ArticlePDF Available

The Staffelegg Formation: A new stratigraphic scheme for the Early Jurassic of northern Switzerland

Authors:
  • Stiftung Ruhr Museum

Abstract and Figures

The deposits of the Early Jurassic in northern Switzerland accumulated in the relatively slowly subsiding transition zone between the southwestern part of the Swabian basin and the eastern part of the Paris basin under fully marine conditions. Terrigenous fine-grained deposits dominate, but calcarenitic and phosphorit-rich strata are intercalated. The total thickness varies between 25 and 50m. In the eastern and central parts of N Switzerland, sediments Sinemurian in age constitute about 90% of the total thickness. To the West, however, in the Mont Terri area, Pliensbachian and Toarcian deposits form 70% of the total thickness. Stratigraphic gaps occur on a local to regional scale throughout N Switzerland. Such hiatus comprise a subzone to a stage in time. With respect to lithology and fossil content, the Early Jurassic deposits in northern Switzerland are similar to those in SW Germany. Nonetheless, an exact stratigraphic correlation is hardly possible, particulary in the southern and southwestern Folded Jura where distinct facies changes occur over short distances. Revised existing and new litho- and biostratigraphic data form the base to refine the stratigraphic subdivision of the deposits that have been informally called “Lias”. The name Staffelegg Formation is suggested and defined as the mapping unit for the Early Jurassic. The Staffelegg Formation is introduced for Early Jurassic sediments in northern Switzerland between the Doubs River and Mt. Weissenstein in the west and the Randen Hills located north of the city of Schaffhausen in the east. The Staffelegg Formation starts within the Planorbis zone of the Hettangian. The upper boundary to the overlying Aalenian Opalinus-Ton is diachronous. The lithostratigraphic names previously in use have been replaced by new ones, in accordance within the rules of lithostratigraphic nomenclature. The Staffelegg Formation comprises 11 members and 9 beds. Several of these beds are important correlation horizons in terms of allostratigraphy. Some of them correspond to strata or erosional unconformities encountered in the Swabian realm, some of them can be correlated with strata in the Paris basin. The facies transition to the Paris basin is expressed by introduction of a corresponding lithostratigraphic unit. Die Sedimente des Früh-Juras der N-Schweiz wurden in dem insgesamt etwas langsamer subsidierenden Übergangsbereich zwischen dem südwestlichen Teil des Schwäbischen Beckens und dem Pariser Becken unter vollmarinen Bedingungen abgelagert. Terrigen-klastische Pelite herrschen vor, die von kalkarenitischen und phosphoritreichen Einschaltungen untergliedert werden. Die Mächtigkeit des Früh-Juras variiert zwischen 25 und 50m. Sedimente des Sinemuriums machen im östlichen und zentralen Bereich der N-Schweiz bis zu 90% der Mächtigkeit aus, nach Westen hingegen, im Mont-Terri-Gebiet, repräsentieren Sedimente des Pliensbachiums und Toarciums 70% der Mächtigkeit. Gebietsweise sind für bestimmte Zeitabschnitte des Früh-Juras keine Sedimente überliefert. Solche Hiatus können zeitlich eine Subzone bis Stufe umfassen. Die Abfolgen in der N-Schweiz ähneln hinsichtlich Lithologie und Fossilinhalt denen SW-Deutschlands, sind aber nur bedingt mit der südwestdeutschen stratigraphischen Nomenklatur in Einklang zu bringen, vor allem im Bereich des südlichen und westlichen Faltenjuras. Hier treten engräumig abrupte Fazieswechsel auf. Basierend auf reviderten, bestehenden und neuen litho- und biostratigraphischen Daten wird für die Schichtfolge, die bisher informell als “Lias” bezeichnet wurde, der Name “Staffelegg-Formation” vorgeschlagen und für die N-Schweiz als Kartiereinheit definiert. Die Staffelegg-Formation beginnt mit der Planorbis-Zone des Hettangiums. Die Grenze zur nächst jüngeren Formation, dem Opalinus-Ton, ist heterochron. Die bisher für die frühjurassischen Schichten verwendeten Bezeichnungen wurden durch neue, den heutigen Nomenklatur-Regeln konforme Namen ersetzt. Insgesamt werden für die Staffelegg-Formation 11 Member und 9 Bänke definiert. Etliche dieser Bänke sind im Sinne der Leitflächen-Stratigraphie wichtig: Ein Teil von ihnen lässt sich mit Schichten oder Erosionshorizonten im Schwäbischen Becken korrelieren, ein anderer Teil mit Horizonten im Pariser Becken. Der Faziesübergang zum Pariser Becken führt im westlichen Untersuchungsgebiet zu einer entsprechend angepassten lithostratigraphischen Untergliederung. Les dépôts du Jurassique inférieur du nord de la Suisse se sont accumulés dans la zone de transition, en lente subsidence, entre la partie sud-ouest du bassin de Souabe et la partie orientale du bassin de Paris, dans des conditions entièrement marines. Les dépôts terrigènes pélitiques dominent; des couches calcarénitiques et riches en phosphates y sont intercalées. L’épaisseur de ces dépôts varie entre 25 et 50mètres. Dans les parties orientale et centrale du nord de la Suisse, les sédiments d’âge Sinémurien constituent 90% de cette épaisseur, alors qu’à l’ouest, dans la région du Mont Terri, ceux du Pliensbachien et du Toarcien en constituent 70%. Des lacunes stratigraphiques apparaissent à l’échelle locale et régionale dans tout le nord de la Suisse. Ces hiatus vont de la sous-zone à la étage. Les sédiments du Jurassique inférieur du nord de la Suisse sont similaires à ceux du sud-ouest de l’Allemagne du point de vue lithologique et de leurs fossiles. Une corrélation stratigraphique exacte est cependant difficilement possible, en particulier dans les parties sud et sud-ouest du Jura plissé où de nets changements de faciès apparaissent sur de courtes distances. Sur la base de données litho- et biostratigraphiques existantes et révisées ou nouvelles, nous proposons, pour désigner ces séries appelées jusqu’à présent de manière informelle “Lias”, le nom de “Formation de la Staffelegg”, qui servira dorénavant d’unité cartographique. Cette formation commence dans la Zone à Planorbes de l’Hettangien. La limite avec les Argiles à Opalinus aaléniennes sus-jacentes est hétérochrone. Les appellations utilisées jusqu’à présent pour ces séries du Jurassique inférieur ont été remplacées par de nouveaux noms en conformité avec les règles de nomenclature qui prévalent de nos jours. Au total, 11 membres et 9 bancs ont été définis pour la Formation de la Staffelegg. Plusieurs de ces bancs représentent d’importants horizons de corrélation en terme de stratigraphie séquentielle: certains correspondent à des couches ou surfaces d’érosion qui se retrouvent dans le bassin de Souabe, d’autres avec des horizons du bassin de Paris. La transition de faciès en direction du bassin de Paris requiert une subdivision lithostratigraphique adaptée en conséquence. KeywordsJura Mountains–Staffelegg Formation–Rhaetian–Lias–Lithostratigraphy–Allostratigraphy–Chronostratigraphy
Content may be subject to copyright.
The Staffelegg Formation: a new stratigraphic scheme
for the Early Jurassic of northern Switzerland
Achim G. Reisdorf Andreas Wetzel
Rudolf Schlatter Peter Jordan
Received: 20 March 2010 / Accepted: 10 January 2011 / Published online: 3 May 2011
ÓSwiss Geological Society 2011
Abstract The deposits of the Early Jurassic in northern
Switzerland accumulated in the relatively slowly subsiding
transition zone between the southwestern part of the
Swabian basin and the eastern part of the Paris basin under
fully marine conditions. Terrigenous fine-grained deposits
dominate, but calcarenitic and phosphorit-rich strata are
intercalated. The total thickness varies between 25 and
50 m. In the eastern and central parts of N Switzerland,
sediments Sinemurian in age constitute about 90% of the
total thickness. To the West, however, in the Mont Terri
area, Pliensbachian and Toarcian deposits form 70% of the
total thickness. Stratigraphic gaps occur on a local to
regional scale throughout N Switzerland. Such hiatus
comprise a subzone to a stage in time. With respect to
lithology and fossil content, the Early Jurassic deposits in
northern Switzerland are similar to those in SW Germany.
Nonetheless, an exact stratigraphic correlation is hardly
possible, particulary in the southern and southwestern
Folded Jura where distinct facies changes occur over short
distances. Revised existing and new litho- and biostrati-
graphic data form the base to refine the stratigraphic
subdivision of the deposits that have been informally called
‘Lias’’. The name Staffelegg Formation is suggested and
defined as the mapping unit for the Early Jurassic. The
Staffelegg Formation is introduced for Early Jurassic
sediments in northern Switzerland between the Doubs
River and Mt. Weissenstein in the west and the Randen
Hills located north of the city of Schaffhausen in the east.
The Staffelegg Formation starts within the Planorbis zone
of the Hettangian. The upper boundary to the overlying
Aalenian Opalinus-Ton is diachronous. The lithostrati-
graphic names previously in use have been replaced by
new ones, in accordance within the rules of lithostrati-
graphic nomenclature. The Staffelegg Formation comprises
11 members and 9 beds. Several of these beds are impor-
tant correlation horizons in terms of allostratigraphy. Some
of them correspond to strata or erosional unconformities
encountered in the Swabian realm, some of them can be
correlated with strata in the Paris basin. The facies transi-
tion to the Paris basin is expressed by introduction of a
corresponding lithostratigraphic unit.
Keywords Jura Mountains Staffelegg Formation
Rhaetian Lias Lithostratigraphy Allostratigraphy
Chronostratigraphy
Zusammenfassung Die Sedimente des Früh-Juras der
N-Schweiz wurden in dem insgesamt etwas langsamer
subsidierenden Übergangsbereich zwischen dem südwest-
lichen Teil des Schwäbischen Beckens und dem Pariser
Becken untervollmarinen Bedingungen abgelagert. Terrigen-
klastische Pelite herrschen vor, die von kalkarenitischen
und phosphoritreichen Einschaltungen untergliedert wer-
den. Die Mächtigkeit des Früh-Juras variiert zwischen 25
und 50 m. Sedimente des Sinemuriums machen im östlichen
und zentralen Bereich der N-Schweiz bis zu 90% der
Mächtigkeit aus, nach Westen hingegen, im Mont-Terri-
Gebiet, repräsentieren Sedimente des Pliensbachiums und
Editorial handling: Daniel Marty.
A. G. Reisdorf (&)A. Wetzel P. Jordan
Geologisch-Paläontologisches Institut, Universität Basel,
Bernoullistrasse 32, 4056 Basel, Switzerland
e-mail: achim.reisdorf@unibas.ch
R. Schlatter
Naturkundemuseum Leipzig, Lortzingstraße 3,
04105 Leipzig, Germany
Swiss J Geosci (2011) 104:97–146
DOI 10.1007/s00015-011-0057-1
Toarciums 70% der Mächtigkeit. Gebietsweise sind für
bestimmte Zeitabschnitte des Früh-Juras keine Sedimente
überliefert. Solche Hiatus können zeitlich eine Subzone bis
Stufe umfassen. Die Abfolgen in der N-Schweiz ähneln
hinsichtlich Lithologie und Fossilinhalt denen SW-Deutsch-
lands, sind aber nur bedingt mit der südwestdeutschen
stratigraphischen Nomenklatur in Einklang zu bringen, vor
allem im Bereich des südlichen und westlichen Faltenjuras.
Hier treten engräumig abrupte Fazieswechsel auf. Basierend
auf reviderten, bestehenden und neuen litho- und biostra-
tigraphischen Daten wird für die Schichtfolge, die bisher
informell als ‘‘Lias’’ bezeichnet wurde, der Name ‘‘Staffel-
egg-Formation’’ vorgeschlagen und für die N-Schweiz als
Kartiereinheit definiert. Die Staffelegg-Formation beginnt
mit der Planorbis-Zone des Hettangiums. Die Grenze zur
nächst jüngeren Formation, dem Opalinus-Ton, ist hetero-
chron. Die bisher für die frühjurassischen Schichten
verwendeten Bezeichnungen wurden durch neue, den heu-
tigen Nomenklatur-Regeln konforme Namen ersetzt.
Insgesamt werden für die Staffelegg-Formation 11 Member
und 9 Bänke definiert. Etliche dieser Bänke sind im Sinne
der Leitflächen-Stratigraphie wichtig: Ein Teil von ihnen
lässt sich mit Schichten oder Erosionshorizonten im
Schwäbischen Becken korrelieren, ein anderer Teil mit
Horizonten im Pariser Becken. Der Faziesübergang zum
Pariser Becken führt im westlichen Untersuchungsgebiet
zu einer entsprechend angepassten lithostratigraphischen
Untergliederung.
Résumé Les dépôts du Jurassique inférieur du nord de la
Suisse se sont accumulés dans la zone de transition, en
lente subsidence, entre la partie sud-ouest du bassin de
Souabe et la partie orientale du bassin de Paris, dans des
conditions entièrement marines. Les dépôts terrigènes
pélitiques dominent; des couches calcarénitiques et riches
en phosphates y sont intercalées. L’épaisseur de ces dépôts
varie entre 25 et 50 mètres. Dans les parties orientale et
centrale du nord de la Suisse, les sédiments d’âge Siné-
murien constituent 90% de cette épaisseur, alors qu’à
l’ouest, dans la région du Mont Terri, ceux du Pliens-
bachien et du Toarcien en constituent 70%. Des lacunes
stratigraphiques apparaissent à l’échelle locale et régionale
dans tout le nord de la Suisse. Ces hiatus vont de la sous-
zone à la étage. Les sédiments du Jurassique inférieur du
nord de la Suisse sont similaires à ceux du sud-ouest de
l’Allemagne du point de vue lithologique et de leurs fos-
siles. Une corrélation stratigraphique exacte est cependant
difficilement possible, en particulier dans les parties sud et
sud-ouest du Jura plissé où de nets changements de faciès
apparaissent sur de courtes distances. Sur la base de
données litho- et biostratigraphiques existantes et révisées
ou nouvelles, nous proposons, pour désigner ces séries
appelées jusqu’à présent de manière informelle ‘‘Lias’’, le
nom de ‘‘Formation de la Staffelegg’’, qui servira doréna-
vant d’unité cartographique. Cette formation commence
dans la Zone à Planorbes de l’Hettangien. La limite avec
les Argiles à Opalinus aaléniennes sus-jacentes est hété-
rochrone. Les appellations utilisées jusqu’à présent pour
ces séries du Jurassique inférieur ont été remplacées par de
nouveaux noms en conformité avec les règles de nomen-
clature qui prévalent de nos jours. Au total, 11 membres et
9 bancs ont été définis pour la Formation de la Staffelegg.
Plusieurs de ces bancs représentent d’importants horizons
de corrélation en terme de stratigraphie séquentielle: cer-
tains correspondent à des couches ou surfaces d’érosion qui
se retrouvent dans le bassin de Souabe, d’autres avec des
horizons du bassin de Paris. La transition de faciès en
direction du bassin de Paris requiert une subdivision
lithostratigraphique adaptée en conséquence.
Institutional abbreviations
CTB Collection of Thomas Bolinger (Olsberg/AG)
FPJ (collection of the) Fondation Paléontologique
Jurassienne, Glovelier/JU
IGUB (collection of the) Institut für Geologie der
Universität Bern
NMB (collection of the) Naturhistorisches Museum
Basel
NMO (collection of the) Naturmuseum Olten
1 Introduction
1.1 History of Jurassic stratigraphy of northern
Switzerland
The term Jurassic is directly linked to the Swiss Jura
Mountains (Fig. 1). Alexander von Humboldt recognised
the mainly limestone-dominated mountain range of the
Swiss Jura Mountains as a separate formation that was not,
at the time, included in the established stratigraphic system
defined by Abraham Gottlob Werner and named it ‘‘Jura-
kalk’’ in 1795 (Hölder 1950,1964). The separation of the
term Jurassic into three sections goes back to von Buch
(1839). Keferstein (1825), Thurmann (1832), Roemer
(1836), and von Buch (1839) were the first who assigned
the term ‘‘Lias’’, previously used in England, to the lowest
part of the three Jurassic sections (for more details of the
term Lias see Arkell 1956; Donovan and Hemingway 1963;
Hains and Horton 1969).
98 A. G. Reisdorf et al.
The Jurassic stratigraphy of northern Switzerland is
closely linked to that of central and western Europe.
Although related to the stratigraphic studies in central and
western Europe, the Jurassic stratigraphy of northern
Switzerland developed differently in many aspects. This is
not only due to the more or less pronounced lithologic
variations, compared to Mid- and Western Europe, but also
to the fact that Switzerland is a multilingual country
(Rominger 1846; Studer 1853,1872; Moesch 1857; Disler
1941; Schweizerische Geologische Kommission, Ar-
beitsgruppe für Stratigraphische Terminologie 1973). The
following institutions have had a considerable influence on
Swiss stratigraphic nomenclature:
a) Büro der Schweizerischen Geologischen Kommission
(later Geologische Landesaufnahme): Einheitslegende
für den Geologischen Atlas der Schweiz 1:25,000
(cf. Lang 1892; Aeppli 1915; Buxtorf and Schwarz
1960),
b) Schweizerische Geologische Kommission, Arbeits-
gruppe für Stratigraphische Terminologie (1973) and
c) Schweizerisches Komitee für Stratigraphie (SKS;
Remane et al. 2005).
Since Hedberg (1976), the International Commission on
Stratigraphy has decided on an internationally valid stan-
dard for the stratigraphic classification of rocks that is
based on a clear lithostratigraphic concept. The Swiss
Committee of Stratigraphy (SKS) has a mandate to enforce
this concept in Switzerland (Remane et al. 2005). The
Swiss Committee of Stratigraphy receives support in this
from the Swiss Geological Survey, which, in turn, is
responsible for the publishing of geological maps. Both
institutions have a shared responsibility for establishing a
database (under development) that is linked to the internet,
which names from the Swiss stratigraphy and their validity
can be queried (www.stratigrahie.ch).
Unlike in Germany and France, the Early Jurassic stra-
tigraphy in northern Switzerland is mainly based on
geological mapping and less on palaeontological studies
and, therefore, on lithostratigraphy. The first stratigraphic
subdivision of the northern Swiss Mesozoic was estab-
lished by Peter Merian (1821,1831). Reflecting his
education by Johann Friedrich Ludwig Hausmann at the
University of Göttingen, his stratigraphic concept was
strongly influenced by the stratigraphic subdivision in
northern Germany (Buxtorf 1940). In contrast, Thurmann
(1832,1836) and Gressly (1841,1853) followed the stra-
tigraphy used in France and England.
Reflecting the pioneering litho- and biostratigraphic
studies of Quenstedt (1843,1858) and Oppel (1856–1858),
stratigraphy established in southwestern Germany increas-
ingly influenced that in northern Switzerland (e.g.,
Rominger 1846; Heer 1852; Marcou 1857a,b; Waagen
1864; Greppin 1870; Mathey et al. 1872). Nonetheless,
some elements of the French stratigraphic subdivision were
kept (e.g., Gressly 1853; Desor 1856; Rollier 1898; Tobler
1905; Leuthardt 1933). Because of the lack of a uniform
nomenclature, French and German terms were mixed along
the borders between western and northern Switzerland (e.g.,
Gressly 1853; Studer 1853,1872; Mayer-Eymar 1864).
Another attempt to establish a uniform and generally
applicable stratigraphical subdivision was the legend for
the ‘‘Geologischer Atlas der Schweiz 1:25’000’’, since
1930 (Buxtorf and Schwarz 1960). At this time, the
deposits of the Opalinum zone were included in the Liassic
(i.e. ‘‘Lias’’), in accordance with the French nomenclature
(e.g., Frank 1930; Bureau der Geologischen Kommission
1936). Later, the mapping unit ‘‘Lias’’ was extended to
include the sediments of the Rhaethian as well (e.g.,
Buxtorf and Christ 1936; Tschopp 1960). However, this
use was not made mandatory for all of Switzerland (e.g.,
Disler 1941; Buser 1952).
During the International Congress on the Jurassic in
Luxemburg (1962, Colloque du Jurassique à Luxembourg),
a standard stratigraphic subdivision of the Jurassic was
recommended. Biostratigraphically, the Liassic spans the
period from the Hettangian to the Toarcian (i.e. Planorbis
to the Levesquei zone after Dean et al. 1961; see Hölder
1963). According to this definition, the Liassic was bio-
stratigraphically shorter than the Early Jurassic, which also
includes the Planorbis to Concavum zones (Hettangian to
Aalenian; e.g., Hölder 1962, 1963). Later, in 1967 at the
‘Colloque du Jurassique à Luxembourg’’, it was decided to
establish a biostratigraphic range for the Early Jurassic
Fig. 1 Geological overview of the study area, situated in northern
Switzerland, and legend of symbols used in Figs. 2,3,4
The Staffelegg Formation 99
100 A. G. Reisdorf et al.
congruent to that of the Liassic (i.e. Planorbis to Levesquei
zone; Hallam 1975). This stratigraphic nomenclature
reached consensus in Switzerland with the foundation of
the Arbeitsgruppe für Stratigraphische Terminologie in
1971 (now: Schweizerisches Komitee für Stratigraphie).
The majority of lithostratigraphic terms of the N Swiss
Early Jurassic that are in use today were adapted from the
stratigraphy of SW Germany (cf. Studer 1872; Buser 1952;
Waibel and Burri 1961; Fischer 1969; Müller et al. 1984).
Literature from the nineteenth and twentieth centuries
contains a large number of names and definitions that differ
more or less significantly from the French or SW German
nomenclature (Fig. 2). The few of these that became
widely known, or were established in the last few years, are
shown in Figs. 2and 4.
To fulfill the rules of stratigraphic nomenclature, it is
suggested to introduce the Staffelegg Formation for the
strata previously subsumised as ‘‘Lias’ (Fig. 3). In the
stratigraphic scheme suggested here, the individual litho-
stratigraphic units are all dated chronostratigraphically.
With the exclusive use of a chronostratigraphic hierarchy
for the terms of geochronology, we are following the
nomenclature of the Swiss Committee of Stratigraphy
(Remane et al. 2005).
1.2 Palaeogeography and Early Jurassic stratigraphy
The continuous improvement of palaeogeographic recon-
structions influenced the stratigraphic classification in
northern Switzerland until now. Heer (1865) undoubtedly
introduced the most lasting scheme for the Early Jurassic in
northern Switzerland but also for the neighbouring areas in
southern Germany (e.g., Altmann 1965; Jordan 1983;
Schlatter 1990).
Investigation of the Late Triassic and the boundary to
the Early Jurassic in northern Switzerland also had a sig-
nificant influence on the palaeogeographic concepts for the
Early Jurassic (e.g., Erni 1926; Hölder 1964; and refer-
ences therein). It was discussed whether the sandy
sediments of the Rhaetian in N Switzerland are Rhaetian or
Early Jurassic in age (e.g., Rollier 1898,1917; Buxtorf
1907 vs. Erni 1910,1926). Furthermore, the absence of
marine Rhaetian sediments in large areas of N Switzerland
(Fig. 5) has been interpreted as a stratigraphic gap or
caused by later erosion (e.g., Erni 1910 vs. Buxtorf 1907,
1910; Schalch and Peyer 1919; Etzold and Schweizer
2005; Etzold et al. 2010).
The stratigraphic and palaeogeographic considerations
were the base to reconstruct the land-sea distribution in
Germany and Switzerland in Rhaetian to Sinemurian times
(Ehrat 1920; Pratje 1924; Rüger 1924). Particularly the
direction of the transgression of the Early Jurassic sea was
discussed for a many years (e.g., Wepfer 1925; Hölder
1964). This dispute, known in the literature as the ‘‘Stra-
tigrapher War’’ (Wetzel 1932), chiefly concerned
Vollrath’s (1924) hypothesis, which, based on the use of
the index fossil method, posited that Early Jurassic sedi-
ments could not be subdivided into individual
biostratigraphic units but could, instead, be grouped into
contemporaneous faunal provinces. During and after the
2nd World War, stratigraphic studies on the Triassic-
Jurassic boundary in northern Switzerland were restricted
to a local geological scale (e.g., Vonderschmitt 1941; Peyer
1943a,b,1956). The methodological argument was finally
provided by Walliser (1956a,b), based on results found in
SW Germany, and he proved the opponents of Vollrath’s
hypothesis right.
2 Materials and methods
While revising the stratigraphy of the Early Jurassic
strata in northern Switzerland, the joint subdivision of
stratigraphic succesions into lithofacies units and quasi
time units was used (see Lutz et al. 2005). Because of
the large number of coexisting homonyms (e.g., Insek-
tenmergel, Obliqua-Schichten; see Fig. 4) and
synonyms (e.g., Davoei-Schichten, Numismalis-Schichten,
Belemnitenkalke; see Figs. 2,3), new, unencumbered
names for the individual lithostratigraphic units were
introduced.
The new stratigraphic subdivision of the northern Swiss
Early Jurassic strata is based on data from many different
sources (see Table 1). The most significant and high quality
data comes from the Klettgau area, Tabular Jura and the
eastern Folded Jura. By contrast, because of the rare out-
crops, there are only patchy data from the Bernese Jura and
Mont Terri area. Based on new and hitherto unpublished
sections, and new and revised biostratigraphic data (am-
monites, ostracodes), the chrono- and lithostratigraphic
Fig. 2 Names of the Early Jurassic rocks (‘‘Lias’’) and its subunits
previously in use (for legend see Fig. 3). Fe-Oolith. L. =Fe-
Oolithische Lagen; FJ =Folded Jura; G. =Gächlingen Bed;
G.Bd. =Gipf Bed?; Ins. Merg., Insektenm. =Insektenmergel; O.
biod. L. =Obere Biodetritische Lage; O. spätig-biod. L. =Obere
spätig-biodetritische Lagen; Pleyd.-B. =Pleydellien-Bank; Pleydel-
lienb. =Pleydellienbank; Schamb. =Schambelen Member; Sch.,
-sch. =Schichten; TJ =Tabular Jura; U. biod. L. =Untere Bio-
detritische Lage; U. sp. biod. L. =Untere spätig-biodetritische Lagen;
VH =Variabilis-Horizont; VS =Variabilis-Schichten; # =zones
sensu Dean et al. (1961), sensu Bloos (1979) and sensu Schlegelmilch
(1992); I =Psilonotenbank (e.g., LGRB 2004; Bloos et al. 2005;
Etzold et al. 2010); II =Oolithenbank (e.g., Schloz 1972; Bloos et al.
