ArticlePDF Available

Ancient introductions of mammals in Mediterranean Basin and their implications for conservation

Authors:
  • Società Italiana per la Storia della Fauna "Giuseppe Altobello"

Abstract

The importance of taxonomy to the determination of conservation priorities and actions is widely accepted. It should be not surprising therefore that the taxonomic treatment of mammal species that have been subject to human actions in antiquity may well influence the contemporary assessment of conservation priorities at various levels. As a result of early extinctions caused by humans and protohistoric and historic introductions, we suggest that the Mediterranean Basin and its islands are particularly prone to misdirection of efforts towards biodiversity conservation. The two main risks associated with the failure to use an evolutionary and palaeoecological approach to conservation efforts are (i) an underestimation of the conservation importance of distinctive continental taxa vs. the apparent endemicity of island taxa; and (ii) a serious risk for native and endemic island species when anthropochorous mammals, especially ungulates, misguidedly become the focus of conservation actions, particularly inside protected areas. Urgent measures, including refinement of mammal taxonomy, the exclusion of known anthropochorous taxa from conservation lists and implementation of protective legislation, are necessary to maintain the uniqueness and richness of the Mediterranean biodiversity hotspot.
Mammal Rev
. 2006, Volume 36, No. 1, 37–48.
Printed in Singapore
.
© 2006 Mammal Society,
Mammal Review
,
36,
37–48
Blackwell Publishing LtdOxford, UKMAMMammal Review0305-1838Blackwell Publishing Ltd, 2006
? 2006
36
13748
Review Article
Mammal introductions in the MediterraneanS. Gippoliti
and G. Amori
Correspondence: S. Gippoliti. E-mail: spartacolobus@hotmail.com
Ancient introductions of mammals in the Mediterranean Basin
and their implications for conservation
SPARTACO GIPPOLITI and GIOVANNI AMORI
Institute for Ecosystem Studies, CNR, c/o Department of Animal and Human Biology, La
Sapienza University, Via Borelli 50, 00161 Rome, Italy
ABSTRACT
1.
The importance of taxonomy to the determination of conservation priorities and actions
is widely accepted. It should be not surprising therefore that the taxonomic treatment of
mammal species that have been subject to human actions in antiquity may well influence the
contemporary assessment of conservation priorities at various levels.
2.
As a result of early extinctions caused by humans and protohistoric and historic introduc-
tions, we suggest that the Mediterranean Basin and its islands are particularly prone to
misdirection of efforts towards biodiversity conservation.
3.
The two main risks associated with the failure to use an evolutionary and palaeoecological
approach to conservation efforts are (i) an underestimation of the conservation importance
of distinctive continental taxa vs. the apparent endemicity of island taxa; and (ii) a serious
risk for native and endemic island species when anthropochorous mammals, especially ungu-
lates, misguidedly become the focus of conservation actions, particularly inside protected
areas.
4.
Urgent measures, including refinement of mammal taxonomy, the exclusion of known
anthropochorous taxa from conservation lists and implementation of protective legislation,
are necessary to maintain the uniqueness and richness of the Mediterranean biodiversity
hotspot.
Keywords
: conservation priorities, introduced mammals, legislation, Mediterranean Basin,
taxonomy
INTRODUCTION
Even within this current fashionable period for biodiversity research, identification of what
is worth saving and of the priorities necessary to maintain it are unlikely to be achieved for
other than a minimum of selected, charismatic or useful taxa or habitats. Although taxonomy
has long been considered crucial in conservation choices (Daugherty
et al
., 1990), there is
enough evidence that a classical typological taxonomy may be a poor basis for conservation
planning (Ryder, 1986).
Despite this, it has often been recognized that named taxa have more chance of being
protected (Rojas, 1992), especially through inclusion in national and international protective
legislation. It is evident that taxonomy must reflect adequately the evolutionary differences
among taxa, so that protective legislation and limited conservation funds are allocated
effectively to deserving, truly divergent, threatened taxa (Ryder, 1986). Outdated typological
thinking, parochialism and lack of integration with other scientific disciplines, such as palae-
38
S. Gippoliti and G. Amori
© 2006 Mammal Society,
Mammal Review
,
36,
37–48
ontology and zooarchaeology, have all conspired to give a high conservation priority to
named taxa whose ancient origin has been the consequence of human intervention (Gippoliti
& Amori, 2002a defined anthropochorous taxa as those introduced populations that have
been formally described taxonomically). This approach has led to an obvious but often
overlooked misallocation of resources owing to poor taxonomy.
Possibly, in no other part of the world is this problem so serious as in the Mediterranean
Basin, one of the 25 biodiversity hotspots recognized by Myers
et al
. (2000). Here, human
civilizations have been present continuously for at least 9000 years, modifying entire land-
scapes and disrupting or destroying most native biocoenoses. Even prior to this long period,
island mammal faunas had been heavily affected by humans, experiencing, particularly on
the Mediterranean islands, an almost total extinction (Blondel & Vigne, 1993; Schüle, 1993).
A conservation strategy whose aim is to maintain biodiversity and its evolutionary potential
should not ignore the history (including recent history) of regional biota. This may be crucial
to (i) identify and direct attention towards the taxa which escaped extinction events of the
past and which maintain unique phylogenetic information; and (ii) evaluate each species’ role
in island ecosystems and help to find solutions to possible conflicts between anthropochorous
and native or endemic taxa.
In the present paper, we present an overview of the scientific evidence concerning the recent
anthropogenic origins of many Mediterranean mammal populations so attempting to redress
conservation interest from Latin trinomials and binomials – to evolutionary significant units.
After an overview of current international legislation and of conservation lists, implications
for conservation policy are discussed and some proposals made.
EVIDENCE OF HUMAN INTERVENTIONS
Palaeo and Archaeo-zoological evidence
Most Mediterranean islands, including palaeo-islands such as the Gargano, developed their
unique fauna after occasional contacts with continental plates, notably during the so-called
Messinian salinity crisis some 5.6–5.3 Myr BP (Azzaroli & Guazzone, 1980). During the
Pleistocene, most Mediterranean islands developed unique unbalanced assemblages of mam-
mals, including dwarf elephants and hippos capable of reaching them by swimming even in
the absence of land connections. Fossil records of these unique faunas have been found in all
large islands (Corsica and Sardinia, Sicily, Crete, Cyprus) and even in smaller ones (Pianosa,
Capri, several Aegean islands, etc.) (Kotsakis, 1990; Palombo, 1996).
The Corsico-Sardinian island complex is the largest in the Mediterranean and the nearest
to the mainland. When elephants and deer colonized the Corsico-Sardinian island complex
during Early Pleistocene, they possibly caused the extinction of endemic large mammals such
as
Nesogoral
(Schüle, 1993). Before the Holocene arrival of man, all the large-sized species
were extinct in Corsica, while the deer
Praemegaceros
was still present on Sardinia (Vigne,
Bailon & Cuisin, 1997). Orthodox theory does not recognize any role for humans in this
extinction process, and climatic changes in the upper Pleistocene are considered the major
factors in the extinction of many island species, just preceding any human invasions. This is
contested by Schüle (1993) who argues instead for a human role in the disappearance of
Pleistocene large mammals prior to the Neolithic. According to him, there is increasing
evidence of a role of humans in the extermination of the larger mammal species on the Corso-
Sardinia massif.
Evidence of human colonization before the Neolithic, although not definitive, is increas-
ingly recorded in several Mediterranean islands. Furthermore, the survival of all Pleistocene
small mammals, reptiles and amphibians in Corsica (Vigne
et al
., 1997) seems strong evidence
Mammal introductions in the Mediterranean
39
© 2006 Mammal Society,
Mammal Review
,
36,
37–48
for a human, not climatic, role in the extinction of the island’s larger endemic mammals,
which probably lacked anti-predator behaviours. Whatever the exact reason, it is easy to
appreciate that this Pleistocene mammal fauna was characterized by a high degree of ende-
mism compared with present day continental faunas.
Although it is unclear when exactly hominids arrived on Sardinia and Corsica (cf. Spoor
& Sondaar, 1986; but see also Costa
et al
., 2003), it is a fact that the Late Pleistocene
mammalian fauna was very poor, unbalanced and highly differentiated (Vigne, 1992). It
comprised two members of the insectivore genus
Nesionites
(
corsicanus
and
similes
) (Reumer,
1995), the canid
Cynotherium sardous
, the otter
Cyrnaonyx majori
and possibly
Nesolutra
ichnusae
and
Megalenhydris barbaricina
, the lagomorph
Prolagus sardous
, a murine
Rhagamys
orthodon
, and an arvicoline
Tyrrhenicola henseli
, and a deer of the genus
Praemegaceros
(Vigne, 1992). The largest species went extinct soon after
Homo sapiens
invasion. The four
smaller species (
Nesionites
,
Prolagus
and
Tyrrhenicola
) manage to survive for at least
8000 years. Archaeozoological data show that around the IX-VIII Millennium
BC
, large
mammals were not part of the diet of human groups in Corsica and
Prolagus
represented
their main prey (Vigne & Desse-Berset, 1995).
