ArticlePDF Available

Transcriptome profile in naturally hydrated and desiccated fronds of Porphyra columbina(Plantae, Rhodophyta)

Authors:
Desiccation tolerance in Pyropia columbina 933
Lat. Am. J. Aquat. Res., 41(5): 933-958, 2013
DOI: 103856/vol41-issue5-fulltext-13
Research Article
Differential gene expression in Pyropia columbina (Bangiales, Rhodophyta)
under natural hydration and desiccation conditions
Loretto Contreras-Porcia1, Camilo López-Cristoffanini1,2, Carlos Lovazzano1
María Rosa Flores-Molina3, Daniela Thomas1, Alejandra Núñez1, Camila Fierro1, Eduardo Guajardo1
Juan A. Correa2, Michael Kube4 & Richard Reinhardt5
1Departamento de Ecología y Biodiversidad, Facultad de Ecología y Recursos Naturales
Universidad Andres Bello, República 470, Santiago, Chile
2Departamento de Ecología, Center for Advanced Studies in Ecology and Biodiversity (CASEB)
Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile
Postal code 6513677, Santiago, Chile
3Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile
P.O. Box 567, Valdivia, Chile
4Department of Crop and Animal Sciences, Faculty of Agriculture and Horticulture Humboldt
Universität zu Berlin, Lentzeallee 55/57, 14195 Berlin, Germany
5Max-Planck Institute for Molecular Genetics, Ihnestr. 63-73, Berlin, Germany
ABSTRACT. In rocky shores, desiccation is triggered by daily tide changes, and experimental evidence
suggests that local distribution of algal species across the intertidal rocky zone is related to their capacity to
tolerate desiccation. In this context, the permanence of Pyropia columbina in the high intertidal rocky zone is
explained by its exceptional physiological tolerance to desiccation. This study explored the metabolic
pathways involved in tolerance to desiccation in the Chilean P. columbina, by characterizing its transcriptome
under contrasting conditions of hydration. We obtained 1,410 ESTs from two subtracted cDNA libraries in
naturally hydrated and desiccated fronds. Results indicate that transcriptome from both libraries contain
transcripts from diverse metabolic pathways related to tolerance. Among the transcripts differentially
expressed, 15% appears involved in protein synthesis, processing and degradation, 14.4% are related to
photosynthesis and chloroplast, 13.1% to respiration and mitochondrial function (NADH dehydrogenase and
cytochrome c oxidase proteins), 10.6% to cell wall metabolism, and 7.5% are involved in antioxidant activity,
chaperone and defense factors (catalase, thioredoxin, heat shock proteins, cytochrome P450). Both libraries
highlight the presence of genes/proteins never described before in algae. This information provides the first
molecular work regarding desiccation tolerance in P. columbina, and helps, to some extent, explaining the
classical patterns of ecological distribution described for algae across the intertidal zone.
Keywords: Pyropia, desiccation stress, ESTs, seaweeds, transcriptomics, proteins.
Expresión diferencial de genes en Pyropia columbina (Bangiales, Rhodophyta)
bajo hidratación y desecación natural
RESUMEN. En zonas rocosas costeras, la desecación es gatillada por cambios diarios en los niveles de
marea, y la evidencia experimental indica que la distribución de las algas en la zona intermareal está
relacionada con su capacidad para tolerar la desecación. En este contexto, la presencia de Pyropia columbina
en la zona alta del intermareal se explica por su excepcional tolerancia fisiológica a la desecación. Este estudio
explora las vías metabólicas involucradas en la tolerancia a la desecación en P. columbina, a través de la
caracterización de su transcriptoma bajo condiciones de hidratación contrastantes. Se obtuvo 1,410 ESTs
provenientes de dos librerías de substracción de cDNA de frondas naturalmente hidratadas y desecadas. Los
transcriptomas de ambas librerías contienen transcritos de diversas rutas metabólicas relacionadas a la
tolerancia. Entre los transcritos expresados 15% están involucrados en la síntesis de proteínas, su
procesamiento y degradación, 14,4% asociados a fotosíntesis y cloroplasto, 13,1% a respiración y función
mitocondrial, 10,6% al metabolismo de la pared celular y 7,5% a la actividad antioxidante, proteínas
chaperonas y factores de defensa (catalasa, tiorredoxina, proteínas de shock térmico, citocromo P450). En
ambas librerías se destaca la presencia de genes/proteínas no descritos en algas. Esta información proporciona
934 Latin American Journal of Aquatic Research
el primer trabajo molecular que estudia la tolerancia a desecación en P. columbina y sus resultados ayudan a
explicar los patrones clásicos de distribución descritos para algas en la zona intermareal.
Palabras clave: Pyropia, estrés por desecación, ESTs, macroalgas, transcriptómica, proteínas.
___________________
Corresponding author: Loretto Contreras-Porcia (lorettocontreras@unab.cl)
INTRODUCTION
Red algae (Rhodophyta), the most ancient lineage of
photosynthetic eukaryotes (Baldauf et al., 2000; Yoon
et al., 2004), are distributed worldwide and include
several commercially important species. Porphyra and
Pyropia spp. are rhodophytes that represent an annual
value of over US$1.3 billion (Blouin et al., 2011). In
Chile, Pyropia columbina (Montagne) W.A. Nelson
(formerly Porphyra columbina (Sutherland et al.,
2011) is one of the economically important species,
together with members of the rhodophycean genera
Mazzaella, Gracilaria and Gelidium (Santelices, 1989;
Hoffmann & Santelices, 1997; Buschmann et al.,
2008), and it is found along the Chilean coast from
20° to 54°S (Hoffmann & Santelices, 1997; Guiry &
Guiry, 2013). This species has a biphasic life history
that includes a microscopic sporophyte generation (2n,
conchocelis stage) alternating with a macroscopic
generation of male and female gametophytes (n). The
foliose gametophytes constitute the edible “Nori”.
Water, and its intracellular balance, is a critical
factor for all living organisms in both terrestrial and
marine ecosystems. Mobile animals actively avoid
desiccation, induced by water deficiency, while other
organisms, such as resurrection plants a small group
of angiosperms that live in the most arid habitats of
the world are adapted to tolerate water losses of up
to 90% (Gaff, 1987). This adaptation, in general
terms, is based on the ability of an organism to
equilibrate its internal water potential with the dry
environment, and re-start normal functions when re-
hydrated (Alpert, 2000). Several studies using
resurrection plants as model have been conducted to
fully understand their impressive adaptation to
desiccation (Scott, 2000). Recent advances in our
understanding of the mechanisms of tolerance in these
organisms have revealed changes at the morphological
level, osmolites and protein synthesis, and a decline in
ROS (reactive oxygen species) production and
photosynthesis rate (Ingram & Bartels, 1996; Hoekstra
et al., 2001; Bernacchia & Furini, 2004; Vicré et al.,
2004; Dinakar et al., 2012). More specifically, it has
been observed that the plant hormone ABA is
accumulated in desiccated resurrection plants, which
induces the expression of several proteins related to
desiccation (Bartels et al., 1990; Dinakar et al., 2012).
Also, leaves of resurrection plants tend to curl to
reduce water loss and minimize oxidative damage due
to desiccation (Vicré et al., 2004; Farrant et al., 2007;
Toldi et al., 2009). Oxidative damage is attenuated or
avoided by increasing antioxidant activity of some
enzymes (e.g., ascorbate peroxidase, glutathione
reductase, superoxide dismutase, among others) and
levels of antioxidant compounds (e.g., anthocyanins)
(Farrant et al., 2007; Toldi et al., 2009; Dinakar et al.,
2012). Additionally, these plants reduce photo-
synthetic activity to minimize photo-oxidative damage
that could lead to increased ROS levels. Thus, it seems
clear that diverse metabolic pathways are involved in
attenuating the oxidative stress condition caused by
desiccation.
In the Chilean coastal ecosystems, P. columbina
grows abundantly along the upper intertidal zone
(Alveal, 1970; Santelices, 1989; Hoffmann &
Santelices, 1997), where it is exposed to a wide range
of environmentally stressful conditions, mainly
desiccation-driven stress induced by low tides and air
exposure (Contreras-Porcia et al., 2011a). P.
columbina is well adapted to daily extremes, which
range from exposure to water (full hydration) during
high tides to long exposure to air (maximum
desiccation) during low tides. Natural exposure to
these extreme regimes have been described in other
organisms exposed to desiccation. It is already known
that Porphyra and Pyropia species have high tolerance
to desiccation, and quickly recover photosynthetic
activity once rehydrated after a period of desiccation
(e.g., Smith & Berry, 1986; Kim et al., 2008;
Contreras-Porcia et al., 2011a; Gao & Wang, 2012).
