Article

The p53-Bak Apoptotic Signaling Axis Plays an Essential Role in Regulating Differentiation of the Ocular Lens

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

The tumor suppressor p53 is a master regulator of apoptosis and also plays a key role in cell cycle checking. In our previous studies, we demonstrated that p53 directly regulates Bak in mouse JB6 cells (Qin et al. 2008. Cancer Research. 68(11):4150) and that p53-Bak signaling axis plays an important role in mediating EGCG-induced apoptosis. Here, we demonstrate that the same p53-Bak apoptotic signaling axis executes an essential role in regulating lens cell differentiation. First, during mouse lens development, p53 is expressed and differentially phosphorylated at different residues. Associated with p53 expression, Bak is also significantly expressed during mouse lens development. Second, human p53 directly regulates Bak promoter and Bak expression in p53 knockout mice (p53-/-) was significantly downregulated. Third, during in vitro bFGF-induced lens cell differentiation, knockdown of p53 or Bak leads to significant inhibition of lens cell differentiation. Fourth, besides the major distribution of Bak in cytoplasm, it is also localized in the nucleus in normal lens or bFGF-induced differentiating lens cells. Finally, p53 and Bak are co-localized in both cytoplasm and nucleus, and their interaction regulates the stability of p53. Together, these results demonstrate for the first time that the p53-Bak apoptotic signaling axis plays an essential role in regulating lens differentiation.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Western blot analysis was conducted as previously described [32][33][34]. Total proteins were extracted from parent H1299 and transfected H1299 cells. ...
... Total proteins were extracted from parent H1299 and transfected H1299 cells. The protein concentration was determined as described before [32][33][34]. Fifty or 100 g of total proteins were used for each lane of loaded sample. The protein blots were blocked with 5% milk in TBS buffer [32][33][34] overnight at 4°C and then incubated for 1 h or overnight with antibodies against PP-1 , PP-1 , RB, and phospho-RB (Santa Cruz Biotechnology Inc, CA); Cyclin A, Cyclin B, Cyclin E, CDC2, CDK2 and CDK4 (Cell Signaling Technology), and -actin antibody (Sigma, MO) at a dilution of 1:200-3000. ...
... Fifty or 100 g of total proteins were used for each lane of loaded sample. The protein blots were blocked with 5% milk in TBS buffer [32][33][34] overnight at 4°C and then incubated for 1 h or overnight with antibodies against PP-1 , PP-1 , RB, and phospho-RB (Santa Cruz Biotechnology Inc, CA); Cyclin A, Cyclin B, Cyclin E, CDC2, CDK2 and CDK4 (Cell Signaling Technology), and -actin antibody (Sigma, MO) at a dilution of 1:200-3000. The secondary antibody was anti-mouse IgG, anti-rabbit IgG or anti-goat IgG (Amersham Biosciences, Piscataway, NJ) at a dilution of 1:1000-3000. ...
Article
Full-text available
Protein serine/threonine phosphatases are important cellular signaling molecules and play major roles in regulating many different functions including cell proliferation, senescence, programmed cell death, and oncogenic cell transformation. Among different serine/threonine phosphatases, PP-1 and PP-2A contribute to more than 90% phosphatase activities in eukaryotes. While the functions of PP-2A in cell transformation and tumorigenesis have been well established, the role of PP-1 in carcinogenesis remains to be further explored. Moreover, PP-1 exists in different isoforms, whether these isoforms have differential functions in tumorigenesis remains to be examined. In the present study, we demonstrated that in lung cancer 1299 cells, PP1α and PP-1γ exist in an antagonizing balance. In the parent H1299 cells, PP-1γ is dominant, about 4-fold higher than that of PP-1. Overexpression of PP-1α significantly down-regulates PP-1γ at both mRNA and protein levels. In contrast, knockdown of PP-1α leads to upregulation of PP-1γ. Moreover, overexpression of PP-1α significantly attenuates the ability of the H1299 cells in promoting tumorigenecity as tested in immuno-deficient nude mice. This attenuation is derived from the halted cell cycle progression, which is largely attributed by the changed RB-E2F activity. Together, our results demonstrate that PP-1α and PP-1γ not only antagonize each other in lung cancer cells, but also display differential functions in tumorigenecity.
... AGING In lens epithelial cells, apoptosis is mainly mediated by p53 and its downstream targets [26,30,[33][34][35][36][37][38][39][40][41][42][43][44][45][46][47][48][49]. Bcl-2 family proteins play a crucial role in mediating endogenous apoptotic pathway [50][51][52][53][54], and among which Bak is an important pro-apoptotic protein [55][56][57][58][59] and Mcl-1 is a major anti-apoptotic regulator [60][61][62][63]. ...
... Mouse lens epithelial cell line αTN4-1 and human lens epithelial cells (HLE) were cultured in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% fetal bovine serum (FBS; Atlanta Biologicals) and 1% penicillin/streptomycin in 5% CO2 at 37° C as described before [42,49,54,59,106,107]. ...
Article
Full-text available
The male abnormal gene family 21 (mab21), was initially identified in C. elegans. Since its identification, studies from different groups have shown that it regulates development of ocular tissues, brain, heart and liver. However, its functional mechanism remains largely unknown. Here, we demonstrate that Mab21L1 promotes survival of lens epithelial cells. Mechanistically, Mab21L1 upregulates expression of αB-crystallin. Moreover, our results show that αB-crystallin prevents stress-induced phosphorylation of p53 at S-20 and S-37 through abrogating the activation of the upstream kinases, ATR and CHK1. As a result of suppressing p53 activity by αB-crystallin, Mab21L1 downregulates expression of Bak but upregulates Mcl-1 during stress insult. Taken together, our results demonstrate that Mab21L1 promotes survival of lens epithelial cells through upregulation of αB-crystallin to suppress ATR/CHK1/p53 pathway.
... 19 Recent studies demonstrated that lens differentiation is regulated by the same set of regulators responsible for the control of apoptosis. 19,20 These regulators include the tumor suppressor p53, [21][22][23][24][25][26][27][28] Bcl-2 family members, 25,[29][30][31][32][33] caspase family members, 19, small heat shock proteins 32,[41][42][43][44][45] and tumor necrosis factors. 46 Tumor suppressor p53 has been implicated in regulating lens development. ...
... 19 Recent studies demonstrated that lens differentiation is regulated by the same set of regulators responsible for the control of apoptosis. 19,20 These regulators include the tumor suppressor p53, [21][22][23][24][25][26][27][28] Bcl-2 family members, 25,[29][30][31][32][33] caspase family members, 19, small heat shock proteins 32,[41][42][43][44][45] and tumor necrosis factors. 46 Tumor suppressor p53 has been implicated in regulating lens development. ...
Article
Full-text available
Cataract refers to opacities of the lens that impede the passage of light. Mutations in heat shock transcription factor 4 (HSF4) have been associated with cataract; however, the mechanisms regarding how mutations in HSF4 cause cataract are still obscure. In this study, we generated an hsf4 knockout zebrafish model using TALEN technology. The mutant zebrafish developed an early-onset cataract with multiple developmental defects in lens. The epithelial cells of the lens were overproliferated, resulting in the overabundance of lens fiber cells in hsf4null zebrafish lens. Consequently, the arrangement of the lens fiber cells became more disordered and irregular with age. More importantly, the terminal differentiation of the lens fiber cell was interrupted as the organelles cannot be cleaved in due time. In the cultured human lens epithelial cells, HSF4 could stabilize and retain p53 in the nucleus to activate its target genes such as fas cell surface death receptor (Fas) and Bcl-2-associated X apoptosis regulator (Bax). In the hsf4null fish, both p53 and activated-caspase3 were significantly decreased. Combined with the finding that the denucleation defect could be partially rescued through microinjection of p53, fas and bax mRNA into the mutant embryos, we directly proved that HSF4 promotes lens fiber cell differentiation by activating p53 and its downstream regulators. The data we presented suggest that apoptosis-related genes are involved in the lens fiber cell differentiation. Our finding that HSF4 functions in the upstream to activate these genes highlighted the new regulatory modes of HSF4 in the terminal differentiation of lens fiber cell.
... Formalin-fixed tissues were paraffin-embedded and sectioned for immunostained with anti-αA-crystallin antibody using standard immunohistochemistry procedures as previously described [88][89][90][91][92][93][94][95][96][97]. Immunostained slides were evaluated independently by 2 pathologists in double-blind manner. ...
... Preparation of total proteins from parent and various transfected cells and Western blot analysis of different protein samples were conducted as previously described [88][89][90][91][92][93][94][95][96][97]. ...
Article
Full-text available
Our recent study has shown that αA-crystallin appears to act as a tumor suppressor in pancreas. Here, we analyzed expression patterns of αA-crystallin in the pancreatic tumor tissue and the neighbor normal tissue from 74 pancreatic cancer patients and also pancreatic cancer cell lines. Immunocytochemistry revealed that αA-crystallin was highly expressed in the normal tissue from 56 patients, but barely detectable in the pancreatic tumor tissue. Moreover, a low level of αA-crystallin predicts poor prognosis for patients with pancreatic duct adenocarcinoma (PDAC). In the 12 pancreatic cell lines analyzed, except for Capan-1 and Miapaca-2 where the level of αA-crystallin was about 80% and 65% of that in the control cell line, HPNE, the remaining pancreatic cancer cells have much lower αA-crystallin levels. Overexpression of αA-crystallin in MiaPaca-1 cells lacking endogenous αA-crystallin significantly decreased its tumorigenicity ability as shown in the colony formation and wound healing assays. In contrast, knockdown of αA-crystallin in the Capan-1 cells significantly increased its tumorigenicity ability as demonstrated in the above assays. Together, our results further demonstrate that αA-crystallin negatively regulates pancreatic tumorigenesis and appears to be a prognosis biomarker for PDAC.
... First, as a transcription factor, p53 regulates several dozens of apoptosis-related genes [35]. In this regard, we have previously shown that p53 can regulate Bak, a major pro-apoptotic gene, to mediate apoptosis and lens differentiation [36]. In addition, p53 can activate Bax in the mitochondria to interact with Bcl-2 and Bcl-XL [37,38]. ...
