orta 159 (XAL). El
Esquilón, Mpio. Jilopetec, M.G. Zola 669 (XAL).
Edo. Veracruz, Mpio. Coatepec, V.E. Luna 717
(XAL). Edo. Veracruz, 5 Palos, V.E. Luna M. 840
(XAL). Edo. Veracruz, Cañada río Ayohuxtla, A.
Rincón G. 2733 (XAL). Edo. Naranjillos, Mpio. San
Andres Tlanehuayocan, Naranjillos, C. Gutierrez
2737 (XAL). Edo. Veracruz, rancho grande, 3 km de
Xalapa, J.I. Calzada 1900 (XAL). Edo. Veracruz,
along Río Grande, Mun. Las Choapas, M. Nee 29877
(F).
Vriesea espinosae (L.B.Sm.) Gilmartin. PERU: Lam-
bayeque, 17 km E of Olmos on road to Pucara, pre-
montane dry forest, A. Gentry 22562 (F).
PHYLOGENY OF PUYA SUBGENUS PUYA 109
© 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 156, 93–110
APPENDIX 2
DATA MATRIX USED FOR CLADISTIC ANALYSIS (CHARACTER NUMBERS CORRESPOND TO THOSE GIVEN IN TABLE 1)
1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 87
Brocchinia
reducta
10––?100210––0011122100011011000110110001001200100001001210100010221000010010111200–031
Ananas
ananasioides
00––100100102001120110111111001201––––––1––––––100111201200111?01121100111010111212–001
Bromelia
pinguin
00––13010010100012–1101101111010110010011010011100001001210100010021000010000011201–001
Bromelia
chrysantha
00––13010010100022–20010111210101000100110–0011100101001220100102101400110011001201–001
Aechmea
spectabilis
00––1210011000011211100110111000000100001011010102111201100101012021310001010111201–000
Billbergia
macrolepis
10––110021101001122211001101000000––––––1–––––––02001?002021100101212100111100?0201?000
Cottendorfia
florida
?0––1211000–0011122100011011000010100011011011000002?012000000011200001100101010100031
Guzmania
monostachia
00––1310010––00010–020001100000000––––––1––––––102001$012000100211200001100101$10000010
Tillandsia
multicaulis
00––1310010––00110010000000–010001––––––1––––––00001020000001010011010001?000110000?010
Tillandsia
flexuosa
00––1211010––001102210011001*0000001000110100001000002101001000011103000100001110002010
Vriesea
espinosae
00––1111010––001102210010001000001––––––1–––––––0000020010011000?1101?0?1?0?0?1?000?010
Navia
ignesicola
010103100110200––1––000?0–––000001––––––1–––––––001–––01–00?1???0?0???0????10??1000?0?1
Pitcairnia
maidifolia
20––1110000––11011–0100?1000000011––––––1––––––1020012012200011211000001100000000002031
Pitcairnia
meridensis
20––1110000––11001––20001000000010––––––1––––––1000011012301010202103100110000200002031
Dyckia ferox 00––?1110012100011–11000110–*100010?10011001000100001001200100021121410010011101010$021
Puya alpestris 01111211001010011102101010111010110111010001000100000001220020020121201010000011000$121
Puya
berteroniana
011*12110012100011–210101–––101011011101001100010200000122$110020021201010000111000?121
Puya
weddelliana
011?12010010100??1??10101?1?101011011111000??00?000?0001220?000?1121201110000?11000?121
Puya chilensis 011112010012000011–21010111210101101111100010101000010012201200201214010100000110001121
Puya
gilmartiniae
01111221001210011112101011121010110111110010010002000101220100020101401010000011000?121
Puya
boliviensis
00––12110012100011–11010101010001101110100000001000001112201000221214010100000110002121
Puya
castellanosii
0???12010012?0011111101011?21010110111110001011110000?01220*000200?14?1?1?000???0002121
Puya
raimondii
010002010012000$11111020011210111101111100000111000000012201100200210010100000000001121
Puya retrorsa 011112010012000011–21010111$1011010010111000010112101101220100021131$11?10000???000?121
Puya venusta 00––112100101001112210110111*00011001001101101010200020122$1101211111111110101010001121
Puya
spathacea
00––1211001010010120100*111110001001100110010111001012012201001201111110100000010001121