The extinction of small-sized endemic mammals during the Roman period (after the arrival
of
Rattus rattus
) seems correlated with a major increase in agriculture and, thus, deforestation
(Vigne & Valladas, 1996). There is evidence that on Cyprus, early men hunted the last pygmy
hippos and pigmy elephants of the Mediterranean to extinction around 10 000
BC
(Simmons,
1999), though this is disputed by other authors (Vigne, 1996). Current evidence concerning
the pre-neolithic mammal fauna of Crete shows that many species (e.g.
Candiacervus
sp.,
Elephas creuzburgi
,
Lutrogale cretensis
) went extinct long before the beginning of Holocene
(Reese, 1996; Vigne, 1999). On the Balearic Islands, the Messinian-Event relict
Myotragus
balearicus
survived thanks to absence of human colonization until the Early Holocene. It has
been proposed it was possibly domesticated or at least managed, until the Bronze or Iron
ages, but this hypothesis has been recently rejected for lack of empirical evidence (Ramis &
Bover, 2001).
The questionable dating of fossil remains, such as those attributed to
Sus scrofa meridionalis
and
Vulpes vulpes
of the Late Pleistocene of Sardinia (Vigne, 1990), contributed to the
ambiguity concerning the origin of these island mammals, which were evidently dated older
than they really are. Archaeo-zoological research is providing a wealth of data concerning
the chronology of species colonizing islands thanks to human transport. In Corsica, the first
immigrants observed among mammals, around 7000
BP
, are the fox
Vulpes vulpes
and, among
the domestic species,
Sus scrofa
,
Capra hircus
and
Ovis aries
. The domestic cat is only
documented at the beginning of the Classical Antiquity about 2000 years ago, and there is
no doubt these animals are the ancestors of current wild cats of Corsica and Sardinia; see
Vigne (1992) for a synthesis on the subject.
Zoogeographical evidence
Biogeographical analysis can offer a further insight on the role of humans in the distribution
of the present day mammal fauna. The distribution of terrestrial mammals, in particular, can
be disturbed by human intervention, further confounding the full understanding of zoogeo-
graphical affinities of regions such as North Africa. Given proof of such activities on islands,
it is likely that translocation of mammal species occurred also between continental lands.
Examples of the human intervention in the distribution of mammals in the continental
Mediterranean Region are illustrated by Dobson (1998): widely accepted introductions are
those of the genet
Genetta genetta
, the Egyptian mongoose
Herpestes ichneumon
, the Algerian
40
S. Gippoliti and G. Amori
© 2006 Mammal Society,
Mammal Review
,
36,
37–48
hedgehog
Atelerix algirus
and the barbary macaque
Macaca sylvanus
in the Iberian Penin-
sula; likewise the introduction of the rabbit
Oryctolagus cuniculus
and the deer
Cervus elaphus
to the Maghreb.
Although several equivocal cases exist – e.g.
Ursus arctos
in North Africa or
Hystrix
cristata
in Italy (Amori & Angelici, 1992; Hamdine, Thévenot & Michaux, 1998), there is
enough evidence to highlight the role of humans as active or passive introducers of new
faunistic elements to both mainland and islands areas of the Mediterranean. The presence
of two different hare species,
Lepus corsicanus
in Corsica and
Lepus mediterraneus
in Sar-
dinia, is further evidence of the importance of human historical factors in explaining the
present island faunas. Similarly, most of the terrestrial mammals presently found on Cyprus
are of Levantine and not Anatolian origin, as would be more logical on geographical
grounds (Masseti, 1998). Contrary to non-volant mammals, bats seem to provide more
sound biogeographical data than usually thought. Even though bats have been generally
considered better dispersers, studies of the phylogenetic structure of bats of the genus
Myo-
tis
in the Iberian Peninsula and Morocco show that the Strait of Gibraltar is sufficient to
divide two sibling species of bats (Castella
et al
., 2000), thus highlighting the importance of
overlooked zoogeographical barriers, not only for non-volant mammals, but even for
Chiroptera.
Genetic and biomolecular evidence
Unequivocal confirmation of the recent origin of some islands’ populations and in some
instances of their paraphyly – come from biochemical and biomolecular studies. Frati
et al
.
(1997) distinguish three source lineages for the Sardinian
Vulpes vulpes
, the main one origi-
nating from the Balkans and the other two from the Iberian peninsula and Italy, respec-
tively. Sequences of the cytochrome b mitochondrial DNA gene show the recent origin of
three species of Mediterranean spiny mouse, and their close relatedness to
Acomys cahirinus
from Egypt (Barome
et al
., 2001). According to mitochondrial DNA data, the Mediterra-
nean mouflon shares a common ancestor with domestic sheep, probably as result of its
origin from former domestic stock (Hiendleder
et al
., 1998). The same pattern was evi-
denced by similar studies on the genus
Capra
, which show that the haplotype of the Cretan
wild goat is identical to that of the domestic goat (Manceau
et al
., 1999a). Although mor-
phologically well differentiated and characterized by an increase in body size, the Elba
Island wood mouse
Apodemus sylvaticus
is genetically similar to the Italian population
(Filippucci, 1992). The anthropogenic origins of
Apodemus sylvaticus
populations in Cor-
sica, Sardinia and Elba has been confirmed by mtDNA restriction patterns (Michaux,
Libois & Fons, 1996).
The rapid consequences of adapting to an insular habitat for small populations, the so–
called island syndrome, including changes in body size, is a well-known phenomenon whose
causes and exact mechanisms are still controversial (Lomolino, 1985; Marquet & Taper,
1998). The general pattern, however, is that large species become dwarfed whereas small
mammals evolve larger body size, making this single character alone of limited taxonomic
utility (Berry, 1989). Considering that many mammals have also undergone spectacular
chromosome evolution in the Mediterranean region, for instance
Eliomys
(Filippucci &
Capanna, 1996), it is useful to note that chromosomal and mtDNA evolution appear to be
largely independent processes (Taberlet, Fumagalli & Hausser, 1994). Chromosome polymor-
phism may have evolved very recently, as the occurrence of 32 different karyotypes in the
domestic mouse in a small area of the Alps shows (Hauffe, Piàlek & Searle, 2000). It is
therefore of limited use to identify units worthy of conservation.
Mammal introductions in the Mediterranean
41
© 2006 Mammal Society,
Mammal Review
,
36,
37–48
DO ANY PLEISTOCENE ISLAND ENDEMICS STILL SURVIVE?
Recent genetic and morphometric analyses show that only a few endemic terrestrial mammals
still survive on the Mediterranean islands, and that these can be essentially restricted to two
species of shrews (Blondel & Vigne, 1993; Blondel & Aronson, 1999) and possibly one mouse
(Bonhomme
et al
., 2004). These are the Sicilian white-toothed shrew,
Crocidura sicula
distributed on Sicily, Levanzo, Favignana, Marettimo, Ustica and Gozo, the Cretan white-
toothed shrew,
Crocidura zimmermanni
endemic to Crete (Sarà, 1998) and, with some reser-
vations owing to its very recent discovery, the Cyprus mouse
Mus cypriacus
(Bonhomme
et al
., 2004). In Macaronesia, one further endemic shrew escaped extinction;
Crocidura canar-
iensis
(Hutterer, Maddalena & Molina, 1992), while the taxon
osorio
has been recently shown
to be conspecific with
Crocidura russula
(Cosson
et al
., 2005). The same fate has overtaken
Crocidura cossyrensis of Pantelleria, now considered conspecific with the Tunisian and Sar-
dinian populations (Cosson et al., 2005).
A number of other endemic species are often reported, based on classical taxonomic and
karyotypic studies. However, when genetic and molecular data became available, as in the
case of Acomys on Crete and Cyprus, specific status seems clearly unwarranted (Barome et al.,
2001). Otherwise, weak differentiation, as is expected by Holocene invaders, leads to quite
contrasting taxonomies. For instance, Gerbillus (Dipodillus) zakariai is reported as endemic
on the Kerkennah archipelago, Tunisia by Sarà (1998) but it is synonymized with mainland
G. simoni by Musser & Carleton (1993). While most of the mammals on oceanic islands have
been heavily altered by humans, ‘continental’ islands, such as Sicily and Euboea, may still
possess genetically differentiated populations whose particular phylogenetic relationships
have only recently begun to be investigated. Both of these islands were certainly connected
to the continent quite recently, as shown by their mammal fauna, but could have been
separated enough to maintain distinct populations from the nearest mainland (Bonfiglio
et al., 2002). In a study of the genetic structure of southern European fox Vulpes vulpes, Frati
et al. (1997) discovered that the Sicilian population is allied to the Balkan/Iberian fox and
not to the Italian populations. Ironically, while the anthropochorous Sardinian population
received formal taxonomic recognition as V. vulpes ichnusae, the Sicilian population has never
been taxonomically described. Even the wild cat of Sicily may warrant the status of a
conservation unit, given its genetic distinctiveness from the peninsular population (Randi &
Ragni, 1991; Randi, personal communication), yet this conservation priority has been totally
obscured by the presence of the introduced – but taxonomically recognized – feral cats of
Sardinia.