Article
Deleted in breast cancer 1 (DBC1) was initially identified from a homozygously deleted region in human chromosome 8p21. It has been well established that DBC1 plays a dual role during cancer development. Depending on the physiological context, it can promote or inhibit tumorigenesis. Whether it plays a role in lens pathogenesis remains elusive. In the present study, we demonstrated that DBC1 is highly expressed in lens epithelial cells from different vertebrates and in retina pigment epithelial cells as well. Moreover, DBC1 is SUMOylated through SUMO1 conjugation at K591 residue in human and mouse lens epithelial cells. The SUMOylated DBC1 is localized in the nucleus and plays an essential role in promoting stress-induced apoptosis. Silence of DBC1 attenuates oxidative stress-induced apoptosis. In contrast, overexpression of DBC1 enhances oxidative stress-induced apoptosis, and this process depends on p53. Mechanistically, DBC1 interacts with p53 to regulate its phosphorylation status at multiple sites and the SUMOylation of DBC1 enhances its interaction with p53. Together, our results identify that DBC1 is an important regulator mediating stress-induced apoptosis in lens, and thus participates in control of lens cataractogenesis.
... This observation confirms other reports of increased p53 in PE and FGR complications (43,65,68,69). Since p53 is involved in regulating apoptotic processes (70), increased p53 may lead to increased apoptosis of trophoblast cells (43). In a previous in vitro study, we showed that p21 acts as a target of cleaved Notch-1 and is integrated in the CCN3 signaling pathway (33). ...
Article
Full-text available
Objectives An adequate development of the placenta includes trophoblast differentiation with the processes of trophoblast migration, invasion, cellular senescence and apoptosis which are all crucial to establishing a successful pregnancy. Altered placental development and function lead to placental diseases such as preeclampsia (PE) which is mainly characterized by insufficient trophoblast invasion and abnormally invasive placenta (AIP) disorders (Placenta accreta, increta, or percreta) which are characterized by excessive trophoblast invasion. Both of them will cause maternal and fetal morbidity/mortality. However, the etiology of these diseases is still unclear. Our previous study has shown that the matricellular protein nephroblastoma overexpressed (NOV, CCN3) induces G0/G1 cell cycle arrest, drives trophoblast cells into senescence and activates FAK and Akt kinases resulting in reduced cell proliferation and enhanced migration capability of the human trophoblast cell line SGHPL-5. The present study focuses on whether CCN3 can alter cell cycle-regulated pathways associated with trophoblast senescence and invasion activity in pathological versus gestational age-matched control placentas. Methods Cell cycle regulator proteins were investigated by immunoblotting and qPCR. For localization of CCN3, p16, p21, and Cyclin D1 proteins, co-immunohistochemistry was performed. Results In early-onset PE placentas, CCN3 was expressed at a significantly lower level compared to gestational age-matched controls. The decrease of CCN3 level is associated with an increase in p53, Cyclin E1 and pRb protein expression, whereas the level of cleaved Notch-1, p21, Cyclin D1, pFAK, pAKT, and pmTOR protein decreased. In term AIP placentas, the expression of CCN3 was significantly increased compared to matched term controls. This increase was correlated to an increase in p53, p16, p21, Cyclin D1, cleaved Notch-1, pFAK, pAkt, and pmTOR whereas pRb was significantly decreased. However, in late PE and early AIP placentas, no significant differences in CCN3, p16, p21, Cyclin D1, p53, and cleaved Notch-1 expression were found when matched to appropriate controls. Conclusions CCN3 expression levels are correlated to markers of cell cycle arrest oppositely in PE and AIP by activating the FAK/AKT pathway in AIP or down-regulating in PE. This may be one mechanism to explain the different pathological features of placental diseases, PE and AIP.
... RJT-101 markedly induced apoptosis (Fig. 5) through DNA damage (Fig. 6), leading to arrest cell cycle at G2/M phase in various melanoma cells (Fig. 6A). Furthermore, RJT-101 significantly up-regulated the mRNA expressions of p53, p21, and PUMA in melanoma cells (Fig. 6H-6 J). p53 is a key tumor suppressor gene that mediates the initiation of the cell cycle arrest during DNA damage and p53 triggers cellular apoptosis when the damaged DNA failed to recover [34,35]. P21 and PUMA are the targeting genes by p53, which induce apoptosis and cell cycle arrest, respectively [36,37]. ...
Article
Melanoma is one of the most aggressive malignancies. Drug resistance and toxicity limits the clinical efficacy of melanoma chemotherapeutic drugs such as dacarbazine. Therefore, the development of chemotherapeutic agents for melanoma treatment is urgently needed. RJT-101 significantly inhibits the proliferation of melanoma cells, however has low cytoxicity to non-malignant cells. RJT-101 induces apoptosis, DNA damage, and G2/M phase arrest, as a consequent, attenuates tumor growth, lung metastasis in vivo as well as prolongs survival of tumor bearing mice. RJT-101 could block topoisomerase I (Top1) activity as well as induce its degradation through proteasome system. Interestingly, Top1 is over-expressed in melanoma cells, compared to non-malignant cells. Knock down of Top1 suppresses melanoma cells growth and induces apoptosis and DNA damage in melanoma cells. RJT-101 effectively inhibits melanoma cells (including vemurafenib-resistant melanoma cells) proliferation in vitro and in vivo through the induction of DNA damage and apoptosis by inhibiting of Top1, indicating RJT-101 warrants further clinical evaluation.
... Therefore, amplified trophoblast turnover might result in the excessive release of trophoblast into maternal circulation, producing PE symptoms [29]. P53 also contributes to the regulation of cell apoptosis [30]. According to previous studies, upregulation of P53 induces apoptosis and suppresses endothelial cell proliferation in PE pregnancies. ...
Article
Full-text available
Background: Preeclampsia (PE), as a multisystem disorder, is associated with maternal hypertension and proteinuria. Apoptosis seems to be involved in the pathophysiology of PE, although its precise pathogenic mechanisms are not well established. In this study, we aimed to identify the association between maternal TP53-rs1042522, P21-rs1801270, and P21-rs1059234 polymorphisms and PE. In addition, we examined the effects of promoter methylation and TP53 and P21 polymorphisms on placental mRNA expression in PE women. Methods: The blood of 226 PE women and 228 normotensive pregnant women was examined in this study. In addition, the placentas were genotyped in 109 PE and 112 control women. The methylation status was assessed by a methylation-specific PCR assay, while mRNA expression was examined via Quantitative Real Time PCR. Results: The maternal and placental P21-rs1801270 CA genotype had a significant association with the reduced risk of PE. In the dominant, recessive, and allelic models, maternal/placental P21-rs1059234 polymorphism had no statistically significant association with the risk of PE. On the other hand, the reduced risk of PE was associated with maternal, but not placental TP53-rs1042522 polymorphism in the dominant and recessive models. The maternal and placental P21-rs1801270 polymorphism was associated with PE risk. The maternal P21 Trs1059234Crs1801270 haplotype was associated with 3.4-fold increase in PE risk, However the maternal P21 Trs1059234Ars 1801270 haplotype and placental Crs1059234CA rs1801270 haplotype led to 0.5 and 0.4-fold decrease in PE risk, respectively. PE women showed 5.6 times higher levels of placental mRNA expression of TP53 gene, although it was not associated with rs1042522 polymorphism. The relative placental mRNA expression of P21 gene was 0.2 in PE women. It was also 2.4 times higher in individuals with rs1801270CA genotype than those with AA genotype. The hyper-methylation of P21 and TP53 genes in the promoter region was associated with a 3.4-fold and 3-fold increase in PE risk, respectively. However, no association was found between P21 and TP53 mRNA expression and promoter methylation. Conclusion: In conclusion, P21-rs1801270 and TP53-rs1042522 polymorphisms were involved in reduced risk of PE. P21-rs1801270 was associated with decreased P21 mRNA expression. The hyper-methylation of P21 and TP53 genes in the promoter region was associated with a higher PE risk.
... Consistently, compromised p53 and RNA pol II recruitments to the promoter regions of p53 downstream target genes such as Bax and Bak1 gene promoters were observed (Supplemental Fig. S7A, B). Bak1 was previously reported as a p53 target gene, which was regulated by both p53 and Sp1 (42,43). The decreased Bax and Bak1 induction were likely due to the failure of the DINO-p53 complex formation necessary for p53-mediated transcriptional activation. ...
Article
Full-text available
Damage‐induced long noncoding RNA (DINO) is a long noncoding RNA that directly interacts with p53 and thereby enhances p53 stability and activity in response to various cellular stresses. Here, we demonstrate that nuclear receptor subfamily 2 group E member 3 (NR2E3) plays a crucial role in maintaining active DINO epigenetic status for its proper induction and subsequent p53 activation. In acetaminophen (APAP)‐ or carbon tetrachloride‐induced acute liver injuries, NR2E3 knockout (KO) mice exhibited far more severe liver injuries due to impaired DINO induction and p53 activation. Mechanistically, NR2E3 loss both in vivo and in vitro induced epigenetic DINO repression accompanied by reduced DINO chromatin accessibility. Furthermore, compared with the efficient reversal by a typical antidote N‐acetylcysteine (NAC) treatment of APAP‐induced liver injury in wild‐type mice, the liver injury of NR2E3 KO mice was not effectively reversed, indicating that an intact NR2E3‐DINO‐p53–signaling axis is essential for NAC‐mediated recovery against APAP‐induced hepatotoxicity. These findings establish that NR2E3 is a critical component in p53 activation and a novel susceptibility factor to drug‐ or toxicant‐induced acute liver injuries.—Khanal, T., Leung, Y.‐K., Jiang, W., Timchenko, N., Ho, S.‐M., Kim, K. NR2E3 is a key component in p53 activation by regulating a long noncoding RNA DINO in acute liver injuries. FASEB J. 33, 8335–8348 (2019). www.fasebj.org
... p53-Bak apoptotic signaling axis plays an essential role in regulating lens differentiation. Knockdown of p53 suppresses bFGF-induced differentiation of the lens epithelial cells in vitro [34]. These results suggest that p53 participates in lens differentiation. ...