Basic physiology of these organisms, including the
mechanisms to tolerate environmentally stressful
conditions, remains poorly studied. However, it is
known that, in P. columbina, desiccation induces
losses ca. 96% of the water content and enhanced
significantly the production of ROS (Contreras-Porcia
et al., 2011a). The quick return of ROS to their basal
levels during high tide is explained by an efficient
activation of the antioxidant system. In comparison,
species inhabiting the lower intertidal zone [e.g.,
Desiccation tolerance in Pyropia columbina 935
Mazzaella laminarioides (Bory de Saint-Vincent)
Fredericq, Ulva compressa Linnaeus and Lessonia
spicata (Suhr) Santelices] are more sensitive to
desiccation, and this seems related to the absence of
efficient mechanisms to attenuate the over-production
of ROS during rehydration (Contreras-Porcia et al.,
2012; López-Cristoffanini et al., 2013). Flores-Molina
et al. (unpublished data) recently provided some
physiological and biochemical bases that help explain
the role of desiccation on species distribution across
the intertidal zone. They reported that sensitive
species displayed i) inactivation of antioxidant
enzymes, ii) over-oxidation of biomolecules, and iii)
inactivation of the photosystem II. For example, Ulva
compressa (Chlorophyta, Plantae) and Scytosiphon
lomentaria (Lyngbye) Link (Ochrophyta, Chromista)
inhabiting the mid-intertidal zone have lower
tolerance to desiccation than P. columbina. However,
they tolerate desiccation better than Lessonia spicata
(Ochrophyta, Chromista) and Gelidium rex Santelices
& I.A. Abbott (Rhodophyta, Plantae), both lower
intertidal species.
Given the ecological and economic relevance of
Pyropia and that some basic biochemical and
physiological information on the mechanisms
involved in tolerance to desiccation is known, we
focused this work in determining the genes/proteins
that are differentially expressed in P. columbina
during the hydration-desiccation cycle, using
Suppression Subtractive Hybridization (SSH) and
ESTs determined by pyrosequencing (454 Life
Sciences, Roche). The results of this study will help to
elucidate the genetic basis underlying the high
tolerance to desiccation displayed by this species, and
will broaden our knowledge of the molecular
biology/ecology of this organism and other macroalgal
species.
MATERIALS AND METHODS
Ethics statement
No specific permits were required for the described
field studies. The study area is unrestricted to public
access and use, and is not privately owned or
designated as a protected area (reserves or parks). No
protected or endangered species were involved in this
study. Fronds of P. columbina were collected along
200-300 m of coastline during high (naturally
hydrated plants, 100% relative water content (RWC))
and low tide (naturally desiccated plants, ca. 4%
RWC) in Maitencillo beach, Valparaiso (32º39.5´S,
71º26.6´W). After collection, fronds were quickly
rinsed (15-20 s) in 0.22 µm-filtered seawater,
manually cleaned and frozen on site with liquid
nitrogen.
RNA extraction
Total RNA was isolated from 20-30 g of fresh tissue
of naturally hydrated and desiccated, pooled fronds of
P. columbina. Tissue, frozen in liquid nitrogen, was
homogenized in 25 mL of lysis buffer containing 4 M
guanidinium thiocyanate, 25 mM EDTA, 200 mM
sodium acetate, 2% polyvinylpyrrolidone (PVP-40)
and 1% 2-mercaptoethanol. The homogenate was
incubated for 10 min at 70°C with constant agitation
in the presence of 20% sarcosin, and then centrifuged
for 5 min at 16000 g. The RNA present in the
supernatant solution was purified and re-extracted
using an RNeasy mini Kit (Qiagen, Hilden, Germany),
according to the manufacturer protocol. RNA quality
and yield was assessed by spectrophotometry
(NanoDropTM 1000 Spectrophotometer, Thermo
Scientific, DE, USA) and denaturing agarose gel
electrophoresis. Finally, the mRNA was obtained from
the total RNA extracted (ca. 290-300 µg) using
DynaBeads (Invitrogen, Oregon, USA). Prior to RNA
extraction, all material was treated in 0.1% DEPC
water.
Preparation of the cDNA libraries by SSH and
next-generation sequencing
The synthesis of cDNAs, from both natural conditions
(i.e., natural hydration and desiccation stress), were
obtained using a SMARTTM cDNA Library
Construction Kit (Clontech, Mountain View, CA,
USA), as described in Wellenreuther et al. (2004).
Then, two subtracted cDNA libraries were
constructed: one with genes expressed exclusively
under hydration (UH) and the other by those
expressed under desiccation stress (UD), as described
in Diatchenko et al. (1996). cDNAs were then
sequenced by 454-pyrosequencing (Margulies et al.,
2005). cDNAs were ligated to 454 self-made adaptors
with Multiplex Identifier Adaptors (MIDs) for the GS
FLX Titanium Chemistry following Roche's technical
bulletin TCB 09004 introducing SfiI-sites. The 454
libraries were immobilized on beads and clonally
amplified using a "GS FLX Titanium LV emPCR
Kit". The libraries were then sequenced using a "GS
FLX Titanium Sequencing Kit XLR70" and a "GS
FLX Titanium PicoTiterPlate Kit". All kits were
purchased from Roche and used according to the
manufacturer protocols.
Data assembly and bioinformatics analysis
Readings from both libraries were processed by self-
written Perl scripts and assembled into coatings, i.e.,
936 Latin American Journal of Aquatic Research
representing putative transcripts using MIRA 3
assembly (Contreras-Porcia et al., 2011b). The
expressed sequences tags (ESTs) determined from
both libraries were subjected to separated bioinfor-
matics analyses. ESTs were analyzed for sequence
similarities using the BLASTX program (NCBI, MD,
USA). Reading frames with the highest sequence
similarity scores were used to analyze protein identity
using the BLASTP program. Threshold values were
set above 50 for high-scoring segment pairs, with a
minimum significance at least of e 10-4 and an
identity higher than 30%. ESTs coding for known
proteins were classified into functional categories by
the KO (KEGG Orthology) database for ortholog
grouping and hierarchical classification of genes,
according their functionality (Kanehisa et al., 2004)
by using the BLAST2GO software (Götz et al., 2008).
Finally, the putative subcellular localization of the
proteins was determined using the TARGETP
(http://www.cbs.dtu.dk/services/TargetP Emanuelsson
et al., 2000), WOLFPSORT (http://psort.ims.u-
tokyo.ac.jp), ChloroP (http://www.cbs.dtu.dk/services/
ChloroP Emanuelsson et al., 1999) and PSORTb
(http://www.psort.org/psortb Yu et al., 2010) servers.
RESULTS
EST sequencing and assembly
A total of 8,054 sequence reads were obtained from
the library enriched with hydration-responsive
exclusive transcripts (UH library, Table 1). Moreover,
8,432 sequence reads were obtained from the library
enriched with desiccation-responsive exclusive
transcripts (UD library). In the UH library, 49.2% of
ESTs ranged from 200 to 500 bp, with an average size
of 423 bp. In the UD library, 46% of the ESTs ranged
from 200 to 500 bp, with an average size of 385 bp.
The rest of the transcripts in both libraries ranged
between 100 to 190 bp. The sequences of both
libraries are available on the EMBL Nucleotide
Sequence Database (http://www.ebi.ac.uk/ embl) with
accession numbers HE858615 to HE859412 for UH
and HE859413 to HE859937 for UD libraries.
Gene ontology from naturally hydrated and
desiccated P. columbina transcriptome
Almost 59% of the total ESTs (i.e., 491) from UH
displayed no similarity with sequences available in
databases; whereas the remaining 41% (i.e., 347) were
similar to registered proteins (Table 1). Similarities
(68.8% of them) concentrated in sequences reported
for Arthropoda (e.g., Culex quinquefasciatus),
Chordata (e.g. Danio rerio) and Mollusca (e.g.,
Littorina saxatilis). Another 18% of the total ESTs
were similar to proteins from the kingdom Plantae,
mainly Rhodophyta (e.g., Porphyra purpurea) and
Tracheophyta (e.g., Vigna unguiculata), and 10.7% to
the kingdom Bacteria, mainly Proteobacteria (e.g.,
Haemophilus influenzae) and Cyanobacteria (e.g.,
Microcystis aeruginosa). Only 2.5% of the sequences
were similar to proteins from Protozoa (i.e.,
Dictyostelium discoideum), Fungi (i.e.,
Saccharomyces cerevisiae) and Chromista (i.e.,
Pylaiella littoralis). Finally, analysis of the amino
terminal sequences showed that 51.8% of the
identified proteins were potentially assignable to the
cytosol, 28.6% to mitochondria, 13% to the
chloroplast, and 4.4% to the nucleus (Table 1).
In the UD library, 72% of the total ESTs (i.e., 412)
displayed no similarity with previously reported
sequences (Table 2). Of the remaining 28% (i.e., 160
ESTs) showing similarity with proteins registered in
databases: 37% were similar to those reported for
Plantae, mainly Rhodophyta (e.g., Porphyra purpu-
rea) and Tracheophyta (e.g., Arabidopsis thaliana),
29.4% with proteins from Bacteria, mainly
Proteobacteria (e.g., Burkholderia multivorans) and
Cyanobacteria (e.g., Thermosynechococcus elonga-
tus), 21% with proteins from Animalia, mainly
Arthropoda (e.g., Aedes aegypti), Chordata (e.g.,
Mauremys mutica) and Mollusca (e.g., Crassostrea
virginica), and 7.5% with proteins from Chromista,
mainly Ochrophyta (e.g., Ectocarpus siliculosus).
Only 5% of the sequences were similar to proteins
from Protozoa (i.e., Dictyostelium discoideum) and
Fungi (i.e., Leptosphaeria maculans). Finally, analysis
of the amino terminal sequences showed that 47% of
the identified proteins were potentially assignable to
cytosol, 21-23% to both mitochondria and chloroplast,
and 7% to the nucleus (Table 2).