Bats represent the only island mammal group which has not been heavily manipulated by
man. Recent research emphasizes the susceptibility of bats to geographical barriers, even a
narrow tract of sea (Castella et al., 2000), suggesting the need for detailed research on the
larger and more isolated Mediterranean islands. The recent discovery of a new Plecotus
species on Sardinia (Mucedda et al., 2002) confirms the likelihood of divergent populations
on these islands.
INTERNATIONAL LEGISLATION
International laws protecting Mediterranean terrestrial mammals are mainly limited to the
European Continent and mainly stem from the Bern Convention. The Bern Convention
formed the foundation for the Habitats Directive (EC Directive 92/43) the aim of which is
the designation of special areas for the conservation of species and habitats of ‘Community
Interest’. Most of the listed taxa among terrestrial and volant mammals are at the species
level. Among the most protected species, several, such as Cricetus cricetus, Sciurus anomalus
42 S. Gippoliti and G. Amori
© 2006 Mammal Society, Mammal Review, 36, 37–48
and Sicista betulina occur only marginally in Europe, sometimes, as is surely the case with
Atelerix algirus, due to human introduction – and are clearly not globally threatened. With
respect to island populations, other than Cervus elaphus corsicanus, Capra aegagrus and Ovis
ammon musimon (the latter two with the citation ‘only natural populations’), it is important
to note the inclusion of the Cretan lesser white-toothed shrew Crocidura suaveolens caneae
in Annex II of the Directive, while the palaeoendemic Cretan white-toothed shrew
C. zimmermanni is not listed, although it is considered Vulnerable by the IUCN (2002).
It appears that a profound revision of the Habitats Directive lists is needed (Bouchet,
Falkner & Seddon, 1999). Among anthropochorous taxa, current European legislation only
provides protection to a few taxa, neglecting others that are equally interesting and that are
declining, such as the Sardinian dormouse Glis glis meloni and the wild cat of Crete Felis
lybica cretensis. To resolve such incongruence, we suggest that all known anthropochorous
taxa should be excluded from international and possibly national protective legislation. This
simple measure should redirect attention towards the few extant palaeoendemic insular
mammals and provide an unequivocal order of priority when conflicts arise, for instance,
between an endemic plant and an introduced mammal. Another way to reduce the impor-
tance of palaeointroduced mammals is to reject the application to them of subspecific names,
in the absence of any clear-cut criteria, in national checklists, red lists, faunas, etc.
Legal obligations to reintroduce species to their former range, as evidenced in some
international and European treaties, may give rise to several problems on islands, mainly due
to the lack of definition of native species (Rees, 2001). For instance, the introduction of wild
boar Sus scrofa to Cyprus was seen by hunters as fulfilling an obligation under international
treaties to encourage reintroduction of native species (Hadjisterkotis, 2000). Wild boar never
occurred naturally on Cyprus, nor other isolated Mediterranean islands, nevertheless this and
other game animals, such as the mouflon, continue to be introduced to Mediterranean
oceanic islands, and even (or especially) in protected areas because they are considered typical
of the Region. Thus, we need to adopt a restrictive definition of native in conservation lists
and environmental legislation (Gippoliti & Amori, 2002a,b). Targets for reintroduction pro-
grammes are usually large, charismatic, game mammals or predators, a fact mirroring a bias
of interest in the conservation literature (Amori & Gippoliti, 2000).
BIODIVERSITY OF MEDITERRANEAN MAMMALS
As far as is known today, about one-fourth of the mammalian species found in the Mediter-
ranean region have been described as endemic to the area (Cheylan, 1991), including very
peculiar elements, such as Macaca sylvanus, a taxon clearly separated from the other members
of the genus living in Asia (Deinard & Smith, 2001), and the monotypic Oryctolagus cuniculus
(Branco, Ferrand & Monnerot, 2000). It is likely that continued refinement of systematics in
the region will result in an appreciable increase in the number of species and the rate of
endemism in the region.
Lack of appreciation of palaeoecological and historical events by the conservation com-
munity has resulted in skewing the policy interest, legal enhancement and financial resources
to favour the protection of a small number of barely diagnosable taxa of recent anthropo-
chorous origin that are presently restricted to well-determined geographical areas (i.e. island
endemics). Such island endemics may originate from domestic stock or from a mixture of
different stocks (Barome et al., 2001; Kahila Bar-Gal et al., 2002). Their conservation value
is therefore low compared with native taxa, unless they are the only descendants of now
extinct continental populations (Gippoliti & Amori, 2002a). This may be the case for the
Cervus elaphus of North Africa and Sardinia, forming a distinct clade in a phylogenetic tree
Mammal introductions in the Mediterranean 43
© 2006 Mammal Society, Mammal Review, 36, 37–48
based on analysis of variation in cytochrome b (Pitra et al., 2004). Further studies may
possibly elucidate the exact geographical origin of this clade, helping to generate a meaningful
conservation strategy beyond the present human-mediated distribution.
Furthermore, systematic studies of ancient introduced taxa may obscure real diversity. This
is the case in the wild cat Felis silvestris group. According to a genetic study (Randi & Ragni,
1991), only one polytypic species should be recognized, including silvestris, lybica and domes-
tic catus. However, their sample of libyca originated from Sardinia; this is an introduced
population of Near East and domestic origin, traditionally allocated to the African form but
which may constitute a poor representative for sub-Saharan wild cats, as shown by more
recent research (Wiseman, O’Ryan & Harley, 2000).
Efforts to maintain mammalian diversity in the Mediterranean Basin must recognize the
exceptional value of the truly autochthonous taxa that have escaped former extinction events
in the Mediterranean islands (Table 1). Southern Europe is becoming recognized more and
more as an important centre of endemism in its own right, rather than just a refuge source
for northwards colonization during the postglacial period (Bilton et al., 1998; Hewitt, 1999).
While great efforts have been directed towards conserving some insular forms, generally game
or charismatic animals such as the mouflon or the wild goat, palaeoendemic insular taxa like
Crocidura zimmermanni may suffer heavy competition from the introduced Crocidura suave-
olens (Sarà, 1998). Even quite distinctive mainland populations have disappeared recently,
such as Capra pyrenaica pyrenaica in Spain (Péres et al., 2002) whose Evolutionary Significant
Unit (ESU) status has been confirmed by biomolecular investigations (Manceau et al.,
1999b). The situation of the wild boar Sus scrofa may be a paradigm of the consequences of
overlooking continental forms. Although the central Italian population was described as a
distinct subspecies, majori, in 1927, it has been generally overlooked in subsequent revisions,
which instead accepted as valid the Sardinian subspecies meridionalis (Apollonio, Randi &
Toso, 1988; Genov, 1999; see also Boitani, Lovari & Vigna-Taglianti, 2003). Since the Second
World War, continental Italy has been subject to several introductions of wild boars from
Eastern Europe for hunting purposes, and autochthonous pure populations only survive in
a few areas, especially enclosed ones such as the Castelporziano Presidential Estate Reserve
near Rome. In recent years, a number of studies aimed at clarifying the history of domesti-
cation of pigs revealed that the original Italian population represents one of the three
divergent Sus scrofa lineages found worldwide (Kias & Andersson, 2001; Larson et al., 2005),
Table 1. List of Mediterranean island endemic mammal taxa and populations, and taxa for which more
taxonomic research is required
Island/s Endemic taxa Taxa that need more research
Sicily Crocidura sicula Felis silvestris
Erinaceus europaeus consolei
Microtus savii nebrodensis
Apodemus sylvaticus dichrurus
Lepus corsicanus ssp.
Corsica/Sardinia Plecotus sardus Chiroptera Generad et spp.
Crete Crocidura zimmermanni Chiroptera Generad et spp.
Cyprus Mus cypriacus Roussetus aegyptiacus
Balearic Chiroptera Generad et spp.
Euboea Chionomys nivalis
Corfu Talpa stankovici
Limnos Nannospalax leucodon insularis
44 S. Gippoliti and G. Amori
© 2006 Mammal Society, Mammal Review, 36, 37–48
conferring a high conservation value to the few pure surviving populations of this disputed
taxon.
While a few Mediterranean endemics such as Lynx pardinus and Rupicapra pyrenaica are
now recognized both taxonomically and as international conservation priorities (Beltrán,
Rice & Honeycutt, 1996; Pérez, Albornoz & Domínguez, 2002), it is increasingly important
that research be directed to identify remaining divergent populations scattered around the
complex geography of the Mediterranean Basin, and to reassess their conservation status.
Oriani (2000) has recently hypothesized that a population referable to Lynx pardinus survives
in the Middle East. This would be in agreement with the current paradigm of southern
Europe as a centre of endemism, as suggested by recent research (Bilton et al., 1998; Taberlet
et al., 1998; Hewitt, 1999), rather than just a source for northwards re-colonizations during
interglacials.