Article
The differentiation from constantly dividing epithelial cells into secondary fiber cells is a key step during lens development. Failure in this process, which requires cell proliferation inhibition and cell cycle exit, causes cataract formation. HSF4 (Heat Shock Transcription Factor 4) gene mutations may lead to both congenital and senile cataract. However, how HSF4 mutations induce cataract formation remains obscure. In this study, we demonstrate that HSF4 can suppress the proliferation of human lens epithelial cells (HLECs) by promoting G1/S arrest in a p53-dependent manner. In contrast, HSF4 with cataract causative mutations fail to cause cell cycle arrest and have no obvious effect on cell proliferation. We further identify that HSF4 recruits p53 in the nucleus and promotes its transcriptional activity, leading to the expression of its target gene p21 in HLECs. HSF4, but not its cataract-causing mutants, stabilizes p53 protein and inhibits its ubiquitin degradation. Our data reveal that HSF4 may work as a switch between lens epithelial cell proliferation and secondary fiber cell differentiation, a process which mainly depends on p53. Through demonstration of this novel downstream pathway of HSF4, our results help to uncover the pathogenic mechanisms caused by HSF4 mutations. Copyright © 2015. Published by Elsevier B.V.
... Furthermore, since apoptosis has been implicated in lens fiber cell differentiation and organelle loss [13], the lens provides a suitable model for studying the apoptosis pathway. Given the primary relevance of the p53 pathway in cell proliferation, differentiation, and apoptosis, the lens has been used to analyze p53 interaction with proteins that may also be important in these processes, such the retinoblastoma protein (pRb) [14], bcl-2 [15], CREB-2 [16], OREBP [17], Nbs1 [18], BMP [19], Eaf2 [20], c-Maf, Prox-1 [21], and Bak [22]. ...
Article
Full-text available
p53 is a transcription factor that plays an important role in preventing cancer development. p53 participates in relevant aspects of cell biology, including apoptosis and cell cycle control and must be strictly regulated to maintain normal tissue homeostasis. p53 E3 ubiquitin protein ligase homolog (Mdm2) is an important negative regulator of p53. The purpose of this study was to determine if Mdm2 regulates p53 in vivo in the adult lens. We analyzed mice expressing human p53 transgene (Tgp53) selectively in the lens in the presence or absence of Mdm2. Mice with the required genotypes were obtained by crossing transgenic, mdm2 (+/-), and p53 (-/-) mice. Eye phenotype and lens histology and ultrastructure were analyzed in adult mice. In a wild-type genetic background (mdm2 (+/+)), lens damage and microphthalmia were observed only in mice homozygous for Tgp53 ((t/t)). However, in an mdm2 null background, just one allele of Tgp53 (mdm2 (-/-)/Tgp53 (t/0) mice) was sufficient to cause lens damage and microphthalmia. Furthermore, Mdm2 in only one allele was sufficient to rescue these deleterious effects, since the mdm2 (+/-)/Tgp53 (t/0) mice had eye size and lens morphology similar to the control mice. Mdm2 regulates p53 in the adult lens in vivo. This information may have relevance for analyzing normal and pathological conditions of the lens, and designing cancer therapies targeting Mdm2-p53 interaction.
Article
Purpose: The tumor suppressor p53 is a master regulator of apoptosis and also plays a key role in cell cycle checking. In our previous studies, we demonstrated that p53 directly regulates Bak in mouse JB6 cells and that p53-Bak signaling axis plays an important role in mediating EGCG-induced apoptosis. Furthermore, we have recently demonstrated that the same p53-Bak apoptotic signaling axis executes an essential role in regulating lens cell differentiation. In addition, we have also shown that p53 controls both transcription factors, C-Maf and Prox-1 as well as lens crystallin genes, αA, β- and γ-crystallins. Here, we have examined whether p53 also regulates other known target genes during its modulation of lens differentiation. The human and mouse lens epithelial cells, FHL124 and αTN4-1 were cultured in Dulbecco's modified Eagle's medium (DMEM) containing 10% fetal bovine serum (FBS) and 1% Penicillin-Streptomycin. Methods: Mice used in this study were handled in compliance with the "Protocol for the Care and Use of Laboratory Animals" (Sun Yat-sen University). Adult mice were used for the collection of lens cells. These samples were used for extraction of total proteins. A total of 32 embryonic mice {8 at 14.5 ED, 8 at 17.5 ED and 8 newborns for wild type} were used for immunohistochemistry, which were used for co-localization study. The mRNA levels were analysed with qRT-PCR. The protein levels were determined with western blot analysis and quantitated with Image J. Results: Immunohistochemistry revealed that both the cell cycle checking genes, p21 and Gadd45α and the apoptotic genes, Bcl-2 and PUMA, display developmental changes associated with p53 during mouse lens development. Knockdown of p53 in the mouse lens epithelial cells caused inhibition of lens differentiation. Associated with this inhibition, the cell cycle genes displayed significant downreglation, the apoptotic genes was also attenuated but to a much less degree. In addition, we found that bFGF can induce dose-dependent upregulation of the upstream kinases, CHK1/2 and ERK1/2, both known to phosphorylate p53 and activate the later. Furthermore, We showed that in both developing lens and human lens epithelial cells, p53 can be co-localized with the catalytic subunit of the protein phoshphatase-1 (PP-1), suggesting that PP-1 regulates p53 phosphorylation status both in vivo and in vitro. Conclusion: Taken together, our results suggest that during mouse lens development, p53 activity is regulated by ERK and CHK kinases-mediated activation, and by PP-1-mediated inactivation. p53 can regulate multiple groups of genes to mediate lens differentiation.
Article
The actin cytoskeleton is a polymer system that acts both as a sensor and mediator of apoptosis. Tropomyosins (Tpm) are a family of actin binding proteins that form co-polymers with actin and diversify actin filament function. Previous studies have shown that elevated expression of the tropomyosin isoform Tpm2.1 sensitized cells to apoptosis induced by cell detachment (anoikis) via an unknown mechanism. It is not yet known whether Tpm2.1 or other tropomyosin isoforms regulate sensitivity to apoptosis beyond anoikis. In this study rat neuroepithelial cells over-expressing specific tropomyosin isoforms (Tpm1.7, Tpm2.1, Tpm3.1 and Tpm4.2) were screened for sensitivity to different classes of apoptotic stimuli, including both cytoskeletal and non-cytoskeletal targeting compounds. Results showed that elevated expression of tropomyosins in general inhibited apoptosis sensitivity to different stimuli. However, Tpm2.1 over-expression consistently enhanced sensitivity to anoikis as well as apoptosis induced by the actin targeting drug jasplakinolide (JASP). In contrast the cancer-associated isoform Tpm3.1 inhibited the induction of apoptosis by a range of agents. Treatment of Tpm2.1 over-expressing cells with JASP was accompanied by enhanced sensitivity to mitochondrial depolarization, a hallmark of intrinsic apoptosis. Moreover, Tpm2.1 over-expressing cells showed elevated levels of the apoptosis proteins Bak (pro-apoptotic), Mcl-1 (pro-survival), Bcl-2 (pro-survival) and phosphorylated p53 (Ser392). Finally, JASP treatment of Tpm2.1 cells caused significantly reduced Mcl-1, Bcl-2 and p53 (Ser392) levels relative to control cells. We therefore propose that Tpm2.1 regulates sensitivity to apoptosis beyond the scope of anoikis by modulating the expression of key intrinsic apoptosis proteins which primes the cell for death. This article is protected by copyright. All rights reserved.
Chapter
The tumor suppressor p53 is a master regulator of apoptosis and also plays a key role in cell cycle progress and cell differentiation. It mainly acts as a transcription factor. In addition, it can also directly interact with apoptosis regulators in mitochondria to control apoptosis. Recent studies from our laboratory and others have shown that p53 plays an active role in regulating lens differentiation. It does so by modulating developmental apoptosis and also controlling expression of lens differentiation-specific genes. In this chapter, we summary the current progresses in this field.
Article
Full-text available
Pax-6 is an evolutionarily conserved transcription factor regulating brain and eye development. Four Pax-6 isoforms have been reported previously. Although the longer Pax-6 isoforms (p46 and p48) bear two DNA-binding domains, the paired domain (PD) and the homeodomain (HD), the shorter Pax-6 isoform p32 contains only the HD for DNA binding. Although a third domain, the proline-, serine- and threonine-enriched activation (PST) domain, in the C termini of all Pax-6 isoforms mediates their transcriptional modulation via phosphorylation, how p32 Pax-6 could regulate target genes remains to be elucidated. In the present study, we show that sumoylation at K91 is required for p32 Pax-6 to bind to a HD-specific site and regulate expression of target genes. First, in vitro-synthesized p32 Pax-6 alone cannot bind the P3 sequence, which contains the HD recognition site, unless it is preincubated with nuclear extracts precleared by anti-Pax-6 but not by anti-small ubiquitin-related modifier 1 (anti-SUMO1) antibody. Second, in vitro-synthesized p32 Pax-6 can be sumoylated by SUMO1, and the sumoylated p32 Pax-6 then can bind to the P3 sequence. Third, Pax-6 and SUMO1 are colocalized in the embryonic optic and lens vesicles and can be coimmunoprecipitated. Finally, SUMO1-conjugated p32 Pax-6 exists in both the nucleus and cytoplasm, and sumoylation significantly enhances the DNA-binding ability of p32 Pax-6 and positively regulates gene expression. Together, our results demonstrate that sumoylation activates p32 Pax-6 in both DNA-binding and transcriptional activities. In addition, our studies demonstrate that p32 and p46 Pax-6 possess differential DNA-binding and regulatory activities.