Puya pygmea 00––01110010100111121000001210111100101111000101000101012111100?1121211010000??1000?121
Puya coerulea 01001211101010011122100111111000110?1001100*01**021012012$01$012211*1111010?00110002121
Puya
aequatorialis
0111121100112001112210011111000010––––––1––––––100101$012201001211$1$11010000001000?121
Puya laxa 00––12110010200221221010111210001011000?1011001100001100230100120121111010000???000?121
Puya medica 01??10110010100011–210000011*000110010111000010102100?012211101201?1211010000010000?121
Puya floccosa 010012110012100111221001111110001001100110012111000012001101000202211112101001010001121
Puya
venezuelana
00––12110011100011–211000012001111––––––1––––––1001001012211100200211110100000110000121
Puya
aristeguietae
00––11210010000011–11010011$1011110?100111010101000000012201000201210111100000000002121
Puya trianae 00––?10100100001110110100112001111––––––1––––––1100001012111100201314110100001010001121
Puya
goudotiana
00––12000011000011–2101000121011110?10111000000100000101220100020031$110100001110001121
Puya
ferruginea
01***2110012$00$11$210011112*000101100011010000112000100130100022111$011100000$01002121
Puya ferreyrae 0???12?1001$0001110210000011000011––––––1––––––100100?01212110120001011010000101000?121
Puya nitida 00––12210012000111121000101$000010––––––1––––––1101001012101110201312010000000101002121
Puya westii 00––12?10012000011–110?0????100010?1?00?10110101121011012201000221412110101001010000121
Puya nutans 00––?1010010100?11?211000011000111––––––1––––––1101001012201100210314110100000010001121
Puya santosii 00––?2010010000011–1101000111011110010111100011110100101221110021131211110000?0?0001121
Puya
cuatrecasasii
01?112110010100011–010100012101111001011110001111000010121011002003101111?000101000?121
*, polymorphism (0 and 1); $, polymorphism (1 and 2, or 0 and 2); ?, character unknown; –, not applicable.
110 C. T. HORNUNG-LEONI and V. SOSA
© 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 156, 93–110
... The internal phylogenetic relationships of Puya have been addressed using morphological data (Varadarajan, 1990;Hornung-Leoni & Sosa, 2008), DNA sequence data (Jabaily & Sytsma, 2010;Liu et al., 2022), and AFLPs (Jabaily & Sytsma, 2013). Chloroplast evidence places the Chilean species of Puya in a clade sister to the remainder of the genus ("Core Puya" sensu Jabaily & Sytsma, 2010), whereas nuclear sequence data places species from Chile with yellow flowers into a clade more closely related to various Core Puya clades, independent from the Chilean blue-flowered species. ...
... We sampled 85 individuals from 80 species of Puya, representing nearly 35% of the described diversity of the genus (Table S1). Our taxonomic sampling aimed to include representatives of the main lineages of Puya found in previous phylogenetic analyses (Hornung-Leoni & Sosa, 2008;Jabaily & Sytsma, 2010 as well as the morphological and geographic variation within the genus. We also included samples of Pitcairnia straminea and Bromelia pinguin as outgroups based on their phylogenetic proximity to Puya (Givnish et al., 2011;Paule et al., 2020). ...
... Trait 4: Inflorescence branching (Fig. 2C). The adaptive significance of this trait responds to temporal and spatial dynamics of floral availability and/or structural integrity of the plant during its reproductive phase (Hornung-Leoni & Sosa, 2008). The high plasticity of this character in Puya explains its extensive use in taxonomic treatments, identification keys, and morphology-based phylogenetic studies (Smith, Downs 1974b;Hornung-Leoni & Sosa, 2008). ...