Similarly, more complex situations are becoming evident on all the major land masses
around the Mediterranean. Phylogeographical research on Crocidura russula indicates the
existence of two clearly distinguished lineages within the Maghreb (Cosson et al., 2005). Even
the recognition of specific distinctiveness of sub-Saharan Lemniscomys zebra from
L. barbarus of the narrow coastal strip of north-west Africa (Carleton & Van der Straeten,
1997) seems to confirm the distinctiveness of the so-recognized Barbarian zoogeographical
province. Genetic and biometric studies have also highlighted the distinctiveness of the small
mammal fauna in the Near East (Filippucci, Simson & Nevo, 1989; Filippucci et al., 1991;
Filippucci et al., 1995). It is thus highly likely that further molecular studies will identify or
confirm the presence of several distinct phylogeographical units whose existence has been
obscured by the traditional morphologically based taxonomy (cf. Cook & MacDonald, 2001).
This has serious conservation implications, because classical species lists are generally the
only tool available to prioritize important areas, in the absence of phylogeographical data.
CONCLUSIONS
On Mediterranean islands, the importance given to large mammals is a further threat to the
status of the majority of biodiversity in the region. The role of introduced mammals to sustain
populations of valuable species such as birds of prey on islands (Seguin et al., 2001) has been
somewhat emphasized. However, the often unrecognized homogenization effects on biologi-
cal diversity of mammalian introductions to the historically mammal-free Balearic Islands
of Eivissa and Formentera have recently been highlighted by Palmer et al. (1999). The
negative effects of exotic herbivores for native mammals, through the so-called hyperpreda-
tion effect, has been recently demonstrated in a Californian island (Roemer, Donlan &
Courchamp, 2002). Furthermore, few details are available about the effects of herbivores on
the native vegetation or of the high density of carnivore predators on the native biocoenosis.
There is scattered evidence, however, of the serious negative impact of presumed native
ungulates on the vegetation of Mediterranean islands, particularly when protected areas are
declared and hunting is totally prohibited (Fabbri, 1966; Greuter, 1979; Gippoliti & Amori,
2004). It should be remembered that the uniqueness of the Mediterranean Region is due
mainly to the richness in species and the high rate of endemicity found in vascular plants
(25 000 species according to Delanoë, de Montmollin & Olivier, 1996). It appears that,
paradoxically, some conservation measures such as declaring reserves (for ungulates), are
seriously damaging the most valuable part of Mediterranean biodiversity and call for an
urgent infusion of palaeoecological and evolutionary data into conservation politics.
It should be emphasized, however, that we do not deny any value to anthropochorous taxa,
for which we call for a complete conservation assessment (Gippoliti & Amori, 2002a). These
Mammal introductions in the Mediterranean 45
© 2006 Mammal Society, Mammal Review, 36, 37–48
populations have an intrinsic interest for their unique history (Groves, 1989), their genetic
heritage and, potentially, for the ecological role they could play in already very disturbed
ecosystems or as the functional ecological substitute for extinct species. Yet it is crucial, they
are considered only as a fraction and not as the main target of biodiversity conservation
goals. Meanwhile, there is increasing evidence from molecular phylogenetic studies that
current taxonomy and legislation conspire in overlooking mammal distinctiveness in the
different continental regions of the Mediterranean Basin. Consequences for biodiversity
conservation can be serious if interest and funds are not redirected from island mammals
towards continental populations. If modern society is seriously engaged in biodiversity con-
servation, a series of developments in conservation politics need to be undertaken. First, an
international convention for the conservation of Mediterranean biodiversity needs to be
created, to assure adequate funding for research and conservation of distinctive populations
in the lesser known countries of North Africa and the Middle East. Second, systematic studies
should be encouraged because a detailed knowledge of population phylogenies is fundamen-
tal for assessing conservation units and priorities. The discoveries of two new endemic species
of mammals in the Mediterranean islands (Plecotus sardus and Mus cypriacus) in the last
4 years highlight how scarce and fragmentary our knowledge still is. Finally, the results of
such researches need to be taken into account by taxonomists and promptly included in
national and international legislation.
ACKNOWLEDGEMENTS
We wish to thank D. Canestrelli, A. Kitchener, T. Kotsakis, B. Majolo and M.R. Palombo
for useful comments on an earlier version of the manuscript. We would like to thank Dr
D. Yalden and Prof. J.-D. Vigne for the valuable suggestions which greatly improved the
paper.
REFERENCES
Amori, G. & Angelici, F.M. (1992) Note on the status of the crested porcupine Hystrix cristata in Italy. Lutra,
35, 44–50.
Amori, G. & Gippoliti, S. (2000) What do mammalogists want to save? Ten years of mammalian conservation
biology. Biodiversity and Conservation, 9, 785–793.
Apollonio, M., Randi, E. & Toso, S. (1988) The systematics of the wild boar (Sus scrofa L.) in Italy. Bollettino
di Zoologia, 55, 213–221.
Azzaroli, A. & Guazzone, G. (1980) Terrestrial mammals and land connections in the Mediterranean before
and during the Messinian. Palaeoclimatology, Palaeoecology, 29, 155–167.
Barome, P.-O., Lymberakis, P., Monnerot, M. & Gautun, J.-C. (2001) Cytochrome b sequences reveal Acomys
minous (Rodentia, Muridae) paraphyly and answer the question about the ancestral karyotype of Acomys
dimidiatus. Molecular Phylogenetics and Evolution, 18, 37–46.
Beltrán, J.F., Rice, J.E. & Honeycutt, R.L. (1996) Taxonomy of the Iberian lynx. Nature, 379, 407–408.
Berry, R.J. (1989) British mammals: from trinomials to evolutionary ecology. Biological Journal of the Linnean
Society, 38, 113–118.
Bilton, D.T., Mirol, P.M., Mascheretti, S., Fredga, K., Zima, J. & Searle, J.B. (1998) Mediterranean Europe
as an area of endemism for small mammals rather than a source for northwards postglacial colonization.
Proceedings of the Royal Society of London B, 265, 1219–1226.
Blondel, J. & Aronson, J. (1999) Biology and Wildlife of the Mediterranean Region. Oxford University Press,
Oxford.
Blondel, J. & Vigne, J.D. (1993) Space, time and man as determinants of diversity of birds and mammals in
the Mediterranean region. In: Historical and Geographical Determinants of Community Diversity (Ed. by
R.E. Ricklefs & D. Scluter), pp. 135–146. University of Chicago Press, Chicago, IL.
Boitani, L., Lovari, S. & Vigna Taglianti, A., eds. (2003) Fauna d’Italia Mammalia III. Carnivora – Artiodactyla.
Calderini, Bologna.
Bonfiglio, L., Mangano, G., Marra, A.C., Masini, F., Pavia, M. & Petruso, D. (2002) Pleistocene Calabrian
and Sicilian bioprovinces. Geobios, 35 (Mémoire Special 24), 29–39.
46 S. Gippoliti and G. Amori
© 2006 Mammal Society, Mammal Review, 36, 37–48
Bonhomme, F., Orth, A., Cucchi, T., Hadjisterkotis, E., Vigne, J.-D. & Auffray, J.-C. (2004) Découverte d’une
nouvelle espèce de souris sur l’Île de Chypre. Compte Rendue Biologies, 327, 501–507.
Bouchet, P., Falkner, G. & Seddon, M.B. (1999) Lists of protected land and freshwater molluscs in the Bern
Convention and European Habitats Directive: are they relevant to conservation? Biological Conservation,
90, 21–31.
Branco, M., Ferrand, N. & Monnerot, M. (2000) Phylogeography of the European rabbit (Oryctolagus
cuniculus) in the Iberian Peninsula inferred from RFLP analysis of the cytochrome b gene. Heredity, 85,
307–317.
Carleton, M.D. & Van der Straeten, E. (1997) Morphological differentiation among Subsaharan and North
African populations of the Lemniscomys barbarus complex (Rodentia: Muridae). Proceedings of the Biology
Society of Washington, 110, 640–680.
Castella, V., Ruedi, M., Excoffier, L., Ibanez, C., Arlettaz, R. & Hausser, J. (2000) Is the Gibraltar Strait a
barrier to gene flow for the bat Myotis myotis (Chiroptera: Vespertilionidae)? Molecular Ecology, 9, 1761–
1772.
Cheylan, G. (1991) Patterns of Pleistocene turnover, current distribution and speciation among Mediterranean
mammals. In: Biogeography of Mediterranean Invasions (Ed. by R.H. Groves & F. di Castri), pp. 227–262.
Cambridge University Press, Cambridge.
Cook, J.A. & MacDonald, S.O. (2001) Should endemism be a focus of conservation efforts along the North
Pacific Coast of North America? Biological Conservation, 97, 207–213.