2005; Schmid et al. 2008); III =Kupferfelsbank (e.g., LGRB 2004;
Schmid et al. 2008); IV =Davoei-Bank (e.g., Schlatter 1991; LGRB
2004); V =Unterer Stein (e.g., Urlichs 1977; Röhl and Schmid-Röhl
2005); * = likely
b
The Staffelegg Formation 101
Fig. 3 Early Jurassic biostratigraphy and lithostratigraphy of northern
Switzerland. Nor. =Norian; ? Protosaccul. =? Protosacculina;
Rhaet. = Rhaetian; Rhaetogon. =Rhaetogonyaulax; # =zones sensu
Dean et al. (1961), sensu Bloos (1979), sensu Brenner (1986) and sensu
Schlegelmilch (1992); see also Beutler et al. (2005), von Hillebrandt
and Krystyn (2009), Etzold et al. (2010). 1Klettgau area; 2Lindau well;
3Weiach well; 4eastern Tabular Jura; 5eastern Aargau Tabular Jura
(Fig. 7); 6western Aargau Tabular Jura (Fig. 8); 7Basel Tabular Jura
(Fig. 9); 89easternmost Folded Jura (Figs. 10,11,12); 9Hauenstein
area (see Figs. 13,14,15,16); 10 Bölchen area (see Figs. 17,18); 11
Passwang area (see Figs. 18,19,20,21); 12 eastern Weissenstein area
(see Figs. 22,23); 13 Weissenstein area (see Fig. 24); 14 Grenchenberg
area; 15 Moutier area (see Fig. 25); 16 Mont Terri area (16a eastern
area: see Fig. 26;16b western area: see Fig. 27)
102 A. G. Reisdorf et al.
Fig. 4 Former unit names and
their revised stratgraphic range
(see also Fig. 3).
Fe-Oolith. Lagen =
Fe-Oolithische Lagen;
Insektenm. =Insektenmergel;
Nor. =Norian;
O. biod. L. =Obere
Biodetritische Lage;
O. sp.-biodetr. Lagen =
Obere spätig-biodetritische
Lagen;
Posidon./Posidoniensch.
=Posidonienschiefer;
? Protosaccul.
= ? Protosacculina;
Psilon.-/Psiloc.-Sch.
=Psilonoten-/Psiloceras-
Schichten;
Rhaet. =Rhaetian;
Rhaetogon. =
Rhaetogonyaulax;
# = zones sensu Dean et al.
(1961), sensu Bloos (1979),
sensu Brenner (1986) and sensu
Schlegelmilch (1992)
The Staffelegg Formation 103
classification of the stratigraphic inventory of the whole
study area was specified more precisely.
In the past 60 years, knowledge about the facies and
thickness of the northern Swiss Early Jurassic has been
expanded by exploration wells drilled by the oil- and salt
industry, geothermal projects, deep boreholes drilled by
Nagra, ground water wells, large construction projects and
also by outcrops that were made while economically
exploiting Early and Middle Jurassic mudstones (e.g.,
Büchi et al. 1965; Hauber 1971;2000; Meyer and Furrer
1995; Mumenthaler et al. 1997; Reisdorf 2001; Nagra
2001; Wetzel and Allia 2003; Häring et al. 2008). In
addition, cores, cuttings and unpublished well data were
used (see Table 1).
For biostratigraphic purposes, fossils stored in various
collections were examined. Fossil finds related to the
present stratigraphic scheme are mentioned in text and
figures, respectively. In addition, several unpublished
diploma and master theses from the Universities of Basel,
Bern, Neuchâtel and Zürich, from 1957 to 2008, have been
considered; most of them are listed in the publications by
Andrey (1974), Jordan (1983), Kuhn and Etter (1994) and
Meyer and Furrer (1995).
3 Staffelegg Formation
Names previously in use are given in Fig. 2.
Type locality Buessge (S Thalheim/canton Aargau;
coord.: 646.925/253.050 and 649.750/253.000; Jordan
1983; Fig. 10;=section Kaltenbrunnen of Erni 1910: 43).
Underlying strata Knollenmergel/Obere Bunte Mergel
or ‘‘Rhät’’ (Middle or Late Keuper).
Overlying strata Opalinus-Ton (Early to Middle Jurassic,
Late Toarcian to Early Aalenian, Levesquei to Opalinum
zone).
Subdivision in the Klettgau area and Tabular Jura (from
base to top) Schambelen Member, Beggingen Member,
Fig. 5 Isopach map for the
Rhaetian rocks in N
Switzerland, SE France and SW
Germany (data sources as given
in Table 1)
104 A. G. Reisdorf et al.
Frick Member, Grünschholz Member, Breitenmatt Mem-
ber, Rickenbach Member, Rietheim Member, Gross Wolf
Member.
Subdivision in the eastern Folded Jura (from base to
top) Schambelen Member, Beggingen Member, Frick
Member, Fasiswald Member, Weissenstein Member, Brei-
tenmatt Member, Rietheim Member, Gross Wolf Member.
Subdivision in the western Folded Jura (Mont Terri area;
from base to top) Beggingen Member, Mont Terri
Member, Breitenmatt Member, ?Rickenbach Member,
Rietheim Member, Gross Wolf Member.
Occurrence Northern Switzerland.
Thickness Usually 25–50 m (Fig. 6).
Chronostratigraphic age EarlytoMiddleJurassic(Plan-
orbis to Opalinum zone; Schlatter 1983a; Nagra 1989,
1990).
Description The Staffelegg Formation is a siltstone-marl-
dominated heterogeneous, sedimentary succession. Addi-
tionally, limestones and subordinately also sandstones may
occur especially in the Sinemurian part. In the Folded Jura,
these sediments may make up the major portion of the
Staffelegg Formation. Facies changes may occur within
short distances in the Folded Jura. The Staffelegg Forma-
tion displays a small thickness compared to the occurrences
of the Early Jurassic of southeastern France and south-
western Germany. A gradual decrease in thickness can be
detected which continues from southwestern Germany into
northern Switzerland (Fig. 6; Büchi et al. 1965; Müller
et al. 1984).
4 Lithostratigraphic subunits of the Staffelegg
Formation
4.1 Schambelen Member
Names previously in use are given in Figs. 2and 4.
Type locality Schambelen (SW Brugg/canton Aargau;
coord.: 659.310/257.000; e.g., Heer 1852; Jordan 1983;
temporary exposure; excavation campaign at Schambelen
Fig. 6 Isopach map for the
Early Jurassic rocks in N
Switzerland, SE France and SW
Germany (data sources as given
in Table 1). Note that especially
large uncertainties are attached
to the thickness information
from wells in the Molasse Basin
and the Upper Rhinegraben (in
particular for the determination
of the Early to Middle Jurassic
boundary, but also for the
determination of the Early to
Late Toarcian boundary; e.g.,
Pratje 1924; Théobald 1967;
Lutz and Cleintuar 1999)
The Staffelegg Formation 105
by the Natural History Museum Basel and the Geologisch-
Paläontologischer Arbeitskreis Frick in 2004).
Underlying strata Knollenmergel (Zanclodonmergel)/
Obere Bunte Mergel or ‘‘Rhät’’ (Middle and Late Keuper,
respectively; e.g., Frey 1969; Jordan 1983; Achilles and
Schlatter 1986).
Overlying strata Beggingen Member or Weissenstein
Member.
106 A. G. Reisdorf et al.
Subdivision Hallau Bed (only in the Klettgau area and in
the Zürcher Weinland area at the base of the Schambelen
Member).
Occurrence Klettgau area, Zürcher Weinland, Tabular
Jura, eastern Folded Jura.
Thickness 0 to ca. 9 m (see Jordan 1983; Bitterli-Brun-
ner and Fischer 1988; Nagra 1990,1992).
Chronostratigraphic age Early to Late Hettangian (Plan-
orbis to Liasicus zone; Fig. 10; Trümpy 1959; Schlatter
1983a,1990; Achilles and Schlatter 1986; Maisch et al.
2008).
Description The Schambelen Member is mainly com-
posed of marly terrigenous mudstone. Subordinate amounts
of thin, sometimes bituminous, limestone and silt- and
sandstone occur (Figs. 7,10; see Schalch and Peyer 1919;
Bader 1925; Jordan 1983; Nagra 2001). The boundary to the
underlying strata is marked by an erosional unconformity
(see Schalch and Peyer 1919; Altmann 1965; Achilles and
Schlatter 1986). With exception of the Basel Tabular Jura,
the basal portion of the Schambelen Member is bituminous,
thin-bedded and has a carbonate content of 5–8% (see
Tanner 1978; Jordan 1983; Schlatter 1983a). In the Klettgau
area, this dark grey to black terrigenous mudstone is
restricted to the Hallau Bed (= schwarze, geradschiefrige,
posidonienschieferähnliche Mergelschiefer of Schalch and
Peyer 1919; see Achilles and Schlatter 1986). Mudstone
with these characteristics belongs to the Liasicus zone in the
whole distribution area of the Schambelen Member, and,
according to fossils found in Frick and the northern Klettgau
area, possibly also to the Planorbis zone (= Untere, bitu-
minöse Insektenmergel of Jordan 1983; Figs. 7,10;
Schlatter 1983a; Maisch et al. 2008). This mudstone
becomes continuously greenish grey and slightly sandy
upwards. The distinctive fine bedding and the bituminous
content are then lost (= Obere, schwaichelähnliche Insek-
tenmergel of Jordan 1983; Fig. 10). In the Klettgau area, a
change to dark, greenish to brownish grey, silty to fine
sandy mudstone without distinct fine bedding occurs above
the Hallau Bed (= Schwaichel; Schalch and Peyer 1919).
These sediments belong entirely to the Liasicus zone
(Schlatter 1983a). To the Southwest, the Schambelen
Member wedges out completely but is also present in the
Basel Tabular Jura, although with a different facies (see
Tanner 1978; Jordan 1983; Wetzel et al. 1993). There, this
sediment is developed as dark grey to blackish, occasion-
ally, fine sandy terrigenous mudstone containing pyrite; its
biostratigraphic age was not yet determined unequivocally.
Strübin (1901) listed a poorly preserved fragment of a
questionable Psiloceras sp. from these unbedded sediments
from the section Niederschönthal (= Schöntal, coord.:
621.650/261.700).
In addition, the lithostratigraphic affiliation of the
limestone from the Gelterkinden—Sissach area, that con-
tains ammonites of the Early Hettangian, is uncertain
(Psiloceras plicatulum (QU.), det. F. Wiedenmayer 1980
[NMB J 29354]; Psiloceras cf. distinctum (POMPECKI), det.
R. Zingg 1965 [NMB J 9787); Psiloceras (Caloceras)ex
gr. johnstoni hercynum W. LANGE, det. R. Schlatter 2006
[NMB J 33220; NMB J 33221; NMB J 33230; NMB J
33231]; cf. Berg 1961; Hölder 1964: 12; Bloos 1981).
4.1.1 Hallau Bed
Names previously in use are given in Fig. 4.
Type locality Hallau (Bratelen, Hallauerberg; canton
Schaffhausen; coord.: 676.400/284.500; temporary expo-
sure, see Achilles and Schlatter 1986).
Underlying strata Knollenmergel in the Klettgau area,
‘Rhät’’ in the Zürcher Weinland area (Middle and Late
Keuper, respectively).
Overlying strata The Hallau Bed forms the base of the
Schambelen Member.
Occurrence Klettgau area, Zürcher Weinland.
Thickness 0 to some 2 m (see Schlatter 1983a; Nagra
1993,2001).
Chronostratigraphic age Early Hettangian (Planorbis to
Liasicus zone, Planorbis to Portlocki subzone; Schlatter
1983a; Achilles and Schlatter 1986).
Description The definition of the Hallau Bed follows the
southern German subdivision scheme of Altmann (1965;
there called Psilonotenbank, see Bloos et al. 2005 and
Etzold et al. 2010). The Hallau Bed is basically understood
as a condensation and reworking horizon (Altmann 1965;
Bloos et al. 2005). Sediments of the same age from SW
Germany contain several levels with ammonite associa-
tions (e.g., Altmann 1965; Bloos 1999).
At the type locality Hallau, this condensation horizon
begins with a 5–15 cm thick black marl which is rich in
echinoderm remains (Schalch and Peyer 1919; Achilles
and Schlatter 1986). Two distinct limestone layers follow,
being separated by a 70 cm thick, thinly bedded dark
brown to black, bituminous terrigenous mudstone (Schalch
and Peyer 1919; Altmann 1965; Achilles and Schlatter
1986). The two limestone beds are 10–40 cm thick coqu-
inas which regularly contain middle- to coarse-grained
sand and glauconite. The upper limestone layer may con-
tain iron ooids in addition (Schalch and Peyer 1919; Nagra
2001). In the Klettgau area, the limestone of the Hallau Bed
can be completely replaced by easily weathering black
The Staffelegg Formation 107
108 A. G. Reisdorf et al.
clayey marl (see Altmann 1965). About 3 km SW of
Hallau, the lower limestone layer of the Hallau Bed wedges
out; therefore, the oldest sediments of the Early Jurassic are
represented by roughly 25 cm of dark brown terrigenous
mudstone (Altmann 1965). The wells Benken (coord.:
690.989/277.843) and Lindau 1 (coord.: 692.815/255.098)
represent the southernmost localities where the Hallau Bed
was encountered so far (see Altmann 1965; Frey 1969,
1978; Nagra 2001). The southernmost find of an ammonite
from the Hallau Bed to date was reported 3 km SW of
Hallau (Wilchingerberg; Altmann 1965: 63).
4.2 Beggingen Member
Names previously in use are given in Figs. 2and 4.
Type locality Beggingen (Hölderli, canton Schaffhausen;
coord.: 682.120/290.980; temporary exposure, Schlatter 1976).
Underlying strata Obere Bunte Mergel or ‘‘Rhät’’ or
Schambelen Member.
Overlying strata Fasiswald Member or Weissenstein
Member or Frick Member or Mont Terri Member.
Subdivision Schleitheim Bed, Gächlingen Bed.
Occurrence Northern Switzerland.
Thickness From ?0 m in the Folded Jura (Jordan 1983:
section Salhöchi, coord.: 641.100/253.650; see Gsell 1968:
section Schürmatt, coord.: 640.160/253.160), some 1 m in
the Tabular Jura (Buser 1952; Nagra 1984) to ca. 5 m in
the Klettgau area (Schalch 1895), to 7 m in the Weissen-
stein area (Ledermann 1981).
Chronostratigraphic age Early Hettangian (Liasicus
zone; Figs. 22,23) to Late Sinemurian (Obtusum zone;
Figs. 7,8,10; Schlatter 1976; Jordan 1983 vs. Fig. 12).
Description The Beggingen Member always lies on top
of an erosive surface (Figs. 7,8,10,12,13,14,15,16,17,
18,25,27). It mainly consists of condensed arenitic
limestone, that may be dolomitised in some cases (Fig. 18;
Müller 1862; Delhaes and Gerth 1912; Jordan 1983).
Individual limestone banks may end in a hardground
(Fig. 10; see Jordan 1983; Wetzel et al. 1993). The fol-
lowing facies variations can appear at the base of the
Beggingen Member:
a) calcareous sandstones (Figs. 17,22; Lehner 1920; Erni
1910,1926; Buser 1952: 33p.; Büchi et al. 1965;
Nagra 2001), which, in contrast to the Weissenstein
Member, are characterised by their abundancy of
Cardinia sp. or Gryphaea arcuata LAM. In general, the
calcareous-shelled fossils in these arenites are cor-
roded to a lesser or stronger degree because of
diagenetic lime dissolution, bivalves (e.g., Cardinia
Fig. 7 Detailed section of the Early Jurassic strata at Frick (Gruhalde
clay pit). a=position of the boundary between Late Hettangian and
Early Sinemurian sensu Hoffmann (1934), Walliser (1956a,b) and
Schlatter in Maisch et al. (2008); b=position of the boundary
between Late Pliensbachian and Early Toarcian sensu Schlatter
(1982), Riegraf et al. (1984) and Kuhn and Etter (1994:Basisschicht);
c=Promicroceras cf. planicosta (SOW. 1814) at 7.63 m and 9.22 m
(W. Etter, pers. comm. 2005); d=Promicroceras cf. planicosta
(SOW. 1814) at 16.98 m (W. Etter, pers. comm. 2005); e=Astero-
ceras sp. at 15.72 m (W. Etter, pers. comm. 2005); f=‘‘Schlotheimia
cf. extranodosa’ (see Maisch et al. 2008: fig. 3); g=revision of
‘‘Psiloceras (Caloceras)cf.johnstoni (SOW. 1824)’’ (see Maisch et al.
2008: fig. 3); p=compare Etzold et al. (1975); w=biostratigraphic
range according to Jordan (1960) and Schlatter (1991)
Fig. 8 Detailed section of the Early Jurassic strata at Hof Schönau
(Olsberg/AG), temporary exposure. Ammonites have been collected
by T. Bolinger (Olsberg/AG; CTB). a=see Pratje (1922); b=see
Schlatter (1976); c=phosphoritic, Gryphaea-bearing, macrofossil-
rich encrinite, highly conglomeratic in parts (packstone after Dunham
1962); d=reworked?; e=loosely collected Schlotheimia sp. (NMB
J 29358; det. Wiedenmayer 1980), compare the biostratigraphic range
of the genus Schlotheimia in Fig. 7
b
The Staffelegg Formation 109
sp., Gryphaea sp.) are often only preserved as external
molds (see Lehner 1920; Keller 1922; Waibel 1925).
b) Quartz-conglomerates (Erni 1926);
c) dolomite-conglomerates (Lehner 1920;Erni1926;Fig.8);
d) flat pebble conglomerates (Suter 1927); more unfrequently,
e) limestone-breccias (Keller 1922);
f) bonebeds (Lehner 1920; Erni 1926; Suter 1927).
If the erosive contact of the Staffelegg Formation incises
down to sediments of the Middle Keuper, then the Beg-
gingen Member often set in with unlayered, light grey to
black marls of up to 20 cm thickness (see Erni 1910; Buser
1952; Jordan 1983; Figs. 13,14,15,16). In the oldest
layers of the Beggingen Member (Liasicus to Bucklandi
zone), bivalves commonly occur, most of which belong to
the genera Cardinia and Plagiostoma (Figs. 7,10,24,25,
27; see Schalch and Peyer 1919; Elber 1921; Maisch et al.
2008). These facies-dependent faunal associations were the
reason to give it initially the chronostratigraphically mis-
leading name Cardinienschichten (see Schleitheim Bed
and Gächlingen Bed). In the Klettgau area and from there
in a south-western direction to the Frick area (canton
Aargau), the basal layers of the Beggingen Member contain
iron-ooids (Figs. 7,10; see Jordan 1983; Schlatter 1989).
In contrast, the upper layers (Bucklandi to Obtusum zone)
occur over a larger area in northern Switzerland and consist
mainly of locally strongly phosphoritic arenitic limestone
which are rich in fossils; the bivalve Gryphaea arcuata
LAM. occurs in great abundance, locally rock-forming
(Figs. 7,8,10,12,16,18,24,25,27; see von Buch 1839;
Jordan 1983). Marl or marly terrigenous mudstone of small
thicknesses is interbedded (Figs. 7,10, see Buser 1952). In
the Folded Jura, the facies of the Beggingen Member
interfingers with that of the Weissenstein Member (the
Beggingen Member may in such a case even disappear
completely, leaving only the Weissenstein Member; see
Jordan 1983; Figs. 3,10,14,15,17,24).
4.2.1 Schleitheim Bed
Names previously in use are given in Fig. 4.
Type locality 2 km SE of Schleitheim (Buckforen; canton
Schaffhausen; coord.: 679.700/287.470; Schlatter 1976).
Underlying strata Obere Bunte Mergel or ‘‘Rhät’’ or
Schambelen Member.
Overlying strata The Schleitheim Bed forms the base of
the Beggingen Member.
Occurrence Klettgau area, Zürcher Weinland, Tabular
Jura, ?Weissenstein area (because of poor outcrop condi-
tions, in contrast to Jordan et al. 2008, the Schleitheim Bed
has not been differentiated in the Weissenstein area.).
Thickness 0–65 cm (Brändlin 1911; possibly even up to
130 cm: Buxtorf 1907; Fischer and Luterbacher 1963;Fig.24).
Chronostratigraphic age Late Hettangian (Angulata
zone, Complanata subzone; Schlatter 2001).
Description At the base, the Schleitheim Bed contains a
large number of bivalves, especially the genera Cardinia
and Plagiostoma. The Schleitheim Bed always has an
erosive base; in the Klettgau area and from there in
southwestern direction to the Frick area, these layers are
iron ooliths (Fig. 7; Schalch and Peyer 1919; Schlatter
1989; Maisch et al. 2008). In the Tabular Jura of the canton
Fig. 9 Detailed section of the
Early Jurassic strata at
Füllinsdorf (Im Ischlag/BL),
temporary exposure.
a=loosely collected Lytoceras
cf. jurense (ZIETEN); b=for the
biostratigraphic range of
Prodactylioceras davoei (SOW.)
see Schlatter (1991)
110 A. G. Reisdorf et al.
Table 1 Compilation of data sources used for isopach maps and stratigraphic classification
Authors Rhaetian
(thickness)
Early
Jurassic
(thickness)
Biostratigraphic
information
Lithostratigraphic
information
Achilles and Schlatter (1986)444
Altmann (1965)444
Bader (1925)444 4
Bath and Gautschi (2003)4
Beher (2004)4
Bitterli (1960)44
Bitterli (1992)4
a
Bitterli and Strub (1975)44
a
Bitterli-Brunner and Fischer (1988)4
Bitterli et al. (2000)44 4
Brändlin (1911)44
Braun (1920)44
Brenner (1986)4
von Buch (1839)4
Büchi et al. (1965)444 4
Bureau der Geologischen Kommission (1930)44 4
Buser (1952)444
a
4
Buser in Gsell (1968)44
a
Buxtorf (1901)444
Buxtorf (1907)444 4
Buxtorf (1910)44 4
Buxtorf and Troesch (1917)44 4
Buxtorf and Christ (1936)44 4
Debrand-Passard (1984)4
Delhaes and Gerth (1912)444 4
Einsele and Seibold (1961)4
Elber (1921)44 4
Elber (1962)4
Erb in Groschopf et al. (1977)4
Erni (1910)444
Erni (1926)444
Etter (1990)44
Etter and Kuhn (2000)4
Etzold and Schweizer (2005) and references therein 444
Etzold et al. (2010)4
Fischer and Luterbacher (1963)44 4
Fischer et al. (1964)444
Fischer (1964)4
Frey (1969)44 4
Frey (1978)4
Genser and Sittig (1958)4
Glauser (1936)444 4
Goldschmid (1965)444 4
Gsell (1968)444 4
Gürler et al. (1987)4
Hahn (1971)44 4
Häring (2002)4
The Staffelegg Formation 111
Table 1 continued
Authors Rhaetian
(thickness)
Early
Jurassic
(thickness)
