ArticlePDF Available

The cytoskeletal mechanics of brain morphogenesis

Authors:

Abstract and Figures

Normal induction apparently involves setup of the cell state splitters in all of the ectoderm cells, perhaps synchronously timed by global embryo tension. The initial transition of cells from the ectodermal to the neuroepithelial state begins at the notoplate, where cell attachments to the notochord may both cause basal actin deposition and significantly reduce the stress induced in the ectoderm by the global tension, biasing the notoplate cell state splitters toward the neuroepithelial state. Introduction of an organizer or other solid substrate (artificial inducer) elsewhere, to which ectodermal cells can adhere, may likewise have both of these effects.
Content may be subject to copyright.
A preview of the PDF is not available
... Differentiation waves may be better understood as a dynamic series of attractor goals (Heylighen, 2023;Igamberdiev, 2023) and states nested in a whole organization. The prediction (Gordon and Brodland, 1987) and subsequent discovery by Björklund and Gordon (1994) of differentiation waves presents many opportunities for unraveling embryogenesis. ...
... Morphogenesis, the process that gives rise to distinctive shapes of functional organs such as the brain [1], heart [2], and lung [3], has fascinated researchers for a few centuries. Morphogenesis is directed by two types of factors-biochemical factors (molecules) and mechanical forces. ...
Article
Morphogenesis in the central nervous system has received intensive attention as elucidating fundamental mechanisms of morphogenesis will shed light on the physiology and pathophysiology of the developing central nervous system. Morphogenesis of the central nervous system is of a vast topic that includes important morphogenetic events such as neurulation and cortical folding. Here we review three types of methods used to improve our understanding of morphogenesis of the central nervous system: in vivo experiments, organoids (in vivo), and computational models (in silico). The in vivo experiments are used to explore cellular- and tissue-level mechanics and interpret them on the roles of neurulation morphogenesis. Recent advances in human brain organoids have provided new opportunities to study morphogenesis and neurogenesis to compensate for the limitations of in vivo experiments, as organoid models are able to recapitulate some critical neural morphogenetic processes during early human brain development. Due to the complexity and costs of in vivo and in vitro studies, a variety of computational models have been developed and used to explain the formation and morphogenesis of brain structures. We review and discuss the pros and cons of these methods and their usage in the studies on morphogenesis of the central nervous system. Notably, none of these methods alone is sufficient to unveil the biophysical mechanisms of morphogenesis, thus calling for the interdisciplinary approaches using a combination of these methods in order to test hypotheses and generate new insights on both normal and abnormal development of the central nervous system.
Chapter
Alan Turing (1912–1954) made seminal contributions to mathematical logic, computation, computer science, artificial intelligence, cryptography and theoretical biology. In this volume, outstanding scientific thinkers take a fresh look at the great range of Turing's contributions, on how the subjects have developed since his time, and how they might develop still further. The contributors include Martin Davis, J. M. E. Hyland, Andrew R. Booker, Ueli Maurer, Kanti V. Mardia, S. Barry Cooper, Stephen Wolfram, Christof Teuscher, Douglas Richard Hofstadter, Philip K. Maini, Thomas E. Woolley, Eamonn A. Gaffney, Ruth E. Baker, Richard Gordon, Stuart Kauffman, Scott Aaronson, Solomon Feferman, P. D. Welch and Roger Penrose. These specially commissioned essays will provoke and engross the reader who wishes to understand better the lasting significance of one of the twentieth century's deepest thinkers.
Chapter
Alan Turing (1912–1954) made seminal contributions to mathematical logic, computation, computer science, artificial intelligence, cryptography and theoretical biology. In this volume, outstanding scientific thinkers take a fresh look at the great range of Turing's contributions, on how the subjects have developed since his time, and how they might develop still further. The contributors include Martin Davis, J. M. E. Hyland, Andrew R. Booker, Ueli Maurer, Kanti V. Mardia, S. Barry Cooper, Stephen Wolfram, Christof Teuscher, Douglas Richard Hofstadter, Philip K. Maini, Thomas E. Woolley, Eamonn A. Gaffney, Ruth E. Baker, Richard Gordon, Stuart Kauffman, Scott Aaronson, Solomon Feferman, P. D. Welch and Roger Penrose. These specially commissioned essays will provoke and engross the reader who wishes to understand better the lasting significance of one of the twentieth century's deepest thinkers.