Article
Full-text available
P53-induced protein with a death domain (PIDD) was cloned as a death domain (DD)-containing protein whose expression is induced by p53. It was later described as the core of a molecular platform-activating caspase-2, named the PIDDosome. These first results pointed towards a role for PIDD in apoptosis, in response to DNA damage. Identification of new PIDDosome complexes involved in DNA repair and nuclear factor-κB signaling challenged this early concept. PIDD functions are growing as new complexes and new interaction partners are being discovered, and as additional functions are being revealed. A fascinating feature of PIDD lies within its complex and tight regulation mechanisms, which allow the molecule to fine-tune its different functions: from transcriptional regulation to the expression of different isoforms, and from the interaction with regulatory proteins to an ingenious post-translational cleavage mechanism generating various active fragments with specific functions. Further studies still need to be carried out to provide answers to many unresolved issues and to reconcile conflicting results. This review aims at providing an overview of the current PIDD knowledge status.
Article
Full-text available
In addition to the loss of wild-type p53 activity, a high percentage of tumor cells accumulate mutant p53 protein isoforms. Whereas the hallmark of the wild-type p53 is its tumor suppressor activities, tumor-associated mutant p53 proteins acquire novel functions enabling them to promote a large spectrum of cancer phenotypes. During the last years, it became clear that tumor-associated mutant p53 proteins are not only distinct from the wild-type p53, but they also represent a heterogeneous population of proteins with a variety of structure-function features. One of the major mechanisms underlying mutant p53 gain of function is the ability to regulate gene expression. Although a large number of specific target genes were identified, the molecular basis for this regulation is not fully elucidated. This review describes the present knowledge about the transcriptional activities of mutant p53 and the mechanisms that might underlie its target gene specificity.
Article
Full-text available
Human parvovirus B19 (B19V) is the only human pathogenic parvovirus. It causes a wide spectrum of human diseases, including fifth disease (erythema infectiosum) in children and pure red cell aplasia in immunocompromised patients. B19V is highly erythrotropic and preferentially replicates in erythroid progenitor cells (EPCs). Current understanding of how B19V interacts with cellular factors to regulate disease progression is limited, due to a lack of permissive cell lines and animal models. Here, we employed a recently developed primary human CD36(+) EPC culture system that is highly permissive for B19V infection to identify cellular factors that lead to cell cycle arrest after B19V infection. We found that B19V exploited the E2F family of transcription factors by downregulating activating E2Fs (E2F1 to E2F3a) and upregulating repressive E2Fs (E2F4 to E2F8) in the primary CD36(+) EPCs. B19V nonstructural protein 1 (NS1) was a key viral factor responsible for altering E2F1-E2F5 expression, but not E2F6-E2F8 expression. Interaction between NS1 and E2F4 or E2F5 enhanced the nuclear import of these repressive E2Fs and induced stable G₂ arrest. NS1-induced G₂ arrest was independent of p53 activation and increased viral replication. Downstream E2F4/E2F5 targets, which are potentially involved in the progression from G₂ into M phase and erythroid differentiation, were identified by microarray analysis. These findings provide new insight into the molecular pathogenesis of B19V in highly permissive erythroid progenitors.
Article
Full-text available
Proapoptotic Bax and Bak are the key B-cell lymphoma-2 family members mediating apoptosis through the intrinsic pathway. Cells doubly deficient for Bax and Bak are profoundly resistant to apoptotic stimuli originating from multiple stimuli. Here we describe mice in which Bax and Bak have been deleted specifically in T-cells using Lck-Cre. In these T cell-specific BaxBak-deficient mice, early T-cell progenitors accumulate in the thymus, with relative depletion of more mature T cells. In addition, bone marrow progenitor cells fail to progress to the double positive stage when cultured on OP9 stromal cells expressing the Notch ligand Delta-like 1, consistent with a critical role for Bax and Bak in early T-cell development. Over time, T cell-specific BaxBak-deficient mice progress to an aggressive T-cell lymphoblastic leukemia/lymphoma. Interestingly, quantitative real-time polymerase chain reaction analysis of BaxBak-deficient T-cell lymphomas does not display amplification of the Notch signal transduction pathway, commonly activated in T-cell leukemia in both mouse and man. Bax and Bak, key regulators of the intrinsic pathway of apoptosis, are thus required to prevent T-cell malignancy, and for normal T-cell differentiation, regulating early T-cell development at the stage of early T-lineage progenitor cells.
Article
Full-text available
AKT pathway has a critical role in mediating signaling transductions for cell proliferation, differentiation and survival. Previous studies have shown that AKT activation is achieved through a series of phosphorylation steps: first, AKT is phosphorylated at Thr-450 by JNK kinases to prime its activation; then, phosphoinositide-dependent kinase 1 phosphorylates AKT at Thr-308 to expose the Ser-473 residue; and finally, AKT is phosphorylated at Ser-473 by several kinases (PKD2 and others) to achieve its full activation. For its inactivation, the PH-domain containing phosphatases dephosphorylate AKT at Ser-473, and protein serine/threonine phosphatase-2A (PP-2A) dephosphorylates it at Thr-308. However, it remains unknown regarding which phosphatase dephosphorylates AKT at Thr-450 during its inactivation. In this study, we present both in vitro and in vivo evidence to show that protein serine/threonine phosphatase-1 (PP-1) is a major phosphatase that directly dephosphorylates AKT to modulate its activation. First, purified PP-1 directly dephosphorylates AKT in vitro. Second, immunoprecipitation and immunocolocalization showed that PP-1 interacts with AKT. Third, stable knock down of PP-1alpha or PP-1beta but not PP-1gamma, PP-2Aalpha or PP-2Abeta by shRNA leads to enhanced phosphorylation of AKT at Thr-450. Finally, overexpression of PP-1alpha or PP-1beta but not PP-1gamma, PP-2Aalpha or PP-2Abeta results in attenuated phosphorylation of AKT at Thr-450. Moreover, our results also show that dephosphorylation of AKT by PP-1 significantly modulates its functions in regulating the expression of downstream genes, promoting cell survival and modulating differentiation. These results show that PP-1 acts as a major phosphatase to dephosphorylate AKT at Thr-450 and thus modulate its functions.
Article
Full-text available
Spi-1/PU.1 is a myeloid- and B-cell specific transcription factor which is also involved in Friend virus-induced murine erythroleukemia. The pre-leukemic phase of Friend erythroleukemia results from activation of the erythropoietin receptor (EpoR) by the spleen focus forming virus (SFFV) envelope glycoprotein, followed by the emergence of leukemic clones characterized by overexpression of Spi-1 and mutation of the p53 tumor suppressor gene. We developed a heterologous system to analyze the contribution of these alterations to the induction of primary erythroblast transformation. Avian erythroblasts expressing the activated mouse EpoR(R129C) differentiated into erythrocytes in response to hEpo. Expression of Spi-1 in these cells inhibited this ability to differentiate and rescued the cells from the apoptotic cell death program normally induced upon hEpo withdrawal. Although devoid of any effect by itself, a mutant p53 cooperated with Spi-1 and EpoR(R129C) to reinforce both phenotypes. Analysis of erythroblasts co-expressing Spi-1 and the wild-type mouse EpoR showed that differentiation arrest and inhibition of apoptosis depended on specific cooperation between Spi-1 and EpoR(R129C). This cooperation was also required to induce the sustained proliferation of differentiation-blocked erythroblasts in response to ligand activation of the endogenous tyrosine kinase receptor c-Kit. These results show that Spi-1/PU.1 requires signals emanating from specific cytokine and growth factor receptors to affect the survival, proliferation and differentiation control of primary erythroblasts. They also suggest that the function of Spi-1/PU.1 in the late phase of Friend leukemia requires specific signaling from the gp55-modified EpoR generated during the early phase of the disease.
Article
Full-text available
Protein phosphatases-2A (PP-2A) is a major serine/threonine phosphatase and accounts for more than 50% serine/threonine phosphatase activity in eukaryotes. The holoenzyme of PP-2A consists of the scaffold A subunit, the catalytic C subunit and the regulatory B subunit. The scaffold subunits, PP2A-A alpha/beta, provide a platform for both C and B subunits to bind, thus playing a crucial role in providing specific PP-2A activity. Mutation of the two genes encoding PP2A-A alpha/beta leads to carcinogenesis and likely other human diseases. Regulation of these genes by various factors, both extracellular and intracellular, remains largely unknown. In the present study, we have conducted functional dissection of the promoter of the mouse PP2A-A alpha gene. Our results demonstrate that the proximal promoter of the mouse PP2A-A alpha gene contains numerous cis-elements for the binding of CREB, ETS-1, AP-2 alpha, SP-1 besides the putative TFIIB binding site (BRE) and the downstream promoter element (DPE). Gel mobility shifting assays revealed that CREB, ETS-1, AP-2 alpha, and SP-1 all bind to PP2A-A alpha gene promoter. In vitro mutagenesis and reporter gene activity assays reveal that while SP-1 displays negative regulation, CREB, ETS-1 and AP-2A alpha all positively regulate the promoter of the PP2A-A alpha gene. ChIP assays further confirm that all the above transcription factors participate the regulation of PP2A-A alpha gene promoter. Together, our results reveal that multiple transcription factors regulate the PP2A-A alpha gene.
Article
Full-text available
Wild-type p53 protein is a growth modulator whose inactivation has been found to be a key event in malignant transformation. Reconstitution of wild-type p53 in the p53-nonproducer, Abelson murine leukemia virus-transformed pre-B-cell line L12 gave rise to stably growing clones. Wild-type p53-producer derived cell lines exhibit an altered cell cycle, however. More cells with an extended G0/G1 phase were found than in the p53-nonproducer parental cell line. Furthermore, when injected into syngeneic mice, these cells induced a lower incidence of tumors and these tumors were less aggressive. Analysis of immunoglobulin expression revealed that wild-type p53 induced the expression of cytoplasmic immunoglobulin mu heavy chain. In addition, these derived cells lines exhibited increased levels of a B-cell-specific surface marker, B220. These results suggest that wild-type p53 may function as a cell differentiation factor that can induce development of pre-B cells into a more advanced stage in the pathway of B-cell maturation. In these pre-B cells, wild-type p53 may induce cell differentiation without terminal growth arrest of the cell population.