Cosson, J.-F., Hutterer, R., Libois, R., Sarà, M., Taberlet, P. & Vogel, P. (2005) Phylogeographical footprints
of the Strait of Gibraltar and Quaternary climatic fluctuations in the western Mediterranean: a case study
with the greater white-toothed shrew, Crocidura russula (Mammalia: Soricidae). Molecular Ecology, 14,
1151–1162.
Costa, L., Vigne, J.-D., Bocherens, H., Desse-Berset, N., Heinz, C., de Lanfranchi, F., Magdeleine, J., Ruas,
M.-P., Thiebault, S. & Tozzi, C. (2003) Early settlement on Thyrrhenian islands (8th millenium cal. BC):
mesolithic adaptation to local resources in Corsica and Northern Sardinia. In: Mesolithic on the Mour (Ed.
by L. Larsson, K. Kindgre, K. Knutsson, D. Loeffler & A. Åkerlund), pp. 3–10. Oxbow Books, Oxford.
Daugherty, C.H., Cree, A., Hay, J.M. & Thompson, M.B. (1990) Neglected taxonomy and continuing
extinction of tuatara (Sphenodon). Nature, 347, 177–179.
Deinard, A. & Smith, D.G. (2001) Phylogenetic relationships among the macaques: evidence from the nuclear
locus NRAMP1. Journal of Human Evolution, 41, 45–59.
Delanoë, O., de Montmollin, B. & Olivier, L. (1996) Conservation of Mediterranean Island Plants 1 Strategy
for Action. IUCN, Gland.
Dobson, M. (1998) Mammal distribution in western Mediterranean: the role of human intervention. Mammal
Review, 28, 77–88.
EC Divective 92/93. Conservation of Natural Habitats and of Wild Fauna and Flova. OJ L 206/7.22.7.92.
Available at: http://europa.eu.int/comm/environment/nature/habdir.htm./
Fabbri, F. (1966) Per una più equilibrata protezione naturalistica dell’isola di Montecristo. Natura e Montagna,
6, 126–135.
Filippucci, M.G. (1992) Allozyme variation and divergence among European, Middle Eastern, and North
African species of the genus Apodemus (Rodentia, Muridae). Israel Journal of Zoology, 38, 193–218.
Filippucci, M.G. & Capanna, E. (1996) Allozyme variation and differentiation among chromosomal races and
species of the genus Eliomys (Rodentia, Myoxidae). European Mammals. Proceedings of the I European
Congress of Mammalogy, 259–270.
Filippucci, M.G., Simson, S. & Nevo, E. (1989) Evolutionary biology of the genus Apodemus Kaup, 1829 in
Israel. Allozymic and biometric analyses with description of a new species: Apodemus hermonensis (Roden-
tia, Muridae). Bollettino di Zoologia, 56, 361–376.
Filippucci, M.G., Fadda, V., Krystufek, B., Simson, S. & Amori, G. (1991) Allozyme variation and differen-
tiation in Chionomys nivalis (Martins, 1842). Acta Theriologica, 36, 47–62.
Filippucci, M.G., Krystufek, B., Simson, S., Kurtonur, C. & Özkan, B. (1995) Allozymic and biometric
variation in Dryomys nitedula (Pallas, 1778). Hystrix (n.s.), 6, 127–140.
Frati, F., Hartl, G.B., Lovari, S., Delibes, M. & Markov, G. (1997) Quaternary radiation and genetic structure
of the red fox Vulpes vulpes in the Mediterranean basin, as revealed by allozymes and mitochondrial DNA.
Journal of Zoology London, 245, 43–51.
Genov, P. (1999) A review of the cranial characteristics of the Wild Boar (Sus scrofa Linnaeus 1758) with
systematic conclusions. Mammal Review, 29, 205–238.
Gippoliti, S. & Amori, G. (2002a) Anthropochorous mammal taxa and conservation lists. Conservation
Biology, 16, 1162–1164.
Gippoliti, S. & Amori, G. (2002b) Mammal diversity and taxonomy in Italy: implications for conservation.
Journal of Nature Conservation, 10, 33–44.
Mammal introductions in the Mediterranean 47
© 2006 Mammal Society, Mammal Review, 36, 37–48
Gippoliti, S. & Amori, G. (2004) Mediterranean island mammals: are they a priority for biodiversity conser-
vation? Biogeographia, 25, 135–144.
Greuter, W. (1979) Mediterranean conservation as viewed by a plant taxonomist. Webbia, 34, 87–99.
Groves, C.P. (1989) Feral mammals of the Mediterranean islands: documents of early domestication. In: The
Walking Larder (Ed. by J. Clutton-Brock), pp. 46–58. Unwin-Hyman, London.
Hadjisterkotis, E. (2000) The introduction of wild boar Sus scrofa in Cyprus: an alien species in a highly
endemic area. Biogeographia, 21, 625–646.
Hamdine, W., Thévenot, M. & Michaux, J. (1998) Histoire récente de l’ours brun au Maghreb. Compte Rendus
Academie Sciences Series III, 321, 565–570.
Hauffe, H.C., Piàlek, J. & Searle, J.B. (2000) The house mouse chromosomal hybrid zone in Valtellina (SO):
a summary of past and present research. Hystryx (n.s.), 11, 17–25.
Hewitt, G.M. (1999) Post-glacial re-colonization of European biota. Biological Journal of the Linnean Society,
68, 87–112.
Hiendleder, S., Mainz, K., Plante, Y. & Lewalski, H. (1998) Analysis of mitochondrial DNA indicates that
domestic sheep are derived from two different ancestral maternal sources: no evidence for contributions
from urial and argali sheep. Journal of Heredity, 89, 113–120.
Hutterer, R., Maddalena & Molina, O.M. (1992) Origin and evolution of the endemic Canary Island shrew
(Mammalia: Soricidae). Biological Journal of the Linnean Society, 46, 49–58.
IUCN (2002) IUCN 2002 Red List of threatened species. Available at: http://www.redlist.org (accessed on April
2003).
Kahila Bar-Gal, G., Smith, P., Tchernov, E., Greenblatt, C., Ducos, P., Gardeisen, A. & Horwitz, L.K. (2002)
Genetic evidence of the origin of the agrimi goat (Capra aegagrus cretica). Journal of Zoology London, 256,
369–377.
Kias, J.-M.H. & Andersson, J. (2001) A phylogenetic study of the origin of the domestic pig estimated from
the Near-Complete mtDNA genome. Journal of Molecular Evolution, 52, 302–308.
Kotsakis, T. (1990) Insular and non insular vertebrate faunas in the Eastern Mediterranean islands. Atti
Convegni Lincei, 85, 289–334.
Larson, G., Dobney, K., Albarella, U., Fang, M., Matisoo-Smith, E., Robins, J., Londen, S., Finlayson, H.,
Willerslev, E., Rowley-Conway, P., Andersson, L. & Cooper, A. (2005) Worldwide phylogeography of wild
boar reveals multiple centers of pig domestication. Science, 307, 1618–1621.
Lomolino, M.V. (1985) Body size of mammals on islands: the island rule reexamined. American Naturalist,
125, 310–316.
Manceau, V., Després, L., Bouvet, J. & Taberlet, P. (1999a) Systematics of the genus Capra inferred from
Mitochondrial DNA sequence data. Molecular Phylogenetics and Evolution, 13, 504–510.
Manceau, V., Crampe, J.-P., Boursot, P. & Taberlet, P. (1999b) Identification of evolutionary significant units
in the Spanish wild goat, Capra pyrenaica (Mammalia, Artiodactyla). Animal Conservation, 2, 33–39.
Marquet, P.A. & Taper, M.L. (1998) On size and area: patterns of mammalian body size extremes across
landmasses. Evolutionary Ecology, 12, 127–139.
Masseti, M. (1998) Holocene endemic and anthropochorous wild mammals of the Mediterranean islands.
Anthropozoologica, 28, 3–20.
Michaux, J.R., Libois, R. & Fons, R. (1996) Différententiation génétique et morphologique du mulot, Apo-
demus sylvaticus, dans le bassin méditerranéen occidental. Vie et Milieu, 46, 193–203.
Mucedda, M., Kiefer, A., Pidinchedda, E. & Veith, M. (2002) A new species of long-eared bat (Chiroptera,
Vespertionidae) from Sardinia (Italy). Acta Chiropterologica, 4, 121–135.
Musser, G.G. & Carleton, M.D. (1993) Family Muridae. In: Mammal Species of the World a Taxonomic and
Geographyraphic Reference (Ed. by D.E. Wilson & D.M. Reeder), pp. 501–755. Smithsonian Institution
Press, Washington, DC.
Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B. & Kent, J. (2000) Biodiversity hotspots
for conservation priorities. Nature, 403, 853–858.
Oriani, A. (2000) Le linci del Caucaso e dell’ Asia occidentale. Atti Società italiana Scienze Naturali Museo
civico di Storia Naturale Milano, 141, 51–64.
Palmer, M., Pons, G.X., Cambefort, I. & Alcover, J.A. (1999) Historical processes and environmental factors
as determinants of inter-island differences in endemic fauna: the case of the Balearic Islands. Journal of
Biogeography, 26, 813–823.