Functional categorization
The identified genes/proteins were classified into
thirteen functional categories according their
functionality (Fig. 1). For example, most ESTs from
hydrated fronds (Table 1) matched with proteins
involved in protein synthesis, processing and
degradation (ca. 24%, peptidylprolyl cis-trans
isomerases, ubiquitin and proteasome proteins),
respiration and mitochondria (ca. 14%), antioxidant
function, chaperone and defense factors (ca. 9%, e.g.,
peroxiredoxin (PRX), arachidonate 5-lipoxygenase, a
glutathione S-transferase, and several cytochrome
P450 and HSPs), cell motility (ca. 9%) and basal
metabolism (ca. 8%; e.g., glyceraldehyde 3-phosphate
dehydrogenase and L-lactate dehydrogenase). However,
the transcriptome induced by desiccation (Fig. 1)
Desiccation tolerance in Pyropia columbina 937
Table 1. Functional category, identity and potential cellular destination of proteins, and accession number of identified
ESTs in P. columbina under natural hydration (UH library). E value: the best (lowest) Expect value (E value) of all
alignments from that database sequence, D*: Putative destination.
Functional category Putative Identity Species and accession number E value D* Pyropia accession
number
1. Signal transduction Phosphatidylinositol 3-kinase 1 Culex quinquefasciatus /
XP_001847784.1 4.00E-07 nuc HE859298
MAP kinase activated protein-kinase-2 Glossina morsitans morsitans /
ABC25082.1 2.00E-47 cyt HE859158
Low-density lipoprotein receptor-
related protein 1B-like
Xenopus (Silurana) tropicalis /
XP_002937402.1 5.00E-14 cyt HE858680
Low-density lipoprotein receptor-
related protein 2 precursor
Danio rerio / NP_001181916.1 2.00E-19 cyt HE858962
Mitogen-activated protein kinase
kinase kinase 15
Apis mellifera / XP_003250315.1 4.00E-19 cyt HE859035
Neurochondrin Drosophila melanogaster /
NP_649658.1 4.00E-20 n.d. HE859071
Neurochondrin-like protein Harpegnathos saltator /
EFN88263.1 2.00E-16 n.d. HE859267
Serine/threonine kinase Culex quinquefasciatus /
XP_001844678.1 6.00E-33 nuc HE859315
Protein serine/threonine kinase,
putative
Aedes aegypti / XP_001660772.1 2.00E-21 nuc HE858859
Ras-related protein, isoform B Drosophila melanogaster /
NP_726881.1 4.00E-07 nuc HE859339
Serine/threonine kinase receptor-
associated protein
Glossina morsitans morsitans /
ADD19360.1 3.00E-70 nuc HE858825
Serine/threonine protein kinase Aedes aegypti / XP_001655486.1 5.00E-44 cyt HE859285
Serine/threonine-protein phosphatase 5 Culex quinquefasciatus /
XP_001850926.1 4.00E-45 cyt HE859130
SNF4/AMP-activated protein kinase
gamma subunit, isoform M
Drosophila melanogaster /
NP_001097854.1 4.00E-26 cyt HE858743
Troponin C type IIIa Apis mellifera / NP_001011651.1 9.00E-21 mit HE859041
Calmodulin Pyropia yezoensis / ABN41559.1 2.00E-52 cyt HE858656
Cyclic AMP phosphoprotein Scophthalmus maximus /
ABJ98640.1 1.00E-10 cyt HE858976
GAF sensor signal transduction
histidine kinase
Microcoleus vaginatus FGP-2
/ ZP_08492202.1 5.00E-18 cyt HE858774
Guanine nucleotide binding protein
beta polypeptide 2- like 1
Lethenteron camtschaticum/
BAE93065.1 9.00E-109 cyt HE858703
Putative guanine nucleotide binding
protein beta polypeptide 2-like 1
protein
Ovis aries / ABY75292.1 2.00E-43 cyt HE858908
Troponin T Pediculus humanus corporis /
XP_002424248.1 3.00E-31 cyt HE859343
Calreticulin Eisenia andrei / ABI74618.1 6.00E-42 mit HE859085
Adenylyl cyclase associated protein Gossypium herbaceum subsp.
africanum / ADZ16114.1 2.00E-22 cyt HE858826
Transcription factor BTF3 homolog 4 Salmo salar / ACI69109.1 5.00E-45 nuc HE858889
2. Transcription, splicing,
and replication
Transcription factor Brugia malayi / XP_001891758.1 4.00E-26 nuc HE858778
TFIIH basal transcription factor
complex P44 subunit
Culex quinquefasciatus /
XP_001845822.1 2.00E-07 nuc HE858942
RNA polymerase beta subunit Pyropia yezoensis / YP_536931.1 1.00E-21 chl HE858844
Homeotic protein spalt-major Camponotus floridanus /
EFN74164.1 3.00E-12 n.d. HE859115
Nascent polypeptide associated
complex protein alpha subunit
Glossina morsitans morsitans /
ADD19571.1 8.00E-17 n.d. HE858969
Similar to nuclear histone binding
protein
Strongylocentrotus purpuratus /
XP_791433.2 1.00E-11 nuc HE858932
orf544 reverse transcriptase Porphyra purpurea / NP_049292.1 6.00E-47 mit HE858715
Reverse transcriptase al1 Saccharomyces cerevisiae S288c /
NP_009310.1 1.00E-12 mit HE858909
Reverse transcriptase homolog Pylaiella littoralis / BAG06161.1 2.00E-05 mit HE858919
RNA-directed DNA polymerase Moorea producens 3L /
ZP_08427361.1 6.00E-05 mit HE859330
938 Latin American Journal of Aquatic Research
Continuation
Functional category Putative Identity Species and accession number E value D* Pyropia accession
number
RNA-directed DNA polymerase Microcystis aeruginosa NIES-843
/ YP_001659893.1 3.00E-19 mit HE859084
RNA-directed DNA polymerase
(reverse transcriptase)
Microcoleus vaginatus FGP-2 /
ZP_08493544.1 7.00E-05 mit HE859136
RNA-directed DNA polymerase
(reverse transcriptase)
Arthrospira maxima CS-328 /
ZP_03271771.1 2.00E-11 mit HE858655
Retrotransposon protein Oryza sativa Indica Group /
ABR26094.1 5.00E-14 nuc HE858617
Retrotransposon protein Oryza sativa Indica Group /
ABR26094.1 3.00E-09 mit HE859408
RNA-binding protein 8A Apis mellifera / XP_395245.2 2.00E-35 cyt HE859164
rRNA intron-encoded homing
endonuclease
Thalassiosira pseudonana
CCMP1335 / XP_002294430.1 8.00E-12 mit HE858662
Ribonuclease R Weeksella virosa DSM 16922 /
YP_004238302.1 3.00E-23 cyt HE858827
rRNA promoter binding protein Brugia malayi / XP_001891797.1 7.00E-05 mit HE859073
ATP-dependent helicase Zobellia galactanivorans
/ CAZ98388.1 5.00E-14 n.d. HE859151
rRNA intron-encoded homing
endonuclease
Medicago truncatula /
XP_003614389.1 2.00E-05 cyt HE858668
Metal-dependent RNase Streptococcus pyogenes M49 591 /
ZP_00366321.1 2.00E-20 cyt HE858664
3. Basal metabolism Mitochondrial Malate dehy
drogenase 2
Culex quinquefasciatus /
XP_001849862.1 2.00E-26 mit HE858747
Glyceraldehyde 3-phosphate
dehydrogenase
Simulium nigrimanum /
ACZ28396.1 4.00E-05 cyt HE858837
Glyceraldehyde 3-phosphate
dehydrogenase
Tribolium castaneum /
XP_974181.1 5.00E-32 cyt HE858850
Pyruvate dehydrogenase Aedes aegypti / XP_001648922.1 3.00E-94 mit HE859341
Medium chain acyl-coenzyme A
dehydrogenase
Pachycara brachycephalum /
AEC32921.1 3.00E-34 mit HE859282
L-lactate dehydrogenase-like Apis mellifera / XP_394662.4 3.00E-37 cyt HE858775
Acetyl-CoA carboxylase beta subunit Porphyra purpurea / NP_053808.1 7.00E-33 chl HE859176
NAD-dependent
epimerase/dehydratase
Zea mays / NP_001148959.1 1.00E-13 cyt HE859024
Phosphogluconate dehydrogenase Tipula abdominalis / ACH95392.1 5.00E-35 cyt HE859302
Phosphoglycerate mutase Porphyra purpurea / NP_053989.1 7.00E-34 chl HE858842
Mitochondrial Succinyl-CoA ligase
[ADP-forming] subunit beta
Camponotus floridanus /
EFN67099.1 5.00E-43 mit HE859064
Succinyl-CoA ligase [GDP-forming]
subunit alpha
Anolis carolinensis /
XP_003221906.1 2.00E-10 mit HE858963
Transcript antisense to ribosomal RNA
protein 1(Tar1p)
Saccharomyces cerevisiae S288c /
NP_690845.1 7.00E-06 mit HE858643
Trehalose-6-phosphate synthase Aedes aegypti / XP_001657813.1 1.00E-22 cyt HE858687
Trehalose-6-phosphate synthase 1 Culex quinquefasciatus /
XP_001850996.1 2.00E-06 cyt HE858920
2,5-diketo-D-gluconic acid reductase
A
Rhodococcus erythropolis SK121 /
ZP_04383522.1 2.00E-05 cyt HE859383
3,4-dihydroxy-2-butanone-4-
phosphate synthase
Haemophilus influenzae HK1212 /