Article
Full-text available
Phylogenomics enhances our understanding of plant radiations in the biodiverse Andes. Our study focuses on Puya , primarily Andean and a part of the Bromeliaceae family. Using a phylogenomic framework based on the Angiosperms353 probe set for 80 species, we explored Puya ′s phenotypic evolution and biogeography. Divergence time analyses and ancestral area estimations suggested that Puya originated in Central Coastal Chile around 9 million years ago (Ma). Subsequently, it dispersed to the dry valleys of the Central Andes and Puna regions between 5–8 Ma, leading to the emergence of major lineages. Key events in the last 2–4 million years include the recolonization of Chilean lowlands and dispersal to the northern Andes via Peru's Jalcas, facilitating passage through the Huancabamba depression. This event gave rise to the high‐elevation Northern Andes clade. Using phylogenetic comparative methods, we tested the hypothesis that adaptation to the Andes' island‐like high‐elevation ecosystems was facilitated by unique leaf and floral traits, life history, and inflorescence morphology. Our findings suggest correlations between inflorescence axis compression, protective bract overlap, and high‐elevation living, potentially preventing reproductive structure freezing. Semelparity evolved exclusively at high elevations, although its precise adaptive value remains uncertain. Our framework offers insights into Andean evolution, highlighting that lineages adapted to life in dry ecosystems can easily transition to high‐elevation biomes. It also underscores how the island‐like nature of high‐elevation ecosystems influences phenotypic evolution rates. Moreover, it opens avenues to explore genetic mechanisms underlying adaptation to extreme mountain conditions.
... Puya is traditionally divided into two subgenera, the subgenus Puya, containing eight species (P. alpestris, P. berteroniana, P. boliviensis, P. castellanosii, P. chilensis, P. gilmartiniae, P. raimondii, P. weddelliana), and the subgenus Puyopsis, containing the remainder of the species (Hornung-Leoni & Sosa, 2008;Smith & Downs, 1974). The subgenus Puya can be identified by sterile flowers at the apex of inflorescences, fertile in Puyopsis (Manzanares, 2020;Smith & Downs, 1974) and displays remarkable morphological variation, with monocarpic to polycarpic taxa, short to tall stems, and terrestrial to lithophytic ecotypes (Manzanares, 2020). ...
... Thus, this character may not be an appropriate diagnostic of subg. Puya since it seems to have experienced several convergent evolutions events to attract pollinators (Anderson et al., 2005;Hornung-Leoni & Sosa, 2008;Jabaily & Sytsma, 2010;Johow, 1898). A similar trend has been proposed recently for the evolution of the Andean genus Espeletia (Pouchon et al., 2018). ...
Article
Full-text available
The Andean plant endemic Puya is a striking example of recent and rapid diversifica-tion from central Chile to the northern Andes, tracking mountain uplift. This study generated 12 complete plastomes representing nine Puya species and compared them to five published plastomes for their features, genomic evolution, and phylogeny. The total size of the Puya plastomes ranged from 159,542 to 159,839 bp with 37.3%– 37.4% GC content. The Puya plastomes were highly conserved in organization and structure with a typical quadripartite genome structure. Each of the 17 consensus plastomes harbored 133 genes, including 87 protein-coding genes, 38 tRNA (transfer RNA) genes, and eight rRNA (ribosomal RNA) genes; we found 69– 78 tandem repeats, 45– 60 SSRs (simple sequence repeats), and 8– 22 repeat structures among 13 spe-cies. Four protein-coding genes were identified under positive site-specific selection in Puya. The complete plastomes and hypervariable regions collectively provided pro-nounced species discrimination in Puya and a practical tool for future phylogenetic studies. The reconstructed phylogeny and estimated divergence time for the lineage suggest that the diversification of Puya is related to Andean orogeny and Pleistocene climatic oscillations. This study provides plastome resources for species delimitation and novel phylogenetic and biogeographic studies.
... Veintisiete caracteres continuos fueron incluidos en tres submatrices: "cEXO" (124 taxones, 100% del muestreo) con 20 caracteres relacionados con la exo-morfología de los diferentes taxones; "cANATO" (73, 59%) con 5 caracteres relacionados con la anatomía y micro-morfología de las láminas foliares; y "cMORFO" (67, 54%) con dos caracteres involucrados con el contorno (2D) de los antecios superiores. Las mediciones de las distintas variables fueron estandarizadas utilizando la transformación log (x + 1) (Lehtonen, 2006;Hornung-Leoni & Sosa, 2008) debido a que los valores se presentaban en diferentes escalas; y luego codificadas como rangos definidos por la media ± 2 desviaciones estándar (Apéndice A). La matriz de rangos resultante fue analizada sin la discretización de los diferentes estados utilizando el programa TNT v.1.1 (Goloboff et al., 2008c) bajo el algoritmo de análisis descrito en Goloboff et al. (2006). ...