Palombo, M.R. (1996) Large Pleistocene mammals of the Mediterranean islands. Vie et Milieu, 46, 365–374.
Péres, J.M., Granados, J.E., Soriguer, R.C., Fandos, P., Márquez, F.J. & Crampe, J.P. (2002) Distribution,
status and conservation problems of the Spanish Ibex, Capra pyrenaica (Mammalia: Artiodactyla). Mam-
mal Review, 32, 26–39.
Pérez, T., Albornoz, J. & Domínguez, A. (2002) Phylogeography of chamois (Rupicapra spp.) inferred from
microsatellites. Molecular Phylogenetics and Evolution, 25, 524–534.
48 S. Gippoliti and G. Amori
© 2006 Mammal Society, Mammal Review, 36, 37–48
Pitra, C., Fickel, J., Meijaard, E. & Groves, P.C. (2004) Evolution and phylogeny of old world deer. Molecular
Phylogenetics and Evolution, 33, 880–895.
Ramis, D. & Bover, P. (2001) A review of the evidence for domestication of Myotragus balearicus Bate 1909
(Artiodactyla, Caprinae) in the Balearic Islands. Journal of Archaeological Science, 28, 265–282.
Randi, E. & Ragni, B. (1991) Genetic variability and biochemical systematics of domestic and wild cat
populations (Felis silvestris: Felidae). Journal of Mammalogy, 72, 79–88.
Rees, P.A. (2001) Is there a legal obligation to reintroduce animal species into their former habitats? Oryx,
35, 216–223.
Reese, D.S. (1996) Cypriot hippo hunters no myth Journal of Mediterranean Archaeology, 9, 107–112.
Reumer, J.W.F. (1995) The effects of paleoclimate on the evolution of the Soricidae (Mammalia, Insectivora).
In: Paleoclimate and Evolution with Emphasis on Human Origins (Ed. by E.S. Vrba, G.H. Denton, T.C.
Partridge & L.H. Burckle), pp. 135–147. Yale University Press, New Haven, CT.
Roemer, G.W., Donlan, C.J. & Courchamp, F. (2002) Golden eagles, feral pigs, and insular carnivores: how
exotic species turn native predators into prey. Proceedings of the National Academy of Sciences, 99, 791–796.
Rojas, M. (1992) The species problem and conservation: what are we protecting? Conservation Biology, 6, 170–
178.
Ryder, O.A. (1986) Species conservation and systematics: the dilemma of subspecies. Trends in Ecology and
Evolution, 1, 9–10.
Sarà, M. (1998) I mammiferi delle isole del Mediterraneo. L’EPOS, Palermo.
Sarà, M. & Vogel, P. (1996) Geographic variation of the greater white-toothed shrew (Crocidura russula
Hermann, 1780 Mammalia, Soricidae). Biology Journal of the Linnean Society, 116, 377–392.
Schüle, W. (1993) Mammals, vegetation and the initial human settlement of the Mediterranean islands: a
palaecological approach. Journal of Biogeography, 20, 399–412.
Seguin, J.-F., Thibault, J.-C., Torre, J., Bayle, P. & Vigne, J.-D. (2001) The diet of young golden eagles Aquila
chrysaetos in Corsica: foraging in a man-made mammal fauna. Ardea, 89, 527–535.
Simmons, A.H. (1999) Faunal Extinction in an Island Society: Pygmy Hippopotamus Hunters of Cyprus. Kluwer
Academic, New York.
Spoor, C.F. & Sondaar, P.Y. (1986) Human fossils from the endemic island fauna of Sardinia. Journal of
Human Evolution, 15, 399–408.
Taberlet, P., Fumagalli, L. & Hausser, J. (1994) Chromosomal versus mitochondrial DNA evolution: tracking
the evolutionary history of the southwestern European populations of the Sorex araneus group (Mammalia,
Insectivora). Evolution, 48, 623–636.
Taberlet, P., Fumagalli, L., West-Saucy, A.G. & Cossons, J.-F. (1998) Comparative phylogeography and post-
glacial colonization routes in Europe. Molecular Ecology, 7, 453–464.
Vigne, J.D. (1990) Biogeographical history of the mammals on Corsica (and Sardinia) since the final Pleis-
tocene. Atti dei Convegni Lincei, 85, 369–392.
Vigne, J.D. (1992) Zooarchaeological and biogeographical history of the mammals of Corsica and Sardinia
since the last ice age. Mammal Review, 22, 87–96.
Vigne, J.D. (1996) Did man provoke extinctions of endemic large mammals on the Mediterranean islands?
The view from Corsica. Journal of Mediterranean Archaeology, 9, 117–120.
Vigne, J.D. (1999) The large ‘true’ Mediterranean islands as a model for the Holocene human impact on the
European vertebrate fauna? Recent data and new reflections. In: The Holocene History of the European
Vertebrate Fauna Modern Aspects of Research (Ed. by N. Benecke), pp. 295–321. Verlag Marie Leidorf
GmbH, Rahden/Westf.
Vigne, J.D. & Desse-Berset, N. (1995) The exploitation of animal resources in the Mediterranean Islands
during the Pre-Neolithic: the example of Corsica. In: Man and Sea in the Mesolithic (Ed. by A. Fisher),
pp. 309–318. Oxbow Books, Oxford.
Vigne, J.D. & Valladas, H. (1996) Small mammal fossil assemblages as indicators of environmental change in
northern Corsica during the last 2500 years. Journal of the Archaeological Society, 23, 199–215.
Vigne, J.D., Bailon, S. & Cuisin, J. (1997) Biostratigraphy of amphibians, reptiles, birds and mammals in
Corsica and the role of man in the Holocene faunal turnover. Anthropozoologica, 25/26, 587–604.
Wiseman, R., O’Ryan, C. & Harley, E.H. (2000) Microsatellite analysis reveals that domestic cat (Felis catus)
and southern African wild cat (F. lybica) are genetically distinct. Animal Conservation, 3, 221–228.
Submitted 30 June 2005; returned for revision 5 September 2005; revision accepted 1 April 2006
Editor: DY
... Human impact on the Mediterranean Basin increased with the establishment of farming and herding societies (Naveh, 1975), which spread in Europe along an east (10.5 ka) to west (7.3 ka) wave and reached northern Africa 7 ka (Simões et al., 2023;Zeder, 2008). As a result of this ecological and socio-cultural context, human-related intentional and unintentional changes in species range have been common in the Mediterranean region in both ancient and recent times (Clavero et al., 2016;Gaubert et al., 2009;Gippoliti & Amori, 2006). However, many past wildlife-human relationships must remain undiscovered in the Mediterranean and elsewhere-though there are signs that suggest an anthropogenic fingerprint in the present distribution of some species. ...
... The Mediterranean Basin has a long history of human-favoured changes in the distribution and demography of species (Blondel et al., 2010), including vertebrates (Eddine et al., 2020;Gaubert et al., 2009;Gippoliti & Amori, 2006) and invertebrates (Clavero et al., 2016). According to our findings, the Bonelli's eagle should probably be added to this list. ...
Article
Full-text available
Modern humans widely shaped present ecosystems through intentional and unintentional geographical redistribution of wildlife, both in historical and pre‐historical times. However, the patterns of ancient human‐mediated indirect changes in wildlife range are largely unknown, and the mechanisms behind them remain obscure. We used a multidisciplinary approach to (a) reconstruct the process of colonization of the Mediterranean Basin by a long‐lived bird of prey, the Bonelli's eagle (Aquila fasciata), and (b) test the hypothesis that this colonization was unintentionally favoured by anatomically modern humans through a release of competition by dominant species, primarily golden eagles (A. chrysaetos). The fossil record of Bonelli's eagles in the Mediterranean Basin was restricted to the last c. 50 ky. This timing matches the period of modern human presence in Europe. Distribution modelling showed that Bonelli's eagles find more suitable conditions in interglacial periods, while glacial maxima are largely unfavourable unless in coastal refugia. In agreement with this, all Bonelli's eagle's fossils were found in coastal areas, and demographic inference from genetic data revealed a drop in the effective population size by around the last glacial maximum. In today's communities, we found a strongly asymmetric competitive relationship between (subordinate) Bonelli's and (dominant) golden eagles, with the former occupying far more humanized areas than the latter both at the landscape scale and the local (i.e. nesting cliff) scale. Moreover, the nesting habitat overlap analysis indicated that, in the absence of the other species, a notably higher population of Bonelli's eagle, but not of golden eagle, could be expected. Our findings are consistent with the human‐mediated competitor release hypothesis, by which anatomically modern humans could have unintentionally favoured the large‐scale colonization by Bonelli's eagles of a previously competitively hostile Mediterranean Basin. Reconstructing the role of ancient humans in shaping present ecosystems may help to understand the historical, current and future population trajectories of competing species of conservation concern under the ongoing scenario of global environmental change. It also illustrates how human‐mediated apparent competition may promote large‐scale redistribution and colonization of wildlife, including long‐lived species. Read the free Plain Language Summary for this article on the Journal blog.