ZP_06222660.1 5.00E-16 cyt HE858684
3,4-dihydroxy-2-butanone-4-
phosphate synthase
Haemophilus influenzae HK1212 /
ZP_06222660.1 1.00E-13 cyt HE858659
3,4-dihydroxy-2-butanone-4-
phosphate synthase
Haemophilus influenzae HK1212 /
ZP_06222660.1 3.00E-20 cyt HE858708
Amylo-1, 6-glucosidase, 4-alpha-
glucanotransferase
Danio rerio / NP_001166124.1 2.00E-39 cyt HE858838
Arginine kinase Philaethria wernickei /
ACZ26817.1 1.00E-42 cyt HE858779
Arginine kinase Glossina morsitans morsitans /
ADD19663.1 6.00E-67 cyt HE859110
Putative enolase Lutzomyia longipalpis /
ABV60328.1 3.00E-39 mit HE858686
Putative enolase Myrmecocystus depilis /
ABY55706.1 5.00E-08 mit HE859204
Desiccation tolerance in Pyropia columbina 939
Continuation
Functional category Putative Identity Species and accession number E value D* Pyropia accession
number
Glutamate dehydrogenase Bombyx mori / NP_001040245.1 3.00E-43 mit HE859167
Glycerol kinase Candidatus Liberibacter
americanus str. Sao Paulo /
ACD87749.1
4.00E-22 mit HE858676
Short-chain dehydrogenase Aedes aegypti / XP_001663676.1 1.00E-17 cyt HE859135
4. Antioxidant,
chaperone and defense
factors
Peroxiredoxin (PRX) family, typical
2-Cys
Pyropia yezoensis / YP_536954.1 3.00E-20 chl HE858809
Arachidonate 5-lipoxygenase Strongylocentrotus purpuratus /
XP_001198535.1 1.00E-13 cyt HE858870
Glutathione S-transferase sigma 5 Locusta migratoria / AEB91977.1 7.00E-41 n.d. HE858928
28 kDa heat- and acid-stable
phosphoprotein
Harpegnathos saltator /
EFN84845.1 2.00E-13 cyt HE858971
Apolipoprotein D Culex quinquefasciatus /
XP_001848365.1 2.00E-43 n.d. HE858692
Probable Bax Inhibitor 1 Harpegnathos saltator /
EFN76935.1 3.00E-14 n.d. HE859251
Ferritin heavy chain-like Ailuropoda melanoleuca /
XP_002929594.1 1.00E-06 cyt HE859190
Ferritin heavy chain-like protein Phlebotomus papatasi /
ABV44737.1 1.00E-33 cyt HE858813
Small heat shock protein IbpA Trichinella pseudospiralis /
ABJ55915.1 2.00E-28 mit HE858802
Heat shock protein 23 beta Ceratitis capitata / ACG58884.1 1.00E-05 cyt HE858848
Heat shock protein 27 Drosophila melanogaster /
NP_524000.1 7.00E-05 cyt HE859216
Heat shock protein 27 Drosophila bipectinata /
AEB40325.1 5.00E-15 cyt HE858649
Heat shock protein 27 Drosophila parabipectinata /
AEB40323.1 5.00E-08 cyt HE858750
Heat shock protein 27 Ceratitis capitata / ACD76913.1 2.00E-29 cyt HE859304
Heat shock protein 40 Bactrocera dorsalis / ADO30472.1 6.00E-17 n.d. HE858885
Heat shock protein 70 Porphyra purpurea / NP_053925.1 5.00E-71 chl HE858621
Heat shock protein 70 Pyropia haitanensis / Q06W39.1 5.00E-26 chl HE858874
Heat shock protein 70 Pyropia haitanensis / ACF71814.1 5.00E-36 cyt HE858890
Heat shock protein 70 Ostreococcus lucimarinus /
XP_001417572.1 6.00E-65 n.d. HE858770
Heat shock protein 70 Raphidiopsis brookii D9 /
ZP_06305357.1 9.00E-10 cyt HE859296
Heat shock protein 70B Dunaliella salina / ACJ24805.1 3.00E-12 cyt HE859318
Chloroplast Heat shock protein 70 Pyropia yezoensis / ABF54971.1 2.00E-47 chl HE858982
Heat shock protein 70 Gracilaria tenuistipitata var. liui /
YP_063608.1 4.00E-64 chl HE858640
Heat shock protein 70- type chaperone
(chloroplast)
Guillardia theta / AAC35702.1 7.00E-54 chl HE859033
Heat shock protein 70C Ascaris suum / ADY47984.1 3.00E-36 cyt HE858821
Heat shock protein 82 Philodina roseola / ACC43981.1 8.00E-20 n.d. HE859067
Heat shock protein 90 Spodoptera exigua / ACQ78181.1 9.00E-84 cyt HE859242
Heat shock protein 90 Thitarodes pui/ ADA61011.1 2.00E-43 n.d. HE858745
Stress-induced-phosphoprotein 1 Ciona intestinalis /
XP_002128875.1 3.00E-28 cyt HE858818
Cytochrome P450 4C1-like Acyrthosiphon pisum /
XP_001945361.2 8.00E-19 mit HE859003
Cytochrome P450 like_TBP Citrullus lanatus / BAD26579.1 1.00E-12 mit HE858931
Putative cytochrome P450 like protein
precursor
Phillyrea latifolia / CAK18871.1 8.00E-19 mit HE858629
5. Protein synthesis,
processing and
degradation
20S proteasome alpha subunit Scylla paramamosain /
ACY66486.1 4.00E-34 cyt HE859122
26S protease regulatory subunit 8 Acromyrmex echinatior /
EGI70168.1 7.00E-57 cyt HE858682
26S proteasome non-ATPase
regulatory subunit
Aedes aegypti / XP_001662445.1 2.00E-28 cyt HE859333
940 Latin American Journal of Aquatic Research
Continuation
Functional category Putative Identity Species and accession number E value D* Pyropia accession
number
26S proteasome non-ATPase
regulatory subunit 14
Aedes albopictus / ADB43603.1 2.00E-47 cyt HE858896
26S proteasome regulatory complex
subunit RPN5/PSMD12
Glossina morsitans morsitans /
ADD19088.1 5.00E-28 cyt HE859277
Proteasome subunit beta type 3 Culex quinquefasciatus /
XP_001843139.1 1.00E-33 cyt HE859180
Proteasome subunit alpha type 3 Oncorhynchus mykiss /
ACO07671.1 2.00E-19 cyt HE859121
Eukaryotic translation initiation
factor 3
Culex quinquefasciatus /
XP_001851152.1 3.00E-37 cyt HE859058
Eukaryotic translation initiation factor
3 subunit 10
Culex quinquefasciatus /
XP_001844367.1 6.00E-23 cyt HE859324
Putative 23S ribosomal RNA Vigna unguiculata / CAO02532.1 4,93E-09 cyt HE858807
Putative ribosomal protein S3 Vigna unguiculata / CAO02550.1 8.00E-09 cyt HE858624
Ribosomal protein S8 Polaribacter irgensii 23-P /
ZP_01119260.1 2.00E-28 cyt HE858921
30S ribosomal protein S10 Polaribacter sp.MED152 /
ZP_05108264.1 5.00E-06 cyt HE859208
Ribosomal protein RPS3a Eurythoe complanata /
ABW23199.1 2.00E-68 mit HE858801
40S ribosomal protein S4 Mytilus edulis / ABA55738.1 9.00E-47 cyt HE859005
Ribosomal protein S9 Haliotis discus discus /
ABX26127.1 5.00E-62 mit HE858760
Ribosomal protein S13 Xenopus (Silurana) tropicalis /
NP_001016602.1 1.00E-62 cyt HE859014
Ribosomal protein S15 isoform A Lysiphlebus testaceipes /
AAX62477.1 7.00E-56 cyt HE858833
40S ribosomal protein S16 Glossina morsitans morsitans /
ADD20564.1 6.00E-34 cyt HE859173
Putative 40S ribosomal protein RPS16 Novocrania anomala /
ACD65104.1 2.00E-67 cyt HE858899
40S ribosomal protein S30 Aedes aegypti / XP_001653913.1 2.00E-14 cyt HE858808
40S ribosomal protein SA-like Nasonia vitripennis /
XP_001608082.1 7.00E-56 nuc HE859192
Ribosomal protein RPL14 Arenicola marina / ABW23170.1 6.00E-55 mit HE859118
Ribosomal protein L32 Lepidochitona cinerea /
ACR24953.1 8.00E-48 cyt HE859166
60S ribosomal protein L6 Harpegnathos saltator /
EFN79475.1 7.00E-26 cyt HE858776
60S ribosomal protein L10-3 Zea mays / NP_001149336.1 1.00E-11 cyt HE858638
60S ribosomal protein L11 Glossina morsitans morsitans /
ADD20563.1 4.00E-35 mit HE858806
60S ribosomal protein L12 Zea mays / ACG35173.1 3.00E-38 nuc HE859020
Ribosomal protein RPL17 Eurythoe complanata /
ABW23221.1 3.00E-16 nuc HE858940
Large subunit ribosomal protein 23 Pristionchus pacificus /
ABR87202.1 2.00E-51 cyt HE859259
Putative 60S ribosomal protein RPL27 Novocrania anomala /
ACD65128.1 2.00E-39 mit HE858729
Ribosomal protein L10a, component
of cytosolic 80S ribosome and 60S
large subunit
Chlamydomonas reinhardtii /
XP_001699807.1 2.00E-46 cyt HE858749
Putative 23S ribosomal RNA Vigna unguiculata / CAO02532.1 3.00E-13 mit HE858674
Putative ribosomal protein S3 Vigna unguiculata / CAO02550.1 4.00E-13 mit HE859345
Putative ribosomal protein S3 Vigna unguiculata / CAO02550.1 8.00E-15 mit HE859397
Ubiquitin C Schistosoma japonicum /
CAX79699.1 2.00E-53 cyt HE858679
Ubiquitin C Equus caballus / NP_001075331.1 5.00E-24 cyt HE858977
Putative ubiquitin C variant 1 Taeniopygia guttata / ACH45550.1 7.00E-38 cyt HE858934
Predicted protein (ubiquitin isoform 1) Physcomitrella patens subsp.