Biostratigraphic
information
Lithostratigraphic
information
Häring et al. (2008)44
Hauber (1971)444 4
Hauber (1991)44
Hauber (1994)4
Hauber et al. (2000)44
Hess (1962)44
Hofmann (1959)4
Hofmann (1981)444 4
Hofmann et al. (2000)44
Imhof in Jordan (1983)44
Jordan (1960)4
Jordan (1983)444
a
4
a
Kämpfe (1984)4
b
4
b
Käß (1954)4
Keller (1922)4
Kelterborn (1944)44
Knitter and Ohmert (1983)4
Kuhn and Etter (1994)44 4
Ladner et al. (2008)44
Laubscher (1963)44 4
Ledermann (1981)4
Lehner (1920)44
Lemcke and Wagner (1961)44
Lutz (1964)4
Lutz and Cleintuar (1999)44
Lutz and Etzold (2003)4
Maisch and Reisdorf 2006a,b44
Maisch et al. (2008)444
Mandy (1907)4
Marie (1952)44
Mathey (1883)4
Meyer (1916)44
Meyer and Furrer (1995)44
Moesch (1874)44 4
Mühlberg (1905)44 4
Mühlberg (1908)444 4
Mühlberg (1910)4
Mühlberg (1915)444 4
Müller (1862)4
Nagra (1984)444 4
Nagra (1989)444 4
Nagra (1990)444 4
Nagra (1992)444 4
Nagra (1993)4
c
44
Nagra (2001)444 4
Ohmert in Groschopf et al. (1977)4
Persoz (1982)4
112 A. G. Reisdorf et al.
Table 1 continued
Authors Rhaetian
(thickness)
Early
Jurassic
(thickness)
Biostratigraphic
information
Lithostratigraphic
information
Peters (1964)4
Pfirter (1997)4
Pratje (1922)444 4
Pratje (1924)44 4
Reisdorf (2001)444 4
Reisdorf et al. (this volume) 44
Richter (1987)44
Rickenbach (1947)44
Rieber (1973)44
Riegraf (1986)4
Riegraf et al. (1984)4
Rollier (1910)4
Schaeren and Norbert (1989)44 4
Schalch (1880)444 4
Schalch (1893)44
Schalch (1895)44
Schalch (1900)44
Schalch (1916)444 4
Schalch (1922)44
Schalch and Peyer (1919)444
Schegg et al. (1997)44
Schlatter (1976)44 4
Schlatter (1982)44
Schlatter (1983a)44
Schlatter (1983b)44
Schlatter (1989)44
Schlatter (1990)4
Schlatter (1991)44
Schlatter (1999)44
Schlatter (2000)4
Schlatter (2001)4
Schmidt et al. (1924)444 4
Senftleben (1923)444 4
Senftleben (1924)44 4
Söll (1965)44
Söll in Ernst (1989)4
Sommaruga and Burkhard (1997: 46) 4
Stoll-Steffan (1987)44
Strübin (1901)44
Suter (1915)44
Suter (1927)44
Tanner (1978)44
Théobald (1961)44
Théobald (1967)44
Théobald and Maubeuge (1949)4
Tröster (1987)4
Trümpy (1959)4
The Staffelegg Formation 113
Table 1 continued
Authors Rhaetian
(thickness)
Early
Jurassic
(thickness)
Biostratigraphic
information
Lithostratigraphic
information
Trümpy (1980)4
Tschopp (1960)44
Veit and Hrubesch in Groschopf et al. (1977)4
Vogel (1934)44
Vollmayr (1971)4
Vollmayr and Wendt (1987)
aa
44
Vonderschmitt (1941)444
Vonderschmitt (1942)444 4
Waibel (1925)44 4
Walliser (1956a)44
Walliser (1956b)44
van Werveke (1923)4
a
Wetzel et al. (1993)44 4
Wetzel and Reisdorf (2007)4
Wirth (1968)4
b
4
b
von Wurstemberger (1876)44
Würtenberger (1867)44 4
Ziegler in Jordan (1983)44
Unpublished data
CSD Colombi Schmutz Dorthe AG (well Wisenberg-Tunnel RB 22; SBB) 44
CSD Colombi Schmutz Dorthe AG (well Wisenberg-Tunnel RB 23; SBB) 4
Geologisches Büro Dr. H. Schmassmann (well Eich, Magden) 44
Geologisches Büro Dr. H. Schmassmann (well Grändel, Zeiningen) 44
Geologisches Büro Dr. H. Schmassmann (well Weiere, Magden) 44
Geologisches Büro Dr. H. Schmassmann (well Weierboden, Arisdorf) 44
Geologisch-Paläontologisches Institut der Universität Basel (wells 34.R.1 to
34.R.4, Adlertunnel, SBB)
4
Geologisch-Paläontologisches Institut der Universität Basel (well 34.R.6,
Adlertunnel, SBB)
4
Geologisch-Paläontologisches Institut der Universität Basel (well 41.R.115,
Adlertunnel, SBB)
44
Geologisch-Paläontologisches Institut der Universität Basel (wells 41.R.116 to
41.R.118, Adlertunnel, SBB)
4
Geologisch-Paläontologisches Institut der Universität Basel (well 41.R.120,
Adlertunnel, SBB)
4
Geologisch-Paläontologisches Institut der Universität Basel (wells 41.R.123 to
41.R.125, Adlertunnel, SBB)
4
Geotechnisches Institut AG (wells 34.R.7 and 34.R.8, Adlertunnel, SBB) 4
Geotechnisches Institut AG (well 41.R.131, Adlertunnel, SBB) 4
Geotechnisches Institut AG (well 41.R.132, Adlertunnel, SBB) 44
Geotechnisches Institut AG (well 41.R.133, Adlertunnel, SBB) 4
Geotechnisches Institut AG (wells 71.R.45 and 71.R.57, Umfahrung Sissach) 4
Geotechnisches Institut AG (well 71.R.58, Umfahrung Sissach) 4
Geotechnisches Institut AG (well 71.R.59, Umfahrung Sissach) 4
P.R.E.P.A. (Societé de prospection et exploitations pétrolières en Alsace; well
Blodelsheim 1)
44
P.R.E.P.A. (Societé de prospection et exploitations pétrolières en Alsace; well
Knoeringue 1)
44
114 A. G. Reisdorf et al.
Aargau (Rietheim – Frick area), the iron oolithic facies
changes into a bioclastic packstone facies (see Schalch
1880; Schalch and Peyer 1919). In the Basel Tabular Jura,
the Schleitheim Bed is bioclastic packstone (see Erni
1910; Tanner 1978). The ±30 cm thick, black to yel-
lowish marls, in which iron-containing, iron oolith to
bioclastic packstone concretions are embedded are an
additional facies variation (see Brändlin 1911;Buser
1952).
In the eastern Basel Tabular Jura as well as in the
eastern Folded Jura, the Schleitheim Bed is absent because
of erosion (Figs. 14 and 17; see Buser 1952). In the
Weissenstein area, similar sediments occur again, but
here within the basal part of the Beggingen Member
(= Schleitheim Bed?; Figs. 23,24; see Buxtorf 1907).
Here, it may display an iron-oolithic facies (Fig. 22).
4.2.2 Gächlingen Bed
Names previously in use are given in Fig. 4.
Type locality 1 km WNW of Gächlingen (Lugmer,
canton Schaffhausen; coord.: 678.650/284.700; temporary
exposure, Schlatter 1976).
Occurrence Klettgau area, Zürcher Weinland, Tabular
and Folded Jura (with an interruption possibly extending to
the Weissenstein area and the Mont Terri area: In contrast
to Jordan et al. 2008, because of poor outcrop conditions,
the Gächlingen Bed has not been differentiated there.).
Thickness 0to±50 cm (Nagra 2001; Fig. 10).
Chronostratigraphic age Early Sinemurian (Bucklandi
zone, Conybeari subzone; Bloos 1976).
Description The Gächlingen Bed is included in the basal
beds of the Beggingen Member (e.g., Klettgau area, Tabular
Jura; Fig. 7) or at its base (e.g., Folded Jura; Fig. 10). Wacke-
to packstone of small thickness, containing iron ooids (see
Jordan 1983; Hofmann et al. 2000). Bivalves, e specially of the
genus Cardinia, occur occasionally in rock-forming abun-
dance. Besides the index ammonites of the Bucklandi zone,
the Gächlingen Bed can also contain ammonites of the genus
Schlotheimia (e.g., ‘Riesenangulaten’; see Walliser 1956a;
Hahn 1971;Bloos1976;Maischetal.2008).
Laterally, the Gächlingen Bed may change into a duff
horizon with concretionary limestone and ultimately wed-
ges out entirely (Fig. 7; see Buser 1952; Hofmann 1981;
Nagra 1989; Maisch et al. 2008).
The stratigraphic position of the coquinas (with Cardinia
and/or Plagiostoma) that occur in the western part of the
study area (Weissenstein area; section Hautes Roches and
Mont Terri area; Buxtorf 1907 vs. Rollier 1910; Elber 1921;
Erni 1926; Figs. 22,23,24,25,27) is not yet resolved beyond
doubt. In these sediments, the Bucklandi zone has so far only
been proven in the Mont Terri area, using a loosely collected
Angulaticeras angulatoides (QU.) (= section Courtemautruy,
Fig. 27; note that the Courtemautruy Bed of Jordan et al.
2008 is no longer kept because of the lack of suitable out-
crops). In addition, it should be mentioned that iron ooids
have so far only been found in such limestones in the eastern
Weissenstein area (Fig. 22, Erni 1910: 38 vs. Vollrath 1924:
22; Bitterli and Strub 1975; own data).
Table 1 continued
Authors Rhaetian
(thickness)
Early
Jurassic
(thickness)
Biostratigraphic
information
Lithostratigraphic
information
P.R.E.P.A. (Societé de prospection et exploitations pétrolières en Alsace; well
BPR 5, Hartmannswiller, Soultz)
44
P.R.E.P.A. (Societé de prospection et exploitations pétrolières en Alsace; well
Illfurth R1)
44
Vereinigte Schweizerische Rheinsalinen (well S 29, Schüracher, Pratteln) 4
Vereinigte Schweizerische Rheinsalinen (well S 72, Eigental, Muttenz) 4
Vereinigte Schweizerische Rheinsalinen (well S 87, Sulz, Muttenz) 4
Vereinigte Schweizerische Rheinsalinen (well S 93, Gruetäcker, Muttenz) 4
Vereinigte Schweizerische Rheinsalinen (well S 96, Hopferen, Arisdorf) 44
Vereinigte Schweizerische Rheinsalinen (well S 111, Eigental, Muttenz) 4
Vereinigte Schweizerische Rheinsalinen (wells S 116 and S 119, Auf
Wartenberg, Muttenz)
4
Wintershall Holding AG (well Meersburg 1) 44
a
Revised by Reisdorf et al. (this volume)
b
Revised by Stoll-Steffan (1987)
c
Revised by Etzold and Schweizer (2005: 243) and Etzold et al. (2010)
The Staffelegg Formation 115
116 A. G. Reisdorf et al.
4.3 Weissenstein Member
Names previously in use are given in Figs. 2and 4.
Type locality Käspisbergli 1 km N of Günsberg (canton
Solothurn, see Rollier 1904; coord.: 610.560/235.140; Fig. 24;
Buxtorf 1907).
Underlying strata Schambelen Member or Beggingen
Member or Fasiswald Member.
Overlying strata Beggingen Member or Fasiswald Member.
Occurrence Eastern Folded Jura to Weissenstein area
(see Pratje 1924; Bitterli and Strub 1975; Jordan 1983),
well Altishofen 1 (coord.: 639.500/228.000; see Fischer
and Luterbacher 1963).
Thickness Up to some 22 m (Fischer and Luterbacher
1963); facies interfingering with the Beggingen Member.
Chronostratigraphic age EarlytoLateSinemurian(Semi-
costatum to Obtusum zone; Figs. 10,15; Jordan 1983; loosely
collected Promicroceras sp., E Ulmethöchi/BL, coord.: ca.
616.700/247.800 [NMB J 33219, det. R. Schlatter 2005]).
Description Beige, calcareous sandstones or sandy
limestones, respectively, usually 6–22 m thick or some-
times much less (Figs. 10,12,13,14,15,24; Delhaes and
Gerth 1912; Heim 1919; Fischer and Luterbacher 1963;
Wetzel et al. 1993;=Feinsandkalklage sensu Jordan
1983). These partially silicified and sometimes dolomitised
sediments occasionally contain bluish chert concretions,
but very rarely macrofossils which are of biostratigraphic
use (Figs. 14,15,18,23; see Delhaes and Gerth 1912;
Bitterli and Strub 1975; Jordan 1983). The Weissenstein
Member is characterised by spatially close facies-changes
and alternations with the Beggingen Member (see Erni
1926; Buser 1952; Jordan 1983; Wetzel et al. 1993) and the
Fasiswald Member, respectively (Figs. 10,14,15,17,24).
The more or less fossil-rich, sandy limestone or cal-
careous sandstone that are found at the base of the
Staffelegg Formation in the Grindel—Erschwil area are,
however, not attributed to the Weissenstein Member (see
facies variations of the Beggingen Member; see Erni 1910;
Lehner 1920; Keller 1922; Waibel 1925).
4.4 Frick Member
Names previously in use are given in Figs. 2and 4.
Type locality Gruhalde clay pit in Frick (canton Aargau;
coord.: 643.000/261.900; see Beher 2004).
Underlying strata Beggingen Member.
Overlying strata Grünschholz Member or Fasiswald
Member.
Occurrence Klettgau area, Tabular Jura, Zürcher Wein-
land, eastern Folded Jura (here facies interfingering with
the Fasiswald Member).
Thickness The maximum thicknesses lie around some
20 m in the Tabular Jura (Fig. 7; Gsell 1968); in the Folded
Jura, however, the thicknesses are significantly below 10 m
(Fig. 10; Jordan 1983).
Chronostratigraphic age Late Sinemurian (Obtu-
sum to Raricostatum zone, Stellare subzone to
Fig. 11 Detailed section of the Early Jurassic strata at the Staffelegg
clay pit (AG). a=data from Jordan (1983); b=loosely collected
Pleuroceras sp. at the ‘‘Staffelberg’’ (collection of the Geologisches
Institut der ETH Zürich; see Jordan 1983); c=loosely collected
(Reisdorf et al. subm.); d=data from Ziegler in Jordan (1983)
Fig. 10 Detailed section of the Early Jurassic strata at Buessge (AG),
Type locality of the Staffelegg Formation. Ammonoid zones in
parentheses were not verified in the Staffelegg area. a=‘‘ Schlothei-
mia sp.’’ (Jordan 1983)=?Saxoceras sp. (see Etzold et al. 1975:
124p. and Urlichs 1977: 16p.); b=data from Jordan (1983);
c=data from Müri in Jordan (1983)
b
The Staffelegg Formation 117
Densinodum and Raricostatum subzone; Schlatter
1976,1983b,1999; Beher 2004;cf.Fig.12 vs. Jordan
1983).
Description Generally macrofossil-poor, bioturbated,
monotonous succession of dark grey, terrigenous clay-
stones or siltstones, containing mica. (Fig. 7,10; see
Fig. 12 Detailed section of the Early Jurassic strata at Dottenberg (SO). a=data from Jordan (1983); b=own data; c=data from Imhof in
Jordan (1983); d=compare Figs. 13,15,16,17 and Etzold et al. (1975), Schlatter (1983b,1991), Brandt (1985)
118 A. G. Reisdorf et al.
Hofmann 1959; Frey 1978; Schlatter 1999; Nagra 2001).
Interlayering with thin, fine-grained sandstones or layers
with marcasite, pyrite or clay iron-stone concretions can
occur. Lime- and/or phosphorite concretions are often
seen at the top of the Frick Member (see Peters 1964;
Nagra 1984,1990; Schlatter 1991). The youngest sedi-
ments of the Frick Member can show different degrees
of reworking such as flat pebble conglomerates,
reworked ammonites etc. (see Schlatter 1983b,1991;
Beher 2004).
In the occurences of the Frick Member in the eastern
Folded Jura, interfingering of facies with the Fasiswald
Member is observed.
Towards the southwest, the mudstone succession is
significantly thinner than in the Tabular Jura and the
Klettgau area, and, increasingly, limestone concretions and
limestone beds are intercalated (Fig, 10; see Jordan 1983;
Wetzel et al. 1993; Reisdorf 2001).
4.5 Grünschholz Member
Names previously in use are given in Figs. 2and 4.
Type locality Grünschholz (NW Galten; canton Aargau;
coord.: 651.000/265.700; see Buser 1952, outcrop no
longer accessible).
Underlying strata Frick Member.
Overlying strata Breitenmatt Member.
Occurrence Klettgau area, Zürcher Weinland, Tabular
Jura.
Thickness In the Klettgau area, rarely more than 1 m
thick; thickness in the Tabular Jura is rarely more than
1.5 m and never above 2 m (Brändlin 1911; Schalch 1916;
Gsell 1968).
Chronostratigraphic age Late Sinemurian to Early Pliens-
bachian (Raricostatum to Jamesoni zone, Densinodum and
Raricostatum to Nodogigas and Taylori subzone; Fig. 7,
Schlatter 1983b,2000).
Description Strata consisting of calcareous marl and
predominantly concretionary limestone beds containing
glauconite and calcareous phosphoritic concretions
(Figs. 7,9; see Schlatter 1991,1999). The phosphorite is
mainly associated to bioturbated domains. The Grünsch-
holz Member rest on top of an erosive surface that is more
or less distinctive (Schlatter 1999; Beher 2004).
4.6 Fasiswald Member
Names previously in use are given in Figs. 2and 4.
Type locality Fasiswald clay pit (NNW Hägendorf; can-
ton Solothurn; coord.: 629.100/245.100; Fig. 17; cf. Erni in
Mühlberg 1915).
Fig. 12 continued
The Staffelegg Formation 119
Fig. 13 Detailed section of the Early Jurassic strata at the Erlimoos
clay pit (SO). a=compare Jordan (1983: section Dottenberg) and
Fig. 12;b=data from Goldschmid (1965); c=‘‘Coroniceras
aff. sauzeanum (D’ORB.)’’, ‘Coroniceras aff. bisculatum (BRUG.)’’,
‘‘Arnioceras cf. Bodleyi (HYATT)’’; data from Goldschmid (1965);
d=loosely collected Acanthopleuroceras cf. maugenesti (D’ORB.),
Acanthopleuroceras sp., Liparoceras sp., Beaniceras cf. senile
(Buckm.), Beaniceras sp. (own data); e=Lytoceras fimbriatum
(SOW.), Androgynoceras maculatum (Y. & B.), Androgynoceras
intracapricornus (QU.), Liparoceras bronni SPATH,Prodactylioceras
davoei (SOW.), Amaltheus cf. stokesi (SOW.), Pleuroceras sp. indet.,
Catacoeloceras raquinianum (D’ORB.), Osperlioceras bicarinatum
(ZIETEN)=Pseudopolyplectus bicarinatus (ZIETEN), Hildoceras semi-
politum (BUCKM.); data from Imhof in Jordan (1983); f=data from
Imhof in Jordan (1983)
120 A. G. Reisdorf et al.
Underlying strata Beggingen Member or Weissenstein
Member or Frick Member.
Overlying strata Breitenmatt Member.
Occurrence In the entire northern Swiss Folded Jura
(except for the Mont Terri area) and areas south of the Folded
Jura (i.e. Schafisheim borehole; Nagra 1992); in the eastern
Folded Jura there is facies interfingering with the Frick
Member; in the southern Jura chains this facies interfingers
with the Weissenstein Member; facies interfingering with the
Mont Terri Member has not been observed so far.
Thickness Up to ca. 27 m (Fig. 23).
Chronostratigraphic age Early Sinemurian to Early
Pliensbachian (Semicostatum to Jamesoni zone; Jordan
1983; Schlatter 1991,2000; Maisch and Reisdorf 2006a,b;
own data).
Description The Fasiswald Member consists of alternating
brown, light- to dark grey, quartz containing limestone, encri-
nite, silty-sandy terrigenous mudstone and marl, respectively
(Figs. 10,12,13,15 16,17,18,19,20,25; see Mühlberg 1908;
Delhaes and Gerth 1912;Heim1919). In the Hauenstein area
and from there further to the west, and in the well Schafisheim
(coord.: 653.620/246.760), limestone beds are silicified to a
varying degree and may contain black chert-concretions which
may reach a size of several tens of centimeters (Spiculaefazies
of Jordan 1983;Figs.15,17,18; see Delhaes and Gerth 1912;
Nagra 1992; Maisch and Reisdorf 2006a). Gryphaea obliqua
(SOW.) occurs in great abundance in the area of the Fasiswald
Member (Figs. 15,17;seeJordan1983; Wetzel et al. 1993;
Reisdorf 2001). Biostratigraphically useful macrofossils are,
however, quite rare (Jordan 1983; Beher 2004; Reisdorf own
data). As a rule, one to two packages of limestone beds several
meters in thickness occur; they may appear as distinct ridges in
the landscape (Jordan 1983). Especially in the Weissenstein
area, the facies of the Fasiswald Member interfingers with the
Weissenstein Member (Fig. 3; see also Fischer and Luter-
bacher 1963) while in the eastern Folded Jura, the Fasiswald
Member overlies the Beggingen Member, Frick Member or the
Weissenstein Member (Figs. 10,12,13,15,16; see Buxtorf
1907; Jordan 1983; Reisdorf 2001).
4.7 Mont Terri Member
Names previously in use are given in Figs. 2and 4.
Type locality Les Salins (SE Courtemautruy; canton
Jura; coord.: 578.800/248.080; Fig. 26).
Underlying strata Beggingen Member.
Fig. 14 Detailed section of the Early Jurassic strata at Hof Horn (NW
Olten). a=whitish and bluish chert nodules (see also Moesch 1874;
Buxtorf 1907; Fischer and Luterbacher 1963: 28); b=Arnioceras
sp., Arnioceras cf. cuneiforme HYATT,Arnioceras cf. robustum
(QUENST.); c=Coroniceras multicostatum (SOW.), loosely collected
The Staffelegg Formation 121
122 A. G. Reisdorf et al.
Overlying strata Breitenmatt Member.
Occurrence Mont Terri area.
Thickness Up to ca. 25 m thick (Buxtorf 1910; Laubscher
1963).
Chronostratigraphic age Late Sinemurian to Early Pliens-
bachian (?Obtusum to Davoei zone; own data).
Description Middle to dark grey mica bearing terrigenous
mudstone and marl with occasional nodular to compact
limestone layers are characteristic (Fig. 26; Buxtorf 1910;
Glauser 1936; Rickenbach 1947). This member is only rare
exposed entirely. According to Buxtorf (1910) and Laub-
scher (1963) it starts with terrigenous mudstone, which
successively changes into a limestone-marl-alternation.
The general appearance of the Mont Terri Member
resembles therefore the gradual dovetailing of facies of the
Frick Member with the Fasiswald Member in the eastern
Folded Jura (compare Figs. 10,15,16,19; Pratje 1924;
Jordan 1983; Wetzel et al. 1993; Bath and Gautschi 2003).
In spite of their macroscopic similarity, the stratigraphic
architecture and the lithological inventory of the Mont
Terri Member markedly differ from those of both the Frick
Member and the Fasiswald Member. Lithologically, these
differences in facies in the Mont Terri area are so pro-
nounced that they should not be seen as mere facial
variations. As explained in greater detail below, the char-
acter of the Mont Terri Member can be boiled down to the
following: The Mont Terri Member stands out, not by dint
of its having a unique stratigraphic architecture or a unique
lithological inventory, but in fact due to the very lack of
such unique qualities.
Buxtorf (1910) measured a 10–12 m thick terrigenous
mudstone interval (= Obtusustone sensu Buxtorf 1910,
Fig. 2) in a temporary exposure SE of Cornol (coord.: ca.
580.550/249.100). This succession is assigned to the here
newly introduced basis of the Mont Terri Member (Fig. 3).
This mudstone most closely resembles the easternmost
occurrences of the Frick Member in the Folded Jura with
respect to facies, although it is significantly thicker than the
latter (compare section Buessge, Fig. 10; see Jordan 1983;
Bath and Gautschi 2003). The more western occurrences of
the Frick Member differ more clearly from the basal
interval of the Mont Terri Member. More frequent inter-
fingering of the Frick Member with the Fasiswald Member
in this area leads to the characteristic broadening of the
lithological inventory of the Frick Member, in particular
the occurrence of crinoidal mudstone and wackestones as
well as one to two prominent Gryphaea-rich intervals
(Gryphäenkonglomerathorizonte after Jordan 1983; Wetzel
et al. 1993). Judging by the information in Buxtorf (1910),
the latter seems to be absent in the basal part of the Mont
Terri Member (see also Vonderschmitt 1942).
The upper part of the Mont Terri Member (= knollige
Kalkbänke after Buxtorf 1910; Laubscher 1963; Fig. 4)
resembles the Fasiswald Member: In the type section Les
Salins (Fig. 26), this limestone-marl-alternation is about
13 m thick and does not exhibit the characteristic litho-
logical inventory of the Fasiswald Member, namely
calcarenites in spiculae-facies or without spiculae, encri-
nites linked to Gryphaea-rich intervals, as well as one to
two packages of limestone beds several meters in thickness.
The biostratigraphic range of the Mont Terri Member is
not completely clear yet and is based on the current knowl-
edge of unexpectedly heterogeneous stratigraphic features
(Fig. 3). Hitherto, ammonites are only known from the
limestone-marl-alternation of the Mont Terri Member (own
data; cf. Mathey 1883). In the type section Les Salins
(Fig. 26) as well as in the tectonically overprinted partial
section S of Cornol (coord.: 579.950/249.500; Aegoceras sp.,
?Oistoceras sp., own data) and SSW of Courtemautruy (co-
ord.: 578.100/248.050; Echioceras sp.; Aegoceras sp., own
data), ammonite finds document the Raricostatum and Davoei
zones for this stratigraphic level and therefore indicate that
deposition continued to the late Early Pliensbachian (Fig. 3).
The stratigraphic position of the Sinemurian/Pliensba-
chian boundary could not be identified precisely in the type
section of the Mont Terri Member (Fig. 26). The above
mentioned partial section SSW Courtemautruy, however,
yielded a precise localisation of the biostratigraphic
boundary. In that partial section, the oldest sediments of the
Pliensbachian (Jamesoni and Ibex zones) in the Mont Terri
area are rather thin: here, Echioceras sp. (Raricostatum
zone) and Aegoceras sp. (Davoei zone) occur in close
proximity in a monotonous interval consisting of marls and
a few nodular limestones or limestone beds. These lime-
stones can be classified as mudstones to wackestones.
The stratigraphic constellation exposed in the partial
section of SSW of Courtemautruy (Fig. 26) suggests that
neither the Sinemurian-/Pliensbachian-boundary nor the
Ibex/Davoei zone-boundary can be found in a belemnite-
and gryphaeid-rich wackestone to packstone or phospho-
ritic limestone/marl-alternation in the area where the Mont
Terri Member is present (compare Breitenmatt Member;
see Jordan 1983; Maisch and Reisdorf 2006a,b). This
definition of the boundary, however, conflicts with the
situation in the Courtemautruy section (Fig. 27), which lies
about 500 m southwest of the type section Les Salins and
which, for the most part, represents the Beggingen
Member.
Fig. 15 Detailed section of the Early Jurassic strata at Wirbligen
(BL), temporary exposure; modified after Reisdorf (2001). a=com-
pare Jordan (1983: section Dottenberg) and Fig. 12; Etzold et al.