Chapter
Alan Turing (1912–1954) made seminal contributions to mathematical logic, computation, computer science, artificial intelligence, cryptography and theoretical biology. In this volume, outstanding scientific thinkers take a fresh look at the great range of Turing's contributions, on how the subjects have developed since his time, and how they might develop still further. The contributors include Martin Davis, J. M. E. Hyland, Andrew R. Booker, Ueli Maurer, Kanti V. Mardia, S. Barry Cooper, Stephen Wolfram, Christof Teuscher, Douglas Richard Hofstadter, Philip K. Maini, Thomas E. Woolley, Eamonn A. Gaffney, Ruth E. Baker, Richard Gordon, Stuart Kauffman, Scott Aaronson, Solomon Feferman, P. D. Welch and Roger Penrose. These specially commissioned essays will provoke and engross the reader who wishes to understand better the lasting significance of one of the twentieth century's deepest thinkers.
Chapter
Alan Turing (1912–1954) made seminal contributions to mathematical logic, computation, computer science, artificial intelligence, cryptography and theoretical biology. In this volume, outstanding scientific thinkers take a fresh look at the great range of Turing's contributions, on how the subjects have developed since his time, and how they might develop still further. The contributors include Martin Davis, J. M. E. Hyland, Andrew R. Booker, Ueli Maurer, Kanti V. Mardia, S. Barry Cooper, Stephen Wolfram, Christof Teuscher, Douglas Richard Hofstadter, Philip K. Maini, Thomas E. Woolley, Eamonn A. Gaffney, Ruth E. Baker, Richard Gordon, Stuart Kauffman, Scott Aaronson, Solomon Feferman, P. D. Welch and Roger Penrose. These specially commissioned essays will provoke and engross the reader who wishes to understand better the lasting significance of one of the twentieth century's deepest thinkers.
Chapter
Alan Turing (1912–1954) made seminal contributions to mathematical logic, computation, computer science, artificial intelligence, cryptography and theoretical biology. In this volume, outstanding scientific thinkers take a fresh look at the great range of Turing's contributions, on how the subjects have developed since his time, and how they might develop still further. The contributors include Martin Davis, J. M. E. Hyland, Andrew R. Booker, Ueli Maurer, Kanti V. Mardia, S. Barry Cooper, Stephen Wolfram, Christof Teuscher, Douglas Richard Hofstadter, Philip K. Maini, Thomas E. Woolley, Eamonn A. Gaffney, Ruth E. Baker, Richard Gordon, Stuart Kauffman, Scott Aaronson, Solomon Feferman, P. D. Welch and Roger Penrose. These specially commissioned essays will provoke and engross the reader who wishes to understand better the lasting significance of one of the twentieth century's deepest thinkers.
Chapter
Alan Turing (1912–1954) made seminal contributions to mathematical logic, computation, computer science, artificial intelligence, cryptography and theoretical biology. In this volume, outstanding scientific thinkers take a fresh look at the great range of Turing's contributions, on how the subjects have developed since his time, and how they might develop still further. The contributors include Martin Davis, J. M. E. Hyland, Andrew R. Booker, Ueli Maurer, Kanti V. Mardia, S. Barry Cooper, Stephen Wolfram, Christof Teuscher, Douglas Richard Hofstadter, Philip K. Maini, Thomas E. Woolley, Eamonn A. Gaffney, Ruth E. Baker, Richard Gordon, Stuart Kauffman, Scott Aaronson, Solomon Feferman, P. D. Welch and Roger Penrose. These specially commissioned essays will provoke and engross the reader who wishes to understand better the lasting significance of one of the twentieth century's deepest thinkers.