... Para la obtención de los valores correspondientes a los diferentes caracteres continuos fueron registrados entre 1-20 valores correspondientes a diferentes ejemplares, dependiendo en cada caso la disponibilidad de material. Las mediciones de las distintas variables fueron estandarizadas utilizando la transformación log (x + 1) (Lehtonen, 2006;Hornung-Leoni & Sosa, 2008) debido a que los valores se presentaban en diferentes escalas. Los datos así estandarizados correspondientes a cada taxón fueron utilizados para la obtención de rangos definidos como la media ±2 desviaciones estándar. ...
Thesis
Full-text available
La subtribu Melinidinae (Poaceae: Panicoideae: Paniceae) incluye 13 géneros y aproximadamente 190 especies, las cuales se hallan caracterizadas por presentar la vía fotosintética C4 PCK y una anatomía foliar distintiva. El objetivo de este trabajo es estudiar las relaciones filogenéticas y la historia evolutiva de este grupo. Para esto se propone analizar a la subtribu desde tres diferentes niveles taxonómicos. En una primera parte se estudia la relación de Melinidinae con los demás integrantes de la tribu Paniceae, poniendo a prueba su monofilia, resolviendo la relación entre la subtribu y su grupo hermano y reconstruyendo la vía fotosintética ancestral. En una segunda parte se estudian las relaciones filogenéticas entre los distintos géneros incluidos en Melinidinae y se reconstruye la tendencia evolutiva que presenta la subtribu en cuanto al grado de homogenización de sus inflorescencias. Finalmente, se analiza en la tercera parte del trabajo las relaciones existentes entre las especies de Urochloa, género con mayor número de especies dentro de la subtribu, con el objetivo de definir grupos infragenéricos naturales y caracteres morfológicos de valor taxonómico. En cada sección se utilizan métodos de análisis y caracteres adecuados para el nivel taxonómico que se estudia. Los resultados obtenidos muestran que la subtribu Melinidinae resulta monofilética cuando Urochloa venosa es excluida de ésta, mientras que la asignación del grupo y del tipo fotosintético ancestral son ambiguas. Los géneros Urochloa y Eriochloa resultan parafileticos y/o polifiléticos, mientras que géneros como Megathyrsus, Melinis y Moorochloa son monofiléticos. La homogenización de las inflorescencias en la subtribu parece ser la tendencia evolutiva favorecida por sobre el proceso inverso. Finalmente, el género Urochloa es, en su actual circunscripción, un grupo artificial carente de sinapomorfías morfológicas. No obstante, los análisis recuperan dentro de Urochloa varios grupos infragénericos definidos por diferentes caracteres morfológicos. Sobre la base de estos resultados se establece para las especies Urochloa acuminata, U. decidua y U. megastachya el nuevo género Rupichloa.
... Morphometry and morphology of A. bracteata. Different kinds of linear and geometrical morphometric analyses have resulted useful to study the Bromeliaceae family, allowing to elucidate, validate, recognize new taxa, or change the taxonomic status of varieties and synonyms (e.g., Wendt et al. 2000, Hornung-Leoni & Sosa 2008, Ferreira et al. 2009, de Faria et al. 2010, Pinzón et al. 2011, Castello & Galetto 2013, Guarçoni et al. 2017, Neves et al. 2018, González-Rocha et al. 2018, Martínez-García et al. 2022. In this study, the morphometric cluster analysis grouped the individuals into two clusters, each corresponding to a variety of A. bracteata, according to the characters previously recognized by Beutelspacher (1971) and Smith & Downs (1979). ...