(1975), Schlatter (1983b,1991), Brandt (1985); b=revision of
‘‘Paltechioceras s.l.’’; c=Xiphoceras sp. (revision of ‘‘Apoderoceras
sp.’’; loosely collected)
b
The Staffelegg Formation 123
In this section, a Coroniceras sp. (Bucklandi zone) was
found in situ in a bioclastic packstone, which is rich in
gryphaeid oysters at the base and lies below an ammonite
breccia (own data). In the marl layer, which contains gry-
phaeid oysters, limestone- and phosphorite-concretions,
immediately below this packstone, however, the ammonite
Beaniceras sp. of the middle Early Pliensbachian Ibex zone
was found (own data). All additional ammonites found in
this outcrop (all collected loosely, not in situ) are from the
Early Sinemurian. Determination of the ostracod-fauna
collected at this locality did not yield a proper solution for
this unexpected biostratigraphic contradiction (Fig. 27). A
Fig. 16 Detailed section of the Early Jurassic strata at Weisle (BL);
see also Erni (1926) and Goldschmid (1965). a=compare Jordan
(1983: section Dottenberg) and Fig. 12; Etzold et al. (1975); Schlatter
(1983b,1991); Brandt (1985); b=data from Goldschmid (1965);
c=reworked?; d=data from Imhof in Jordan (1983); e=own
data; f=‘‘Arnioceras hartmanni (OPPEL)’’, data from Goldschmid
(1965); g=loosely collected Microderoceras sp. (own data)
124 A. G. Reisdorf et al.
closer examination of the section of Courtemautruy yielded
no distinct evidence for a tectonic overprint by folding or
thrusting.
Based on the available bio- and lithostratigraphical
data from the study area, two differing possible positions
of the boundary between the Beggingen Member and the
Mont Terri Member are shown in the stratigraphic scheme
of the Staffelegg Formation (Fig. 3). In the eastern Mont
Terri region, the position of this boundary is purely based
on lithostratigraphic correlation with areas to the eastern
Folded Jura (= boundary within the Obtusum zone;
Fig. 3).
Based on the section Courtemautruy, the proposed
boundary differs significantly from that of the traditional
stratigraphic nomenclature: for the western Mont Terri
area, the boundary is set at a diachronous erosional base
that reaches from the Ibex zone to the Bucklandi zone (cf.
Frank 1926: 404; Söll 1965: 157; Kant 1972: 29).
4.8 Breitenmatt Member
Names previously in use are given in Figs. 2and 4.
Type locality Breitenmatt (ESE Gansingen; canton Aar-
gau; coord.: 654.040/265.280; Buser 1952; outcrop no
longer accessible).
Underlying strata Grünschholz Member or Fasiswald
Member or Mont Terri Member.
Overlying strata Rickenbach Member or Rietheim
Member or Gross Wolf Member (Erlimoos Bed).
Subdivision Trasadingen Bed and Müsenegg Bed.
Occurrence Northern Switzerland.
Thickness Smallest thickness of ±50 cm in the Tabular
Jura and the Klettgau area (Fig. 9; Schalch 1880: 225;
Buxtorf 1901: 21; Buser 1952: 61p.); thickest occurrences
together with the Müsenegg Bed (±4 m in the Weissen-
stein area; Buxtorf 1907); without the Müsenegg Bed the
thickness can still be well above 2 m (maximum of 2.8 m
in the Klettgau area; Hofmann 1981). In the Mont Terri
area, the Breitenmatt Member is ca. 1.7 m thick.
Chronostratigraphic age Early to Late Pliensbachian
(Jamesoni to Spinatum zone; Jordan 1983; Schlatter 1991,
2000; Maisch and Reisdorf 2006a,b).
Description Interval rich in fossils, consisting of marls
and phosphoritic, predominantly concretionary limestones;
belemnites and gryphaeid oysters dominate the macro-
fauna; presence of ichnofossils results in a spotted
appearance (Figs. 7,9,10,12,13,15 16,17,18,19,20,26;
see Braun 1920; Glauser 1936; Rickenbach 1947; Gsell
1968; Schlatter 1991). Belemnite-rich (so-called belemnite
battlefields) horizons of Early Pliensbachian age containing
glauconite can provide a strong gamma-log signal (Nagra
1984,1990,2001). Partial silicification of calcareous fos-
sils is also often seen (especially in gryphaeid oysters; e.g.,
Mandy 1907; Jordan 1983).
Fig. 16 continued
The Staffelegg Formation 125
126 A. G. Reisdorf et al.
Distinct hardgrounds are sometimes developed in the
Breitenmatt Member (Jordan 1983;Mülleretal.1984;Nagra
1992; Wetzel et al. 1993). In general, the Breitenmatt
Member is significantly thinner than age-equivalent sedi-
ments in southern Germany and eastern France (see
Vonderschmitt 1942; Gwinner et al. 1967: Table 1; Wirth
1968;Etzoldetal.1975; Debrand-Passard 1984). In the Mont
Terri area, the facies of the Breitenmatt Member is limited to
the Davoei zone, including a thin phosphoritic interval that
has been attributed to the Mont Terri Member by Jordan et al.
(2008: fig. 14.31). However, in the remaining study area, the
Breitenmatt Member represents a highly condensed interval
that, together with the Müsenegg Bed, can span all the
ammonite-zones of the Pliensbachian (Fig. 3; see Pratje
1924;Schlatter1991; Wetzel and Reisdorf 2007). In addi-
tion, the Breitenmatt Member has been exposed to
pronounced synsedimentary and postsedimentary erosion
and reworking processes (see Müller et al. 1984;Brandt
1985; Schlatter 1991). It’s biostratigraphical extent is there-
fore only incompletely preserved, especially in the Folded
Jura (Figs. 3,19 and 20; Schlatter 1991;Wetzeletal.1993).
4.8.1 Trasadingen Bed
Names previously in use are given in Fig. 4.
Type locality A now filled up pit 200 m SW of Trasa-
dingen (Kilchstieg, canton Schaffhausen; coord.: 674.100/
280.050; Schalch 1880).
Underlying strata The Trasadingen Bed represents the
uppermost bed of the Breitenmatt Member in the Tabular
Jura and the Klettgau area.
Overlying strata Rickenbach Member.
Occurrence Klettgau area, Zürcher Weinland, Tabular
Jura, ?Mont Terri area.
Thickness Up to 30 cm (Fig. 7).
Chronostratigraphic age Early Pliensbachian (Davoei
zone, Davoei and Oistoceras subzones; Schlatter 1991).
Description Middle grey, splintery marly limestone
which has a spotted appearance because of their burrows
(Figs. 7and 9; Schalch 1880,1916; Schlatter 1991). This
most conspicuous lithostratigraphic horizon of the Brei-
tenmatt Member wedges out laterally and passes into a
calcareous marl (see Brändlin 1911; Schlatter 1991). In the
study area, the biostratigraphy of this bed correlates with
the first and last occurrence of the ammonite Prodacty-
lioceras davoei (SOW.) within a limestone layer (see
Brändlin 1911; Schlatter 1991; see also Fig. 26).
4.8.2 Müsenegg Bed
Names previously in use are given in Figs. 2and 4.
Type locality Müsenegg (S Schinznach; canton Aargau;
coord.: 652.570/253.350; Jordan 1983).
Underlying strata The Müsenegg Bed represents the
uppermost bed of the Breitenmatt Member in the Folded
Jura, except in the Mont Terri area.
Overlying strata Rietheim Member or Gross Wolf
Member.
Occurrence Folded Jura (except for the Mont Terri area).
Thickness From 0 to 70 cm thick (Figs. 17,19,23).
Chronostratigraphic age Late Pliensbachian (Margarita-
tus to Spinatum zone; Fig. 18; see Buxtorf 1907; Hess
1962; Jordan 1983; Maisch and Reisdorf 2006a,b).
Description Condensed phosphoritic marl and/or one
marly limestone bed (Figs. 10,11,13,15 16,17,21,23). The
Müsenegg Bed can be capped by a hardground (Figs. 13,23;
Wetzel et al. 1993). The distinct, irregular light to dark grey
spotted appearance of the Müsenegg Bed is characteristic; it
is caused by the diverse ichnofauna occurring in these strata
(Jordan 1983; Wetzel and Reisdorf 2007). Bivalves of the
genus Gryphaea are the most conspicuous component of the
macrofauna (see Erlimoos Bed).
Therefore, the petrography of the Müsenegg Bed is
sometimes difficult to differentiate from that of older layers
Fig. 17 Detailed section of the Early Jurassic strata at the Fasiswald
clay pit (W Olten). a=compare Jordan (1983: section Dottenberg) and
Fig. 12; see also Etzold et al. (1975); Schlatter (1983b,1991); Brandt
(1985); b=‘‘0.15 m Grauer Kalk, Gryphaea cymbium’ of Celliers
(1907: 17); see also Delhaes and Gerth (1912); c=Microderoceras sp.
(own data); d=ostracods (own data, det. E. Beher 2004): Anchist-
rocheles? tuningensis BEHER,Bairdia molesta;e=Asteroceras sp.
(reworked?, own data, compare Schlatter 1983b;finder:C.A.Meyer,
Basel 2009); f=Aegasteroceras gr. simile SPATH (own data, biostrati-
graphic range according to Schlatter 1983b,1991); g=Echioceras s.l.
(own data); h=ostracods (own data, det. E. Beher 2004): Acrocythere
oeresundensis,Acrocythere michelseni,Bairdia molesta,Bairdia?
extracta,Cytherelloidea modesta,Gramannicythere acclivisulcata,
Gammacythere ubiquita,Isobythocypris tatei,Ledahia sp., Ogmoconcha
amalthei;k=?Echioceras s.l. (own data); l=ostracods (own data,
det. E. Beher 2004): Acrocythere oeresundensis,Bairdia molesta,
Bairdia praehilda,Cardobairdia liassica,Cuneoceratina amlingstadt-
ensis,Cytherella sp., Cytherelloidea lacertosa,Gammacythere ubiquita,
Isobythocypris tatei,Ledahia bispinosa,Nanacythere sp., Ogmoconcha
amalthei,Ogmoconchella sp. 1 (Beher 2004), Polycope sp.; p=os-
tracods (own data, det. E. Beher 2004): Cytherelloidea modesta,Ledahia
bispinosa,Progonoidea auleata;q=Lytoceras sp., Liparoceras
(Parinodiceras)gr.zieteni (TRUEMAN), Aegoceras sp., Derolytoceras
sp. (own data); r=Lytoceras sp.; v=Lytoceras sp., Liparoceras sp.,
Haugia sp.? (own data; see also Erni in Mühlberg 1915); w=faunal list
in Etter (1990); x=Lytoceras sp., Grammoceras (gr. fallaciosum)sp.
(own data); * = in the Fasiswald section, the Müsenegg Bed can even be
completely eroded (see Erni in Mühlberg 1915); ** = see also Erni in
Mühlberg (1915)
b
The Staffelegg Formation 127
128 A. G. Reisdorf et al.
of the Breitenmatt Member. In such case, a certain strati-
graphic classification can only be achieved with index
fossils of the Late Pliensbachian. The biostratigraphically
orderless appearance of index fossils like ammonites, for-
aminifers and ostracods indicates substantial reworking and
bioturbation during the deposition of the Müsenegg Bed
(Hess 1962; Jordan 1983; Wetzel and Reisdorf 2007).
4.9 Rickenbach Member
Names previously in use are given in Figs. 2and 4.
Type locality 700 m NNE of Rickenbach (‘‘Hintern
Egg’=Waldegg, canton Baselland; coord.: 631.180/
260.320; Buxtorf 1901; the section is not accessible at the
present time).
Underlying strata Breitenmatt Member.
Overlying strata Rietheim Member (Schlatter 1982; cf.
Joachim 1970: 16; Etzold et al. 1975).
Occurrence Klettgau area, Zürcher Weinland, Tabular
Jura, ?Bernese Jura (Elber 1921), ?Mont Terri area
(Fig. 26).
Thickness In the Tabular Jura, minimal thicknesses are
probably around 25 cm (Nagra 1990); the questionable
Rickenbach Member in the Mont Terri area is also only a
few decimeters thick (Fig. 26; see Glauser 1936; Bitterli
1960); maximum thickness is significantly above 5 m in
the Klettgau area (Schalch 1880; possibly up to ca. 10 m?,
Hofmann 1981); in the Tabular Jura, thickness of around
2 m is observed (see Buxtorf 1901).
Chronostratigraphic age Late Pliensbachian to Early
Toarcian (Margaritatus to Tenuicostatum zone, Stokesi to
Paltum subzone; Figs. 7,9; Schlatter 1982,1985: 13,
1991).
Description Condensed interval of reduced thickness
(except in the northern Klettgau area; see Schalch 1916;
Gsell 1968; Nagra 2001 and references therein), consisting
of glauconitic, phosphoritic, fossil-rich (especially rich in
belemnites; so-called belemnite battlefields) marls and
concretionary limestones (Figs. 7,9,26; see Brändlin
1911; Pratje 1924; Buser 1952). At the top of the
Fig. 18 Detailed section of the Late Triassic and Early Jurassic strata
at Chuenisrüti and Wuest (BL). a=Obtusussandsteine after Buxtorf
(1907); b=see also Delhaes and Gerth (1912); compare Figs. 13,15,
16;c=‘‘Arietites’ (Erni 1910,1926); d=data from Imhof in
Jordan (1983); compare Etzold et al. (1975), Schlatter (1983b,1991)
and Brandt (1985); e=‘‘Amaltheus costatus’’ (approximate strati-
graphic position after Delhaes and Gerth 1912)
b
Fig. 19 Detailed section of the Early Jurassic strata at Titterten TRG
3 (BL), temporary exposure; modified after Reisdorf (2001)
c
The Staffelegg Formation 129
Rickenbach Member, bluish grey marls (= Blaugraue
Mergel sensu Schlatter 1982) can be found in the Klettgau
area and in the Tabular Jura, greenish grey to blackish grey
clayey marls occur (= Basisschicht of Kuhn and Etter 1994;
Fig. 7), both in small thicknesses.
4.10 Rietheim Member
Names previously in use are given in Figs. 2and 4.
Type locality Rietheim (canton Aargau; coord.: 662.910/
271.865; outcrop in the bed of a stream; see Kuhn and Etter
1994).
Underlying strata Rickenbach Member or Breitenmatt
Member.
Overlying strata Gross Wolf Member.
Subdivision Unterer Stein.
Occurrence Klettgau area, Zürcher Weinland, Tabular
Jura, eastern Folded Jura to Hauenstein area, Weissenstein
area, Bernese Jura, Mont Terri area.
Thickness The thickness of about 10 m in the Klettgau
area decreases towards the south and southwest (Tabular
Jura and Folded Jura) markedly to a few centimetres (see
Elber 1921; Riegraf 1985: 62; Kuhn and Etter 1994; Nagra
2001; Reisdorf 2001). By contrast, the Rietheim Member
attains a thickness of some 20 m in the Mont Terri area
(Fig. 26; Rickenbach 1947; Bitterli 1960; Contini and
Lamaud 1978). Additionally, the Rietheim Member does
not occur areawide in the Folded Jura due to erosion
(Figs. 13,15 16,17,18,19,20,21,23; see Erlimoos Bed;
see Kuhn and Etter 1994; Reisdorf 2001).
Chronostratigraphic age Early Toarcian (Tenuicostatum
to Bifrons zone, Paltum to Crassum subzone; Schlatter
1982; Richter 1987; Kuhn and Etter 1994; Maisch and
Reisdorf 2006a,b).
Description Bituminous, predominantly thinly bedded
shale and marl layers which can be clearly separated from
the under- and overlying members by their brownish, dark
grey to black colour (Figs. 7,910,11,26; see Bitterli
1960; Richter 1987; Kuhn and Etter 1994; Nagra 2001).
Thin limestone beds and calcareous concretions occur in
Fig. 20 Detailed section of the Early Jurassic strata at Limmeren
(N Mümliswil/SO; see section ‘‘Limmernbach SW Ramisgraben’’,
Delhaes and Gerth 1912). a=ostracods (own data, det. E. Beher
2004; for the stratigraphic range of the ostracods see Beher 2004 and
Franz et al. 2009): Acrocythere michelseni,A. oeresundensis,
Gramannicythere acclivisulcata,Gramannicythere sp. 1; b=ostra-
cods (own data, det. E. Beher 2004): Ektyphocythere vitiosa,
Gramannicythere acclivisulcata;c=ostracods (own data, det.
E. Beher 2004): Bythocypris postera,Cytherelloidea lacertosa,C.
modesta,Gammacythere ubiquita,Liasina vestibulifera,Ogmoconcha
amalthei;d=ostracods (own data, det. E. Beher 2004): Bairdia
molesta,Cardobairdia sp. 1 BEHER,Ogmoconcha amalthei;e=
ostracods (own data, det. E. Beher 2004): Kinkelinella sermoisensis,
Ledahia bispinosa,L. mouherense,Ogmoconcha sp., Paracypris sp.
(semidisca?); * = note the erosional unconformity between beds 30
and 31
130 A. G. Reisdorf et al.
addition in the Rietheim Member (Figs. 7,10,11,26; see
Senftleben 1923; Pratje 1924; Kuhn and Etter 1994; Nagra
2001). These are prominent in thin Early Toarcian sections.
Where the Rietheim Member reaches large thickness
(Klettgau area, Mont Terri area), the limestone beds are
outweighed by siliciclastic sediments.
Some of the limestone beds are important lithostrati-
graphic markers that can be correlated as far as France and
southwestern Germany (cf. Riegraf et al. 1984: 14p.; Kuhn
and Etter 1994; Röhl et al. 2001). The most important
marker bed for the Early Toarcian in northern Switzerland,
the Unterer Stein, is usually developed even the Rietheim
Member is very thin (Fig. 9; see Buxtorf 1907; Elber 1921;
Vogel 1934; Jordan 1983).
4.10.1 Unterer Stein (in the rank of a bed)
Names previously in use are given in Fig. 4.
Type locality Bad Boll (SSW Göppingen, southern
Germany; Oppel 1856–1858).
Occurrence Klettgau area, Zürcher Weinland, Tabular
Jura (may wedge out laterally in the Basel Tabular Jura),
eastern Folded Jura to the Hauenstein area, Bernese Jura,
Weissenstein area, Mont Terri area.
Thickness 0 up to 25 cm (e.g., Kuhn and Etter 1994;
Maisch and Reisdorf 2006a,b), in the Mont Terri area
roughly twice as thick (e.g., Rickenbach 1947).
Chronostratigraphic age Early Toarcian (Falcifer zone,
Exaratum subzone; Kuhn and Etter 1994; Röhl et al. 2001).
Description As a rule, the Untere Stein (= erster Stink-
stein; von Wurstemberger 1876) is included in the basal
layer interval of the Rietheim Member (Figs. 7,910,11,
26; e.g., Elber 1921; Pratje 1924; Kuhn and Etter 1994). It
may also represent the basal layer of the Rietheim Member
(e.g., in the Weissenstein area; Buxtorf 1907; Vogel 1934)
and/or its topmost bed, for instance in the eastern Folded
Jura (Jordan 1983). It is a distinct, bituminous limestone
Fig. 21 Detailed section of the Early Jurassic strata at Säge (S
Seewen/SO), drawn after Hess (1962, pers. comm. 2010). a=(A, B,
C) faunal list of the ostracod and foraminiferal assemblages in Hess
(1962), compare Riegraf (1985); see also Bitterli (1960), Richter
(1987) and Tröster (1987)
Fig. 22 Detailed section of the Late Triassic and Early Jurassic strata
at Schoren (BE). a=‘‘Insektenmergel’’ (compare Fig. 24); b=beds
rich in Plagiostoma (Rollier 1910); c=reworked? (see Schloz 1972;
Schlatter 1988 and Fig. 7)
The Staffelegg Formation 131
132 A. G. Reisdorf et al.
bed exhibiting clear lamination and having conchoidal-
splintery fractures (Kuhn and Etter 1994; Etter and Kuhn
2000).
4.11 Gross Wolf Member
Names previously in use are given in Figs. 2and 4.
Type locality Gross Wolf clay pit (canton Aargau; coord.:
645.725/253.350; Jordan 1983).
Underlying strata Rietheim Member or Breitenmatt
Member.
Overlying strata Opalinus-Ton.
Subdivision (1) The Gross Wolf Member has the Gipf
Bed or the Erlimoos Bed, respectively, at the base. Which
of these two basal layers that is developed is strongly
dependent on the next lower member. (2) In the eastern
Folded Jura, but also in the occurrences in the Molasse
basin to the south, the Eriwis Bed forms the uppermost bed
of the Gross Wolf Member (see Jordan 1983; Nagra 1992).
Occurrence Northern Switzerland.
Thickness The minimum thickness is ±60 cm (eastern
Folded Jura; Figs. 13,16,19); maximum thickness is
around 5.3 m in the eastern Folded Jura and 6.1 m in the
Molasse basin (Fig. 11; Jordan 1983; Nagra 2001; some
19 m in the Buix well?, Schmidt et al. 1924: 13).
Chronostratigraphic age Late Toarcian to Early Aale-
nian (Variabilis to Opalinum zone; Tröster 1987; Nagra
1989,1990,1992; Etter 1990; Maisch and Reisdorf
2006a,b).
Description Condensed interval consisting of grey phos-
phoritic marls and concretionary marly limestones with
pyrite and abundant macrofossils (especially belemnites
and ammonites; Figs. 910,11,12,13,15 16,17,18,19,
20,21; see Elber 1921; Vogel 1934; Tröster 1987; Reisdorf
2001). However, unlike the sediments of the Sinemurian
and Pliensbachian, the Gross Wolf Member seems to be
almost completely barren of gryphaeid oysters (Senftleben
1923: 22 mentions a possible exception). The fossil-rich
basal and topmost beds of the Gross Wolf Member deserve
special attention (= Gipf Bed or Erlimoos Bed respectively;
Eriwis Bed). They are stratigraphic index beds in the study
Fig. 23 Detailed section of the Early Jurassic strata at Lucheren
(BE). a=beds rich in Plagiostoma (Rollier 1910); b=bluish chert
nodules (see also Buxtorf 1907; Fischer and Luterbacher 1963 =28);
c=whitish chert nodules; d=bluish and grey chert nodules;
e=greyish black chert nodules; f=bluish and grey to dark grey
chert nodules; p=compare Figs. 12,13,15,16,17,18;w=for the
biostratigraphic range of Lytoceras cf. fimbriatum (SOW.) see Schlatter
(1991)
Fig. 23 continued
b
The Staffelegg Formation 133
area (see Jordan 1983; Nagra 1992; Kuhn and Etter 1994).
Also, sediments of the Thouarsense zone have been
observed, amalgamated in an ammonite- and belemnite-
rich limestone bed in the thin occurrences in the Hauen-
stein—Passwang area (Figs. 13,17,18,20; cf. Fischer
1964: 86p.; Etzold 1980; Riegraf et al. 1984: 61).
The boundary between the Gross Wolf Member and the
Opalinus-Ton is not identical to the biostratigraphic
boundary between the Early and Middle Jurassic. The latter
can lie either within the Gross Wolf Member or within the
Opalinus-Ton in northern Switzerland (see Nagra 1984,
1989,1990; Etter 1990; Reisdorf et al. subm.; cf.
Fig. 24 Detailed section of the Late Triassic and Early Jurassic strata
at Käspisbergli (Günsberg; SO). a=beds rich in Plagiostoma
(Rollier 1910); b=‘‘Grès à Cardinia, Gressly 1862’’ in Waagen
(1864); c=‘‘Calcaire à Gryphées Gressly 1862’’ in Waagen (1864);
d=‘‘Schlotheimia angulata’ (Buxtorf 1907); e=see also Bitterli
and Strub (1975); f=loosely collected: Euagassiceras sp. (own
data); ‘A. bisulcatus’’ (see Waagen 1864); * = data from Buxtorf
(1907)
134 A. G. Reisdorf et al.
Franz and Nitsch 2009). The sedimentological expression
of the boundary between these two stratigraphic units is
mainly characterised by a sharp change in colour from
predominantly grey marl in the Gross Wolf Member to
dark grey to black mica-bearing, silty terrigenous mudstone
in the Opalinus-Ton (see Etter 1990; Nagra 2001; Wetzel
and Allia 2003).
4.11.1 Gipf Bed
Names previously in use are given in Figs. 2and 4.
Type locality Gipf clay pit (SW Frick; canton Aargau;
coord.: 642.125/261.775; Rieber 1973).
Underlying strata Rietheim Member.
Overlying strata The Gipf Bed forms the basal layer of
the Gross Wolf Member.
Occurrence The Gipf Bed is only developed within the
area where the Rietheim Member is present (Fig. 3):
Klettgau area, Zürcher Weinland, Tabular Jura, eastern
Folded Jura and possibly also in the Mont Terri area. In the
Hauenstein area, there is a significant reduction in thick-
ness and facies interfingering with the Erlimoos Member is
observed (see Jordan 1983; Wetzel and Reisdorf 2007).
Thickness 0 to some 175 cm (see Jordan 1983; Richter
1987; Tröster 1987).
Chronostratigraphic age early Late Toarcian (Variabilis
zone; Rieber 1973; Jordan 1983; cf. Knitter and Ohmert
1983; Knitter and Riegraf 1984; Richter 1987; Etzold et al.
1989; Kuhn and Etter 1994).
Description The facies of the Gipf Bed varies widely in
the study area. This facies variation is mainly related to the
thickness of the Gipf Bed. Essentially, the observed facies
are condensed, yellowish to grey, glauconite-bearing,
sometimes pyritic and sometimes bituminous marls, rich in
fossils (especially belemnites; Jordan 1983; Nagra 1990;
Kuhn and Etter 1994; cf. Fischer 1964). Concretionary
limestone layers of up to about 20 cm thickness can be
intercalated in the thickest intervals of these marls (Richter
1987; Tröster 1987; Kuhn and Etter 1994; cf. Fischer
1964). In addition, the Gipf Bed can contain limestone
clasts that originate from the Rietheim Member or, in the
Fig. 25 Detailed section of the Late Triassic and Early Jurassic strata
at Hautes Roches (BE). ?=uncertain biostratigraphic affiliation
(compare with Fig. 22); a=‘‘Insektenmergel’? (compare with
Fig. 22); b=see also Erni (1910,1926) vs. Vollrath (1924: 22)
and Frank (1930: 385); c=see also Erni (1910,1926) and Elber
(1921); d=loosely collected Waehneroceras sp. (= Curviceras),
reworked? (own data); e=Arietites (Arietites) cf. bisulcatus (BRUG-
IÉRE), data from B. Hostettler (FPJ, 2005); f=Coroniceras sp.