patens / XP_001764949.1 4.00E-14 chl HE858820
Ubiquitin-conjugating enzyme E2 Zea mays / NP_001140410.1 3.00E-33 chl HE858941
E3 Ubiquitin-protein ligase UHRF1-
Like
Meleagris gallopavo /
XP_003213379.1 2.00E-08 cyt HE858646
Desiccation tolerance in Pyropia columbina 941
Continuation
Functional category Putative Identity Species and accession number E value D*
Pyropia accession
number
Hypothetical protein 382 Pyropia yezoensis / YP_537017.1 1.00E-14 cyt HE858985
Molybdopterin biosynthesis protein Porphyra purpurea / NP_053945.1 9.00E-10 cyt HE859052
Peptidase membrane zinc
metallopeptidase
Pelodictyon phaeoclathratiforme
BU-1 / YP_002018463.1 3.00E-12 cyt HE858858
Protein disulfide isomerase Dictyostelium discoideum AX4 /
XP_635206.1 2.00E-16 cyt HE858804
Serine peptidase 2 Radix peregra / ABL67951.1 1.00E-22 ext HE858888
Serine protease Aedes aegypti / XP_001655711.1 1.00E-07 cyt HE859141
Serine-type endopeptidase Culex quinquefasciatus /
XP_001846627.1 8.00E-12 cyt HE858654
Putative serine-type endopeptidase Aedes aegypti / XP_001663439.1 4.00E-18 cyt HE858699
Signal peptidase complex catalytic
subunit SEC11A
Danio rerio / NP_001002521.1 7.00E-08 cyt HE859034
Signal peptidase complex subunit 3 Bombyx mori / NP_001091763.1 3.00E-32 cyt HE859075
Signal recognition particle subunit
Srp68
Glossina morsitans morsitans /
ADD18348.1 4.00E-10 cyt HE858914
Signal sequence receptor, beta-like Saccoglossus kowalevskii /
XP_002740523.1 6.00E-14 cyt HE858810
T-complex protein 1 subunit epsilon Harpegnathos saltator /
EFN84860.1 2.00E-54 cyt HE859168
Translation initiation factor Anopheles gambiae str. PEST /
XP_316499.2 2.00E-30 cyt HE859078
Protein translation factor Griffithsia japonica / AAM93956.1 8.00E-40 cyt HE858711
Translation initiation factor 2 gamma
subunit
Allacma fusca / CAG29667.1 1.00E-24 cyt HE859111
Histidine-tRNA synthetase Porphyra purpurea / NP_053958.1 1.00E-47 chl HE858867
Histidyl-tRNA synthetase Moorea producens 3L /
ZP_08428961.1 2.00E-10 chl HE859222
60S acidic ribosomal protein P0 Haliotis diversicolor / ABY87386.1 1.00E-58 cyt HE859006
60S acidic ribosomal protein P2 Spodoptera frugiperda /
AAL62467.1 5.00E-18 cyt HE859081
Transcript antisense to ribosomal RNA
protein 1 (Tar1p)
Saccharomyces cerevisiae S288c /
NP_690845.1 2.00E-07 mit HE859051
Venom serine carboxypeptidase
precursor
Apis mellifera / NP_001152775.1 1.00E-25 cyt HE858876
Cathepsin L1-like isoform 1 (cysteine
protease)
Danio rerio / XP_001341714.2 5.00E-07 mit HE858698
Cathepsin L2 cysteine protease Pinctada fucata / ADC52431.1 8.00E-32 mit HE859305
Cysteine proteinase cathepsin F Glossina morsitans morsitans /
ADD19167.1 3.00E-22 cyt HE859086
Elongation factor 1 gamma Caenorhabditis brenneri /
ACE00305.1 1.00E-13 cyt HE859382
Putative elongation factor 1 gamma Ixodes scapularis /
XP_002410199.1 5.00E-39 cyt HE859183
Elongation factor 1-beta Culex tarsalis / ACJ64291.1 5.00E-26 cyt HE858793
Elongation factor 1 beta Simulium nigrimanum /
ACZ28393.1 2.00E-30 cyt HE858987
Elongation factor 1-beta Artemia salina / P12262.3 4.00E-16 cyt HE858954
Elongation factor-1 gamma Trichinella spiralis /
XP_003375107.1 2.00E-09 cyt HE859353
Elongation factor-1 gamma Bothriocyrtum californicum /
ABG88914.1 6.00E-30 cyt HE859385
Elongation factor-1 gamma Aliatypus plutonis / ABG88916.1 5.00E-44 cyt HE859214
Elongation factor-1 gamma Deinopis spinosa / ABG88956.1 3.00E-12 cyt HE859387
Elongation factor-1 gamma Aptostichus sp. 4 NAA-2006 /
ABG88917.1 2.00E-64 cyt HE859398
Elongation factor-2 Harbansus paucichelatus /
AAR01294.1 5.00E-12 cyt HE859262
Peptidyl prolyl cis-trans isomerase B Conus novaehollandiae /
ADC80506.1 2.00E-61 cyt HE858895
Peptidyl-prolyl cis-trans isomerase Culex quinquefasciatus /
XP_001846632.1 2.00E-23 cyt HE859125
Peptidyl-prolyl isomerase-1 Gryllus firmus / ACD69575.1 6.00E-12 cyt HE859254
942 Latin American Journal of Aquatic Research
Continuation
Functional category Putative Identity Species and accession number E value D* Pyropia accession
number
Phenylalanyl-tRNA synthetase beta
chain
Porphyra purpurea / NP_053956.1 9.00E-42 chl HE859109
Ribosome biogenesis protein Nsa2
homolog
Ictalurus punctatus /
NP_001187984.1 3.00E-84 nuc HE858869
Metallocarboxypeptidase inhibitor Medicago truncatula /
XP_003616487.1 3.00E-52 cyt HE858630
6. Cell motility Intermediate filament protein Biomphalaria glabrata /
AAZ39528.1 2.00E-25 cyt HE859009
Myomesin Aedes aegypti / XP_001655591.1 1.00E-13 cyt HE859273
Myosin light chain Gryllotalpa orientalis /
AAW22542.1 2.00E-43 cyt HE858829
Myosin 1 light chain Palaemonetes varians /
ACR54116.1 3.00E-16 cyt HE859189
Myosin heavy chain isoform 3 Daphnia pulex / EFX87106.1 8.00E-35 n.d. HE859089
Paramyosin, short form Harpegnathos saltator /
EFN75172.1 9.00E-68 n.d. HE858678
Paramyosin, short form Camponotus floridanus /
EFN63022.1 6.00E-35 n.d. HE859063
Tropomodulin Culex quinquefasciatus /
XP_001867000.1 1.00E-28 cyt HE859137
Tropomodulin, isoform K Drosophila melanogaster /
NP_001189319.1 2.00E-33 cyt HE858787
Tropomyosin-2 isoform 1 Bombyx mori / NP_001103782.1 1.00E-60 cyt HE858718
Actin Pyropia yezoensis / BAB64309.1 1.00E-14 cyt HE859049
Actin Apis mellifera / XP_003251465.1 6.00E-43 cyt HE858761
Actin-2, partial Ascaris suum / ADY47269.1 9.00E-73 cyt HE858791
Actin 4 Tetranychus urticae / ACN53544.1 8.00E-35 cyt HE859406
Actin 57B Glossina morsitans morsitans /
ADD19431.1 7.00E-13 cyt HE858814
Actin 88F Drosophila melanogaster /
NP_524367.1 5.00E-78 cyt HE858619
Actin Timema tahoe / ADX66580.1 1.00E-74 cyt HE858642
Actin E2 Drosophila virilis / AAK25829.1 2.00E-41 cyt HE859379
Alpha actinin, isoform A Drosophila melanogaster /
NP_477484.2 1.00E-29 cyt HE859142
Beta-actin Diabolocatantops pinguis /
ACV32627.1 5.00E-78 cyt HE858722
Beta-actin Diabolocatantops pinguis /
ACV32627.1 9.00E-28 cyt HE858763
Beta-actin Channa punctata / AEA50896.1 9.00E-40 cyt HE859079
Actin 87E Glossina morsitans morsitans /
ADD19714.1 4.00E-76 cyt HE858840
Actin type 1 Ostrea edulis / CAL69229.1 1.00E-72 cyt HE859022
Actin, cytoplasmic 2-like isoform 1 Callithrix jacchus /
XP_002758560.1 2.00E-54 cyt HE858700
Alpha-tubulin Boltenia villosa / AAM76122.1 2.00E-45 cyt HE858975
Ankyrin-1-like Apis mellifera / XP_397331.2 3.00E-60 cyt HE859178
Dynein heavy chain Culex quinquefasciatus /
XP_001843519.1 2.00E-04 cyt HE859030
Stretchin-Mlck, isoform L Drosophila melanogaster /
NP_001188951.1 3.00E-06 cyt HE858663
Up-regulated during skeletal muscle
growth protein 5 – like