Article
Full-text available
Background: Previous phylogenetic analyses suggested that Aechmea bracteata is not a monophyletic species, being each variety an individual lineage within the Aechmea bracteata complex. Hypothesis: A phylogenetic analysis based on molecular data and a morphological analysis will provide evidence to support the taxonomic recognition of A. bracteata var. pacifica as a distinct species. Studies species: A. bracteata var. bracteata, A. bracteata var. pacifica and related species. Study site and dates: Mexico to Northern South America; 17 populations from Southeastern and Western Mexico. Analyses were performed between 2021 and 2023. Methods: A linear morphometric analysis was conducted with 85 herbarium specimens testing 28 quantitative and three qualitative variables. Potential diagnostic traits were reviewed in living specimens. A phylogenetic analysis was performed with two nDNA markers (ETS and g3pdh) and one cpDNA marker (trnL-F). A total of 373 records were projected into biogeographical provinces of the Neotropics. Results: The morphometric analysis allowed to separate each variety into a group, also, nine of the evaluated traits resulted statistically significant through a univariate analysis. Five additional diagnostic traits from the inflorescence and leaves were recognized. According to nDNA both taxa present reciprocal monophyly, however, cpDNA groups A. bracteata var. pacifica with Central American species, showcasing a potential hybrid origin. Geographically, the Sierra Madre del Sur acts as a barrier between both taxa. Conclusions: Due to the gathered evidence is possible to recognize A. bracteata var. pacifica as an endemic species to Mexico, reestablishing the basionym A. laxiflora.
... Despite these criticisms, many of which are also applicable to discrete morphological characters and can be mitigated, continuous characters have been found to contain useful phylogenetic information in numerous studies across a broad suite of taxonomic groups (e.g. Goloboff, Mattoni & Quinteros, 2006;Hornung-Leoni & Sosa, 2008;Mannion et al., 2013;Parins-Fukuchi, 2017;Randle & Sansom, 2017;Jones & Butler, 2018;Groh et al., 2020). An important consideration when using continuous characters is how extensively they should be applied. ...
Article
Full-text available
First appearing in the latest Cretaceous, Crocodylia is a clade of semi-aquatic, predatory reptiles, defined by the last common ancestor of extant alligators, caimans, crocodiles, and gharials. Despite large strides in resolving crocodylian interrelationships over the last three decades, several outstanding problems persist in crocodylian systematics. Most notably, there has been persistent discordance between morphological and molecular datasets surrounding the affinities of the extant gharials, Gavialis gangeticus and Tomistoma schlegelii . Whereas molecular data consistently support a sister taxon relationship, in which they are more closely related to crocodylids than to alligatorids, morphological data indicate that Gavialis is the sister taxon to all other extant crocodylians. Here we present a new morphological dataset for Crocodylia based on a critical reappraisal of published crocodylian character data matrices and extensive firsthand observations of a global sample of crocodylians. This comprises the most taxonomically comprehensive crocodylian dataset to date (144 OTUs scored for 330 characters) and includes a new, illustrated character list with modifications to the construction and scoring of characters, and 46 novel characters. Under a maximum parsimony framework, our analyses robustly recover Gavialis as more closely related to Tomistoma than to other extant crocodylians for the first time based on morphology alone. This result is recovered regardless of the weighting strategy and treatment of quantitative characters. However, analyses using continuous characters and extended implied weighting (with high k -values) produced the most resolved, well-supported, and stratigraphically congruent topologies overall. Resolution of the gharial problem reveals that: (1) several gavialoids lack plesiomorphic features that formerly drew them towards the stem of Crocodylia; and (2) more widespread similarities occur between species traditionally divided into tomistomines and gavialoids, with these interpreted here as homology rather than homoplasy. There remains significant temporal incongruence regarding the inferred divergence timing of the extant gharials, indicating that several putative gavialids (‘thoracosaurs’) are incorrectly placed and require future re-appraisal. New alligatoroid interrelationships include: (1) support for a North American origin of Caimaninae in the latest Cretaceous; (2) the recovery of the early Paleogene South American taxon Eocaiman as a ‘basal’ alligatoroid; and (3) the paraphyly of the Cenozoic European taxon Diplocynodon . Among crocodyloids, notable results include modifications to the taxonomic content of Mekosuchinae, including biogeographic affinities of this clade with latest Cretaceous–early Paleogene Asian crocodyloids. In light of our new results, we provide a comprehensive review of the evolutionary and biogeographic history of Crocodylia, which included multiple instances of transoceanic and continental dispersal.