... It is of high conservation interest, as it is one of three small palaeoendemic mammals and, in fact, the only rodent species, which has survived the anthropization of Mediterranean islands. The other two are shrew species, i.e., Crocidura sicula and C. zimmermanni (Gippoliti and Amori 2006;Auffray and Britton-Davidian 2012;Frynta et al. 2015). Diverging from Mus macedonicus approximately 0.53 million years ago Cucchi et al. 2006;Macholán et al. 2007), Mus cypriacus adds a compelling dimension to the island's evolutionary narrative. ...
Article
Full-text available
Mus cypriacus is one of three small palaeoendemic mammals that have survived the Mediterranean islands' anthropization. This species, endemic to Cyprus, was described in 2006 and stands out as one of the last mammal species to have been discovered in Europe. Despite scarce data on its genetics, ecology, and life-history traits, Mus cypriacus is assessed as Least Concern LC in the IUCN Red List, partly due to its morphological similarity with the sympatric house mouse that prevented earlier identification. Our study uses mitochondrial and microsatellite markers to investigate this small rodent's population genetic structure and diversity. Our analysis did not identify any population genetic structure and suggested a high genetic diversity across Cyprus. When inferring habitat preference using sample locations, it appeared that M. cypriacus utilizes a diverse variety of habitats, covering more than 80% of the island. Although these results are encouraging for the conservation status of the species, they still need to be cautiously applied as potential threats may arise due to increasing habitat destruction and changes in land use. Consequently, our encouraging results should be applied judiciously. Additional ecological data are urgently needed to gain a more comprehensive understanding of this inconspicuous endemic species.
... Though it is still matter of debate, some traces of lithic industry would suggest the presence of Paleolithic man in Sardinia, and, in this case the presence of the domestic dog would be theoretically conceivable, probably as an auxiliary for hunting activity [1][2][3]. However, the presence of the dog in Sardinia has been demonstrated starting from the Neolithic Age, when people began to live in permanent settlements and practice agriculture and animal breeding [4][5][6]. Archeozoological studies carried out on osteological remains highlighted the role of Sardinian prehistoric dogs in ancient communities [6]. The discovery of dog remains during archeological excavation of Nuragic settlements (II mill.-II ...
Article
Full-text available
This study aimed to investigate the common social and communicative behaviors of the Fonni’s Dog under different outdoor conditions. For this study, 70 adult dogs (3–7 years; 32 intact males, 38 intact females) belonging to the Fonni’s breed were used. A total of 35 dogs were kept in kennels and 35 were free-ranging dogs in their sheep/goat livestock units. A behavioral repertoire was adapted from the literature and an ethogram was filled in for each dog. All dogs were evaluated in the presence of the owner. Fisher’s exact test, following Bonferroni’s correction, was used to test possible differences in the categorical variables (presence or absence of the behavior) between free-ranging dogs and dogs kept in kennels. The study revealed that several categories of the dogs’ body language were associated with the management condition. However, the breed motivations (guarding and defense of the territory) were satisfied both in kennel and in the animals who were free in the property. The current study suggests a good behavioral balance of the Fonni’s Dogs which could be attributed to correct communication between dogs and owners.
... kya. These results confirm a strong interaction between past human societies and Mediterranean insular biodiversity (Gippoliti & Amori, 2006;Médail, 2022). We also found a tendency of increased dispersal distances and an increased gene flow between populations in recent times ( Figure 5 and 7), supporting the rising impact of human activity on species redistribution and genetic homogenisation (Capinha et al., 2015;Olden et al., 2004). ...
Article
Full-text available
Aim: The Mediterranean Basin is a global biodiversity hotspot and has one of the longest histories of human–biota interactions. Islands host a large fraction of Mediterranean diversity and endemism, but the relative importance of natural versus human-mediated colonisation processes in shaping the distribution and genetic structure of Mediterranean island fauna remains poorly understood. Here, we combine population genomics, demographic models and palaeoshoreline reconstructions to establish the island-colonisation dynamics of wall lizards in Mediterranean archipelagos. Location: Four Mediterranean archipelagos in Italy and Croatia. Taxon: The wall lizard Podarcis siculus. Methods: We used ddRAD sequencing to genotype 140 lizards from 23 island and mainland populations. Analyses of admixture and site frequency spectra were used to reconstruct population structure, demographic history and variation of gene flow through time. Genomic results were integrated with palaeogeographical reconstructions and were compared to archaeological evidence of human presence on these islands. Results: Although many island populations of this species are assumed to be nonnative, we find that many islands were colonised long before any known human settlements (230,000–12,000 years ago). This natural colonisation most likely occurred through land bridges during glacial marine regression or by over-sea rafting. On the other hand, islands distant from the continent were often colonised recently, and some of the estimated island colonisation times match historical records of human arrival. We also determine that long-established island populations generally show lower genetic diversity compared to proximate mainland populations, contrary to recently colonised islands that must have experienced higher rates of post-colonisation gene flow. Main Conclusion: Our integrated approach provides us with the power to accurately quantify the origin, timing and mode of island colonisation. This framework helps to clarify the biogeographical and evolutionary history of island populations, with important implications for conservation and management of island biodiversity.
... Using the list of roadkilled species resulting from our fieldwork survey, we calculated the percentage of introduced species on the total of roadkilled species in order to compare this percentage to the same value from all published and comparable lists from other regions of the world. Regarding introduced species, we also specified the percentage of recently introduced, paleo-introduced and domestic species (we considered all the species introduced before 1500 AD as paleo-introduced [83,84]). ...
Article
Full-text available
Monitoring the presence and distribution of alien species is pivotal to assessing the risk of biological invasion. In our study, we carried out a worldwide review of roadkill data to investigate geographical patterns of biological invasions. We hypothesise that roadkill data from published literature can turn out to be a valuable resource for researchers and wildlife managers, especially when more focused surveys cannot be performed. We retrieved a total of 2314 works published until January 2022. Among those, only 41 (including our original data) fitted our requirements (i.e., including a total list of roadkilled terrestrial vertebrates, with a number of affected individuals for each species) and were included in our analysis. All roadkilled species from retrieved studies were classified as native or introduced (domestic, paleo-introduced, or recently released). We found that a higher number of introduced species would be recorded among roadkill in Mediterranean and Temperate areas with respect to Tropical and Desert biomes. This is definitely in line with the current knowledge on alien species distribution at the global scale, thus confirming that roadkill datasets can be used beyond the study of road impacts, such as for an assessment of different levels of biological invasions among different countries.
... J.-C. Parmi les six espèces de mammifères corses présentes au Tardiglaciaire, l'extinction de deux d'entre elles autour de 10 000 à 9 000 av. J.-C. est attribuée à un brusque réchauffement climatique : il s'agit du Dhole de Sardaigne Cynotherium sardous, canidé endémique de Corse et Sardaigne (bien que Gippoliti et Amori (2006) considèrent maintenant son extinction comme intervenant peu de temps après l'arrivée de l'Homme sur l'île) et du Cerf de Caziot Megaloceroides cazioti. Les quatre autres espèces : le Lapin rat Prolagus sardus (petit lapin aux oreilles courtes), le Mulot endémique corso-sarde Rhagamys orthodon, le Campagnol endémique corso-sarde Tyrrhenicola henseli et la Musaraigne endémique de Corse Episoriculus corsicanus (tous de grande taille), ont quant à elles résisté au choc climatique et persisté durant tout le Mésolithique (période pendant laquelle les Lapins rats étaient d'ailleurs intensément chassés par l'Homme) et le Néolithique (période pendant laquelle ces espèces ont probablement beaucoup souffert de la prédation par le Renard et le Chien, tous deux introduits par l'Homme). ...
... J.-C. Parmi les six espèces de mammifères corses présentes au Tardiglaciaire, l'extinction de deux d'entre elles autour de 10 000 à 9 000 av. J.-C. est attribuée à un brusque réchauffement climatique : il s'agit du Dhole de Sardaigne Cynotherium sardous, canidé endémique de Corse et Sardaigne (bien que Gippoliti et Amori (2006) considèrent maintenant son extinction comme intervenant peu de temps après l'arrivée de l'Homme sur l'île) et du Cerf de Caziot Megaloceroides cazioti. Les quatre autres espèces : le Lapin rat Prolagus sardus (petit lapin aux oreilles courtes), le Mulot endémique corso-sarde Rhagamys orthodon, le Campagnol endémique corso-sarde Tyrrhenicola henseli et la Musaraigne endémique de Corse Episoriculus corsicanus (tous de grande taille), ont quant à elles résisté au choc climatique et persisté durant tout le Mésolithique (période pendant laquelle les Lapins rats étaient d'ailleurs intensément chassés par l'Homme) et le Néolithique (période pendant laquelle ces espèces ont probablement beaucoup souffert de la prédation par le Renard et le Chien, tous deux introduits par l'Homme). ...