Acyrthosiphon pisum /
XP_003247952.1 6.00E-04 cyt HE858948
Inhibitor of apoptosis protein Bombyx mori / AAN46650.1 6.00E-20 cyt HE858854
7. Cell growth and death Translationally-controlled tumor
protein
Cyprinus carpio / ABC59222.1 1.00E-11 cyt HE858712
Cathepsin D Pteria penguin / AEI58895.1 3.00E-17 cyt HE858983
Death-associated small cytoplasmic
leucine-rich protein
Bombyx mori / NP_001138799.1 3.00E-27 cyt HE858839
CHK1 checkpoint-like protein Perca flavescens / ADX97237.1 1.00E-04 cyt HE859132
8. Membrane transporters Transmembrane channel-like 2 Taeniopygia guttata /
XP_002196817.1 2.00E-04 n.d. HE859194
Desiccation tolerance in Pyropia columbina 943
Continuation
Functional category Putative Identity Species and accession number E value D* Pyropia accession
number
Protein-export membrane protein
Secd/Secf
Psychroflexus torquis ATCC
700755 / ZP_01252230.1 4.00E-19 n.d. HE859043
RND superfamily resistance-
nodulation-cell division: proton (H+)
antiporter
Lactobacillus rhamnosus LMS2-1
/ ZP_04439763.1 6.00E-06 n.d. HE859400
Sugar transporter Haliscomenobacter hydrossis
DSM 1100 / YP_004445152.1 2.00E-08 n.d. HE858852
Transport protein Paenibacillus sp. HGF5 /
ZP_08281960.1 1.00E-03 n.d. HE859386
9. Vesicular transport and
metabolism
Putative Ras-related protein Rab-2A Aedes aegypti / XP_001650005.1 4.00E-15 gol HE859113
Rtnl1, isoform C Drosophila melanogaster /
NP_787988.1 1.00E-36 n.d. HE859153
Transport protein Sec61 subunit alpha
2
Culex quinquefasciatus /
XP_001850184.1 3.00E-113 n.d. HE859332
10. Cell wall metabolism Heparanase precursor Rattus norvegicus / NP_072127.1 4.00E-05 cyt HE858732
Cell wall-associated hydrolase Escherichia sp. 3253FAA /
ZP_04532936.1 3.00E-21 cyt HE859007
Cell wall-associated hydrolase Burkholderia multivorans ATCC
17616 / YP_001949468.1 1.00E-29 cyt HE858683
Cell wall-associated hydrolase Microscilla marina ATCC 23134/
ZP_01689674.1 7.00E-20 cyt HE858990
Cell wall-associated hydrolase Roseobacter sp. AzwK-3b /
ZP_01900972.1 5.00E-16 cyt HE859054
Cell wall-associated hydrolase Escherichia sp.3253FAA/
ZP_04532936.1 3.00E-12 cyt HE859275
Cell wall-associated hydrolase Helicobacter canadensis /
ZP_07804970.1 2.00E-05 cyt HE859290
Cell wall-associated hydrolase Streptomyces sp. e14 /
ZP_06708251.1 4.00E-09 cyt HE859401
Glycoside hydrolases Aedes aegypti / XP_001650341.1 1.00E-58 cyt HE858995
Glycosyl transferase family protein Acidiphilium cryptum JF-5 /
YP_001233531.1 8.00E-06 cyt HE858973
30S ribosomal protein S13 Pyropia yezoensis / ABJ91310.1 2.00E-26 chl HE859292
11. Photosynthesis and
chloroplast proteins
Ribosomal protein L3 Porphyra purpurea / NP_053924.1 2.00E-25 chl HE858764
Ribosomal protein L13 Porphyra purpurea / NP_053902.1 3.00E-43 chl HE858795
Ribosomal protein L35 Pyropia yezoensis / YP_536952.1 7.00E-07 chl HE859002
Photosystem I P700 chlorophyll A
apoprotein A1
Arthrospira platensis str. Paraca /
ZP_06383599.1 4.00E-40 chl HE859186
Photosystem I P700 chlorophyll A
apoprotein A1
Bangia fuscopurpurea /
AAM62007.1 7.00E-70 chl HE858916
Photosystem I P700 chlorophyll A
apoprotein A1
Porphyra purpurea / NP_053894.1 1.00E-52 chl HE859114
Photosystem II cytochrome C550 Porphyra purpurea / NP_053809.1 1.00E-37 chl HE858727
Photosystem II D2 protein Pyropia yezoensis / YP_537038.1 1.00E-06 chl HE859365
Photosystem II protein D1 Pyropia yezoensis / YP_536893.1 9.00E-103 chl HE858641
Photosystem II protein D1 Porphyra purpurea / NP_053822.1 1.00E-93 chl HE858733
Photochlorophyllide reductase subunit
B
Porphyra purpurea / NP_053888.1 9.00E-35 chl HE858824
Photochlorophyllide reductase subunit
L
Porphyra purpurea / NP_053797.1 2.00E-32 chl HE859157
Photochlorophyllide reductase subunit
N
Porphyra purpurea / NP_053798.1 2.00E-27 chl HE859287
Phycobilisome linker polypeptide Cyanothece sp. PCC 7822 /
YP_003889235.1 1.00E-03 chl HE859143
Phycoerythrin beta subunit Porphyra purpurea / NP_053977.1 3.00E-08 chl HE858627
Phycoerythrin beta subunit Ceramium boydenii / AAM88398.1 1.00E-50 chl HE858639
Putative rubisco expression protein Rhodomonas salina /
YP_001293520.1 3.00E-75 chl HE859066
Allophycocyanin subunit alpha Microcystis aeruginosa NIES-843
/ YP_001656041.1 1.00E-12 chl HE858886
ATP synthase CF1 delta subunit Porphyra purpurea / NP_053853.1 5.00E-12 chl HE858967
ATP synthase CF0 A subunit Pyropia yezoensis / YP_536928.1 9.00E-11 chl HE859243
944 Latin American Journal of Aquatic Research
Continuation
Functional category Putative Identity Species and accession number E value D* Pyropia accession
number
ATP synthase CF0 subunit I Vigna unguiculata / CAO02552.1 7.00E-09 chl HE858944
Beta-Ig-H3/fasciclin Acidiphilium cryptum JF-5 /
YP_001235357.1 3.00E-07 chl HE858860
Clp protease ATP binding subunit Pyropia yezoensis / YP_537014.1 2.00E-56 chl HE858999
12. Respiration and
mitochondrial proteins
Cytochrome P450 like_TBP Nicotiana tabacum / BAA10929.1 5.00E-30 chl HE858796
Glycine cleavage system protein H Hydrogenivirga sp. 128-5-R1-1 /
ZP_02176878.1 3.00E-05 chl HE859272
Mitochondrial processing peptidase
beta subunit
Glossina morsitans morsitans /
ADD20239.1 4.00E-62 mit HE858961
Cytochrome B-C1 complex subunit 9-
like
Anolis carolinensis /
XP_003230444.1 1.00E-05 mit HE858900
NADH dehydrogenase [ubiquinone] 1
beta subcomplex subunit 8
mitochondrial
Nasonia vitripennis /
NP_001161450.1 4.00E-14 mit HE858968
NADH dehydrogenase subunit 1 Littorina saxatilis / CAM57998.1 6.00E-52 mit HE858930
NADH dehydrogenase subunit 2 Fusiturris similis /
YP_003204746.1 8.00E-12 mit HE858904
NADH dehydrogenase subunit 2 Porphyra purpurea / NP_049304.1 5.00E-04 mit HE859276
NADH-ubiquinone oxidoreductase 39
kDa subunit
Culex quinquefasciatus /
XP_001865472.1 2.00E-37 mit HE858694
NADH-ubiquinone oxidoreductase Fe-
S protein 2 (Ndufs2)
Aedes aegypti / XP_001655316.1 2.00E-69 mit HE859008
Cytochrome oxidase subunit I Lucilia cuprina / CBX78584.1 2.00E-52 mit HE858780
Cytochrome oxidase subunit I Dicranomyia variabilis /
ABV71159.1 1.00E-35 mit HE858720
Cytochrome oxidase subunit I Littorina saxatilis / CAA10593.1 1.00E-65 mit HE858856
Cytochrome oxidase subunit I Echinolittorina novaezelandiae /
CAF22173.1 1.00E-61 mit HE859031
Cytochrome oxidase subunit II Geranomyia advena / ABV71230.1 5.00E-42 mit HE858740
Cytochrome oxidase subunit II Ceratitis ditissima / ADB55739.1 3.00E-10 mit HE859328
Cytochrome oxidase subunit II Dicranomyia stygipennis /
ABV71214.1 8.00E-06 mit HE858917
Cytochrome oxidase subunit II Dicranomyia swezeyi /
ABV71215.1 2.00E-10 mit HE859117