(loosely collected, own data); p=Arnioceras cf. oppeli (GUÉRIN-
FRANIATTE), Arnioceras cf. ceratitoides (QU.) (own data); Arnioceras
cf. oppeli (GUÉRIN-FRANIATTE), Arnioceras cf. falcaries (QU.), Arnio-
ceras cf. robustum (Qu.), data from B. Hostettler (FPJ, 2005);
w=Microderoceras sp., Asteroceras cf. alamanicum (GUÉRIN-FRA-
NIATTE), data from B. Hostettler (FPJ, 2005); x=ostracods (own
data, det. E. Beher 2004): Acrocythere oeresundensis,Bairdia?
extracta,Bairdia molesta,Bythocypris postera,Isobythocypris tatei,
Ledahia bispinosa,Ogmoconcha aff. amalthei,Paracypris sp.,
Paracypris alemannica
b
The Staffelegg Formation 135
136 A. G. Reisdorf et al.
case of oolithic clasts, may even be derived from the Gipf
Bed itself (Richter 1987 vs. Rieber 1973; Kuhn and Etter
1994). The bituminous facies is characterised by one bio-
turbated layer, where it is thinly developed, and even by
several, if thicker (Riegraf et al. 1984: 61pp.; Richter
1987), which then resemble the youngest layers of the
Rietheim Member (e.g., Fucoidengrenzbank of Kuhn and
Etter 1994; see Richter 1987). In the thinnest occurrences
(40 cm and less) that are occur in the western Tabular Jura
and the eastern Folded Jura, the marly facies of the Gipf
Bed can merge laterally with a ferruginous or iron oolithic
limestone which is occasionally overgrown by stromato-
lites (Fig. 10, Rieber 1973; Jordan 1983; Kuhn and Etter
1994; cf. Knitter and Riegraf 1984; Riegraf 1986).
4.11.2 Erlimoos Bed
Names previously in use are given in Figs. 2and 4.
Type locality Erlimoos clay pit (NE Olten; canton
Solothurn; coord.: 633.400/247.050; Fig. 13).
Underlying strata Rietheim Member (including Unterer
Stein) or Breitenmatt Member (including Müsenegg Bed).
Overlying strata The Erlimoos Bed forms the base of the
Gross Wolf Member.
Occurrence Hauenstein area to Bernese Jura and adja-
cent areas to the south in the Molasse Basin (see Jordan
1983; Nagra 1992; Figs. 17,20). In the Hauenstein area
facies interfingering occurs between the Erlimoos Bed and
the Gipf Bed (see Kuhn and Etter 1994; Maisch and
Reisdorf 2006a,b).
Thickness 0–40 cm (e.g., Figs. 19,20).
Chronostratigraphic age Early Late Toarcian (Variabilis
zone; Imhof in Jordan 1983; Kuhn and Etter 1994; Reisdorf
2001).
Description Strongly condensed, phosphoritic, glauco-
nitic marls rich in fossils or marly limestone of small
thickness (Figs. 12,13,17 18,19,20,21; see Erni in
Mühlberg 1915; Jordan 1983; Kuhn and Etter 1994).
In addition, clasts and even boulders occur, as well as
macrofossils that display evidence of reworking, such as
phosphatised ammonites (Fig. 19; see Erni in Mühlberg
1915; Imhof in Jordan 1983; cf. Groschopf et al. 1977:
115p.). In the Hauenstein area, the Erlimoos Bed also
contains disarticulated and often fragmented reptilian
skeletal elements (= exhumed and reworked vertebrate
fragments of the Rietheim Member?; Figs. 13,17; see
Meyer and Furrer 1995; Reisdorf et al. subm.).
The biostratigraphically orderless appearance of index
fossils (ammonites, ostracods, foraminifers) indicates sub-
stantial reworking and bioturbation during the formation of
the Erlimoos Bed (see Hess 1962; Jordan 1983; Richter
1987; Wetzel and Reisdorf 2007). In some areas, the erosive
base cuts down to the Ibex zone, possibly even down to the
Jamesoni zone of the Breitenmatt Member (Figs. 3,17; see
Erni in Mühlberg 1915; Jordan 1983; Wetzel et al. 1993).
Fig. 27 Detailed section of the Early Jurassic strata at Courtemautruy
(JU). a=no indications for disturbances caused by postjurassic
tectonic processes or landslides could be detected in this sedimentary
succession (section established by Reisdorf 2005); b=compare
Buxtorf (1910); c=loosely collected Angulaticeras angulatoides
(QU.); d=ostracods (own data, det. E. Beher 2004): Bairdia fortis,
Isobythocypris tatei,Ledahia sp., Ogmoconcha sp.; e=loosely
collected Arietites sp., Arietites s.l.; f=loosely collected Paraco-
roniceras s.l.; gostracods (own data, det. E. Beher 2004): Bairdia
molesta,Cardobairdia liasica,Ledahia sp., Pseudohealdia? sp.;
k=Beaniceras sp.; p=ostracods (own data, det. E. Beher 2004):
Bairdia fortis;v=Coroniceras sp.; w=ostracods (own data, det.
E. Beher 2004): Bairdia molesta,Cardobairdia liasica,Isobythocy-
pris tatei;x=ostracods (own data, det. E. Beher 2004): Bairdia
fortis,Bairdia molesta,Bairdia michelseni?, Bairdiacypris anisica
brevis,Bythocypris postera,Cardobairdia sp. 3, Cardobairdia
liasica,Isobythocypris tatei,Ledahia sp., Ogmoconcha sp., Ostracode
E, Paracypris?redcarensis (Beher 2004)
Fig. 26 Detailed section of the Early Jurassic strata at Les Salins (SE
Courtemautruy/JU). a=compare Fig. 27;b=compare Richter
(1987: 141), Pharisat et al. (1993) and Kuhn and Etter (1994);
c=Aegoceras cf. maculatum (Y. & B.); note the large minimal
thickness solely for the sediments of the Davoei zone (at least 7.8 m);
d=Becheiceras sp., Prodactylioceras davoei (SOW.); e=Lytoceras
fimbriatum (SOW.), Becheiceras sp., Androgynoceras capricornus
(SCHL.), Oistoceras angulatum (QU.), Prodactylioceras davoei (SOW.),
P. davoei enode (QU.); f=Lytoceras fimbriatum (SOW.), Amaltheus
cf. stokesi (Sow.), Amaltheus bifurcus (HOWARTH), see also Schmidt
et al. (1924), Glauser (1936) and Vonderschmitt (1942); p=Dacty-
lioceras sp., Discina sp.; w=Dactylioceras sp.
b
The Staffelegg Formation 137
The Erlimoos Bed and certain phosphoritic layers of the
Pliensbachian (see Breitenmatt Member and Müsenegg
Bed) may have a quite similar appearance. In contrast to
the Breitenmatt Member (including the Müsenegg Bed),
the Erlimoos Bed is, however, often overgrown by sponges
in phosphoritic preservation and pyritised stromatolites:
Even larger surfaces may be encrusted here without sig-
nificant gaps (Figs. 13,17,18,20; see Jordan 1983; cf.
Ohmert 1976; Etzold 1980). This stratigraphic level is
detectable even in drill cores because of its peculiar facies.
An additional feature of the Erlimoos Bed is the absence of
gryphaeid oysters, unlike the Breitenmatt Member.
4.11.3 Eriwis Bed
Names previously in use are given in Figs. 2and 4.
Synonym Erimis Bed (Jordan et al. 2008).
Type locality Eriwis (canton Aargau; coord.: 652.000/
256.250; Etter 1990; Kuhn and Etter 1994).
Underlying strata The Eriwis Bed forms the topmost
layer of the Gross Wolf Member.
Overlying strata Opalinus-Ton (e.g., Etter 1990; Wetzel
and Allia 2003; Franz and Nitsch 2009).
Occurrence Eastern Folded Jura and adjacent areas to
the south in the Molasse basin of the Swiss Midland
(Fig. 23; see Buxtorf 1907; Jordan 1983; Nagra 1992;
Pfirter 1997).
Thickness ?0 to ca. 30 cm (Figs. 19,23; see Fischer and
Luterbacher 1963; Jordan 1983).
Chronostratigraphic age Late Toarcian (Levesquei zone;
Aalensis subzone; Etter 1990; Reisdorf et al. subm.).
Description Only a few centimetre thick, condensed
horizon of the Aalensis subzone (see Etter 1990; Wetzel
and Reisdorf 2007; Reisdorf et al. subm.; cf. Etzold
1980). Occasionally brownish, sometimes reddish, dark
grey marl layer which may pass laterally into a marly
limestone (Figs. 11 11,12,13,15 16,17,18,23). This
phosphoritic condensed horizon is characterised by its
abundance of ammonites (especially the genera Cottes-
woldia and Pleydellia, among others also C. aalensis
ZIETEN 1832) and belemnites (Jordan 1983; Etter 1990;
Nagra 1992; cf. Etzold et al. 1989). Based on these char-
acteristics, the Eriwis Bed is clearly and visibly separated
from the overlying Opalinus-Ton (see Jordan 1983; Etter
1990; Reisdorf 2001). The latter is characterised by dark
grey to black, partially silty to sandy terrigenous mudstone
and marl with mica (Etter 1990; Reisdorf 2001; Wetzel and
Allia 2003). In the Schafisheim well the lithostratigraphic
boundary between the Gross Wolf Member and the
Opalinus-Ton is set below a 15 cm thick, reworked horizon
that contains iron ooids and Mid-Jurassic foraminifera.
This mudstone horizon is noteworthy because it also
contains corroded ammonites of the Late Toarcian
(Cotteswoldia aalensis ZIETEN 1832; Tröster 1987; Nagra
1992).
5 Concluding remarks
The total thickness of the Early Jurassic deposits in
northern Switzerland is around 25–50 m and thus is sig-
nificantly thinner than in the adjacent areas of Germany
and France (Fig. 6). Lithostratigraphic units of the Early
Jurassic that are conformable with the southwest German
or eastern French nomenclature therefore only occur in
reasonable thickness in the northernmost Tabular Jura
(Hofmann 1981; Debrand-Passard 1984; Hofmann et al.
2000,2002; Bloos et al. 2005). The often small thickness of
the majority of the northern Swiss Early Jurassic strata,
however, only qualify the complete stratigraphic interval as
a mappable unit (= Staffelegg Formation).
In the Klettgau area, the Tabular Jura and the eastern
Folded Jura, up to 90% of the total thickness is represented
by Sinemurian deposits. By contrast, Pliensbachian and
Toarcian deposits account for up to 70% of the total
thickness of the Early Jurassic in the western Folded Jura
(Mont Terri area). The Early Jurassic strata of the Klettgau
area and the Tabular Jura show strong analogies to the
facies in southwestern Germany. Significant changes in
facies occur towards the south, accompanied by a gradual
decrease in thickness (Figs. 3,6). In addition, stratigraphic
gaps occur on a local to regional scale throughout northern
Switzerland (Fig. 3). Such hiatus may span a subzone to a
stage in time.Consequently it is not always possible to
fully reconcile the Early Jurassic sediments, especially of
the Folded Jura, with the stratigraphic nomenclature of
southwestern Germany (cf. Bloos et al. 2005; Schmid et al.
2008). Especially, in the southernmost and westernmost
Folded Jura and in the Molasse Basin abrupt facies changes
occur. The impression of strongly differentiated facies
patterns is intensified by the folding of the Jura Mountains
that led to a shortening of original distances (cf. Laubscher
1965,2008).
In the westernmost part of the study area (Mont Terri
area) the facies and thickness of the Early Jurassic strata
show stronger affinities to those found in eastern France
than in southwestern Germany (cf. Vonderschmitt 1942;
Théobald 1967; Debrand-Passard 1984; Pharisat et al.
1993). The most striking is that thickness of Sinemurian to
Toarcian strata is remarkably thicker than to the East, in
particular the Early Toarcian bituminous deposits (Fig. 26;
Rickenbach 1947; Bitterli 1960; Contini and Lamaud
138 A. G. Reisdorf et al.
1978). The strata of the Late Sinemurian to Early Pliens-
bachian in the Mont Terri area distinctly differ from the
sediments of the same age to the east (Fig. 3). The lithol-
ogy in the Mont Terri area requires a new member (= Mont
Terri Member) that differs from the previous stratigraphic
nomenclature of northern Switzerland. Because of lacking
outcrops in a area east of the Mont Terri it is impossible to
precisely define the lateral extent of the Mont Terri
Member. The maximum age of this member in the eastern
Mont Terri area is Obtusum zone, based solely on litho-
stratigraphic correlation. The dating in the western Mont
Terri area is, however, based on an ammonite of the Ibex
zone that was found just above strata of the Semicostatum
zone (Fig. 27). Consequently, the base of the Mont Terri
Member is heterochronous. Following this interpretation,
the erosion during the Early Pliensbachian that cut down
into the strata of Early Sinemurian age is likely to have
occurred in some parts of the Mont Terri area (Fig. 3).
The Early Jurassic strata in northern Switzerland can be
subdivided into three facies domains: (1) Klettgau area,
Tabular Jura and immediately adjacent areas of the
Molasse basin (mainly corresponding to the facies in
southwestern Germany, i.e. Swabian Basin), (2) eastern
Folded Jura and immediately adjacent area of the Molasse
basin (with a discrete ‘‘northwestern Swiss facies’’ of the
Swabian Basin) and, (3) Mont Terri area (Folded Jura;
facies that shows a strong affinity to the eastern Paris Basin
in its stratigraphic architecture).
The main characteristics of the stratigraphic architecture
of these three facies domains are represented by 11 mem-
bers and 9 beds in the Staffelegg Formation. The members
that have been defined for the Folded Jura differ signifi-
cantly from the classification schemes previously in use for
the Early Jurassic of northern Switzerland. The beds
defined within the Staffelegg Formation serve as connect-
ing elements between the traditional and new stratigraphic
nomenclature. They represent supraregional marker beds
with the exception of the Müsenegg Bed and the Eriwis
Bed. Some of the beds are developed as thin strata in the
sense of allostratigraphy (Hallau Bed, Müsenegg Bed, Gipf
Bed; cf. Lutz et al. 2005). Namely the Hallau Bed
(Planorbis to Liasicus zone), Schleitheim Bed (Angulata
zone), Gächlingen Bed (Bucklandi zone), Trasadingen Bed
(Davoei zone) and the Unterer Stein (Falcifer zone) have
lithostratigraphic equivalents in southwestern Germany
(Fig. 2).
Only one of these beds, Unterer Stein, can be traced with
some confidence to the Mont Terri area and from there to
France (cf. Riegraf et al. 1984: 14p.; Pharisat et al. 1993;
Kuhn and Etter 1994). The questionable Trasadingen Bed
in the Mont Terri area (Fig. 26) could be correlatable to the
so-called Banc à Davoei in France (cf. Debrand-Passard
1984: 136). The Gipf Bed and Erlimoos Bed, in contrast,
correlate with erosion horizons of the Variabilis zone in
southwestern Germany and eastern France (cf. Rieber
1973; Debrand-Passard 1984; Knitter and Ohmert 1983).
The Gipf Bed and Erlimoos Bed occur in characteristic
development south of the Rhine River, in particular when
they are thin. The same is true for the Müsenegg Bed
(Margaritatus to Spinatum zone) and the Eriwis Bed
(Aalensis subzone) that only occur in the Folded Jura and
in the Molasse Basin to the south.
The Staffelegg Formation is introduced for Early
Jurassic sediments in northern Switzerland between the
Doubs River and the Mount Weissenstein in the West and
the Randen Hills north of the city of Schaffhausen in the
East. To the South and East, in boreholes in the Molasse
Basin, a transition to a facies more proximal to the Vin-
delician land mass was observed (cf. Büchi et al. 1965;
Trümpy 1980; Stoll-Steffan 1987). Early Jurassic strata
underneath the frontal part of Imbricated Molasse (e.g.,
well Entlebuch 1; Vollmayr and Wendt 1987) and those of
the Lake Constance area cannot be consistently subdivided
into the members and beds of the Staffelegg Formation (cf.
Stoll-Steffan 1987). For these occurrences additional
lithostratigraphic units are required to account for the
coastal facies of the Swabian Basin. An extension of the
Staffelegg Formation to the area of Lake Bienne (well
Hermrigen, coord.: 584.600/214.880) and to areas further
to the west is not advisable, however, since the Early
Jurassic occurrences in these areas are developed in the
facies of the Rhodanian Basin (cf. Fischer and Luterbacher
1963; Büchi et al. 1965; Jordan et al. 2008 and references
therein).
Acknowledgments E. Beher (Heidelberg) and K. Haldimann
(Basel) prepared and identified the ostracods. The thoughtful reviews
by R. Burkhalter (Bern), H. Furrer (Zürich), W. Heckendorn (Brugg),
and editorial work by D. Marty (Basel) helped much to improve the
manuscript. The manuscript benefited from the critical comments of
C. Klug (Zürich), K. Waite (Stavanger), D. Dichelle (Leipzig) and
D.L. Flentje (Gainesville/FL). P. Dèzes (Bern) and Y. Gouffon (Bern)
wrote the French abstract. Many persons and institutions have
contributed to this study in various ways. Some of the following
provided bio- and lithostratigraphic data, while others gave valuable
input and discussions: R. Allenbach (Bern/Zürich), V. Allia (Basel),
M. Benbrahim (Neuchâtel), D. Bernoulli (Basel), P. Bitterli-Dreher
(Endingen), H. Bläsi (Bern), G. Bloos (Stuttgart), T. Bolinger
(Olsberg), P. Bossart (St.-Ursanne), R. Burkhalter (Bern), H. Dres-
mann (Basel), W. Etter (Basel), A. Etzold (Freiburg i.Br.), H. Fischer
(Ettingen), M. Franz (Freiburg i.Br.), H.-P. Funk (Baden), H. Furrer
(Zürich), C.L. Graf (Zürich), M. Häring (Pratteln), M.J. Harris
(Scorn), H. Hartmann (Pratteln), L. Hauber (Zollikofen), W. He-
ckendorn (Brugg), H. Hess (Basel), B. & R. Hostettler (Glovelier), P.
Huggenberger (Basel), B. Imhof (Basel/Trimbach), O. Kuhn (Zürich),
F. König (Oberbözberg), P. Lahusen (SEAG), M.W. Maisch (Stutt-
gart), B. Martin (Bern), C.A. Meyer (Basel), M. Meyer (Basel),
E. Nitsch (Stuttgart), C. Obrist (Stein), B. Pabst (Zürich), M. Pfiffner
(Bern), U. Pfirter (Muttenz), H. Rieber (Zürich), W. Riegraf (Mün-
ster), A. & H.-J. Röhl (Tübingen), K.-M. Tanner (Liestal), B. Vögtli
(Basel), R. Wiss (Basel/Stavanger), D. Wijker (Basel/Harstad),
The Staffelegg Formation 139
M. Ziegler (Zürich/Binningen) and W. Zumsteg (Rheinfelden).
Geologisch-Paläontologischer Arbeitskreis Frick, Bundesamt für
Landestopografie swisstopo—Bereich Landesgeologie, CSD Ingeni-
eure AG, Holinger AG/Büro Schmassmann (Liestal), Feldschlösschen
Getränke AG Rheinfelden, ExxonMobil Production Deutschland
GmbH (Hannover), Geotechnisches Institut Basel, Geotechnisches
Institut GmbH Weil a.R., Geothermal Explorers International Ltd.,
Landesamt für Geologie, Rohstoffe und Bergbau Freiburg i.Br., Mont
Terri Project, Nationale Genossenschaft für die Lagerung radioaktiver
Abfälle, POC Olten AG, Schweizer Rheinsalinen AG, Schweizerische
Bundesbahnen SBB, SEAG Aktiengesellschaft für schweizerisches
Erdöl, Wintershall Holding AG (Barnstorf), Tonwerke Keller A.G.
Frick. This study was financially supported by the Schweizerischer
Nationalfonds zur Förderung der wissenschaftlichen Forschung
(grants Nos. 20-50484.97, 2000-56640.99 and 2000-064567 to
A. Wetzel), Nationale Genossenschaft für die Lagerung radioaktiver
Abfälle and the Freiwillige Akademische Gesellschaft (Basel). All
these contributions are gratefully acknowledged.
References
Achilles, H., & Schlatter, R. (1986). Palynostratigraphische Unter-
suchungen im ‘‘Rhät-Bonebed’’ von Hallau (Kt. Schaffhausen)
mit einem Beitrag zur Ammonitenfauna im basalen Lias.
Eclogae geologicae Helvetiae, 9, 149–179.
Aeppli, A. (1915). Geschichte der Geologischen Kommission
der Schweizerischen Naturforschenden Gesellschaft. Basel:
Kommissions-Verlag von Georg & Cie.
Altmann, H. J. (1965). Beiträge zur Kenntnis des Rhät-Lias-Grenz-
bereichs in Südwest-Deutschland. Ph.D. dissertation, University
of Tübingen, Tübingen.
Andrey, J.-D. (1974). Geologie de la partie orientale du massif des
Bruns (Préalpes fribourgeoises). Ph.D. dissertation, University
of Fribourg, Switzerland.
Arkell, W. J. (1956). Jurassic Geology of the World. Edinburgh and
London: Oliver & Boyd.
Bader, F. (1925). Beiträge zur Geologie des nordöstlichen Tafeljura
zwischen Aare und Rhein. Ph.D. dissertation, University of
Zurich, Zürich, Switzerland.
Bath, A., & Gautschi, A. (2003). Geological Setting and Sample
Locations. In F.J. Pearson, D. Arcos, A. Bath, J.-Y. Boisson,
A.M. Fernández, H.-E. Gäbler, E. Gaucher, A. Gautschi, L.
Griffault, P. Hernán & H.N. Waber (Eds.): Mont Terri Project:
Geochemistry of Water in the Opalinus Clay Formation at the
Mont Terry Rock Laboratory. Berichte des BWG, Serie
Geologie, 5, (pp. 30–35). Bern: Bundesamt für Bauten und
Logistik Vertrieb Publikationen.
Beher, E. (2004). Ostracodenfauna und Biostratigraphie im Ober-
Sinemurium von Süddeutschland und Nordschweiz. Stuttgarter
Beiträge zur Naturkunde Serie B (Geologie und Paläontologie),
349, 1–171.
Berg, D. (1961). Geologie des Schwarzwaldrandes zwischen
Badenweiler und Kandern. Berichte der Naturforschenden
Gesellschaft zu Freiburg i.Br., 51, 5–40.
Beutler, G., Ernst, R., Heunisch, C., Kelber, K.-P., Oppermann, K.,
Schulz, E., & Seegis, D. (2005). Biostratigraphie. In Deutsche
Stratigraphische Kommission (Ed.), Stratigraphie von Deutsch-
land IV, Keuper, Courier Forschungsinstitut Senckenberg, 253
(pp. 31–64). Stuttgart: E. Schweizerbart’sche Verlagsbuchhand-
lung (Nägele u. Obermiller).
Bitterli, P. (1960). Bituminous Posidonienschiefer of Mont Terri, Jura
Mountains. Bulletin der Schweizerischen Vereinigung von
Petroleum-Geologen und -Ingenieuren, 26, 41–48.
Bitterli, T. (1992). Die tektonische Materialbilanz im östlichen
Faltenjura. Modellierung der dreidimensionalen Kinematik der
Weissenstein-, Farisberg- und Passwang-Antiklinalen und
Rückschlüsse auf Sockelstrukturen. Ph.D. dissertation, Univer-
sity of Basel, Basel.
Bitterli, T., Graf, H. R., Matousek, F., & Wanner, M. (2000).
Geologischer Atlas der Schweiz 1:25 000, Blatt 1050 Zurzach
(Atlasblatt 102), Erläuterungen. Bern: Bundesamt für Wasser
und Geologie.
Bitterli, P. H., & Strub, G. (1975). Bericht über die Exkursion der
Schweiz paläontologischen Gesellschaft ins Balmberggebiet.
Eclogae geologicae Helvetiae, 68, 77–682.
Bitterli-Brunner, P., & Fischer, H. (1988). Geologischer Atlas der
Schweiz 1:25 000, Blatt 1067 Arlesheim (Atlasblatt 80),
Erläuterungen. Bern: Landeshydrologie und -geologie.
Bloos, G. (1976). Untersuchungen über Bau und Entstehung der
feinkörnigen Sandsteine des schwarzen Jura a(Hettangium und
tiefstes Sinemurium) im schwäbischen Sedimentationsbereich.
Arbeiten aus dem Institut für Geologie und Paläontologie an der
Universität Stuttgart N.F., 71, 1–269.
Bloos, G. (1979). Über den Jura am Großen Haßberg (Unterfranken,
N-Bayern) mit Bemerkungen zum Rät. Stuttgarter Beiträge
zur Naturkunde, Serie B (Geologie und Paläontologie), 44,
1–53.
Bloos, G. (1981). Zur Stratigraphie und Ammonitenfauna des
marinen Hettangiums (Unterer Lias) in Oberfranken (N-Bayern).
Stuttgarter Beiträge zur Naturkunde, Serie B (Geologie und
Paläontologie),78, 1–59 pp.
Bloos, G. (1999). Neophyllites (Ammonoidea, Psiloceratidae) in
the earliest Jurassic of South Germany. Neues Jahrbuch für
Geologie und Paläontologie Abhandlungen, 211, 7–29.
Bloos, G., Dietl, G., & Schweigert, G. (2005). Der Jura Süddeutsch-
lands in der Stratigraphischen Tabelle von Deutschland 2002.
Newsletters on Stratigraphy, 41, 263–277.
Brändlin, E. (1911). Zur Geologie des nördlichen Aargauer Tafeljuras
zwischen Aare und Fricktal. Verhandlungen der Naturforschen-
den Gesellschaft in Basel, 22, 57–148.