Article
Full-text available
Transcriptional activation of target genes represents an important component of the tumour-suppressor function of p53 and provides a functional link between p53 and various growth-regulatory processes, including cell cycle progression (p21/WAF1), DNA repair (GADD45) and apoptosis (bax). Here we use a differential cloning approach to identify the gene encoding insulin-like growth factor binding protein 3 (IGF-BP3) as a novel p53-regulated target gene. Induction of IGF-BP3 gene expression by wild-type but not mutant p53 is associated with enhanced secretion of an active form of IGF-BP3 capable of inhibiting mitogenic signalling by the insulin-like growth factor IGF-1. Our results indicate that IGF-BP3 may link p53 to potential novel autocrine/paracrine signalling pathways and to processes regulated by or dependent on IGF(s), such as cellular growth, transformation and survival.
Article
Full-text available
If deprived of wild-type p53 function, the body loses a guardian that protects against cancer. Restoration of p53 function has, therefore, been proposed as a means of counteracting oncogenesis. This concept of therapy requires prior knowledge with regard to proper balance of p53 function in a given target tissue. We have addressed this problem by targeting expression of the wild-type human p53 gene to the lens, a tissue entirely composed of epithelial cells that differentiate into elongated fiber cells. Transgenic mice expressing wild-type human p53 develop microphthalmia as a result of a defect in fiber formation that sets in shortly after birth. We see apoptotic cells that fail to undergo proper differentiation. In an effort to directly link the observed lens phenotype to the activity of the wild-type human p53 transgene, we also generated mice expressing a mutant human p53 allele that lacks wild-type function. A normal lens phenotype is restored in double transgenic animals that carry both wild-type and mutant human p53 alleles. Our study highlights the difficulties that can arise if p53 levels are improperly balanced in a differentiating tissue.
Article
Full-text available
The exposure of cells to DNA-damaging agents leads to the accumulation of wild-type p53 protein. Furthermore, overexpression of the wild-type p53, mediated by transfection of p53-coding cDNA, induced cells to undergo apoptosis or cell differentiation. In this study we found that the gamma-irradiation that caused the accumulation of wild-type p53 in 70Z/3 pre-B cells induced, in addition to apoptosis, cell differentiation. This was manifested by the expression of the kappa light chain immunoglobulin gene that coincided with the accumulation of cells at the G2 phase. Overexpression of mutant p53 in 70Z/3 cells interferes with both differentiation and accumulation of cells at the G2 phase, as well as with apoptosis, which were induced by gamma-irradiation. Furthermore, the increment in the wild-type p53 protein level following gamma-irradiation was disrupted in the mutant p53 overproducer-derived cell lines. This suggests that mutant p53 may exert a dominant negative effect in all of these activities. Data presented here show that while p53-induced apoptosis is associated with the G1 checkpoint, p53-mediated differentiation, which may be an additional pathway to escape the fixation of genetic errors, may be associated with the G2 growth arrest phase.
Article
Full-text available
The p53 tumour-suppressor protein controls the expression of a gene encoding the p21 cyclin-dependent protein kinase (CDK) regulator. Levels of p21 protein are increased in senescent cells and p21 overexpression blocks the growth of tumour cells. In normal human cells, but not in many tumour cells, p21 exists in a quaternary complex with a cyclin, a CDK, and the proliferating-cell nuclear antigen (PCNA). p21 controls CDK activity, thereby affecting cell-cycle control, whereas PCNA functions in both DNA replication and repair. Here we use simian virus 40 DNA replication in vitro to show than p21 directly inhibits PCNA-dependent DNA replication in the absence of a cyclin/CDK. Furthermore, p21 blocks the ability of PCNA to activate DNA polymerase delta, the principal replicative DNA polymerase. This regulation results from a direct interaction between p21 and PCNA. Thus, during p53-mediated suppression of cell proliferation, p21 and PCNA may be important for coordinating cell-cycle progression, DNA replication and repair of damaged DNA.
Article
Full-text available
The biological effects of the p53 tumor suppressor protein are elicited, at least in part, through sequence-specific transactivation of a battery of target genes. The differential display method was employed towards identifying additional p53 target genes, with emphasis on genes whose induction may contribute to p53-mediated apoptosis. We report here the cloning of a novel p53-inducible gene, designated PAG608. PAG608 transcripts are induced by DNA damage in a p53-dependent manner. PAG608 encodes a nuclear zinc finger protein, which appears to localize preferentially to nucleoli when expressed at moderate levels in transfected cells. Transient overexpression of PAG608 in human tumor-derived cells leads to distinctive changes in nuclear morphology, and can promote apoptosis. Together with additional p53 target genes, PAG608 may therefore play a role in mediating the biological activities of p53.
Article
Full-text available
The inactivation of the p53 gene in a large proportion of human cancers has inspired an intense search for the encoded protein's physiological and biological properties. Expression of p53 induces either a stable growth arrest or programmed cell death (apoptosis). In human colorectal cancers, the growth arrest is dependent on the transcriptional induction of the protein p21WAF1/CIP1 , but the mechanisms underlying the development of p53-dependent apoptosis are largely unknown. As the most well documented biochemical property of p53 is its ability to activate transcription of genes, we examined in detail the transcripts induced by p53 expression before the onset of apoptosis. Of 7,202 transcripts identified, only 14 (0.19%) were found to be markedly increased in p53-expressing cells compared with control cells. Strikingly, many of these genes were predicted to encode proteins that could generate or respond to oxidative stress, including one that is implicated in apoptosis in plant meristems. These observations stimulated additional biochemical and pharmacological experiments suggesting that p53 results in apoptosis through a three-step process: (1) the transcriptional induction of redox-related genes; (2) the formation of reactive oxygen species; and (3) the oxidative degradation of mitochondrial components, culminating in cell death.
Article
Full-text available
To examine the expression of maf-1 and maf-2 protocogenes in the developing rat lens. Maf-1 and maf-2 transcripts were assayed in rat lenses on embryonic days 13 and 16 (E13 and E16) by in situ hybridization using single-stranded RNA probes. Proteins encoded by the maf-2 gene were assayed immunocytochemically in embryonic (E12, 13, 16, 19) and postnatal day 14 and 90 (P14 and P90) lenses. In embryonic lenses, we detected maf-1 messenger RNA (mRNA) in the lens epithelium and maf-2 mRNA diffusely distributed in the lens fiber cells. By immunocytochemistry, Maf-2 was detected on E12 in the nuclei of almost all lens pit cells. On days E13, E16, and E19, however, lens epithelial cells showed no immunoreactivity, but nuclei of fiber cells reacted strongly. On P14, nuclei containing Maf-2 protein were confined to the equator of the lens, but at 3 months of age, no Maf-2 could be detected in the rat lens. Western blotting showed that the anti-Maf-2 antiserum reacted with a single protein, of molecular weight approximately 39 kDa, in rat lens. Results showed the spatial and temporal regulation of maf gene expression and suggest that these genes participate in transcriptional regulation during the development of the lens in the rat.
Article
Full-text available
Data are presented demonstrating that DNA damage leads to specific post-translational modifications of p53 protein. Using two-dimensional peptide mapping of in vivo radiolabeled p53 tryptic phosphopeptides, recombinant truncated p53 protein, and synthetic p53 tryptic peptides, a unique p53 phosphopeptide was identified after exposure of ML-1 cells to ionizing irradiation. This peptide represents the first 24 amino acids of p53 and contains three phosphorylated serine residues. A specific p53 phosphopeptide antibody identified serine-15 as one of the two serines in p53 that becomes phosphorylated following DNA damage induced by either ionizing irradiation (IR) or ultraviolet (UV) irradiation in multiple cell types. IR-induced phosphorylation of p53 does not affect the kinetics of p53 binding to or dissociating from DNA as assessed by electrophoretic mobility-shift assays. However, p53 phosphorylation induced by DNA damage correlates with enhanced transcription of downstream p53 target genes. Low levels of phosphoserine-15 p53 are detectable within 6 hr after IR in AT cells, whereas lymphoblasts from normal individuals exhibit this modification within 1 hr. In contrast, phosphorylation of p53 on serine-15 is similar in normal and AT cells after UV irradiation. Our results indicate that p53 is phosphorylated in response to DNA damage, that this de novo phosphorylation may be involved in the subsequent induction and activation of p53, and that although ATM affects the kinetics of p53 phosphorylation after IR, it is not absolutely required for phosphorylation of p53 on serine-15.
Article
Full-text available
Activation of the tumor suppressor p53 by stress and damage stimuli often correlates with induction of stress kinases, Jun-NH2 kinase (JNK). As JNK association with p53 plays an important role in p53 stability, in the present study we have elucidated the relationship between the JNK-signaling pathway and p53 stability and activity. Expression of a constitutively active form of JNKK upstream kinase, mitogen-activated protein kinase kinase kinase (DeltaMEKK1), increased the level of the exogenously transfected form of p53 in p53 null (10.1) cells as well as of endogenous p53 in MCF7 breast cancer cells. Increased p53 level by forced expression of DeltaMEKK1 coincided with a decrease in p53 ubiquitination in vivo and with prolonged p53 half-life. Computerized modeling of the JNK-binding site (amino acids 97-116; p7 region) enabled us to design mutations of exposed residues within this region. Respective mutations (p53(101-5-8)) and deletion (p53(Deltap7)) forms of p53 did not exhibit the same increase in p53 levels upon DeltaMEKK1 expression. In vitro phosphorylation of p53 by JNK abolished Mdm2 binding and targeting of p53 ubiquitination. Similarly, DeltaMEKK1 expression increased p53 phosphorylation by immunopurified JNK and dissociated p53-Mdm2 complexes. Transcriptional activity of p53, as measured via mdm2 promoter-driven luciferase, exhibited a substantial increase in DeltaMEKK1-expressing cells. Cotransfection of p53 and DeltaMEKK1 into p53 null cells potentiated p53-dependent apoptosis, suggesting that MEKK1 effectors contribute to the ability of p53 to mediate programmed cell death. Our results point to the role of MEKK1-JNK signaling in p53 stability, transcriptional activities, and apoptotic capacity as part of the cellular response to stress.