Chapter
Alan Turing (1912–1954) made seminal contributions to mathematical logic, computation, computer science, artificial intelligence, cryptography and theoretical biology. In this volume, outstanding scientific thinkers take a fresh look at the great range of Turing's contributions, on how the subjects have developed since his time, and how they might develop still further. The contributors include Martin Davis, J. M. E. Hyland, Andrew R. Booker, Ueli Maurer, Kanti V. Mardia, S. Barry Cooper, Stephen Wolfram, Christof Teuscher, Douglas Richard Hofstadter, Philip K. Maini, Thomas E. Woolley, Eamonn A. Gaffney, Ruth E. Baker, Richard Gordon, Stuart Kauffman, Scott Aaronson, Solomon Feferman, P. D. Welch and Roger Penrose. These specially commissioned essays will provoke and engross the reader who wishes to understand better the lasting significance of one of the twentieth century's deepest thinkers.
Chapter
Alan Turing (1912–1954) made seminal contributions to mathematical logic, computation, computer science, artificial intelligence, cryptography and theoretical biology. In this volume, outstanding scientific thinkers take a fresh look at the great range of Turing's contributions, on how the subjects have developed since his time, and how they might develop still further. The contributors include Martin Davis, J. M. E. Hyland, Andrew R. Booker, Ueli Maurer, Kanti V. Mardia, S. Barry Cooper, Stephen Wolfram, Christof Teuscher, Douglas Richard Hofstadter, Philip K. Maini, Thomas E. Woolley, Eamonn A. Gaffney, Ruth E. Baker, Richard Gordon, Stuart Kauffman, Scott Aaronson, Solomon Feferman, P. D. Welch and Roger Penrose. These specially commissioned essays will provoke and engross the reader who wishes to understand better the lasting significance of one of the twentieth century's deepest thinkers.
Article
Chez les Amphibiens le contact direct entre l'inducteur et l'ectoblaste n'est pas indispensable. Des substances inductrices solubles, probablement de nature proteinique, peuvent traverser un filtre millipore et déclencher des inductions neurales (Saxén, 1961; Nyholm, Saxén, Toivonen & Vainio, 1962). Ce filtre constitue pourtant une barrière difficilement franchissable, puisque le pourcentage et la puissance des inductions obtenues sont nettement plus faibles que dans les conditions normales. L'analyse de l'induction primaire chez les Oiseaux est encore lacunaire, la plupart des auteurs se sont limités à l'étude du pouvoir inducteur du nœud de Hensen transplanté sous l'ectoblaste de l'aire pellucide. Cependant, nous pouvons mentionner quelques résultats expérimentaux qui semblent indiquer que chez les Oiseaux, de même que chez les Amphibiens, l'induction est due à des substances diffusibles. Déjà en 1933 et 1934 Waddington a pu obtenir quelques inductions neurales typiques, en utilisant la ligne primitive tuée par une courte immersion dans l'eau bouillante.
Book
The decision, in 1975, to write alone a monograph on micro tubules was not without risks. While I was familiar from its start in Brussels in 1934 with the work on col­ chicine and other mitotic poisons, the literature on microtubules was, 8 years ago, already increasing at an impressive rate. However, this monograph, which, contrary to other works on microtubules, tried to cover the whole field of research, from the fundamentals of the tubulin molecule and the possible role of these organelles in some aspects of human pathology, to some medical applications of microtubule poisons, has been accepted as a useful tool for workers in these fields. Since 1976, (date of the last references mentioned in the monograph) until the middle of 1983, papers on microtubule research have literally been pouring in, at the rate of several hundred a year. This may justify a second edition, although the considerable difficulties in keeping the size of the book within the same limits while not forgetting to mention some important work, could not be overlooked. The need for an entirely revised and rewritten edition prompted this new venture and was possible with the help of the considerable amount of reprints kindly sent to me day after day over the years. This work would have been unthinkable if the author had not maintained the same enthusiasm for microtubule research, which has been disclosing new facts every day.