Brandt, K. (1985). Sea-level changes in the Upper Sinemurian and
Pliensbachian of Southern Germany. In U. Bayer & A. Seilacher
(Eds.), Lecture Notes in Earth Sciences, Sedimentary and
Evolutionary Cycles, 1 (pp. 113–126). New York: Springer.
Braun, L. (1920). Geologische Beschreibung von Blatt Frick.
Verhandlungen der Naturforschenden Gesellschaft in Basel,
31, 189–242.
Brenner, W. (1986). Bemerkungen zur Palynostratigraphie der Rhät-
Lias-Grenze in SW-Deutschland. Neues Jahrbuch für Geologie
und Paläontologie, Abhandlungen, 173, 131–166.
Büchi, U. P., Lemcke, K., Wiener, G., & Zimdars, J. (1965).
Geologische Ergebnisse der Erdölexplorationauf das Mesozoikum
im Untergrund des schweizerischen Molassebeckens. Bulletin
der Schweizerischen Vereinigung von Petroleum-Geologen und
-Ingenieuren, 15,738.
Bureau der Geologischen Kommission. (1930). GeologischerAtlas der
Schweiz 1:25 000, Geologische Kommission der Schweizerischen
Naturforschenden Gesellschaft. Geologische Kommission der
Schweiz. naturforsch. Gesellschaft, Geologischer Atlas der Schweiz
1:25000, Blättern 92 Movelier, 93 Soyhières, 94 Delémont,
95 Courrendlin (Atlasblatt 1), Erläuterungen nach Angaben
von H. Liniger & W.T. Keller. Bern: A. Francke A.G.
Bureau der Geologischen Kommission. (1936). Geologischer Atlas
der Schweiz 1:25 000, Blätter 92 Movelier, 93 Soyhières, 94
Delémont, 95 Courrendlin (Atlasblatt 1) Erläuterungen nach
Angaben von H. Liniger und W.T. Keller. Bern: A. Francke AG.
Buser, H. (1952). Beiträge zur Geologie von Blatt Bözen (Nr. 33) im
Schweizerischen Tafeljura unter besonderer Berücksichtigung
140 A. G. Reisdorf et al.
des Rhät und unteren Lias in den Nachbargebieten. Ph.D.
dissertation, University of Zurich, Zürich.
Buxtorf, A. (1901). Geologie der Umgebung von Gelterkinden im
Basler Tafeljura. Beiträge zur Geologischen Karte der Schweiz,
N.F., 11. Lieferung, 1–106.
Buxtorf, A. (1907). Geologische Beschreibung des Weissensteintun-
nels und seiner Umgebung. Separatdruck aus den Beiträgen zur
Geologischen Karte der Schweiz, N.F., 21. Lieferung, 1–125.
Buxtorf, A. (1910). Einige Bemerkungen über das Rhät im schwei-
zerischen Juragebirge und den Gebirgsbau der Vorbourg-Kette.
Eclogae geologicae Helvetiae, 11, 358–365.
Buxtorf, A. (1940). Die Anfänge der geologischen Erforschung des
nordschweizerischen Juragebirges. Rektoratsrede gehalten am
22. November 1940. Basler Universitätsreden, 11, 1–23.
Buxtorf, A., & Christ, P. (1936). Geologischer Atlas der Schweiz 1:25
000, Blätter 96 Laufen, 97 Bretzwil, 98 Erschwil, 99 Mümliswil,
Erläuterungen verfasst unter Benutzung eines Entwurfs von R.
Elber. Bern: A. Francke AG.
Buxtorf, A., & Schwarz, O. P. (1960). Hundert Jahre Schweizerische
Geologische Kommission. Organ der Schweizerischen Naturfor-
schenden Gesellschaft 1860–1960. Bern: Kümmerly & Frey,
Geographischer Verlag.
Buxtorf, A. & Troesch, A. (1917). Geologie des Grenchenbergtunnels
mit der Berücksichtigung der hydrographischen und thermischen
Verhältnisse und der Tunnelbeben. Bern: Separatdruck aus dem
Schlussbericht an das schweizerische Post- und Eisenbahnde-
partement über den Bau der normalspurigen Hauptlinie Münster-
Lengnau (Grenchenbergtunnel 8578 m) erstattet von der
Berner-Alpenbahn-Gesellschaft Bern-Lötschberg-Simplon.
Celliers, I. B. (1907). Geologische Untersuchungen in der Umgebung
von Eptingen, Baselland. Ph.D. dissertation, University of
Freiburg i. Breisgau, Freiburg i.B., Germany.
Contini, D., & Lamaud, P. (1978). Paleogeographie et Paleoecologie
du Toarcien inferieur du Jura et de la Bordure Meridionale des
Vosges. Annales Scientifiques de l’Universite de Besancon,
Geologie, 29, 21–36.
Dean, W. T., Donovan, D. T., & Howarth, M. K. (1961). The liassic
ammonite zones and subzones of the north-west European
province. Bulletin of the British Museum (Natural History),
Geology, 4, 435–505.
Debrand-Passard, S. (1984). Synthèse géologique du Sud-Est de la
France. Volume 1: Stratigraphie et paléogeographie. Mémoire du
Bureau de recherches géologiques et minières, 125, 1–615.
Delhaes, W., & Gerth, H. (1912). Geologische Beschreibung des
Kettenjura zwischen Reigoldswil (Baselland) und Oensingen
(Solothurn). Geologische und palæontologische Abhandlungen
N.F., 11, 1–97.
Desor, E. (1856). Les tunnels du Jura. Revue Suisse, 15. Novembre
1856. Neuchâtel: Imprimerie de Charles Leidecker et A. Combe.
Disler, C. (1941). Stratigraphischer Führer durch die geologischen
Formationen im Gebiet zwischen Aare, Birs und Rhein. Basel: B.
Wepf & Co. Verlag.
Donovan, D. T., & Hemingway, J. E. (1963). Fascicule 3 a X:
Jurassique. In P. Pruvost (Ed.), Lexique Stratigraphique Inter-
national; Volume 1, Europe, Fascicule 3 a, Angleterre Pays de
Galles (W.F. Whittard & S. Simpson) (pp. 1–394). Paris: Centre
National De La Recherche Scientifique.
Dunham, R. J. (1962). Classification of carbonate rocks according to
depositional texture. In W. E. Ham (Ed.), Classification of
Carbonate Rocks. American Association of Petroleum Geolo-
gists Memoir, 1 (pp. 108–121). Tulsa: American Association of
Petroleum Geologists.
Ehrat, H. (1920). Die Rhätformation und Rhät-Liasgrenze in Schwa-
ben. Ph.D. dissertation, University of Tübingen, Tübingen.
Einsele, G., & Seibold, E. (1961). Die geologische Kartierung der
Rohrgräben beim Bau der Bodensee-Fernwasserversorgung.
Jahreshefte des Geologischen Landesamtes Baden-Württemberg,
4, 183–264.
Elber, R. (1921). Geologie der Raimeux- und der Velleratkette im
Gebiete der Durchbruchtäler von Birs und Gabiare (Berner Jura).
Verhandlungen der Naturforschenden Gesellschaft in Basel, 32,
38–93.
Elber, D. (1962). Die Geologie des Gebietes von Langenbruck an
oberen Hauenstein. Ph.D. dissertation, University of Basel,
Basel.
Erni, A. (1910). Das Rhät im schweizerischen Jura. Eclogae
geologicae Helvetiae, 11, 5–54.
Erni, A. (1926). Zur Rhätfrage im Schweizer Juragebirge. Central-
blatt für Mineralogie, Geologie und Paläontologie, Abteilung B,
7, 241–253.
Ernst, M. (1989). Das Mesozoikum der Vorbergzone auf Blatt
Kandern/Südbaden (TK 8211): Kartierung, Stratigraphie und
Paläogeographie unter besonderer Berücksichtigung der Fazies
im Braunjura, speziell des Hauptrogenstein. Ph.D. dissertation,
University of Freiburg i. Breisgau, Freiburg i.B..
Etter, W. (1990). Paläontologische Untersuchungen im Unteren
Opalinuston der Nordschweiz. Ph.D. dissertation, University of
Zurich, Zürich.
Etter, W., & Kuhn, O. (2000). An articulated dragonfly (Insecta,
Odonata) from the Upper Liassic Posidonia Shale of Northern
Switzerland. Palaeontology, 43, 967–977.
Etzold, A. (1980). Geologische Karte von Baden-Württemberg 1:25
000. Herausgegeben vom Geologischen Landesamt Baden-
Württemberg. Erläuterungen zu Blatt 7126 Aalen. Stuttgart:
Landesvermessungsamt Baden-Württemberg.
Etzold, A., Franz, M., & Heunisch, C. (2010). Die Forschungsboh-
rung Trossingen (Baden-Württemberg) und Ausführungen zum
Knollenmergel und Oberkeuper der Umgebung. LGRB-Informa-
tionen, 25, 105–142.
Etzold, A., Hahn, W., & Koerner, U. (1975). Keuper, Jura und Tertiär
in Bohrungen der Planungsgemeinschaft BN-Stollen zwischen
Bodensee und Neckar. Jahreshefte des Geologischen Landesam-
tes Baden-Württemberg, 17, 89–255.
Etzold, A., Ohmert, W., & Balle, T. (1989). Toarcium und unterstes
Aalenium im Gebiet der oberen Jagst nordöstlich Aalen.
Jahreshefte des Geologischen Landesamtes Baden-Württemberg,
31, 23–68.
Etzold, A., & Schweizer, V. (2005). Der Keuper in Baden-Württemberg.
In Deutsche Stratigraphische Kommission (Ed.), Stratigraphie von
Deutschland IV, Keuper, Courier Forschungsinstitut Senckenberg,
253 (pp. 214–258). Stuttgart: E. Schweizerbart’sche Verlagsbuch-
handlung (Nägele u. Obermiller).
Fischer, W. (1964). Die jurensis-Schichten (Oberes Toarcien) im
Vorland der Schwäbischen Alb. Neues Jahrbuch für Geologie
und Paläontologie, Abhandlungen, 120, 81–106.
Fischer, H. (1969). Einige Bemerkungen zur «Übersichtstabelle zur
Geologie der weiteren Umgebung von Basel». Regio Basiliensis,
10, 234–238.
Fischer, H., Hauber, L., & Oesterle, H. (1964). Das Rhät und der
untere Lias in der Baugrube des Schulhauses Erlimatt in Pratteln.
Tätigkeitsberichte der Naturforschenden Gesellschaft Baselland,
24, 93–102.
Fischer, H. & Luterbacher, H. (1963). Das Mesozoikum der
Bohrungen Courtion I (Kt. Fribourg) und Altishofen (Kt.
Luzern). Beiträge zur Geologischen Karte der Schweiz, 145,
N.F. 115, 1–40.
Frank, M. (1926). Beiträge zur Kenntnis des Lias bin Nordbayern.
Centralblatt für Mineralogie, Geologie und Paläontologie,
Abteilung B, Jahrgang, 1926, 400–414, 439–445.
Frank, M. (1930). Beiträge zur vergleichenden Stratigraphie
und Bildungsgeschichte der Trias-Lias-Sedimente im alpin-
germanischen Grenzgebiet der Schweiz. Neues Jahrbuch für
The Staffelegg Formation 141
Mineralogie, Geologie und Paläontologie (B), 64. Beilageband,
325–426.
Franz, M., & Nitsch, E. (2009). Zur lithostratigraphischen Gliederung
des Aalenium in Baden-Württemberg. LGRB-Informationen, 22,
123–146.
Franz, M., Tesakova, E., & Beher, E. (2009). Documentation and
revision of the index ostracods from the Lower and Middle
Jurassic in SW Germany according to BUCK (1954). Palaeodi-
versity, 2, 119–167.
Frey, M. (1969). Die Metamorphose des Keupers vom Tafeljura bis
zum Lukmaniergebiet. Beiträge zur Geologischen Karte der
Schweiz, Neue Folge, 137, 1–160.
Frey, M. (1978). Progressive Low-Grade Metamorphose of a Black
Shale Formation, Central Swiss Alps, with Special Reference to
Pyrophyllite and Margarite Bearing Assemblages. Journal of
Petrology, 19, 95–135.
Genser, H., Sittig, E. (1958). Neue geologische Untersuchungen am
Gaisbühl bei Freiburg i. Br. Berichte der Naturforschenden
Gesellschaft zu Freiburg i.Br., 48, 139–145.
Glauser, A. (1936). Geologische Beschreibung des Kartengebietes
von Blatt Montfaucon im Berner Jura. Verhandlungen der
Naturforschenden Gesellschaft in Basel, 47, 65–124.
Goldschmid, H. O. (1965). Die Geologie des Faltenjura zwischen
Olten und Unterem Hauenstein. Tätigkeitsberichte der Natur-
forschenden Gesellschaft Baselland, 24, 15–91.
Greppin, J.-B. (1870). Description géologique du Jura Bernois et de
quelques districts adjacents. Matériaux pour la carte géologique
de la Suisse, 8. livraison, 1–357.
Gressly, A. (1841). Observations Géologiques sur le Jura Soleurois.
Neue Denkschriften der Allgemeinen schweizerischen Gesell-
schaft für die gesamten Naturwissenschaften, 5, 1–112.
Gressly, A. (1853). Übersicht der geologischen Verhältnisse der
Umgebungen Oltens in Bezug auf den Hauenstein-Tunnel. Nach
einer Kopie des Originals im Escher’schen Nachlaß in Zürich,
mit einigen stratigraphischen Berichtigungen von Prof. Dr.
L. Rollier (1928) versehen und mit der Reproduktion von 18
Clichés geologischer Profilzeichnungen. S.-A. Mitteilungen der
Naturforschenden Gesellschaft Solothurn, 8, 1–40.
Groschopf, R., Kessler, G., Leiber, J., Maus, H., Ohmert, W.,
Schreiner, A., et al. (1977). Erläuterungen zur geologischen
Karte Freiburg im Breisgau und Umgebung 1:50 000. Stuttgart:
Landesvermessungsamt Baden-Württemberg.
Gsell, F. (1968). Geologie des Falten- und Tafeljuras zwischen Aare
und Wittnau und Betrachtungen zur Tektonik des Ostjura
zwischen dem Unteren Hauenstein im W und der Aare im E.
Ph.D. dissertation, University of Zurich, Zürich.
Gürler, B., Hauber, L., & Schwander, M. (1987). Die Geologie der
Umgebung von Basel mit Hinweisen über Nutzungsmöglichkei-
ten der Erdwärme. Beiträge zur Geologischen Karte der
Schweiz, N.F., 160. Lieferung, 1–33.
Gwinner, M., Rieber, H., & Wurster, P. (1967). Bericht über die
Exkursion der Schweizerischen Geologischen Gesellschaft in die
Germanische Trias und den Schwäbischen Jura in Südwürttem-
berg vom 1. bis 4. Oktober 1967. Eclogae geologicae Helvetiae,
60, 621–637.
Hahn, W. (1971). Der Jura. In K.F.J. Sauter & M. Schnetter (Eds.),
Die Wutach. Naturkundliche Monographie einer Flussland-
schaft. Die Natur-und Landschaftsschutzgebiete Baden-
Württembergs, 6 (pp. 117–133). Freiburg i.Br.: Selbstverlag
des Badischen Landesvereins für Naturkunde und Naturschutz
e.V.
Hains, B. A., & Horton, A. (1969). British Regional Geology: Central
England. London: Her Majesty’s Stationary Office.
Hallam, A. (1975). Jurassic Environments. Cambridge: Cambridge
University Press.
Häring, M. O. (2002). Sondierbohrung Otterbach, Basel. Der erste
Schritt zur Entwicklung eines geothermischen Heiz-Kraftwerks
nach dem Hot-Dry-Rock Verfahren. Bulletin für angewandte
Geologie, 7, 19–30.
Häring, M. O., Schanz, U., Ladner, F., & Dyer, B. C. (2008).
Characterisation of the Basel 1 enhanced geothermal system.
Geothermics, 37, 469–495.
Hauber, L. (1971). Zur Geologie des Salzfeldes Schweizerhalle—Zinggi-
brunn (Kt Baselland). Eclogae geologicae Helvetiae, 64, 163–183.
Hauber, L. (1991). Ergebnisse der Geothermiebohrungen Riehen 1
und 2 sowie Reinach 1 im Südosten des Rheingrabens.
Geologisches Jahrbuch, Reihe E, Geophysik, 48, 167–184.
Hauber, L. (1994). Die Geologie des Bözbergtunnels der National-
strasse N3. Brugger Neujahrsblätter, 104, 85–104.
Hauber, L., Noher, H. P., Meyer, M., & Horal, G. (2000). Geologie im
Bereich Adlertunnel. tec, 21(49–50), 9–12.
Hedberg, H. D. (1976). International Stratigraphic Guide. New York:
John Wiley and Sons.
Heer, O. (1852). Die Lias-Insel des Aargau’s. Zürich: Kiesling.
Heer, O. (1865). Die Urwelt der Schweiz. Zürich: Schulthess.
Heim, A. (1919). Geologie der Schweiz. Band 1: Molasseland und
Juragebirge. Leipzig: Tauchnitz.
Hess, H. (1962). Mikropaläontologische Untersuchungen an
Ophiuren. Eclogae geologicae Helvetiae, 55, 595–656.
Hoffmann, K. (1934). Ueber den unteren Lias der Langenbrückener
Senke. I. Jahresberichte und Mitteilungen des oberrheinischen
geologischen Vereines N. F., 23, 107–131.
Hofmann, F. (1959). Zusammenhänge zwischen Entstehungsbeding-
ungen und Beschaffenheit toniger Sedimente mit gleichartigem
Ausgangsmaterial an einem Beispiel aus dem Tertiär des
Kantons Schaffhausen (Schweiz). Eclogae geologicae Helvetiae,
51, 980–989.
Hofmann, F. (1981). Geologischer Atlas der Schweiz 1:25’000, Blatt
1031 Neunkirch (Atlasblatt 74), Erläuterungen. Schweizerische
Geologische Kommission.
Hofmann, F., Schlatter, R., & Weh, M. (2000). Geologischer Atlas
der Schweiz 1:25000, Blatt 1011 Beggingen (Südhälfte) mit SW-
Anteil von Blatt 1012 Singen (Atlasblatt 97), Erläuterungen.
Wabern: Bundesamt für Landestopographie.
Hofmann, F., Schlatter, R., & Weh, M. (2002). Geologische Karte
von Baden-Württemberg 1 : 25 000, Erläuterungen zum Blatt
8217 Tengen-Wiechs a. R.. Freiburg i. Br.: Landesamt für
Geologie, Rohstoffe und Bergbau Baden-Württemberg.
Hölder, H. (1950). Schwäbische Juraforschung zu Quenstedts Zeit.
Jahreshefte des Vereins für vaterländische Naturkunde in
Württemberg, 106. Jahrgang, 1–17.
Hölder, H. (1964). Jura—Handbuch der stratigraphischen Geologie,
IV. Stuttgart: Enke-Verlag.
Joachim, H. (1970). Geochemische,sedimentologische und ökologische
Untersuchungen im Grenzbereich Lias delta/epsilon (Domerium/
Toarcium). Arbeiten aus dem Geologisch-Paläontologischen
Institut der Universität Stuttgart (TH), Neue Folge, 61, 1–243.
Jordan, R. (1960). Paläontologische und stratigraphische Untersuch-
ungen im Lias delta (Domerium) Nordwestdeutschlands. Ph.D.
dissertation, University of Tübingen, Tübingen.
Jordan, P. (1983). Zur Stratigraphie des Lias zwischen Unterem
Hauenstein und Schinznach (Solothurner und Aargauer Falten-
jura). Eclogae geologicae Helvetiae, 76, 355–379.
Jordan, P., Wetzel, A., & Reisdorf, A. G. (2008). Jurassic. Swiss Jura
Mountains. In T. McCann (Ed.), The Geology of Central Europe.
Volume 2: Mesozoic and Cenozoic (pp. 880–889). London: The
Geological Society of London.
Kämpfe, Ch. (1984). Tiefbohrungen in Baden-Württemberg und
umgebenden Ländern. Arbeiten aus dem Institut für Geologie
und Paläontologie an der Universität Stuttgart N.F., 80, 1–313.
142 A. G. Reisdorf et al.
Kant, R. (1972). Der untere Lias im Bereich der Frickenhofer Höhe
(Ostwürttemberg). Jahreshefte des Geologischen Landesamts
Baden-Württemberg, 14, 17–37.
Käß, W. (1954). Konkretionäre Phosphatanreicherungen in
Südwestdeutschland. Arbeiten aus dem Institut für Geologie
und Paläontologie an der Universität Stuttgart, N.F., 1–74.
Keferstein, C. (1825). Tabellen über die vergleichende Geognosie.
Ein Versuch. Halle: Hammerde und Schwetsuhke.
Keller, W. T. (1922). Geologische Beschreibung des Kettenjura
zwischen Delsbergbecken und Oberrheinischer Tiefebene ent-
halten auf den Siegfriedblättern Burg (6), Soyhières (93) und
Courrendlin (95). Ph.D dissertation, University of Basel, Basel.
Kelterborn, P. (1944). Beobachtungen im Mont-Terri-Gebiet zwi-
schen Courgenay und Asuel. Eclogae geologicae Helvetiae, 37,
207–216.
Kindlimann, R. (1990). Ein Nachweis von Acrodus nobilis AGASSIZ
aus dem Sinemurien der Tongrube Gruhalde, Frick, Kt. Aargau
(Nordschweiz). Eclogae geologicae Helvetiae, 83, 829–844.
Knitter, H., & Ohmert, W. (1983). Das Toarcium der Schwärze bei
Badenweiler (Oberrheingebiet S Freiburg). Jahreshefte des
Geologischen Landesamts Baden-Württemberg, 25, 233–281.
Knitter, H., & Riegraf, W. (1984). Biostratigraphie des oberen
Toarcium von Blumberg Achdorf/Wutach und Weilheim/Teck.
Jahreshefte des Geologischen Landesamts Baden-Württemberg,
26, 57–97.
Kuhn, O., & Etter, W. (1994). Der Posidonienschiefer der Nord-
schweiz: Lithostratigraphie, Biostratigraphie und Fazies.
Eclogae geologicae Helvetiae, 87, 113–138.
Ladner, F., Schanz, U., & Häring, M. O. (2008). Deep-Heat-Mining-
Projekt Basel–Erste Erkenntnisse bei der Entwicklung eines
Enhanced Geothermal System (EGS). Bulletin für angewandte
Geologie, 13, 41–54.
Lang, F. (1892). Die künftige Aufgabe der schweizer. Geologischen
Kommission. Basler Nachrichten, Montag, 5. Oktober 1892, 48.
Jg., Nr. 267, 1–2.
Laubscher, H. P. (1963). Schweizerische Geologische Kommission,
Organ der Schweiz. naturforsch. Gesellschaft, Geologischer
Atlas der Schweiz 1:25000, Blatt 1085 St-Ursanne (Atlasblatt
40), Erläuterungen. Bern: Kümmerli & Frey AG.
Laubscher, H. P. (1965). Ein kinematisches Modell der Jurafaltung.
Eclogae geologicae Helvetiae, 58, 231–318.
Laubscher, H. (2008). 100 years Jura décollement hypothesis: how it
affects Steinmann’s (1892) ‘‘Schwarzwaldlinie’’. International
Journal of Earth Sciences, 97, 1231–1245.
Ledermann, H. (1981). Geologie der Region Solothurn und Führer
zum Geologischen Wanderweg über die Weissensteinkette.
Mitteilungen der Naturforschenden Gesellschaft des Kantons
Solothurn, 30, 3–86.
Lehner, E. (1920). Geologie der Umgebung von Bretzwil im
nordschweizerischen Juragebirge. Beiträge zur geologischen
Karte der Schweiz, N.F., XLVII. Lieferung, des ganzen Werkes
77. Lieferung, II. Abteilung, 1–61.
Lemcke, K., & Wagner, R. (1961). Zur Kenntnis des vortertiären
Untergrundes im Bodenseegebiet. Bulletin der Schweizerischen
Vereinigung von Petroleum-Geologen und -Ingenieuren, 27, 9–14.
Leuthardt, F. (1933). Zur Geschichte der geologischen Erforschung
des Basler Jura. Tätigkeitsbericht der Naturforschenden Gesell-
schaft Baselland, Jahrgänge 1930–1932, 9, 91–144.
LGRB. (2004). Unterjura in Baden-Württemberg (Lithostratigraphi-
sches Übersichtsschema). Landesamt für Geologie, Rohstoffe und
Bergbau (LGRB) im Regierungspräsidium Freiburg.http://www.
lgrb.uni-freiburg.de/lgrb/download_pool/lith_t_uj_m.pdf.
Lutz, M. (1964). Stratigraphische und tektonische Untersuchungen am
südwestlichen Schwarzwaldrand zwischen Wiesetal und Hochrhein.
Oberrheinische geologische Abhandlungen, 13, 75–122.
Lutz, M., & Cleintuar, M. (1999). Geological results of a hydrocarbon
exploration campaign in the southern Upper Rhine Graben
(Alsace Centrale, France). Bulletin for applied Geology, 4, 3–80.
Lutz, M., & Etzold, A. (2003). Der Keuper im Untergrund des
Oberrheingrabens in Baden. Jahreshefte des Geologischen
Landesamts Baden-Württemberg, 39, 55–110.
Lutz, M., Etzold, A., Käding, K.-C., Lepper, J., Hagdorn, H., Nitsch,
E., et al. (2005). Lithofazies und Leitflächen: Grundlagen einer
dualen lithostratigraphischen Gliederung. Newsletters on Stra-
tigraphy, 41, 211–223.
Maisch, M. W., & Reisdorf, A. G. (2006a). Evidence for the longest
stratigraphic range of a post-Triassic Ichthyosaur: a Leptonectes
tenuirostris from the Pliensbachian (Lower Jurassic) of Switzer-
land. Geobios, 39, 491–505.