... Distribución: Especie reportada desde el sur de Ecuador, Perú y Bolivia, entre los 1800 y 3800 m. En el Perú se ha reportado en varios departamentos (Brako & Zarucchi, 1993, Hornung-Leoni & Sosa 2008) en zonas áridas y pendientes de difícil acceso, así como también asociada a vegetación de lomas (Dillon et al. 2011, Lleellish 2015, Cano et al. 1999. En la zona de estudio se le encuentra en rocas desnudas fuertemente escarpadas, en asociación con Tillandsia rauhii y vegetación herbácea xerófita, entre los 900 m y 1000 m en el bosque seco estacional (BSe). ...
Article
Full-text available
Este estudio proporciona una lista comentada de las especies de Puya (Bromeliaceae) registradas en el departamento de Lambayeque, Perú. Se reportan un total de cinco especies, de las cuales cuatro se registran por primera vez y una de ellas se confirma como endemismo de los Andes del Departamento. Las ecorregiones donde se encuentran corresponden al Bosque Seco estacional (BSe), la transición Matorral Desértico-Bosque Seco (MD-BS) y Jalca (JA). Se presenta una clave para las especies reportadas y se discuten las razones de los endemismos, amenazas y sus criterios de categorización.
... As we had expected, water regulation was among the ES2 with the highest projected losses (Ha 1). Among the plants providing this service is, for instance, the Puya goudotiana Mez (Bromeliaceae), whose rosette forms a water tank (Hornung-Leoni & Sosa, 2008) and is often suggested to contribute to the overall water storage of the páramos, as other tank-root species do in their habitats (Benzing & Bennett, 2000;Givnish et al., 2011;Males, 2016;Zotz et al., 2020). In general, inhabitants in close proximity to the páramos perceive páramo plants as providers of water provisioning service (Laverde Martínez, 2008;Farley & Bremer, 2017). ...
Article
Full-text available
Background The páramos, the high-elevation ecosystems of the northern Andes, are well-known for their high species richness and provide a variety of ecosystem services to local subsistence-based communities and regional urbanizations. Climate change is expected to negatively affect the provision of these services, but the level of this impact is still unclear. Here we assess future climate change impact on the ecosystem services provided by the critically important páramos of the department of Boyacá in Colombia, of which over 25% of its territory is páramo. Methods We first performed an extensive literature review to identify useful species of Boyacá, and selected 103 key plant species that, based on their uses, support the provision of ecosystem services in the páramos. We collated occurrence information for each key species and using a Mahalanobis distance approach we applied climate niche modelling for current and future conditions. Results We show an overall tendency of reduction in area for all ecosystem services under future climate conditions (mostly a loss of 10% but reaching up to a loss of 40%), but we observe also increases, and responses differ in intensity loss. Services such as Food for animals , Material and Medicinal , show a high range of changes that includes both positive and negative outcomes, while for Food for humans the responses are mostly substantially negative. Responses are less extreme than those projected for individual species but are often complex because a given ecosystem service is provided by several species. As the level of functional or ecological redundancy between species is not yet known, there is an urgency to expand our knowledge on páramos ecosystem services for more species. Our results are crucial for decision-makers, social and conservation organizations to support sustainable strategies to monitor and mitigate the potential consequences of climate change for human livelihoods in mountainous settings.
... Reassuringly, this approach resulted in exclusion of 68.5% of genes within Aeonium (and 0.2% to 26.8% in other lineages, Table S2), which reflects the polyploid events within this genus [23] and shows that our approach is able to detect and exclude Insets showcase the phenotypic diversity of some of the genera studied. Line drawings of Lupinus kindly provided by Rosemary Wise; Schiedea adapted from [14]; Puya adapted from [15]; and Echium adapted from [16]. See also Table S1. ...