... J.-C. Parmi les six espèces de mammifères corses présentes au Tardiglaciaire, l'extinction de deux d'entre elles autour de 10 000 à 9 000 av. J.-C. est attribuée à un brusque réchauffement climatique : il s'agit du Dhole de Sardaigne Cynotherium sardous, canidé endémique de Corse et Sardaigne (bien que Gippoliti et Amori (2006) considèrent maintenant son extinction comme intervenant peu de temps après l'arrivée de l'Homme sur l'île) et du Cerf de Caziot Megaloceroides cazioti. Les quatre autres espèces : le Lapin rat Prolagus sardus (petit lapin aux oreilles courtes), le Mulot endémique corso-sarde Rhagamys orthodon, le Campagnol endémique corso-sarde Tyrrhenicola henseli et la Musaraigne endémique de Corse Episoriculus corsicanus (tous de grande taille), ont quant à elles résisté au choc climatique et persisté durant tout le Mésolithique (période pendant laquelle les Lapins rats étaient d'ailleurs intensément chassés par l'Homme) et le Néolithique (période pendant laquelle ces espèces ont probablement beaucoup souffert de la prédation par le Renard et le Chien, tous deux introduits par l'Homme). ...
... J.-C. Parmi les six espèces de mammifères corses présentes au Tardiglaciaire, l'extinction de deux d'entre elles autour de 10 000 à 9 000 av. J.-C. est attribuée à un brusque réchauffement climatique : il s'agit du Dhole de Sardaigne Cynotherium sardous, canidé endémique de Corse et Sardaigne (bien que Gippoliti et Amori (2006) considèrent maintenant son extinction comme intervenant peu de temps après l'arrivée de l'Homme sur l'île) et du Cerf de Caziot Megaloceroides cazioti. Les quatre autres espèces : le Lapin rat Prolagus sardus (petit lapin aux oreilles courtes), le Mulot endémique corso-sarde Rhagamys orthodon, le Campagnol endémique corso-sarde Tyrrhenicola henseli et la Musaraigne endémique de Corse Episoriculus corsicanus (tous de grande taille), ont quant à elles résisté au choc climatique et persisté durant tout le Mésolithique (période pendant laquelle les Lapins rats étaient d'ailleurs intensément chassés par l'Homme) et le Néolithique (période pendant laquelle ces espèces ont probablement beaucoup souffert de la prédation par le Renard et le Chien, tous deux introduits par l'Homme). ...
Chapter
Habitat loss and degradation are currently the main anthropogenic causes of species extinctions. The root cause is human overpopulation. This unique volume provides, for the very first time, a comprehensive overview of all threatened and recently extinct mammals, birds, reptiles, amphibians, and fishes within the context of their locations and habitats. The approach takes a systematic examination of each biogeographic realm and region of the world, both terrestrial and marine, but with a particular emphasis on geographic features such as mountains, islands, and coral reefs. It reveals patterns useful in biodiversity conservation, helps to put it all into perspective, and ultimately serves as both a baseline from which to compare subsequent developments as well as a standardization of the way threatened species are studied.
Article
Full-text available
Starting from the analysis of a lynx skin from Northern Syria and from its comparison with skins and descriptions of lynxes from different areas, both Caucasian and Middle Eastern, we critically considered the few works on the distribution and morphology of Caucasian and Western Asian lynxes. Besides we hypotized the stages of the spreading of this species on the basis of what already ascertained about the European Pleistocene. Therefore we concluded that in Southern Turkey, Syria and Northern Iraq we can suppose the presence of a subspecies of Lynx pardina (Temminck, 1827), temporally called okeni ssp.n..
Chapter
Full-text available
The diverse origins of Mediterranean mammals have allowed various invasions during the course of the Middle and Upper Pleistocene: Eurasian and Ethiopian in North Africa, Irano-Turanian and Boreal in Europe. But these multiple invasions did not always lead to reciprocal extinctions as relaxation times seem to have been protracted in continental biotas. The saturated glacial faunas may have impeded high speciation rates in Mediterranean refugia. Most Mediterranean Pleistocene endemics evolved from depauperate insular faunas during several hundred thousand of years of isolation. Mediterranean mammals are thus representative of a wide range of geographic origins and habitats. Of particular interest is the fairly large number of brownsers characteristics of open landscapes, such as asses, gazelles, hamsters, gerbills and jerboas.
Article
The shrews of the Sorex araneus group have undergone a spectacular chromosome evolution. The karyotype of Sorex granarius is generally considered ancestral to those of Sorex coronatus and S. araneus. However, a sequence of 777 base pairs of the cytochrome b gene of the mitochondrial DNA (mtDNA) produces a quite different picture: S. granarius is closely related to the populations of S. araneus from the Pyrenees and from the northwestern Alps, whereas S. coronatus and S. araneus from Italy and the southern Alps represent two well-separated lineages. It is suggested that mtDNA and chromosomal evolution are in this case largely independant processes. Whereas mtDNA haplotypes are closely linked to the geographical history of the populations, chromosomal mutations were probably transmitted from one population to another. Available data suggest that the impressive chromosome polymorphism of this group is quite a recent phenomenon.
Article
Biogeographia - vol. XXI - 2000 (Pubblicato i/ 30 giugno 2000) Biogeografia del|’AnatoIia The introduction of wild boar Sm scrofiz in Cyprus: an alien species in a highly endemic area ELEFTHERIOS I-IADJISTERKOTIS Game mm’ Fzzzmzz Service — Minirny of the ]7’lt€7'I07‘, Nicosia (Cyprus) Key words: wild boar, Cyprus, Cyprus mouflon, reintroduction, alien species. SUMMARY In 1990, five wild boars (511: rcrufiz) were imported From Greece to the island of Cyprus for game farming. The presence of wild bear on the island was seen by hunters as a great opportunity for Cyprus to acquire a large game mammal. Together with some officials of the Department of Forestry, they claimed that this species was present on Cyprus in the past, and that this was the opportunity to reintroduce it to the wild. thus fulfilling an obligation under international treaties and conventions. Other researchers, maintained that wild boat was never present on Cyprus, and should therefore never be allowed free on the island. In 1994 wild boar were illegally released in Limassol Forest and in 1996 in the Troodos National Forest Park, an area ltnown for its very large number of endemic plant species. In this paper I examine whether wild boar should be treated as reintroduced or as an alien species by reviewing the literature and the archaeological finds to see if it was ever present on the island. In addition I analyze the efTect which it might have on the environment. I conclude that this species should be treated as an alien species. which has the potential to cause considerable, maybe irreversible, damage to the local fauna and flora, and that it should be controlled. 1. INTRODUCTION The introduction of exotic plants and animals to new regions has generated much concern among biologists because exotics can disrupt ecosystems and directly or indirectly lead to the extinction of native species (Schofield, 1989; Vitousek, 1990; Hobbs and Huenneke, 1992; Waithman et al., 1999). A few well known examples include rabbits (O23/ctogzzlus cuiziculus) in Australia (Lange and Graham, 1983), red fire ants (50lm0psz's invita) in North America (Killion and Grant, 1995) and Guams’s ground dwelling bird fauna. preyed on and almost eliminated by the brown tree snakes (Boigcz irregularis) (McNeely and Strahm, 1997; Savidge, 1987). According to experts, harmful invasions are now the second most serious threat to biodiversity after habitat loss (Glowka et al., 1994; McNeely and Stralim, 1997). The most heavily affected areas include the world’s oceanic islands, coastal estuaries, and large lakes. Native species on islands have been shown to be particularly vulnerable to extinction from
Article
Morphometric evaluation discloses patterns of craniodental variation which demonstrate that populations currently assigned to Lemniscomys barbants consist of two species: L. barbants (Linnaeus 1766) and L. zebra (Heuglin 1864). One species-group epithet is herein allocated to the junior synonymy of L. barbants (ifiiiensis Morales Agacino 1935), ten to L. zebra (spekei De Winton 1897, dunni Thomas 1903, convictus Osgood 1910, albolineatus Osgood 1910, manteufeli Matschie 1911, oweni Thomas 191 Ib, nigeriae Thomas 1912, olga Thomas & Hinton 1921, nubalis Thomas & Hinton 1923, and orientalis Halt 1935), and a lectotype is designated for Mus zebra Heuglin (1864). No subspecies are recognized for either species, but the substantial heterogeneity documented within L. zebra advises continued study of those populations. The geographic occurrence of L. barbants is restricted to scrub vegetation along a narrow coastal strip in Morocco, Algeria, and Tunisia; whereas, L. zebra is widely distributed over dry grassland and savanna biomes south of the Sahara Desert, from Senegal in West Africa to central Sudan in East Africa, and southwards to northcentral Tanzania. Lemniscomys hoogstraali Dieterlen (1991), known only by the holotype from eastcentral Sudan, is retained as a third member of the barbants group. The species L. barbants represents another example of small mammal endemic to the Barbarian province (Maghreb) of northwest Africa.