Maisch, M. W., & Reisdorf, A. G. (2006b). Erratum to the article
‘Evidence for the longest stratigraphic range of a post-Triassic
Ichthyosaur: a Leptonectes tenuirostris from the Pliensbachian
(Lower Jurassic) of Switzerland’’. Geobios, 39, 743–746.
Maisch, M. W., Reisdorf, A. G., Schlatter, R., & Wetzel, A. (2008). A
large skull of Ichthyosaurus (Reptilia: Ichthyosauria) from the
Lower Sinemurian (Lower Jurassic) of Frick (NW Switzerland).
Swiss Journal of Geosciences, 101, 617–627.
Mandy, J.T. (1907). Geologische Untersuchungen in der Umgebung
des Hauenstein-Tunnels. Ph.D. dissertation, University of Frei-
burg i. Breisgau, Freiburg i.B.
Marcou, J. (1857a). Le Jura. Première lettre sur le Jura. Adressée au
Docteur Albert Oppel. Vierteljahrsschrift der Naturforschenden
Gesellschaft in Zürich, 2. Jahrgang, 49–75.
Marcou, J. (1857b). Le Jura. Deuxième lettre sur le Jura. Adressée au
Docteur Albert Oppel. Vierteljahrsschrift der Naturforschenden
Gesellschaft in Zürich, 2. Jahrgang, 143–168.
Marie, M. (1952). Nouveaux résultats des explorations pétrolières en
Alsace (Bas-Rhin), France. Bulletin der Vereinigung Schweize-
rische Petroleum-Geologen und -Ingenieure, 19, 31–40.
Mathey, F. (1883). Coupes géologiques des tunnels du Doubs.
Nouveaux mémoires de la Société helvétique des sciences
naturelles, 29, 1–21.
Mathey, F., Lang, F., & Greppin, J. B. (1872). Tunnels dub Doubs.
Rapport des Experts Géologiques. In Verwaltungsrathes der
bernischen Jurabahngesellschaft (Ed.), Bericht und Anträge des
Verwaltungsrathes der bernischen Jurabahngesellschaft an den
Regierungsrath zu Händen des Großen Rathes des Kantons Bern
betreffend die Ausführung des ganzen jurassischen Bahnnetzes
gemäß den Bestimmungen des Decretes vom 2. Februar 1867
(Beilage 6). Biel: Buchdruckerei W. Gaßmann.
Mayer-Eymar, C. D. W. (1864). Tableau synchronistique des terrains
jurassiques. 1 lithographierte Falttafel. Zürich.
Merian, P. (1821). Beiträge zur Geognosie. Erster Band. Basel:
Schweighauser’sche Buchhandlung.
Merian, P. (1831). Beiträge zur Geognosie. Zweiter Band. Basel:
Schweighauser’sche Buchhandlung.
Meyer, L. (1916). Le Sondage de Charmois. Bulletin de la societe
belfortaine d’Emulation, 34, 22–50.
Meyer, C. A., & Furrer, H. (1995). Taphonomie und paläoökologische
Rekonstruktionen: Beispiele aus dem Mesozoikum des Jura.
Eclogae geologicae Helvetiae, 88, 711–720.
Moesch, C. (1857). Das Flözgebirge im Kanton Aargau. Neue
Denkschriften der allgemeinen Schweizerischen Gesellschaft für
die gesammten Naturwissenschaften, 15, 1–80.
Moesch, C. (1874). Der südliche Aargauer Jura und seine Umge-
bungen. Beiträge zur Geologischen Karte der Schweiz, 10.
Lieferung, 1–53.
Mühlberg, F. (1905). Erläuterungen zur geologischen Karte
des unteren Aare-, Reuss- und Limmat-Tales in 1:25 000.
(Spez.-Karte 31). Eclogae geologicae Helvetiae, 8, 487–538.
The Staffelegg Formation 143
Mühlberg, F. (1908). Geologische Karte der Schweiz, Erläuterungen
zur geologischen Karte der Umgebung von Aargau 1:25 000.
Bern: A. Francke.
Mühlberg, F. (1910). Geologisches Gutachten über den Bau des
projektierten Hauenstein-Basis-Tunnel auf Verlangen der
Generaldirektion verfasst. Beilage Nr. 11. Bern: Schweizerische
Bundesbahnen (Generaldirektion).
Mühlberg, F. (1915). Geologische Karte der Schweiz, Erläuterungen
zur Geologischen Karte des Hauensteingebietes (Waldenburg-
Olten) 1:25, 000 (Spezialkarte Nr. 73). Bern: A. Francke.
Müller, A. (1862). Geognostische Skizze des Kantons Basel und
angrenzende Gebiete. Beiträge zur Geologischen Karte der
Schweiz, 1–71.
Müller, W. H., Huber, M., Isler, A., & Kleboth, P. (1984).
Erläuterungen zur Geologischen Spezialkarte Nr. 121 der
zentralen Nordschweiz 1:100 000 mit angrenzenden Gebieten
von Baden-Württemberg. Baden: Nationale Genossenschaft für
die Lagerung radioaktiver Abfälle (NAGRA) und Schweizeri-
sche Geologische Kommission.
Mumenthaler, T., Meyer, C. & Sigg, J. (1997). Rohstoffe für die
Ziegelindustrie. In: Schweizerische Geotechnische Kommission
(Ed.), Die mineralischen Rohstoffe der Schweiz (pp. 23–63).
Zürich: Schweizerische Geotechnische Kommission.
Nagra (1984). Die Kernbohrung Beznau. Nagra Technischer Bericht
NTB 84-34, Beiträge zur Geologie der Schweiz, Geotechnische
Serie, Lieferung 66, 1–111.
Nagra (1989). Sondierbohrung Weiach Untersuchungsbericht
(Gemeinde Weiach, Kanton Zürich, Schweiz), Textband. Nagra
Technischer Bericht, NTB 88-08. Beiträge zur Geologie der
Schweiz, Geotechnische Serie, Lieferung 73, 1–183.
Nagra (1990). Sondierbohrung Riniken Untersuchungsbericht
(Gemeinde Riniken, Kanton Aargau, Schweiz), Textband. Nagra
Technischer Bericht NTB 88-09. Beiträge zur Geologie der
Schweiz, Geotechnische Serie, Lieferung 74, 1–125.
Nagra (1992). Sondierbohrung Schafisheim Untersuchungsbericht
(Gemeinde Schafisheim, Kanton Aargau, Schweiz), Textband.
Nagra Technischer Bericht, NTB 88-11. Beiträge zur Geologie
der Schweiz, Geotechnische Serie, Lieferung 84, 1–183.
Nagra (1993). Sondierbohrung Siblingen: Untersuchungsbericht.
Textband. Nagra Technischer Bericht NTB 90-34. Beiträge zur
Geologie der Schweiz, Geotechnische Serie, Lieferung 86,
1–130.
Nagra (2001). Sondierbohrung Benken Untersuchungsbericht. Text-
band. Nagra Technischer Bericht NTB 00-01. Wettingen: Nagra.
Ohmert, W. (1976). Das Toarcium-Profil von Ballrechten (Ober-
rheingebiet südlich Freiburg). Jahreshefte des Geologischen
Landesamts Baden-Württemberg, 18, 79–103.
Oppel, A. (1856–1858). Die Juraformation Englands, Frankreichs und
des südwestlichen Deutschlands, nach ihren einzelnen Gliedern
eingetheilt und verglichen. Jahreshefte des Vereins für vater-
ländische Naturkunde in Württemberg,12, 121–556.
Persoz, F. (1982). Inventaire minéralogique, diagenèse des argiles et
minéralostratigraphie des séries jurassiques et crétacées inférie-
ures du Plateau suisse et de la bordure Sud-Est du Jura entre les
lacs d’ Annecy et de Constance. Beiträge zur Geologischen
Karte der Schweiz, N.F., 155.
Peters, T. J. (1964). Tonmineralogische Untersuchungen an einem
Keuper-Lias-Profil im Schweizer Jura (Frick). Schweizerische
Mineralogische und Petrographische Mitteilungen, 44, 1–30.
Peyer, B. (1943a). Beiträge zur Kenntnis von Rhät und Lias I. Über
Rhät und Lias von Hallau (Kt. Schaffhausen). Eclogae geolo-
gicae Helvetiae, 36, 303–314.
Peyer, B. (1943b). Beiträge zur Kenntnis von Rhät und Lias. Die
Echinodermenreste aus den Schwaicheln der Angulatuszone von
Hallau. Eclogae geologicae Helvetiae, 36, 315–326.
Peyer, B. (1956). Über Zähne von Haramiyden, von Triconodonten
und wahrscheinlich synapsiden Reptilien aus dem Rhät von
Hallau. Schweizerische Paläontologische Abhandlungen, 72,
1–72.
Pfirter, U. (1997). Geologischer Atlas der Schweiz 1:25000, Feuille
1106 Moutier (Feuille 96 de l’Atlas), Notice explicative.
Wabern: Office fédéral de topographie.
Pharisat, A., Contini, D., & Frickert, J.-C. (1993). Early Jurassic
(Lower Toarcian) ‘‘Ichthyosaurs’’ from Franche-Compte,
France. Revue de Paléobiologie, Volume spécial, 7, 189–198.
Pratje, O. (1922). Lias und Rhät im Breisgau (Erster Teil). Mitteilungen
der Großherzoglichen Badischen Geologischen Landesanstalt, 9,
277–352.
Pratje, O. (1924). Die Juratransgression im Bereiche von Schwarz-
wald und Vogesen. - Eine paläogeographische Studie der Rhät-
und Liasschichten. Frankfurt a.M.: Verlag Willy Ehrig.
Quenstedt, F. A. (1843). Das Flözgebirge Württembergs. Mit
besonderer Rücksicht auf den Jura. Tübingen: Laupp.
Quenstedt, F. A. (1858). Der Jura. Tübingen: Laupp.
Reisdorf, A. (2001). Neue Lias-Profile entlang der Transitgasleitung
der TRG 3: Wirbligen (BL) und Titterten (BL). Archäologie und
Museum, Berichte aus Archäologie und Kantonsmuseum Basel-
land, 43, 43–48.
Reisdorf, A. G., Maisch, M. W., & Wetzel, A. (subm.). First record of
the leptonectid ichthyosaur Eurhinosaurus longirostris (OWEN et
JÄGER in V. JÄGER, 1856) from the Early Jurassic of Switzerland
and its stratigraphic framework. Swiss Journal of Geosciences.
Remane, J., Adatte, T., Berger, J.-P., Burkhalter, R., Dall’Agnolo, S.,
Decrouez, D., et al. (2005). Richtlinien zur stratigraphischen
Nomenklatur. Eclogae geologicae Helvetiae, 98, 385–405.
Richter, H. (1987). Die Mikrofauna des unteren Toarciums der
Nordschweiz. Neues Jahrbuch für Geologie und Paläontologie,
Abhandlungen, 176, 137–155.
Rickenbach, E. (1947). Die Vorkommen von bituminösen Schiefern.
Beiträge zur Geologie der Schweiz, Geotechnische Serie,
Lieferung, 26, 44–54.
Rieber, H. (1973). Fauna und Stratigraphie einer oolithischen
Kalkbank aus dem Toarcium von Gipf (Kanton Aargau).
Eclogae geologicae Helvetiae, 66, 657–665.
Riegraf, W. (1985). Mikrofauna, Biostratigraphie und Fazies im
unterem Toarcium Südwestdeutschlands und Vergleiche mit
benachbarten Gebieten. Tübinger Mikropaläontologische Mittei-
lungen, 3, 1–232.
Riegraf, W. (1986). Stratigraphische Verbreitung der Ammoniten-
gattung Catacoeloceras im Toarcium Europas. Senckenbergiana
Lethaea, 67, 305–313.
Riegraf, W., Werner, G., & Lörcher, F. (1984). Der Posidonienschiefer.
Biostratigraphie, Fauna und Fazies des südwestdeutschen
Untertoarciums (Lias epsilon). Stuttgart: Enke Verlag.
Roemer, F. A. (1836). Die Versteinerungen des norddeutschen
Oolithen-Gebirges. Hannover: Hahn’sche Hofbuchhandlung.
Röhl, H.-J., & Schmid-Röhl, A. (2005). Lower Toarcian (Upper
Liassic) Black Shales of the Central European Epicontinental
Basin: A Sequence Stratigraphic Case Study from the SW
German Posidonia Shale. SEPM (Society for Sedimentary
Geology) Special Publications, 82, 165–189.
Röhl, H.-J., Schmid-Röhl, A., Oschmann, W., Frimmel, A., &
Schwark, L. (2001). Erratum to ‘‘The Posidonia Shale (Lower
Toarcian) of SW-Germany: an oxygen-depleted ecosystem
controlled by sea level and palaeoclimate’’. Palaeogeography,
Palaeoclimatology, Palaeoecology, 169, 273–299.
Rollier, L. (1898). Deuxième supplément à la description géologique
de la partie jurassienne de la feuille VII de la carte géologique de
la Suisse au 1:100,000. Matériaux pour la Carte géologique de
la Suisse, Nouvelle Série, 8. livraison, 1–206.
144 A. G. Reisdorf et al.
Rollier, L. (1904). Carte speziale N°32. Carte tectonique d’Envelier
et du Weissenstein par Dr. Louis Rollier. Report des feuilles 110
et 112 de l’Atlas topographique de la Suisse. Levée de 1890 à
1895. Zürich: Commission géologique suisse.
Rollier, L. (1910). Troisième supplément à la description géologique
de la partie jurassienne de la feuille VII de la carte géologique de
la Suisse au 1:100 000. Matériaux pour la Carte géologique de
la Suisse, Nouvelle Série, 25. livraison, 1–230.
Rollier, L. (1917). Résumé stratigraphique des terrains secondaires
(mésozoiques) du Jura et des contrées environnantes. Mémoires
de la Société paléontologique Suisse, Vol. 42, Fossiles nouveaux
ou peu connus, tome 1er, fascicule 6, 619–633.
Rominger, C.L. (1846). Vergleichung des Schweizer Jura’s mit der
Württembergischen Alp. Neues Jahrbuch für Mineralogie,
Geognosie und Petrefaktenkunde, Jahrgang 1846, 293–306.
Rüger, L. (1924). Versuch einer Paläogeographie der süddeutschen
Länder an der Trias-Jura Wende. Verhandlungen des Naturhis-
torisch-Medizinischen Vereins zu Heidelberg N.F., 15, 95–184.
Schaeren, G., & Norbert, J. (1989). Tunnels du Mont Terri et du Mont
Russelin—La traversée des ‘‘roches à risques’’; marnes et
marnes à anhydrite. Société suisse des ingénieurs et des
architectes, Documentation, SIA D, 037, 19–24.
Schalch, F. (1880). Die Gliederung der Liasformation des Donau-
Rhein-Zuges. Neues Jahrbuch für Mineralogie, Geologie und
Paläontologie, 1, 177–266.
Schalch, F. (1893). Die geologischen Verhältnisse der Bahnstrecke
Weizen-Immendingen mit besonderer Berücksichtigung der
zwischen Fützen und Zollhaus entstandenen Braunjura-
Aufschlüsse. Mitteilungen der Großherzoglichen Badischen
Geologischen Landesanstalt, 2, 137–230.
Schalch, F. (1895). Über einen neuen Aufschluss in den Untersten
Schichten des Lias bei Beggingen, Kanton Schaffhausen.
Mitteilungen der Großherzoglichen Badischen Geologischen
Landesanstalt, 3, 253–258.
Schalch, F. (1900). Über einen neuen Aufschluß an der Keuper-
Liasgrenze bei Ewattingen a d. Wutach. Mitteilungen der
Großherzoglichen Badischen Geologischen Landesanstalt, 4,
51–61.
Schalch, F. (1916). Geologische Spezialkarte des Grossherzogtums
Baden. Erläuterungen zu Blatt Wiechs-Schaffhausen (Nr. 145).
Heidelberg: Carl Winter’s Universitätsbuchhandlung.
Schalch, F. (1922). Geologische Spezialkarte von Baden. Erläuter-
ungen zu Blatt Griessen (Nr. 157). Heidelberg: Carl Winter’s
Universitätsbuchhandlung.
Schalch, F., & Peyer, B. (1919). Über ein neues Rhätvorkommen im
Keuper des Donau-Rheinzuges. Mitteilungen der Badischen
geologischen Landesanstalt, 8, 263–315.
Schegg, R., Leu, W., Cornford, C., & Allen, P. A. (1997). New
coalification profiles in the Molasse Basin of Western Swit-
zerland: implications for the thermal and geodynamic evolution
of the Alpine Foreland. Eclogae Geologicae Helvetiae, 90,7996.
Schlatter, R. (1976). Die Stufe des Lotharingium im unteren Lias des
Klettgau (Kanton Schaffhausen, Schweiz). Stuttgarter Beiträge
zur Naturkunde, Serie B (Geologie und Paläontologie), 121, 1–21.
Schlatter, R. (1982). Zur Grenze Pliensbachian-Toarcian im Klettgau
(Kanton Schaffhausen, Schweiz). Eclogae geologicae Helvetiae,
75, 759–771.
Schlatter, R. (1983a). Erstnachweis des tiefsten Hettangium im
Klettgau (Kanton Schaffhausen, Schweiz). Mitteilungen der
Naturforschenden Gesellschaft Schaffhausen, 32, 159–175.
Schlatter, R. (1983b). Ein Fund von Aegasteroceras ex gr. simile
SPATH (Ammonoidea) aus dem Lotharingium des Wutachgebie-
tes (Baden-Württemberg). Jahresberichte und Mitteilungen des
oberrheinischen geologischen Vereins N. F., 65, 243–256.
Schlatter, R. (1985). Eine bemerkenswerte Ammonitenfauna aus dem
Grenzbereich Pliensbachium/Toarcium der Baar (Baden-
Württemberg). Stuttgarter Beiträge zur Naturkunde, Serie B
(Geologie und Paläontologie), 102, 1–27.
Schlatter, R. (1988). Alsatites schalchi nov.sp. (Ammonoidea) aus der
Oolithenbank (Hettangium) von Pfohren (Baar, Baden-Würt-
temberg). Mitteilungen der Naturforschenden Gesellschaft
Schaffhausen, 33, 27–38.
Schlatter, R. (1989). Ein geologischer Querschnitt durch den Randen
von Schleitheim, nach Schaffhausen bis Thayngen (Exkursion H
am 30. März 1989). Jahresberichte und Mitteilungen des Ober-
rheinischen Geologischen Vereins, Neue Folge, 71, 149–165.
Schlatter, R. (1990). Neubestimmung von zwei «Phylloceraten»
(Ammonoidea) aus dem unteren Lias der Nordschweiz und
Süddeutschlands. Eclogae geologicae Helvetiae, 83, 793–797.
Schlatter, R. (1991). Biostratigraphie und Ammonitenfauna des Ober-
Lotharingium und Unter-Pliensbachium im Klettgau (Kanton
Schaffhausen, Schweiz) und angrenzender Gebiete. Schweizeri-
sche Paläontologische Abhandlungen, 113, 1–133.
Schlatter, R. (1999). Erstnachweis der denotatus-Subzone (Unter-
Lotharingium) im Klettgau (Kanton Schaffhausen, Schweiz).
Profil, 16, 121–124.
Schlatter, R. (2000). Erstnachweis der taylori-Subzone (Lias,
Unter-Pliensbachium) im Wutachgebiet (Baden-Württemberg).
Jahreshefte der Gesellschaft für Naturkunde in Württemberg,
156. Jahrgang, 67–72.
Schlatter, R. (2001). Erstnachweis der Unterfamilie Arietitinae HYATT
(Ammonoidea) aus der ‘‘Oolithenbank’’ (Hettangium, Angulata-
Zone) Südwestdeutschlands. Stuttgarter Beiträge zur Naturkun-
de, Serie B (Geologie und Paläontologie), 303, 1–5.
Schlegelmilch, R. (1992). Die Ammoniten des süddeutschen Lias. 2.,
neubearbeitete und ergänzte Auflage. Stuttgart: Gustav Fischer
Verlag.
Schloz, W. (1972). Zur Bildungsgeschichte der Oolithenbank
(Hettangium) in Baden-Württemberg. Arbeiten aus dem Institut
für Geologie und Paläontologie an der Universität Stuttgart, NF,
67, 101–212.
Schmid, D. U., Leinfelder, R. R., & Schweigert, G. (2008). Jurassic.
Southern Germany. In T. McCann (Ed.), The Geology of Central
Europe. Volume 2: Mesozoic and Cenozoic (pp. 864–873).
London: The Geological Society of London.
Schmidt, C., Braun, L., Paltzer, G., Mühlberg, M., Christ, P. & Jacob,
F. (1924). Die Bohrungen von Buix bei Pruntrut, und Allschwil
bei Basel. Beiträge zur Geologie der Schweiz, Geotechnische
Serie, 10. Lieferung.
Schulbert, C. (2001). Die Ammonitenfauna und Stratigraphie der
Tongrube Mistelgau bei Bayreuth (Oberfranken). Beihefte zu den
Berichten der Naturwissenschaftlichen Gesellschaft Bayreuth
e.V., 4, 1–183.
Schweizerische Geologische Kommission, Arbeitsgruppe für
Stratigraphische Terminologie (1973). Empfehlungen zur
Handhabung der stratigraphischen, insbesondere lithostratigra-
phischen Nomenklatur in der Schweiz. Recommendations pour
l’utilisation de la nomenclature stratigraphique (particulièrement
lithostratigraphique) en Suisse. Eclogae geologicae Helvetiae,
66, 479–492.
Senftleben, G. (1923). Beiträge zur geologischen Erkenntnis der
Westlägern und ihrer Umgebung. Ph.D. dissertation, University
of Zurich, Zürich.
Senftleben, G. (1924). Erläuterungen zur geologischen Karte der
West-Lägern und ihrer Umgebung in 1:10 000. Männedorf
(Zürich): Kartographische Anstalt J. Flach.
Söll, H. (1965). Der Lias in zwei Schürfbohrungen im Markgräfler-
land (Südbaden). Jahreshefte des Geologischen Landesamtes
Baden-Württemberg, 7, 149–180.
Sommaruga, A., & Burkhard, M. (1997). Interpretation of seismic
lines across the rhomb shaped Val de Ruz basin (internal Folded
Jura). In O. A. Pfiffner, P. Lehner, P. Heitzmann, S. Mueller, &
The Staffelegg Formation 145
A. Steck (Eds.), Deep structure of the Swiss Alps: results of the
NRP 20 (pp. 45–53). Basel: Birkhäuser.
Stoll-Steffan, M.-L. (1987). Sedimentpetrographische Untersuchun-
gen der Lias alpha- und Rhätsandsteine im westlichen Deutschen
Alpenvorland. Bochumer geologische und geotechnische Arbei-
ten, 24, 1–188.
Strübin, K. (1901). Neue Untersuchungen über Keuper und Lias bei
Niederschönthal (Basler Tafeljura). Verhandlungen der Natur-
forschenden Gesellschaft in Basel, 13, 586–602.
Studer, B. (1853). Geologie der Schweiz. Zweiter Band. Nördliche
Nebenzone der Alpen. Jura und Hügelland. Bern: Stämpflische
Verlagshandlung, Friedrich Schulthess.
Studer, B. (1872). Index der Petrographie und Stratigraphie der
Schweiz und ihrer Umgebungen. Bern: Verlag der J. Dalp’schen
Buch- und Kunsthandlung, K. Schmid.
Suter, R. (1915). Geologie der Umgebung von Maisprach (Schwei-
zerischer Tafeljura). Verhandlungen der Naturforschenden
Gesellschaft in Basel, 16, 9–64.
Suter, R. (1927). Ueber einen Rhät-Liasaufschluss an der neuen
Strasse Reigoldswil-Bretzwil (erbaut 1926). Verhandlungen der
Naturforschenden Gesellschaft in Basel, 38, 476–481.
Tanner, K. M. (1978). Die Keuper-Lias Fundstelle von Niederschön-
thal, Kanton Baselland. Bulletin der Schweizerischen Vereinigung
von Petroleum-Geologen und -Ingenieuren, 44, 13–23.
Théobald, N. (1961). La dépression liasique des feuilles au 50.000
e
de
Vesoul et Lure. Bulletin de la carte géologique de la France, 261
tome, 57, 43–48.
Théobald, N. (1967). Les sondages profonds de la partie méridionale
du fossé rhénan. Renseignements généraux sur l’évolution du
fossé rhénan. Annales scientifiques de l’Université de Besançon,
Géologie, 3 Série, fascicule, 3, 3–24.
Théobald, N., & Maubeuge, P. L. (1949). Paléogéographie du
Jurassique inférieur et moyen dans le Nord-Est de la France et le
Sud-Ouest de l’Allemagne. Berichte der Naturforschenden
Gesellschaft zu Freiburg im Breisgau, 39, 249–320.
Thurmann, J. (1832). Essai sur les soulèvemens jurassiques du
Porrentruy. Mémoires de la Société d’Histoire Naturelle de
Strasbourg, 1–84.
Thurmann, J. (1836). Essai sur les soulèvemens jurassiques. Second
cahier. Mémoires de la Société d’Histoire Naturelle de
Strasbourg.
Tobler, A. (1905). Tabellarische Zusammenstellung der Schich-
tenfolge in der Umgebung von Basel. Basel: C.F. Lehndorff,
Akademische Buchhandlung.
Tröster, J. (1987). Biostratigraphie des Obertoarcium und der
Toarcium/Aalenium Grenze der Bohrungen Weiach, Beznau,
Riniken und Schafisheim (Nordschweiz). Eclogae geologicae
Helvetiae, 80, 431–447.
Trümpy, R. (1959). Hypothesen über die Ausbildung von Trias, Lias
und Dogger im Untergrund des Schweizerischen Molassebe-
ckens. Eclogae geologicae Helvetiae, 52, 435–448.
Trümpy, R. (1980). Geology of Switzerland—a guide-book—Part A:
An Outline of the Geology of Switzerland. Basel: Wepf & Co.