Article
Full-text available
One of the most long-standing and important mysteries in evolutionary biology is why biological diversity is so unevenly distributed across space and taxonomic lineages. Nowhere is this disparity more evident than in the multitude of rapid evolutionary radiations found on oceanic islands and mountain ranges across the globe [1-5]. The evolutionary processes driving these rapid diversification events remain unclear [6-8]. Recent genome-wide studies suggest that natural selection may be frequent during rapid evolutionary radiations, as inferred from work in cichlid fish [9], white-eye birds [10], new world lupins [11], and wild tomatoes [12]. However, whether frequent adaptive evolution is a general feature of rapid evolutionary radiations remains untested. Here we show that adaptive evolution is significantly more frequent in rapid evolutionary radiations compared to background levels in more slowly diversifying lineages. This result is consistent across a wide range of angiosperm lineages analyzed: 12 evolutionary radiations, which together comprise 1,377 described species, originating from some of the most biologically diverse systems on Earth. In addition, we find a significant negative correlation between population size and frequency of adaptive evolution in rapid evolutionary radiations. A possible explanation for this pattern is that more frequent adaptive evolution is at least partly driven by positive selection for advantageous mutations that compensate for the fixation of slightly deleterious mutations in smaller populations.
Article
Puya castellanosii L.B. Sm., is illustrated and its relationships are discussed. Its habitat is described and illustrated, and suggestions for its cultivation are given. Seed was collected and it was raised and distributed by the plantsman Nori Pope who died in 2019.
Article
Full-text available
Restriction-site analyses of the chloroplast genomes of members of the Bromeliaceae were conducted to explore subfamilial phylogenetic relationships. Eighteen restriction-site mutations and one large (1.8-kb) length mutation were found to be variable at the family and subfamily levels. Cladistic analyses of these data supported the following hypotheses: 1) Bromelioideae and Pitcairnioideae are sister taxa and the latter may be paraphyletic; 2) Tillandsioideae s. str. and Bromelioideae are each monophyletic; 3) Tillandsioideae s. str. is the sister taxon of the remainder of the family; and 4) Glomeropitcairnia is phylogenetically distinct from the remainder of Tillandsioideae. These analyses suggest that the primarily terrestrial Pitcairnioideae are not basal in the family even though the terrestrial habit apparently is ancestral in Bromeliaceae. Chloroplast DNA data also support the contention that some morphological characters have evolved independently several times in this large, ecologically complex family.
Article
Full-text available
Scanning electron and light microscopy observations of wet-preserved flowers of Bromeliaceae subfamily Pitcaimioideae yield new information on the stigma, petal scales, and septal nectaries. Variations of the stigma types are evident among several genera. The gross structural features of the stigma do not indicate definite pollination trends, but the shape of the lobes and papillae indicate a few specific modes. In pit­caimioid genera, petal scales, when functional, may aid in pollination by accumulating the nectar secreted from the ovary, thus facilitating its availability to the pollinator. Nectaries associated with the gynoecia usually display tripartite channels in the ovary septa. Some developmental changes of the channel structure and position of the ovary indicate three probable modes of nectar release from the gynoecia of the pitcair­nioids: (I) through lateral grooves or openings, (2) partly through the apical orifices and partly through the dissolved areas of the spetal channels, and (3) exclusively through the apical orifices. Analysis of a wide range of floral features indicates that ornithophily, chiropterophily, and entomophily exist in different Pit­cairnioideae lineages.
Article
Full-text available
Farris, J. S. (Biol. Set., State Univ., Stony Brook, N.Y.) 1970. Methods for computing Wagner Trees. Syst. Zool., 19:83-92.—The article derives some properties of Wagner Trees and Networks and describes computational procedures for Prim Networks, the Wagner Method, Rootless Wagner Method and optimization of hypothetical intermediates (HTUs).