Cytochrome oxidase subunit II Littorina saxatilis / CAA10594.1 2.00E-22 mit HE858884
Cytochrome C oxidase subunit 3 Potamopyrgus antipodarum /
ADB93443.1 1.00E-65 mit HE858669
Cytochrome C oxidase subunit III Cymatium parthenopeum /
YP_003204809.1 7.00E-25 mit HE859331
Cytochrome C oxidase subunit III Aedes albopictus / YP_194916.1 2.00E-38 mit HE858725
Cytochrome C oxidase subunit IV Drosophila simulans /
ABM88269.1 5.00E-29 mit HE858714
Cytochrome C oxidase subunit
Va/COX6
Simulium nigrimanum /
ACZ28403.1 1.00E-32 mit HE858693
Cytochrome C oxidase polypeptide
VIa
Oncorhynchus mykiss /
ACO08369.1 4.00E-08 mit HE858746
Cytochrome C oxidase subunit 6a
polypeptide 1
Saccoglossus kowalevskii /
XP_002738468.1 1.00E-22 mit HE859201
F1F0-ATP synthase subunit
C/ATP9/proteolipid
Simulium nigrimanum /
ACZ28249.1 1.00E-14 mit HE858739
F1F0-ATP synthase subunit
epsilon/ATP15
Glossina morsitans morsitans /
ADD20505.1 4.00E-16 mit HE858689
F1F0-ATP synthase subunit
OSCP/ATP5
Glossina morsitans morsitans /
ADD18988.1 3.00E-54 mit HE858984
Mitochondrial matrix protein P32 Bombyx mori / ABD36320.1 2.00E-11 mit HE858994
Mitochondrial succinate
dehydrogenase cytochrome B subunit
Culex quinquefasciatus /
XP_001859594.1 4.00E-10 mit HE859236
ADP / ATP carrier protein Ricinus communis /
XP_002517886.1 5.00E-41 mit HE858960
ADP / ATP translocase Apis mellifera / NP_001010975.1 1.00E-58 mit HE858665
ATP synthase alpha subunit precursor Drosophila silvestris / ABY55748.1 4.00E-36 mit HE859342
ATP synthase alpha subunit precursor Strongylocentrotus purpuratus /
NP_999743.1 4.00E-30 mit HE858957
Desiccation tolerance in Pyropia columbina 945
Continuation
Functional category Putative Identity Species and accession number E value D* Pyropia accession
number
ATP synthase b Spodoptera exigua / ACL77780.1 1.00E-10 mit HE859072
ATPSyn-beta Drosophila simulans /
XP_002105781.1 2.00E-36 mit HE858786
Mitochondrial ATP synthase delta
subunit
Aedes aegypti / XP_001655448.1 1.00E-20 mit HE859029
ATP synthase delta subunit, isoform A Drosophila melanogaster /
NP_524402.1 2.00E-25 mit HE858979
ATP synthase, H+ transporting,
mitochondrial F1 complex, O subunit
Xenopus (Silurana) tropicalis /
NP_001037877.1 4.00E-17 mit HE859056
Cytochrome B Bolinus brandaris /
YP_003204844.1 2.00E-38 mit HE858728
Cytochrome B Drosophila mojavensis /
DAA06245.1 5.00E-44 mit HE858782
Cytochrome B Liriomyza trifolii /
YP_003734909.1 3.00E-06 mit HE859193
Cytochrome C Glossina morsitans morsitans /
ADD19108.1 4.00E-34 mit HE858933
Cytochrome C1 Tribolium castaneum /
EFA01361.1 3.00E-74 mit HE858766
Cytochrome C1 Glossina morsitans morsitans /
ADD19528.1 1.00E-18 mit HE859010
ATP synthase F0 subunit 6 Drosophila littoralis /
YP_002327406.1 3.00E-07 mit HE858843
H+ transporting ATP synthase
subunit e
Bombyx mori / NP_001091812.1 2.00E-08 mit HE859061
Predicted ubiquinol-cytochrome C
reductase core protein I
Oryctolagus cuniculus /
XP_002713430.1 4.00E-20 mit HE859147
Voltage-dependent anion-selective
channel
Culex quinquefasciatus /
XP_001842637.1 3.00E-47 mit HE859045
13. Others Putative senescence-associated protein Lilium longiflorum / ABO20851.1 2.00E-15 n.d. HE858777
Putative senescence-associated protein Cupressus sempervirens /
ACA30301.1 1.00E-23 mit HE859069
Putative senescence-associated protein Perkinsus marinus ATCC 50983/
XP_002771156.1 3.00E-07 n.d. HE859266
Senescence-associated protein Chlorella variabilis / EFN58441.1 1.00E-05 mit HE859270
Kazal domain-containing peptide Anopheles darlingi / ACI30205.1 1.00E-06 n.d. HE859175
Putative secreted protein 10 kDa Argas monolakensis / ABI52743.1 7.00E-15 cyt HE859146
AGAP009754-PA (angiotensin-
converting enzyme 4)
Anopheles gambiae /
XP_001238056.2 9.00E-71 cyt HE859209
Another B-box affiliate, isoform A Drosophila melanogaster /
NP_611390.2 8.00E-26 ext HE859269
AGAP008459-PA (cuticular protein 9,
low complexity family)
Anopheles gambiae /
XP_001688982.1 1.00E-05 ext HE858653
AGAP009872-PA (cuticular protein
133, RR-1 family)
Anopheles gambiae str. PEST/
XP_001689165.1 1.00E-21 ext HE858951
Putative pupal cuticle protein Aedes aegypti / XP_001661677.1 2.00E-17 ext HE858625
Fibroleukin-like Meleagris gallopavo /
XP_003201937.1 2.00E-26 cyt HE858705
Cuticular protein analogous to
peritrophins 3-A1
Acyrthosiphon pisum /
NP_001156724.1 2.00E-29 ext HE859090
Vitellogenin Lethocerus deyrollei / BAG12118.1 3.06E-31 mit HE858626
Vitellogenin 1b Culex tarsalis / ADH04225.1 2.00E-05 n.d. HE858633
Vitellogenin 1a Culex tarsalis / ADH04224.1 2.00E-13 cyt HE859037
Vitellogenin 2a Culex tarsalis / ADH04226.1 4.00E-22 chl HE858675
Vitellogenin A1 Culex quinquefasciatus /
XP_001843136.1 2.00E-07 cyt HE858849
Vitellogenin 2b Culex tarsalis / ADH04227.1 5.00E-36 cyt HE858632
Vitellogenin B Ochlerotatus atropalpus /
AAV31927.1 1.00E-06 ext HE858657
Vitellogenin C Toxorhynchites amboinensis /
AAV31932.1 4.00E-09 cyt HE859170
Vitellogenin C Anopheles albimanus /
AAV31933.1 5.00E-47 mit HE858622
Vitellogenin precursor Tenebrio molitor / AAU20328.2 1.00E-06 n.d. HE859404
946 Latin American Journal of Aquatic Research
Continuation
Functional category Putative Identity Species and accession number E value D* Pyropia accession
number
Vitellogenin C Aedes polynesiensis / AAV31926.1 7.00E-32 cyt HE858631
CDGSH iron sulfur domain-containing
protein 2-like protein
Camponotus floridanus /
EFN65337.1 2.00E-33 mit HE858716
Opsin-1 Culex quinquefasciatus /
XP_001845697.1 8.00E-06 n.d. HE859197
Rhodopsin Aedes aegypti / XP_001657619.1 4.00E-46 n.d. HE858950
Lethal(2)essential for life protein, l2efl Aedes aegypti / XP_001663499.1 2.00E-36 n.d. HE858887
Similar to fibropellin Ia Strongylocentrotus purpuratus /
XP_001199485.1 3.00E-06 cyt HE858672
Cob(I)yrinic acid a,c-diamide
adenosyltransferase
Selenomonas noxia ATCC43541 /
ZP_06604478.1 2.00E-05 n.d. HE858754
revealed that ESTs with higher representation are
involved in protein synthesis, processing and
degradation (ca. 15%, e.g., Clp-protease),
photosynthesis and chloroplast structure (ca. 14.4%;
e.g., ferredoxin NADP+ reductase), respiration and
mitochondria (ca. 13.1%), proteins involved in cell
wall metabolism (ca. 10.6%, cell-wall hydrolases,
glycosyl transferases and chitin deacetylases) and
antioxidant activity, chaperone and defense factors
(7.5%; thioredoxin (TRX), catalase and HSPs) (Table
1). Finally, with an important number of sequences it
was not possible to find clear functional similarity
with known proteins (ca. 11%).