Article
Full-text available
In this study we elucidated the role of nonactive JNK in regulating p53 stability. The amount of p53-JNK complex was inversely correlated with p53 level. A peptide corresponding to the JNK binding site on p53 efficiently blocked ubiquitination of p53. Similarly, p53 lacking the JNK binding site exhibits a longer half-life than p53(wt). Outcompeting JNK association with p53 increased the level of p53, whereas overexpression of a phosphorylation mutant form of JNK inhibited p53 accumulation. JNK-p53 and Mdm2-p53 complexes were preferentially found in G0/G1 and S/G2M phases of the cell cycle, respectively. Altogether, these data indicate that JNK is an Mdm2-independent regulator of p53 stability in nonstressed cells.
Article
Full-text available
The vertebrate lens is a tissue composed of terminally differentiated fiber cells and anterior lens epithelial cells. The abundant, preferential expression of the soluble proteins called crystallins creates a transparent, refractive index gradient in the lens. Several transcription factors such as Pax6, Sox1, and L-Maf have been shown to regulate lens development. Here we show that mice lacking the transcription factor c-Maf are microphthalmic secondary to defective lens formation, specifically from the failure of posterior lens fiber elongation. The marked impairment of crystallin gene expression observed is likely explained by the ability of c-Maf to transactivate the crystallin gene promoter. Thus, c-Maf is required for the differentiation of the vertebrate lens.
Article
Full-text available
In order to investigate whether the p53 gene product plays a role in normal eye development, age matched p53-deficient mice and wild-type controls were sacrificed from day 2 to day 21 after birth. Eyes were paraffin-embedded and sectioned. Serial sections were taken at the level of the tunica vasculosa lentis and the hyaloid artery. The terminal dUTP nick-end labelling technique (TUNEL) was used to detect the number of cells displaying DNA fragmentation within these structures. Eyes were also prepared for scanning electron microscopy and resin embedded for semi-thin sections. Adult wild-type mice and p53-deficient mice were examined ophthalmoscopically in vivo. Ophthalmoscopical examination of mice completely deficient in p53 revealed them to be normal except for the persistence of the hyaloid vasculature, a structure that normally regresses during eye development. In adult animals there was also a high frequency of cataracts. Using morphological assessment and TUNEL we could show that in normal mice, regression of the primary vitreous, which includes the hyaloid artery, the vasa hyaloidea propria as well as the tunica vasculosa lentis, occurs via apoptotic cell death within 5 - 6 weeks after birth. The number of TUNEL-positive cells within these structures was significantly reduced in the p53-deficient mice in which parts of the hyaloid vasculature persisted and developed into a fibro-vascular retrolental plaque analogous to persistent hyperplastic primary vitreous (PHPV) described in humans. As in humans, PHPV in mice resulted in the development of cataracts. We have identified a role for p53-dependent apoptosis in the regression of the hyaloid vasculature and tunica vasculosa lentis. Our results provide further evidence for the importance of p53 in normal development and provide the first detailed evidence of its role in postnatal development in remodelling the developing eye.
Article
Full-text available
The role that the p53 tumor suppressor gene product plays in cellular differentiation remains controversial. However, recent evidence indicates that p53 is required for proper embryogenesis. We have studied the effect of p53 on the expression mediated by the promoter of the rat muscle-specific phosphoglycerate mutase gene (M-PGAM), a marker for cardiac and skeletal muscle differentiation. Experiments involving transient transfection, mobility shift assay, and site-directed mutagenesis demonstrated that p53 specifically binds and transactivates the M-PGAM promoter. The p53-related proteins p51A and p73L also transactivated M-PGAM. Moreover, stable expression of a p53 dominant mutant in C2C12 cells blocked the induction of M-PGAM expression during the myoblast to myotube transition and the ability of p53, p51A, and p73L to transactivate the M-PGAM promoter. In addition, impaired expression of M-PGAM was observed in a subset of p53-null animals in heart and muscle tissues of anterior-ventral location. These results demonstrate that p53 is a transcriptional activator of M-PGAM that contributes in vivo to the control of its cardiac expression. These data support previous findings indicating a role for p53 in cellular differentiation.
Article
The involvement of p53 protein in cell differentiation has been recently suggested by some observations made with tumor cells and the correlation found between differentiation and increased levels of p53. However, the effect of p53 on differentiation is in apparent contrast with the normal development of p53-null mice. To test directly whether p53 has a function in cell differentiation, we interfered with the endogenous wt-p53 protein of nontransformed cells of two different murine histotypes: 32D myeloid progenitors, and C2C12 myoblasts. A drastic inhibition of terminal differentiation into granulocytes or myotubes, respectively, was observed upon expression of dominant-negative p53 proteins. This inhibition did not alter the cell cycle withdrawal typical of terminal differentiation, nor p21(WAF1/CIP1) upregulation, indicating that interference with endogenous p53 directly affects cell differentiation, independently of the p53 activity on the cell cycle. We also found that the endogenous wt-p53 protein of C2C12 cells becomes transcriptionally active during myogenesis, and this activity is inhibited by p53 dominant-negative expression. Moreover, we found that p53 DNA-binding and transcriptional activities are both required to induce differentiation in p53-negative K562 cells. Taken together, these data strongly indicate that p53 is a regulator of cell differentiation and it exerts this role, at least in part, through its transcriptional activity.
Article
The p53 tumor suppressor is the most commonly mutated gene in human cancer. p53 protein is stabilized in response to different checkpoints activated by DNA damage, hypoxia, viral infection, or oncogene activation resulting in diverse biological effects, such as cell cycle arrest, apoptosis, senescence, differentiation, and antiangiogenesis. The stable p53 protein is activated by phosphorylation, dephosphorylation and acetylation yielding a potent sequence-specific DNA-binding transcription factor. The wide range of p53's biological effects can in part be explained by its activation of expression of a number of target genes including p21WAF1, GADD45, 14-3-3σ, bax, Fas/APO1, KILLER/ DR5, PIG3, Tsp1, IGF-BP3 and others. This review will focus on the transcriptiona l targets of p53, their regulation by p53, and their relative importance in carrying out the biological effects of p53.
Article
i. Degenerations of embryonic cells have either been reported as such or have been misinterpreted by various authors as ‘mitotic metabolites’ or blood cells. 2. There is ample support for the morphological identification of dying cells from the following considerations: the degeneration ‘granules’ are initially Feulgen‐positive and have thus originated from nuclear constituents; the stages of cell deaths seen in normal embryos are identical with those produced experimentally and with those observed directly in tissue cultures; degenerating cells react in the same manner to supravital stains in vivo and in vitro. 3. The process of degeneration varies with the degree of specialization of the cell, with its functional state (e.g. mitosis), with the type of animal and under experimental conditions with the causative agents. 4. Cell death may take from less than 1 hr. to about 7 hr. when only a small proportion of a living tissue dies, but may be prolonged to days when numerous cells die simultaneously and their resorption is delayed. 5. Degenerations have been found during the normal development in embryos of all vertebrate animals examined. The occurrence of necrosis in embryos of pure genetical lines is excluded from this article. 6. The incidence of embryonic cell deaths according to site, tissue, developmental stage or process and type of animal is summarized in Table 1. 7. While some degenerations have no obvious function in embryonic development, others seem to play a significant role in embryonic processes, e.g. the morphogenesis and histogenesis of tissues and organs, and the representation and regression of phylogenetic steps (Table 2). 8. Morphogenetic degenerations precede changes in the form of epithelial organs, e.g. during the invagination of the optic cup, the formation of the crystalline lens, the olfactory pit, the neural tube, etc. They bring about the separation of rudiments such as that of the neural tube and the lens from the ectoderm. They reduce the excessive thickening of uniting edges such as those of the body wall and of the mandibles. They are involved in the production of lumina in the solid rudiments of glands and the intestinal tract. In the mesenchyme they precede and make possible the influx of specialized tissue such as the sternal plates or the ingrowth of myogenic tissue in the mandible. 9. Histiogenetic degenerations are related to the differentiation of tissues and organs. The differentiation of the three cell layers of the frog tadpole retina, for instance, is accompanied by three waves of degeneration. Similar cell deaths of early neuroblasts are found in the spinal ganglia outside the limb regions. In amphibia a partial sarcolysis during metamorphosis provides a blastema for the permanent musculature. Sex differentiation of the individual involves the partial degeneration of the Mullerian or Wolffian ducts. Cell deaths also occur in relation to fibre formation and to the appearance of bone and cartilage matrix. Their role in these and in evocatory processes needs further elucidation. Whether cell deaths in the central nervous system and the sense organs at the time of vascularization and neurotization are related to these phenomena remains to be further investigated. 10. Phylogenetic cell deaths are of two types: those which represent a vestigial organ such as the paraphysis or the second muscle stage in higher vertebrates, and those concerned with the regression of larval structures such as the conjunctival papilla, parts of the ganglia of branchial nerves, of the pro‐ and mesonephros. Some of these larval organs have a function in embryonic development, viz. the apical ridge on the limb buds. 11. The causation of the distinctly localized morphogenetic degenerations is obscure. Vascular or nutritional disturbances are unlikely to be responsible for these cell deaths which precede changes in form and appear in the same localizations and amounts in the vascularized tissue of the intact embryo and after explantation in tissue cultures. . Most of the histiogenetic and phylogenetic cell deaths, as well as some of the not strictly localized morphogenetic degenerations, may be due to the fading out of stimuli for their proliferation or for the completion of their differentiation. If such cells fail to divide, they age and die on reaching the end of their normal life span. This conception assumes that stimuli for the formation of embryonic tissues and organs act for limited periods only and extend over a field of cells. Some of these cells respond fully to stimulation, while others are late to react or do so only partially or receive only a fraction of the whole stimulus. The partial differentiation of cells unfits them for division, for dedifferentiation and redifferentiation in another direction. 12. The localized morphogenetic degenerations are correlated with the incidence and orientation of mitosis and of cell movements, and changes in the form of embryonic organs are brought about by the integration of these three cellular activities. Cell deaths are abundant wherever the regular arrangement and close packing of cells prevent free cell movements; they are rare or absent when, as, for instance, in the tadpole eye, a loose arrangement of cells and a decrease in cell volume (by resorption of yolk) allow of free cell movements. 14. Cell degeneration in vertebrate ontogeny is an important mechanism of integration of cells into tissues and organs by helping to shape the form of organs, by the removal of superfluous cells or by the preparation of a dedifferentiated blastema in histio‐ and phylogenesis.