Conference Paper
The significance of "being similar" in the inference of species relationships is refuted once again (see also Hennig, 1966, Phylogenetic Systematics, Univ. of Illinois Press, Urbana, IL). Without merit is Rieppel and Kearney's (Biol. J. Linn. Soc., 2002, 75, 59-82) claim that submitting the relational property of topological similarity, their preferred definition of character, to falsifying tests of similarity benefits that kind of inference. Such a priori uses of similarity, in character analysis, are consistent with observational theory, where a character is defined intensionally in terms of immutable properties. However, the induced hypotheses that follow from this theory, not the deductive test that Rieppel and Kearney wanted, remain controversial, because their predictability is a consequence of circular reasoning, and their projectabality fails empirically from incongruent observation reports. Further, a category mistake is made when the abstract, similarity-defined, group of organisms is reified, as a part of history. In addition, Rieppel and Kearney failed to provide a special theory for similarity, which renders similarity scientifically repugnant (Quine, 1969, Ontological Relativity and Other Essays, Columbia Univ. Press, New York). A return to Hennig's (1966) evolutionary concept of evidence, as transformation series, is urged, and from which a testable character hypothesis can be formulated. There is no one operation for determining character states in this system-it can be anything that leads to the testable hypothesis of synapomorphy, as an historical identity relation. Character compatibility and conjunction, but not similarity, provide a priori tests in phylogenetic character analysis. In turn, the phylogenetic system of inference leads to explanations of homology, as historical identities, which exemplifies the goal of achieving a mature state of historical knowledge (not of Quine, 1969). Such maturity obtains from attempts to falsify hypotheses of species relationships with severely tested evidence, not from induction of "the" observation statement that Rieppel and Kearney sought to justify their true belief in a hypothesis of relationships.
Article
The step in cladistic analysis that has received least attention is delimitation of character states, there usually being little justification for their delimitation. It is generally assumed that states of cladistic characters are discrete, even when variation is quantitative. I show here that a majority of the character states of obviously quantitative characters used in lower-level cladistic studies in botany over the last generation are ambiguous even when ingroup variation alone is analyzed. Consideration of variation in the outgroup may compromize either the states recognized in the ingroup and/or the polarity that they are subsequently assigned. Furthermore, many so-called qualitative characters are based on a quantitative phenomenological base filtered through the reified semantic discontinuities of botanical terminology; such characters face the problems of their more obviously quantitative relatives. Methods for delimiting states within quantitative characters are examined. Some produce gaps in the variation by redefining the character, scoring the intermediates in a distinctive fashion, performing phylogenetic analyses within the terminal taxa, or changing the hierarchical level at which the variation is evaluated. Others produce states by manipulation of the statistical properties of the variation of the ensemble of taxa being studied. These latter methods often allow greater resolution of the phylogeny, but at the cost of lowering the significance of the most parsimonious tree. The underlying assumptions of the two sets of methods are briefly analyzed. Problems manifest in the division of continuous variation into character states suggest a reappraisal of the early steps of cladistic analysis; in practice, character states often seem to be delimited in conjunction with developing ideas of the phylogeny, rather than in a step prior to a phylogenetic analysis. It is recommended that character states be delimited by carefully analyzed discontinuities (not necessarily absolute gaps) in the variation, attention having been paid to variation in the outgroup, and that "morphological" characters in general are assumed to be quantitative unless demonstrated otherwise. Explicit justification for the delimitation of character states should be given as a matter of course in all phylogenetic studies.
Article
Five methods of coding character differences for meristic or continuous variables when variability within taxa exists are discussed: (1) scaling by among-group variability; (2) scaling by within-group variability; (3) simple gap-coding; (4) homogeneous-subset coding; and (5) generalized gap-coding. Scaling by among-group variability is ineffective as it does not use within-group variability for coding purposes. Scaling by within-group variability does not effectively alleviate computational and theoretical problems associated with within-group character variability. The implications of gap-coding for character differentiation are examined, and the relationship between increasing sample size and decreasing information content of gap-coded characters is reviewed. The technique of generalized gap-coding is proposed to eliminate the problems apparent with simple gap-coding. Homogeneous-subset coding is developed in more detail than previously and compared to generalized gap-coding. The two techniques differ only in the critical values used to establish homogeneous or discriminant groups. These differences are most pronounced with unequal sample sizes for taxa. For moderate to large sample sizes, homogeneous-subset coding will detect more differentiation than generalized gap-coding for most choices of critical gap size. Seven data sets, representing a range of number of taxa and characters, as well as types of taxonomic units, were coded following the three procedures (3, 4, and 5, above), and phylogenetic trees were constructed. The results are discussed with regard to the amount of useful information retained by the coding procedures, the number of minimum-length trees found, and character consistency of the characters on the constructed trees. Consistency levels for all the coding methods were low and inversely related to the number of taxa present in the study. Finally, character-coding methods for phylogenetic analysis are discussed with regard to implications from the Kluge-Kerfoot phenomenon.