Publishers.
Tschopp, R. (1960). Geologie des Gebietes von Siegfriedblatt
Miécourt. Beiträge zur Geologischen Karte der Schweiz N.F.,
110, 1–62.
Urlichs, M. (1977). The Lower Jurassic in Southwestern Germany.
Stuttgarter Beiträge zur Naturkunde, Serie B (Geologie und
Paläontologie), 24, 1–41.
van Werveke, L. (1923). Schichtenfolge in einer Tiefbohrung bei
Sierenz im Oberelsaß (Tertiär, Jura und Keuper). Mitteilungen
der Badischen Geologischen Landesanstalt, 9, 391–405.
Vogel, H. (1934). Geologie des Graitery und des Grenchenbergs im
Juragebirge. Beiträge zur Geologischen Karte der Schweiz, N.F.,
26. Lieferung, 2. Abteilung, 43–72.
Vollmayr, T. (1971). Zur Geologie des Feldes Pfullendorf-Ostrach.
Bulletin der Schweizerischen Vereinigung von Petroleum-
Geologen und -Ingenieuren, 37, 1–20.
Vollmayr, T., & Wendt, A. (1987). Die Erdgasbohrung Entlebuch 1,
ein Tiefenaufschluß am Alpennordrand. Bulletin der Schweize-
rischen Vereinigung von Petroleum-Geologen und -Ingenieuren,
53, 67–79.
Vollrath, P. (1924). Die Transgression des Jurameeres zwischen
Schwäbischer Alb und Schweizer Jura. Centralblatt für Miner-
alogie, Geologie und Paläontologie, 1, 18–26, 53–59, 71–82.
von Buch, L. (1839). Über den Jura in Deutschland. Berlin:
Druckerei der Königlichen Akademie der Wissenschaften.
von Hillebrandt, A., & Krystyn, L. (2009). On the oldest Jurassic
ammonites of Europe (Northern Calcareous Alps, Austria) and
their global significance. Neues Jahrbuch für Geologie und
Paläontologie, Abhandlungen, 253, 163–195.
von Wurstemberger, A. R. V. (1876). Über den Lias Epsilon.
Jahreshefte des Vereins für vaterländische Naturkunde in
Württemberg, 32, 193–233.
Vonderschmitt, L. (1941). Bericht über die Exkursionen der Schwei-
zerischen Geologischen Gesellschaft im nordschweizerischen
Jura. 8.-11. September 1941. Eclogae geologicae Helvetiae, 34,
199–208.
Vonderschmitt, L. (1942). Die geologischen Ergebnisse der Bohrun-
gen von Hirtzbach bei Altkirch (Ober-Elsass). Eclogae
geologicae Helvetiae, 35, 67–99.
Waagen, W. (1864). Der Jura in Franken, Schwaben und der Schweiz
verglichen nach seinen palaeontologischen Horizonten. München:
Hermann Manz.
Waibel, A. (1925). Geologie der Umgebung von Erschwil (Gebiet der
Hohen Winde). Beiträge zur Geologischen Karte der Schweiz,
N.F., 55.
Waibel, A., & Burri, F. (1961). Fascicule 7 a: Jura et Fossé du Rhin,
Juragebirge und Rheintalgraben. In P. Pruvost (Ed.), Lexique
Stratigraphique International; Volume 1, Europe, Fascicule 7,
Suisse (Rutsch, R.F.) (pp. 1–314). Paris: Centre National De La
Recherche Scientifique.
Walliser, O. H. (1956a). Chronologie des Lias a
3
zwischen Fildern und
Klettgau (Arietenschichten, SW-Deutschland). Neues Jahrbuch
für Geologie und Paläontologie, Abhandlungen, 103, 181–222.
Walliser, O. H. (1956b). Stratigraphie des Lias a
3
zwischen Fildern und
Klettgau (Arietenschichten, SW-Deutschland). Neues Jahrbuch
für Geologie und Paläontologie, Abhandlungen, 103, 281–311.
Wepfer, E. (1925). Kritische Bemerkungen zur Gliederung des
unteren Lias durch Vollrath und durch Pratje. Centralblatt für
Mineralogie, Geologie und Paläontologie, Abteilung B, 287–289.
Wetzel, R. (1932). ,,Leitfossil gegen Leithorizont’’ und die mit-
telwürttembergische Psilonotenbank. Neues Jahrbuch für
Mineralogie, Geologie und Paläontologie, 67. Beilage-Band,
Abteilung B, 455–467.
Wetzel, A., & Allia, V. (2003). Der Opalinuston in der Nordschweiz:
Lithologie und Ablagerungsgeschichte. Eclogae geologicae
Helvetiae, 96, 451–469.
Wetzel, A., Allia, V., Gonzales, R., & Jordan, P. (1993). Sedimen-
tation und Tektonik im Ostjura. Eclogae geologicae Helvetiae,
86, 313–332.
Wetzel, A., & Reisdorf, A. G. (2007). Ichnofabrics elucidate the
accumulation history of a condensed interval containing a
vertically emplaced ichthyosaur skull. SEPM (Society for
Sedimentary Geology) Special Publications, 88, 241–251.
Wirth, E. (1968). Das Mesozoikum im Untergrunde der Schwäbi-
schen Alb zwischen Münsingen und Meßkirch. Zeitschrift der
Deutschen Geologischen Gesellschaft, 117, 855–894.
Würtenberger, L. (1867). Die Schichtenfolge des Schwarzen und
Braunen Jura im Klettgau. Neues Jahrbuch für Mineralogie,
Geologie und Paläontologie, Jahrgang 1867, 39–59.
146 A. G. Reisdorf et al.
... The aim of the present study is to investigate the strata underlying the Opalinus Clay, in particular the lithologic inventory, stratigraphic architecture, thickness, as well as the bio-and chronostratigraphic classification of the entire Staffelegg Formation. Prior to drilling, the succession and thickness of the lithostratigraphic units at the drilling site were predicted based on published data (literature in Reisdorf et al. 2011). Lithostratigraphic nomenclature follows Reisdorf et al. (2011), Jordan et al. (2016) and Hostettler et al. (2017); for lithostratigraphic terms and their former designations see Table 1-1 in Reisdorf et al. (2016). ...
... Prior to drilling, the succession and thickness of the lithostratigraphic units at the drilling site were predicted based on published data (literature in Reisdorf et al. 2011). Lithostratigraphic nomenclature follows Reisdorf et al. (2011), Jordan et al. (2016) and Hostettler et al. (2017); for lithostratigraphic terms and their former designations see Table 1-1 in Reisdorf et al. (2016). The BHS-1 borehole was sited in the basal layers of the Opalinus Clay and drilled into the stratigraphically deeper strata. ...
... The BHS-1 drillcore (Appendix A: section of the drillcore) is the first to traverse the entire Staffelegg Formation and part of the Klettgau Formation in the Mont Terri Rock Laboratory. This allows us to directly compare these sequences with the deepest part of the BDB-1 drillcore, on the one hand, and the section at Les Salins (Reisdorf et al. 2011) on the other. ...
Technical Report
Full-text available
A 57.87 m deep well, the Mont Terri BHS-1, was drilled in the Mont Terri Rock Laboratory starting in the basal layers of the Opalinus Clay into deeper strata. In the present study, a detailed analysis of the BHS-1 drillcore was carried out. Macrofossils and rock samples were taken from the drillcore, a lithological section of the core has been drawn and the litho- and biostratigraphy of the drillcore has been studied. The BHS-1 drillcore is the first to traverse the entire Staffelegg Formation and part of the Klettgau Formation in the Mont Terri Rock Laboratory. Therefore, the obtained stratigraphic data were compared with the deepest part of the BDB-1 drillcore, also from the Mont Terri Rock Laboratory, on the one hand, and the section at Les Salins (Reisdorf et al. 2011) on the other. The stratigraphic architecture, the macrofossils and the lithological inventory of the Staffelegg Formation encountered in the BHS-1 drillcore fits well with the coequal strata in the BDB-1 drillcore (Hostettler et al. 2017 and 2018) and the somewhat incomplete section at Les Salins (Reisdorf et al. 2011). The estimated thickness of the Staffelegg Formation, however, does not match the results of the drillcore and is discussed. This study of the BHS-1 drillcore reveals that sediments of Hettangian age do not occur in the Mont Terri area, as Buxtorf (1910) and Reisdorf et al. (2011) assumed. The absence of palynological investigations in this study makes a detailed age classification of the sediments of the Staffelegg and the Klettgau Formation difficult to impossible as no determinable macrofossils older than the late Sinemurian have been encountered.
... In contrast to Germany, where the OPA-equivalent is formally defined as the Opalinuston Formation, and partly as the Achdorf Formation (Franz and Nitsch, 2009), the OPA in Switzerland remains an informal lithostratigraphic unit, although wellestablished and long in use (e.g., Quenstedt, 1843Quenstedt, , 1858Schmidt et al., 1924). It comprises the lithologies residing between the marly section of the Early Jurassic Staffelegg Formation (Reisdorf et al., 2011) and the muddy, calcareous and Feoolitic basal lithology of the Middle Jurassic Passwang Formation (Burkhalter, 1996) and its eastern equivalents («Murchisonae-Oolith Formation»; Bläsi et al., 2013). While the lower lithostratigraphic boundary shows in most cases a clear facies change (e.g., Bläsi, 1987;Reisdorf et al., 2011), the upper limit of the OPA is more transitional in several locations and can be subject to discussion (Wohlwend et al., 2019b;Lauper et al., 2021). ...
... It comprises the lithologies residing between the marly section of the Early Jurassic Staffelegg Formation (Reisdorf et al., 2011) and the muddy, calcareous and Feoolitic basal lithology of the Middle Jurassic Passwang Formation (Burkhalter, 1996) and its eastern equivalents («Murchisonae-Oolith Formation»; Bläsi et al., 2013). While the lower lithostratigraphic boundary shows in most cases a clear facies change (e.g., Bläsi, 1987;Reisdorf et al., 2011), the upper limit of the OPA is more transitional in several locations and can be subject to discussion (Wohlwend et al., 2019b;Lauper et al., 2021). ...
Article
Full-text available
The Opalinus Clay is notable in Switzerland as being the selected host rock for deep geological disposal of radioactive waste. Since the early 1990’s, this argillaceous mudstone formation of Jurassic age has been intensively studied within the framework of national and international projects to characterize its geological, hydrological, mechanical, thermal, chemical, and biological properties. While there is no formal stratigraphic subdivision, the Opalinus Clay lithology is classically divided into several, dam- to m-scale sub-units (or facies), depending on location. Recent multi-proxy studies (combining petrographic, petrophysical, geochemical, and mineralogical analyses) have however demonstrated that high, intra-facies, lithological heterogeneity occurs at the dm- to cm-scale. To constrain this small-scale heterogeneity into distinct lithological units (subfacies), the present study aims at defining and presenting a convenient subfacies classification scheme covering the overall Opalinus Clay lithology across northern Switzerland. Petrographic (macro- and microfacies), mineralogical (X-ray diffraction) and textural (image analysis, machine learning and 3D X-ray computed tomography) analyses are performed on diverse drill cores from the Mont Terri rock laboratory (northwestern Switzerland), and results are extended further to the east (Riniken, Weiach, and Benken). Most of the investigated Opalinus Clay can be described by the use of five distinctive subfacies types (SF1 to SF5), which are visually and quantitatively distinguishable by texture (grain size, bedding, fabric, and color) and composition (nature and mineralogy of components). The five subfacies types can be further refined by additional attributes and sedimentary characteristics (biogenic, diagenetic, and structural). Eventually, the widespread and consistent use of standardized Opalinus Clay subfacies types provides the means to harmonize petrographic descriptions within multidisciplinary research projects, enhance reproducibility of in situ experiments, and further evidence the tight relations between lithology and various rock properties.
... During Mesozoic times, successive periods of marine transgressions and regressions resulted in the deposition of terrestrial, evaporite and marine sedimentary rocks (marls, claystones, limestones;Burkhalter 1996;Reisdorf et al. 2011;Bitterli-Dreher 2012;Nagra 2014;Jordan 2016;Pietsch et al. 2016). The sedimentary succession, including the basal décollement of the thin-skinned Jura belt within the Middle Triassic sequence (Buxtorf 1916;Jordan et al. 1990) is shown in Fig. 3. ...
... On top of the Zeglingen Formation follow the dolomites and limestones constituting the Schinznach Formation ) and the overlying evaporitic and marly series of the Bänkerjoch and Klettgau Formation (Keuper Group, Jordan et al. 2016), which represent a potential secondary detachment horizon (Sommaruga et al. 2017). This also applies to the thick sequence of marls and clays constituting the Liassic Staffelegg Formation (Reisdorf et al. 2011) and Middle Jurassic Opalinus Clay . In the central parts of the Jura Mountains some authors consider the latter as a regional detachment horizon accommodating substantial shortening during thin-skinned thrusting (Schori et al. 2015;Nussbaum et al. 2017). ...
Article
A detailed analysis of the Late Miocene Mandach Thrust, a key tectonic structure of the easternmost Jura Mountains (northern Alpine foreland), is presented providing insights into the modes of along-strike structural cover–basement interactions in a classical foreland setting. Our study builds on the construction, restoration and forward modelling of eight closely spaced cross-sections constrained by depth-migrated 2D seismics and geological maps. The results indicate predominantly thin-skinned thrust tectonics without significant inversion of underlying basement structures. However, inherited pre-thrusting normal faults exerted a strong control on the observed thrusting style, changing along-strike from a comparatively simple geometry to a complex, partly overthrust, partly reactivated normal fault. The observed variations relate to changes in the relief of the mechanical basement and the characteristics of pre-thrusting normal faults. The thrust's complexity is further increased by the local activation of secondary detachment horizons and possibly along-strike sedimentary facies changes within the thrust-faulted sedimentary sequence. The variations in thrusting style go along with subtle changes in shortening that may point towards as yet undetected transfer structures. As such, our structural analysis of the Mandach Thrust provides an improved understanding of the fault's kinematics and serves to highlight existing exploration uncertainties.
... In the region between Frick (Gipf-Oberfrick), Hornussen, Wölflinswil and Herznach, Hettangian to Oxfordian sedimentary rocks reach the surface. While the strata of the Lower Jurassic Staffelegg-Formation (Reisdorf et al., 2011) are predominantly clayey with some marls and a few limestone beds, the Middle Jurassic sequence bears a great variety of marine sedimentary rocks including marls, oolites, crinoidal limestones, etc. (e.g., Gonzalez & Wetzel, 1996). ...
Article
Full-text available
Ischyrodon meriani is an obscure pliosaurid taxon established upon an exceptionally large tooth crown of a probable Callovian (Middle Jurassic) age that originates from Wölflinswil, Canton of Aargau, Switzerland. Despite being known for almost two centuries, the specimen remains poorly researched. Historically, I. meriani has been associated, or even considered conspecific, with Pliosaurus macromerus and Liopleurodon ferox. However, neither of the two hypotheses have been tested through detailed comparisons or using modern quantitative methods. Here, we redescribe the type of Ischyrodon meriani, illustrate it, and compare to teeth of thalassophonean pliosaurids, with special focus on Jurassic representatives of the clade. Multivariate analyses show close similarities to L. ferox but comparable structures to those of I. meriani, including a distinctive pattern of the apicobasal ridges, are also observable in some mid-Cretaceous brachauchenines from the 'Polyptychodon' assemblage of East and South East England. While it is likely that I. meriani represents a Liopleurodon-like taxon, or is indeed conspecific with L. ferox, which would make I. meriani the proper name for the species, any such taxonomic considerations are hindered by the fragmentary nature of the type specimens of both these taxa as well as limited knowledge of the dental variability within and between individual jaws of L. ferox. Currently, I. meriani is best treated as a nomen dubium. Finally, we discuss the potential implications of I. meriani being conspecific with L. ferox, and additionally provide a commentary on the taxonomic status of Liopleurodon.
... ch; Affolter & Gratier, 2004). The oldest rocks that outcrop in the region of Saint-Ursanne are the Upper Triassic dolomitic marls, dolomites, and evaporites of the Keuper unit (the Klettgau Formation in the Lithostratigraphic Lexicon of Switzerland) and the immediately younger calcareous, marly, and argillaceous rocks of the Lias group (the Staffelegg Formation in the Lithostratigraphic Lexicon of Switzerland; Reisdorf et al., 2011), the latter hosts a rheologically weak detachment level formed by bituminous shales . Together, these rocks form the core of the Mont Terri anticline (Fig. 1c;Freivogel & Huggenberger, 2003;Laubscher, 1963aLaubscher, , 1963b. ...
Article
Full-text available
The interpretation of seismotectonic processes within the uppermost few kilometers of the Earth’s crust has proven challenging due to the often significant uncertainties in hypocenter locations and focal mechanisms of shallow seismicity. Here, we revisit the shallow seismic sequence of Saint-Ursanne of March and April 2000 and apply advanced seismological analyses to reduce these uncertainties. The sequence, consisting of five earthquakes of which the largest one reached a local magnitude (M L ) of 3.2, occurred in the vicinity of two critical sites, the Mont Terri rock laboratory and Haute-Sorne, which is currently evaluated as a possible site for the development of a deep geothermal project. Template matching analysis for the period 2000–2021, including data from mini arrays installed in the region since 2014, suggests that the source of the 2000 sequence has not been persistently active ever since. Forward modelling of synthetic waveforms points to a very shallow source, between 0 and 1 km depth, and the focal mechanism analysis indicates a low-angle, NNW-dipping, thrust mechanism. These results combined with geological data suggest that the sequence is likely related to a backthrust fault located within the sedimentary cover and shed new light on the hosting lithology and source kinematics of the Saint-Ursanne sequence. Together with two other more recent shallow thrust faulting earthquakes near Grenchen and Neuchâtel in the north-central portion of the Jura fold-and-thrust belt (FTB), these new findings provide new insights into the present-day seismotectonic processes of the Jura FTB of northern Switzerland and suggest that the Jura FTB is still undergoing seismically active contraction at rates likely < 0.5 mm/yr. The shallow focal depths provide indications that this low-rate contraction in the NE portion of the Jura FTB is at least partly accommodated within the sedimentary cover and possibly decoupled from the basement.
... The "Rhät-Bonebed" or Bratelen Bonebeds (Whiteside et al. 2017) from Hallau and Schleitheim are directly overlain by black marls and limestone of the "Psilonotenschichten" (Fig. 2; Hallau Bed of the Schambelen Member, Staffelegg Formation; Reisdorf et al. 2011). Schalch and Peyer (1919) and also Achilles and Schlatter (1986) found ammonites of the Lower Hettangian in the Hallau section (unit f ); however, the lowermost subzone of the planorbis zone could not be identified. ...
Article
Full-text available
Although sauropodomorph dinosaurs have been known for a long time from the Late Triassic of central Europe, sauropodomorph diversity and faunal composition has remained controversial until today. Here we review sauropodomorph material from the Canton Schaffhausen, Switzerland. The material comes from three different but geographically close localities and represents at least three different taxa. Apart from the common genus Plateosaurus, the material includes remains of two different large, robustly built sauropodomorphs. One of these is described as a new taxon, Schleitheimia schutzi n. gen. et sp., on the basis of an unusual ilium and associated axial and appendicular material. Schleitheimia represents a derived basal sauropodiform and possibly the immediate outgroup to Sauropoda, and thus is the most derived sauropodomorph known from the Late Triassic of Europe. These results thus highlight the diversity of sauropodomorphs in the Late Triassic of central Europe and further indicate widespread sauropodomorph survival across the Triassic-Jurassic boundary.
Preprint
The conditions controlling the formation of sedimentary dolomite are still poorly understood despite decades of research. Reconstructing formation temperatures and δ18O of fluids from which dolomite has precipitated is fundamental to constrain dolomitization models. Carbonate clumped isotopes are a very reliable technique to acquire such information if the original composition at the time of precipitation is preserved. Sedimentary dolomite first mostly forms as a poorly-ordered metastable phase (protodolomite) and subsequently transform to the more stable ordered phase. Due to this conversion its important to determine if the original clumped isotope composition of the disordered phase is preserved during diagenetic conversion to ordered dolomite, and how resistant clumped isotope signatures are against bond reordering at elevated temperatures during burial diagenesis. Here, we present a series of heating experiments at temperatures between 360 and 480 °C with durations between 0.125 and 426 hours. We uses fine-grained sedimentary dolomites to test the influence of grains size, and cation ordering on bond reordering kinetics. We analyzed a lacustrine dolomite with poor cation ordering and well ordered a replacement dolomite, both being almost stoichiometric. The poorly ordered dolomite shows a very rapid alteration of its bulk isotope composition and higher susceptibility to solid state bond reordering, whereas the well-ordered dolomite behaves like a previously studied coarse-grained hydrothermal dolomite. We derive dolomite-specific reordering kinetic parameters for ordered dolomitea and show that ∆47 reordering in dolomite is material specific. Our results call for further temperature-time series experiments to constrain dolomite ∆47 reordering over geologic timescales.
Article
Full-text available
In northern Switzerland, Middle Muschelkalk evaporites (Zeglingen Formation) were deposited under arid conditions in the southernmost part of the epicontinental Central European Basin during times of reduced inflow of sea water from the Tethyan realm. Because of their marginal position in the basin, direct and detailed correlation of Muschelkalk sediments of northern Switzerland with equivalent strata in interior parts of the basin is not straightforward. Based on detailed sedimentological logging of 640 m of drill cores from ten wells in northern Switzerland, 22 lithofacies and 10 lithofacies associations were distinguished for the Middle Muschelkalk evaporites. High-resolution regional correlations of gamma-ray logs record substantial thickness variation of the evaporites. Locally, dissolution was recognized by visual core examination that could be dated to Middle Triassic times and that was likely related to subsurface fluid flow along deeper seated faults. In combination with the regional thickness variation, the dissolution phenomena suggest a tectonically active depositional setting in the Middle Triassic. Middle Muschelkalk evaporites consist of nine types of mainly auto-cyclic shallowing- or brining-upward mini-cycles which form a correlatable succession of five distinct 4th order cycle-sets. Despite the tectonically active depositional environment, most lithofacies encountered appear to have nearly flat bounding surfaces. Thus, marine transgressions flooded wide areas nearly simultaneously. The corresponding deposits serve as reference levels to tie the peripheral facies of northern Switzerland into the supra-regional context.
Article
Konservat-Lagerstätten—deposits with exceptionally preserved fossils of articulated multi-element skeletons and soft tissues—offer the most complete snapshots of ancient organisms and communities in the geological record. One classic example, the Posidonia Shale in southwestern Germany, contains a diverse array of fossils preserved during the ∼183 Ma Toarcian Oceanic Anoxic Event. Seminal work on this deposit led to the hypothesis that many Konservat-Lagerstätten were preserved in stagnant basins, where anoxic conditions limited soft tissue degradation. To date, however, no studies have thoroughly investigated the geomicrobiological processes that drove fossil mineralization in the Posidonia Shale. As a result, the role of anoxia in its exceptional preservation remains uncertain. Here, we address these issues by reviewing the geology of the Posidonia Shale; describing the mineralization of its fossils; and synthesizing novel and existing data to develop a new model for the paleoenvironment and taphonomy of the Lagerstätte. Although shells and carbonate skeletal elements were preserved as pyritized and carbonaceous fossils, non-biomineralized tissues were primarily preserved via phosphatization (transformation of remains into calcium phosphate minerals). Unambiguous examples of phosphatization include ammonite shells, crustacean carapaces, ichthyosaur remains, coprolites, and coleoid gladii, mantle tissues, and ink sacs. Phosphatized crustaceans and coleoids contain cracks filled with pyrite, sphalerite, and aluminosilicate minerals. Such cracks were likely generated during burial compaction, which fractured phosphatized tissues, exposed their organic matter to focused microbial sulfate reduction, and thereby led to formation of, and infilling by, sulfide and clay minerals. These observations indicate that phosphatization happened early in diagenesis, prior to burial compaction and microbial sulfate reduction, beneath (sub)oxic bottom water, and corroborate the hypothesis that the animals were preserved during ephemeral pulses of oxygenation in the basin and/or within environments located along boundaries of anoxic water bodies. Overall, our findings support the view that anoxic bottom water does not directly promote exceptional preservation; in fact, it may impede it. Konservat-Lagerstätten, particularly “stagnation deposits”, tend to form in (sub)oxic depositional environments with steep redox gradients and/or high sedimentation rates. Under these conditions, organisms are rapidly buried below the redox boundary, where their mineralization is promoted by focused geomicrobiological processes, and degradation is limited by the supply of oxidants in the microenvironments around them.
Chapter
We continue our trip back in time through the Mesozoic, visiting several different ecosystems across the planet. Each of these was strongly influenced by the continental breakup from a single landmass into several tectonic plates and associated landmasses during this period. We will visit localities on several continents, observe how their vertebrate faunasVertebrate faunas changed over time, and what external factors might have contributed to these differences. During the Cretaceous, we visit the Iberian Peninsula, where hadrosauroids replaced titanosaurs as the most abundant dinosaur taxon. On the other side of the planet, a succession of geologic formations in Australia shows a gradual change from aquatic to terrestrial faunas resulting from sea-level changes of a now non-existent inland ocean. A visit to two polar ecosystems indicates possible mutual exclusion between amphibians (temnospondyls) and reptiles (crocodylomorphs), because they occupied similar ecological niches. Observing the record of Cretaceous landscapes in what is now Mongolia shows how changes in environment and climate correlate with changes in faunal composition. Heading back, we check if there are distinct differences in vertebrate diversity in space and time in the Late Jurassic of North America. Then we move south, to Argentina, and back to the Middle and Early Jurassic. Here, we will try to understand where these Late Jurassic faunas originated and what influence the fragmentation of the supercontinent Pangea had on their evolution and diversity. Finally, we will stop our trip in the Late Triassic of Central Europe, examining a typical vertebrate fauna from the time when dinosaurs began their domination of the planet.