Article
Molecular mechanisms of how energy metabolism affects embryonic stem cell (ESC) pluripotency remain unclear. AMP-activated protein kinase (AMPK), a key regulator for controlling energy metabolism, is activated in response to ATP-exhausting stress. We investigated whether cellular energy homeostasis is associated with maintenance of self-renewal and pluripotency in mouse ESCs (mESCs) by using 5-aminoimidazole-4-carboxyamide ribonucleoside (AICAR) as an activator of AMPK. We demonstrate that AICAR treatment activates the p53/p21 pathway and markedly inhibits proliferation of R1 mESCs by inducing G1/S-phase cell cycle arrest, without influencing apoptosis. Treatment with AICAR also significantly reduces pluripotent stem cell markers, Nanog and stage-specific embryonic antigen-1, in the presence of leukemia inhibitory factor, without affecting expression of Oct4. H9 human ESCs also responded to AICAR with induction of p53 activation and repression of Nanog expression. AICAR reduced Nanog mRNA levels in mESCs transiently, an effect not due to expression of miR-134 which can suppress Nanog expression. AICAR induced Nanog degradation, an effect inhibited by MG132, a proteasome inhibitor. Although AICAR reduced embryoid body formation from mESCs, it increased expression levels of erythroid cell lineage markers (Ter119, GATA1, Klf1, Hbb-b, and Hbb-bh1). Although erythroid differentiation was enhanced by AICAR, endothelial lineage populations were remarkably reduced in AICAR-treated cells. Our results suggest that energy metabolism regulated by AMPK activity may control the balance of self-renewal and differentiation of ESCs. Disclosure of potential conflicts of interest is found at the end of this article.
Article
(-)-Epigallocatechin-3-gallate (EGCG) is a well-known chemoprevention factor. Recent studies have revealed that EGCG triggers cancer cells undergoing apoptosis through p53-dependent pathway. How EGCG activates p53-dependent apoptosis is not fully understood. In the present study using JB6 cell as a model system, we have shown that EGCG can negatively regulate protein serine/threonine phosphatase-2A (PP-2A) to positively regulate p53-dependent apoptosis. First, EGCG at physiologic levels down-regulates PP-2A at the protein and enzyme activity levels. Second, EGCG induces apoptosis of JB6 cells, which is associated with hyperphosphorylation of p53 and up-regulation of the proapoptotic gene, Bak. DNA sequence analysis, gel mobility shifting, chromatin immunoprecipitation, and reporter gene activity assays revealed that p53 directly controls Bak in JB6 cells. Knockdown of p53 and Bak expression with RNAi substantially inhibits EGCG-induced apoptosis. Third, PP-2A directly interacts with p53 and dephosphorylates p53 at Ser-15 in vitro and in vivo. Fourth, overexpression of the catalytic subunit for PP-2A down-regulates p53 phosphorylation at Ser15, attenuates expression of the downstream proapoptotic gene, Bak, and antagonizes EGCG-induced apoptosis. Inhibition of PP-2A activity enhances p53 phosphorylation at Ser-15 and up-regulates Bak expression to promote EGCG-induced apoptosis. Finally, in the p53(-/-) H1299 and p53(+/+) H1080 cells, EGCG down-regulates PP-2A similarly but induces differential apoptosis. In summary, our results show that (a) PP-2A directly dephosphorylates p53 at Ser-15; (b) P53 directly controls Bak expression; and (c) EGCG negatively regulates PP-2A. Together, our results show that EGCG-mediated negative regulation of PP-2A is an important molecular event for the activation of p53-dependent apoptosis during its chemoprevention.
Article
After the vertebrate lens is induced from head ectoderm, lens-specific genes are expressed. Transcriptional regulation of the lens-specific αA-crystallin gene is controlled by an enhancer element, αCE2. A gene encoding an αCE2-binding protein, L-maf(lens-specific maf), was isolated.L-maf expression is initiated in the lens placode and is restricted to lens cells. The gene product L-Maf regulates the expression of multiple genes expressed in the lens, and ectopic expression of this transcription factor converts chick embryonic ectodermal cells and cultured cells into lens fibers. Thus, vertebrate lens induction and differentiation can be triggered by the activation of L-Maf.
Article
The principle of embryonic induction was defined by early studies of lens determination, and because of the relative simplicity of the developing lens and its interaction with presumptive retinal tissue it has been a favored system for examining mechanisms of induction. Recent studies have led to substantial alterations of the classic model for this process, introducing several elements that significantly refine our view of vertebrate tissue determination.
Article
A cellular phosphoprotein with an apparent molecular mass of 90 kd (p90) that forms a complex with both mutant and wild-type p53 protein has been characterized, purified, and identified. The protein was identified as a product of the murine double minute 2 gene (mdm-2). The mdm-2 gene enhances the tumorigenic potential of cells when it is overexpressed and encodes a putative transcription factor. To determine if mdm-2 could modulate p53 transactivation, a p53-responsive element from the muscle creatine kinase gene was employed. A wild-type p53-expressing plasmid enhanced the expression of the p53-responsive element when cotransfected into cells that contain no endogenous p53. When a cosmid expressing mdm-2 was transfected with this p53-expressing plasmid, the transactivation of the p53-responsive element was inhibited. Thus, a product of the mdm-2 oncogene forms a tight complex with the p53 protein, and the mdm-2 oncogene can inhibit p53-mediated transactivation.
Article
Trans-acting factors that mediate B-cell specific transcription of immunoglobulin genes have been postulated based on an analysis of the expression of exogenously introduced immunoglobulin gene recombinants in lymphoid and non-lymphoid cells. Two B-cell-specific, cis-acting transcriptional regulatory elements have been identified. One element is located in the intron between the variable (V) and constant (C) regions of both heavy and kappa light-chain genes and acts as a transcriptional enhancer. The second element is found upstream of both heavy and kappa light-chain gene promoters. This element directs lymphoid-specific transcription even in the presence of viral enhancers. We have sought nuclear factors that might bind specifically to these two regulatory elements by application of a modified gel electrophoresis DNA binding assay. We report here the identification of a human B-cell nuclear factor (IgNF-A) that binds to DNA sequences in the upstream regions of both the mouse heavy and kappa light-chain gene promoters and also to the mouse heavy-chain gene enhancer. This sequence-specific binding is probably mediated by a highly conserved sequence motif, ATTTGCAT, present in all three transcriptional elements. Interestingly, a factor showing similar binding specificity to IgNF-A is also present in human HeLa cells.
Article
Serial sections of embryonic rat eyes were stained with hematoxylin and eosin, quantified (by counting pycnotic and viable nuclei), reproduced by camera lucida on wax plates, and moulded into reconstructions in order to study the normal progression of cellular death during morphogenesis. At least nine distinct necrotic loci (A through I) can be distinguished. Immediately following contact between the retina and surface ectoderm (day 11) degenerating cells were observed in (A) the ventral extent of the optic vesicle, beginning in the mid-retinal primordium and continuing ventrally in the optic stalk, (B) in the rostral optic stalk base, and (C) in the surface ectoderm encircling the early lens placode. No degeneration was observed in the dorsal half of the presumptive retina, in the entire pigment epithelium, or in the lens placode proper. During day 11.5 the lens placode thickens and forms a degenerating locus (D) in its ventral portion opposite the underlying pycnotic zone in the retina (A). During day 12 the ventral pycnotic zone (A) divides into two subunits (A1 and A2). Invagination of the lens displaces its marginal and ventral components (C and D) so that they come to occupy the lens pore area and presumptive corneal epithelium. Simultaneous invagination of the retinal rudiment juxtaposes the pigment epithelium which concurrently forms a necrotic area (E) adjacent ventrally to that in the retina (A1). Degeneration appears in the caudal optic stalk (I). The density of viable cells decreases adjacent to pycnotic areas in the retina and pigment epithelium and increases within these death centers. During day 13 the optic fissure forms within the subunits of the ventral pycnotic zone (A1 and A2). Degenerations are seen in the dorsal optic stalk (F) and in the walls of the optic fissure (G and H). Throughout these stages necrosis appears only in those portions of the eye rudiment where invagination is either retarded or completely absent.
Article
We have studied the DNA sequences required for high level expression of a cloned heavy chain immunoglobulin gene stably introduced into mouse myeloma cells by DNA transfection. We found that DNA sequences derived from the germ line JH-C mu region are required for accurate and efficient transcription from a functionally rearranged VH promoter. Similar to viral transcriptional enhancer elements, these cellular sequences stimulate transcription from either the homologous VH gene segment promoter or a heterologous SV40 promoter. They are active when placed on the 5' or 3' side of the rearranged VH gene segment and they function when their orientation is reversed. However, unlike viral enhancers, the Ig gene enhancer appears to act in a tissue-specific manner, since it is active in mouse B cells but not in mouse fibroblasts. The nucleotide sequence of the Ig enhancer region contains repeating elements that closely resemble sequence the possible role of tissue-specific transcription in cell differentiation and malignant transformation.
Article
In general terms embryonic induction involves the association of embryonic tissues and leads to tissue differentiation. It is one of the known essential processes leading to the normal development of embryos. However, despite its importance, very little is known about the mechanisms of inductive interactions. For example, what is the nature of communication between tissues, how does this communication effect the synthetic activity of the cells, and once a new pattern of synthesis has been established how is the sequence of events leading to tissue differentiation co-ordinated? The answers to these questions will come only from the intensive study of inductive interactions and tissue differentiation at all levels from the morphological to the molecular. One of the best known examples of induction, at least superficially, is the differentiation of lens from head ectoderm after its interaction with optic vesicle. The popularity of this tissue with embryologists may be attributed to its accessibility of manipulation because of its position on the outside of the embryo. In addition, its distinct morphology and specific biochemical composition make it relatively easy to determine whether the lens differentiates after experimental treatment. About the turn of this century lens differentiation was thought to depend on the specific interaction of just two embryonic tissues, head ectoderm and neuro-ectoderm (optic vesicle). However, experimental analysis since then has revealed that this oversimplified view of lens induction is incorrect. In fact there is evidence that a large number of other tissues besides embryonic head ectoderm can differentiate into lens and that other conditions besides the presence of optic vesicle can induce lens differentiation. The purpose of this work is to review the evidence on lens induction and based on this, to determine what we know about the mechanism(s) controlling this process.
Article
The transcription factor GATA-1 recognizes a consensus motif present in regulatory regions of numerous erythroid-expressed genes. Mouse embryonic stem cells lacking GATA-1 cannot form mature red blood cells in vivo. In vitro differentiation of GATA-1- embryonic stem cells gives rise to a population of committed erythroid precursors that exhibit developmental arrest and death. We show here that the demise of GATA-1- erythroid cells is accompanied by several features characteristics of apoptosis. This process occurs despite normal expression of all known GATA target genes examined, including the erythropoietin receptor, and independent of detectable accumulation of the tumor suppressor protein p53. Thus, in addition to its established role in regulating genes that define the erythroid phenotype, GATA-1 also supports the viability of red cell precursors by suppressing apoptosis. These results illustrate the multifunctional nature of GATA-1 and suggest a mechanism by which other hematopoietic transcription factors may ensure the development of specific lineages.
Article
The p53 tumor suppressor is implicated here as a crucial barrier to unlimited cell proliferation. Its role in transformation of hematopoietic cells was studied by infecting fetal liver cells from wild-type or p53-/- mice with oncogenic retroviruses. Transformed colonies arose with a raf and a myc-raf virus. Absence of p53 did not affect their frequency but proved critical for their continued propagation. Colonies of p53-/- cells bearing both myc and raf readily yielded continuous cell lines without apparent requirement for genetic alteration. The lines, mainly of erythroid or myelomonocytic origin, were diploid but highly tumorigenic from their inception. These findings imply that p53 loss contributes directly to immortalization and tumorigenesis, probably by abrogating an intrinsic senescence program.
Article
Over the past year, insights have been made into the biochemistry and biological effects of p53. The high-resolution three-dimensional structure has been determined for the central core and carboxy-terminal domain of the protein, important p53 target genes (such as WAF1) have been identified, and insight has been gained into the relationship between p53-mediated growth arrest and apoptosis.
Article
Terminal differentiation is coupled to withdrawal from the cell cycle. The cyclin-dependent kinase inhibitor (CKI) p21Cip1 is transcriptionally regulated by p53 and can induce growth arrest. CKIs are therefore potential mediators of developmental control of cell proliferation. The expression pattern of mouse p21 correlated with terminal differentiation of multiple cell lineages including skeletal muscle, cartilage, skin, and nasal epithelium in a p53-independent manner. Although the muscle-specific transcription factor MyoD is sufficient to activate p21 expression in 10T1/2 cells, p21 was expressed in myogenic cells of mice lacking the genes encoding MyoD and myogenin, demonstrating that p21 expression does not require these transcription factors. The p21 protein may function during development as an inducible growth inhibitor that contributes to cell cycle exit and differentiation.
Article
Skeletal muscle differentiation entails the coordination of muscle-specific gene expression and terminal withdrawal from the cell cycle. This cell cycle arrest in the G0 phase requires the retinoblastoma tumor suppressor protein (Rb). The function of Rb is negatively regulated by cyclin-dependent kinases (Cdks), which are controlled by Cdk inhibitors. Expression of MyoD, a skeletal muscle-specific transcriptional regulator, activated the expression of the Cdk inhibitor p21 during differentiation of murine myocytes and in nonmyogenic cells. MyoD-mediated induction of p21 did not require the tumor suppressor protein p53 and correlated with cell cycle withdrawal. Thus, MyoD may induce terminal cell cycle arrest during skeletal muscle differentiation by increasing the expression of p21.
Article
Tumor suppressor proteins are believed to play a role in regulating cell cycle control during mammalian development. The E6 and E7 oncoproteins from human papillomavirus type 16 are known to affect cell growth control, at least in part, through their inactivation of cellular tumor suppressor gene products, p53 and Rb, respectively. Therefore, these viral proteins can serve as trans-dominant repressors of tumor suppressor gene function. To study the potential role of p53 and Rb in murine lens morphogenesis, we generated transgenic mice in which the expression of E6 or E7 was directed to the developing lens. Transgenic mice expressing E7 exhibited microphthalmia and cataracts, whereas transgenic mice expressing E6 exhibited cataracts without noticeable microphthalmia. Microscopic analysis of the lenses from neonatal and adult E7 transgenic mice revealed inhibition of lens fiber cell differentiation, induction of cell proliferation in spatially inappropriate regions of the lens, and apoptosis. Transgenic mice expressing a mutant E7 that is defective in Rb/p107 binding exhibited normal eyes, suggesting that the activity of Rb and/or Rb-like proteins is required for the perturbation of lens development and induction of apoptosis in E7 mice. Microscopic analysis of lenses from E6 neonatal and adult transgenic mice indicated the presence of nuclei in elongated fiber cells, suggesting that E6 inhibits lens fiber cell denucleation. Furthermore, expression of E6 inhibited the apoptotic-like DNA degradation observed in the lenses of nontransgenic 15.5-day embryos. In lenses from neonatal E6 x E7 double transgenic mice, the level of apoptosis was reduced compared with that seen in lenses from neonatal E7 mice. In adults E6 x E7 double transgenic mice, lens tumors developed, whereas in E6 or E7 only transgenic mice, tumors did not. Taken together, these results point to specific roles in lens morphogenesis for Rb and p53 and to the necessity of these tumor suppressor gene products in regulating exit from the normal cell division cycle in differentiating lens fiber cells.
Article
The eye lens is the only tissue in the organism where to date no spontaneous tumors have been described. In pathologic (cataractous) lenses, however, several abnormal cell growths have been described. General tissue properties of these cell growths (morphology, proliferation, formation of cell masses, etc.) are in accordance with characteristics of benign tumors in other tissues, and can therefore be considered as benign lens tumors.
Article
In this paper, the more recent literature pertaining to differentiation in the developing vertebrate lens is reviewed in relation to previous work. The literature reviewed reveals that the developing lens has been, and will continue to be, a useful model system for the examination of many fundamental processes occurring during embryonic development. Areas of lens development reviewed here include: the induction and early embryology of the lens; lens cell culture techniques; the role of growth factors and cytokines; the involvement of gap junctions in lens cell-cell communication; the role of cell adhesion molecules, integrins, and the extracellular matrix; the role of the cytoskeleton; the processes of programmed cell death (apoptosis) and lens fibre cell denucleation; the involvement of Pax and Homeobox genes; and crystallin gene regulation. Finally, some speculation is provided as to possible directions for further research in lens development.
Article
The p53 tumour-suppressor protein exerts antiproliferative effects, including growth arrest and apoptosis, in response to various types of stress. The activity of p53 is abrogated by mutations that occur frequently in tumours, as well as by several viral and cellular proteins. The Mdm2 oncoprotein is a potent inhibitor of p53. Mdm2 binds the transcriptional activation domain of p53 and blocks its ability to regulate target genes and to exert antiproliferative effects. On the other hand, p53 activates the expression of the mdm2 gene in an autoregulatory feedback loop. The interval between p53 activation and consequent Mdm2 accumulation defines a time window during which p53 exerts its effects. We now report that Mdm2 also promotes the rapid degradation of p53 under conditions in which p53 is otherwise stabilized. This effect of Mdm2 requires binding of p53; moreover, a small domain of p53, encompassing the Mdm2-binding site, confers Mdm2-dependent detstabilization upon heterologous proteins. Raised amounts of Mdm2 strongly repress mutant p53 accumulation in tumour-derived cells. During recovery from DNA damage, maximal Mdm2 induction coincides with rapid p53 loss. We propose that the Mdm2-promoted degradation of p53 provides a new mechanism to ensure effective termination of the p53 signal.
Article
The p53 tumour suppressor protein is a potent transcription factor that plays a major role in the defence against tumour development. p53 exists in a latent form that can be activated by a range of stresses including DNA damage, hypoxia, cytokines, metabolic changes, viral infection, and activated oncogenes. Activation of p53 can lead to cellular growth arrest prior to entry into either S phase or mitosis or can trigger cell death through apoptosis. The modification of p53 by multisite phosphorylation provides a potential link between stress signalling and the regulation of p53 activity, and there is now striking evidence that agents that activate p53 can lead to selective changes in its phosphorylation status. Topologically, the phosphorylation sites in p53 fall into two discrete functional domains. Four phosphorylation events take place within the N-terminal 83 amino acids containing the transactivation domain and a region involved in transcription-independent growth suppression. At least three of these modifications occur in response to agents that cause cellular stress such as DNA damage. At the C-terminus, there are three phosphorylation events, each of which can independently regulate the specific DNA-binding function of p53, suggesting convergent control by different signalling pathways. The multiplicity of these covalent modifications and their responsiveness to a wide range of signals suggest that p53 activity is tightly and coordinately controlled in response to stresses and changes in the cellular environment.
Article
Guidelines for submitting commentsPolicy: Comments that contribute to the discussion of the article will be posted within approximately three business days. We do not accept anonymous comments. Please include your email address; the address will not be displayed in the posted comment. Cell Press Editors will screen the comments to ensure that they are relevant and appropriate but comments will not be edited. The ultimate decision on publication of an online comment is at the Editors' discretion. Formatting: Please include a title for the comment and your affiliation. Note that symbols (e.g. Greek letters) may not transmit properly in this form due to potential software compatibility issues. Please spell out the words in place of the symbols (e.g. replace “α” with “alpha”). Comments should be no more than 8,000 characters (including spaces ) in length. References may be included when necessary but should be kept to a minimum. Be careful if copying and pasting from a Word document. Smart quotes can cause problems in the form. If you experience difficulties, please convert to a plain text file and then copy and paste into the form.