DISCUSSION
The hydration-desiccation cycle in P. columbina
generates an unbalance in the intracellular redox
potential (Contreras-Porcia et al., 2011a), a situation
that must be controlled by a coordinated cascade of
responses that are induced differentially in each
condition. Our results show that, during hydration,
predominantly expressed genes were those involved in
protein metabolism. Among them, we highlight
several ribosomal proteins, translation initiation
factors and elongation factors, proteases, the
proteasome system and several ubiquitins (Table 1).
Of particular relevance is the ubiquitin-proteasome
system, present in all eukaryotes, which is activated in
response to several abiotic stress factors and
participates in tolerance mechanisms by removing
unfolded proteins and proteins damaged during
oxidative stress (Dreher & Callis, 2007; Pena et al.,
2007; Kurepa et al., 2008). In this functional group
three types of peptidylprolyl cistrans-isomerases
(PPIases) were identified and found to be similar to
those from Arthropoda and Mollusca. These proteins
catalyze the cis-trans isomerisation of prolines
(C5H9NO2), and have been described in the processes
of cellular signalling (with a calmodulin-binding
domain), regulation of gene transcription, and acting
as chaperones and folding catalysts. Specifically, in
the gastropod Conus novaehollandiae these proteins
facilitate the oxidative folding of several neurotoxic
peptides (Safavi-Hemami et al., 2010). In plants, these
proteins are involved in flowering (Wang et al., 2010)
and in controlling cell proliferation, since PPIase
expression increases in the presence of cytokinin
(Vittorioso et al., 1998). PPIases are induced by
wounding, heat and salt stress (Vucich & Gasser,
1996; Kurek et al., 1999), and have been directly
involved in membrane protein folding (i.e., chloroplast
and mitochondria) (Breiman et al., 1992). Thus, the
quick re-establishment of the normal condition after
desiccation in P. columbina could be in part explained
by both: i) the re-folding of structural proteins with
important functions such as those involved in
transcriptional regulation, and ii) by the removal of
oxidized proteins. In fact, levels of oxidised proteins
measured during the hydration-desiccation cycle were
consistently lower in P. columbina compared to those
in sensitive species (Contreras-Porcia et al., 2011a,
Flores-Molina et al., unpublished data).
Proteins that form part of the energy metabolism
were more highly represented during hydration [i.e.,
Cytochrome C Oxidase subunits, NADH Dehydro-
genase subunits, NADH-Ubiquinone Oxidoreductase
subunits, F1F0-ATP Synthase subunits and ADP/ATP
carrier proteins (Table 1)] than during desiccation
stress (Table 2). Theoretically, maintaining the
tolerance mechanisms required to buffer the effects of
a stress imposes energy costs (e.g., Zagdańska, 1995).
Acclimation to oxidative stress depends on a high
availability of NADPH and ATP, since most of the
intracellular metabolic reactions require energy. For
example, the ubiquitin- mediated system for
intracellular protein degradation is ATP-dependent in
all organisms (Ciechanover et al., 1984). Additionally,
the structure of the chromosomes plays a critical role
in transcriptional regulation where the chromatin
Desiccation tolerance in Pyropia columbina 947
Table 2. Functional category, identity and potential cellular destination of proteins and accession number of identified
ESTs in Pyropia columbina under natural desiccation (UD library). Data from the hydrated library (UH) is presented in
Table 1. E value: the best (lowest) Expect value (E value) of all alignments from that database sequence, D*: Putative
destination.
Functional category Putative identity Species and accession number E value D*
Pyropia
accession
number
1. Signal transduction Calmodulin Pyropia yezoensis / ABN41559 8.00E-11 cyt HE859451
Enkurin TRPC channel interacting
protein
Saccoglossus kowalevskii /
NP_001158494 2.00E-11 cyt HE859515
Guanine nucleotide binding protein 3 Dictyostelium discoideum AX4 /
XP_637356.1 2.00E-38 cyt HE859861
Hexamerin 2 beta Aedes aegypti / XP_001659531.1 4.00E-27 cyt HE859661
Serine/threonine protein phosphatase 1 Malus domestica / AAD56010.1 4.00E-45 cyt HE859472
2. Transcription, splicing
and replication
RNA-directed DNA polymerase
(reverse transcriptase)
Ktedonobacter racemifer DSM 44963
/ ZP_06971690.1 8.00E-13 nuc HE859542
Reverse transcriptase Cyanothece sp. ATCC 51142 /
YP_001801525.1 9.00E-11 nuc HE859708
RNA-directed DNA polymerase
(reverse transcriptase)
Arthrospira maxima CS-328 /
ZP_03273642 1.00E-24 nuc HE859482
DNA-directed RNA polymerase, beta
subunit
Crocosphaera watsonii WH 8501 /
ZP_00516049.1 8.00E-48 nuc HE859717
RNA polymerase alpha subunit Porphyra purpurea / NP_053903.1 3.00E-09 nuc HE859795
Argonaute2 (AGO2) Albugo laibachii Nc14 / CCA27516.1 4.00E-21 cyt HE859580
Predicted metal-dependent RNase Streptococcus pyogenes M49 591 /
ZP_00366321.1 8.00E-17 nuc HE859892
Group II intron reverse
transcriptase/maturase
Streptococcus dysgalactiae subsp.
dysgalactiae ATCC 27957 /
EFY02523.1
8.00E-11 nuc HE859734
Histone H3.3 Harpegnathos saltator / EFN83153.1 4.00E-38 nuc HE859642
Retrotransposon protein Oryza sativa Indica Group /
ABR26094.1 2.00E-22 nuc HE859423
3. Basal metabolism Aconitate hydratase Camponotus floridanus / EFN71522.1 2.00E-45 mit HE859793
Lipase Aedes aegypti / XP_001652527.1 3.00E-25 ext HE859755
Fructose-1,6-biphosphatase F-II Griffithsia japonica / AAP80707.1 2.00E-07 cyt HE859780
Fructose-bisphosphate aldolase Sphingobacterium sp. 21 /
YP_004319198.1 6.00E-59 n.d. HE859506
Alpha-amylase B Culex quinquefasciatus /
XP_001846541.1 6.00E-26 ext HE859517
3-oxoacyl-ACP reductase Streptomyces avermitilis MA-4680 /
NP_824830.1 3.00E-06 ext HE859599
C-4 sterol methyl oxidase 2 Nicotiana benthamiana / AAQ83692.1 4.00E-11 mit HE859431
Amine oxidase Plasmodium yoelii yoelii 17XNL /
XP_730508.1 8.00E-13 cyt HE859420
Scavenger receptor cysteine-rich
protein
Culex quinquefasciatus /
XP_001866937.1 2.00E-05 n.d. HE859437
Vacuolar H+-ATPase C chain Pyropia tenera / JC7151 4.00E-50 n.d. HE859667
4. Antioxidant, chaperone
and defense factors
Thioredoxin Hyperthermus butylicus DSM 5456 /
YP_001013307.1 2.00E-05 mit HE859628
Catalase Pyropia yezoensis / ADO23652.1 4.00E-06 mit HE859586
Heme oxygenase Porphyra purpurea / NP_053881.1 2.00E-05 chl HE859574
Cytochrome P450-Like TBP protein Lilium longiflorum / ABO20848.1 4.00E-19 cyt HE859591
Heat shock protein 70 Pyropia yezoensis / YP_536996.1 2.00E-63 chl HE859563
dnaK gene product (Heat shock
protein 70)
Thermosynechococcus elongatus BP-
1 / NP_682523.1 1.00E-39 chl HE859424
Heat shock protein Hsp70 Raphidiopsis brookii D9 /
ZP_06305357.1 2.00E-24 chl HE859837
Molecular chaperones HSP70/HSC70,
HSP70
Ectocarpus siliculosus / CBN79394.1 2.00E-82 mit HE859570
Heat shock protein Hsp70 Cylindrospermopsis raciborskii CS-
505 / ZP_06308882.1 3.00E-47 chl HE859573
Heat shock protein 90, partial Thraustotheca clavata / AAX10950.1 6.00E-79 nuc HE859869
Heat shock protein 90 Cellulophaga algicola DSM 14237 /
YP_004165199.1 1.00E-61 cyt HE859588
948 Latin American Journal of Aquatic Research
Continuation
Functional category Putative identity Species and accession number E value D*
Pyropia
accession
number
Molecular chaperones
GRP78/Bip/KAR2, HSP70
superfamily
Ectocarpus siliculosus / CBJ48460.1 1.00E-34 cyt HE859467
5. Protein synthesis,
processing and
degradation
Ubiquitin Oncorhynchus mykiss / ACO07546.1 4.00E-04 mit HE859794
Ubiquitin protein Triticum aestivum / AAQ08322 3.00E-36 cyt HE859488
Ubiqutin Phanerochaete chrysosporium /
CAA83244 1.00E-06 cyt HE859630
Ubiquitin Drosophila persimilis /
XP_002023314.1 8.00E-04 cyt HE859858
Ubiquitin-conjugating enzyme E2-17
kDa
Zea mays / ACG37110.1 7.00E-39 cyt HE859634
Proteasome subunit beta type-6 Phytophthora infestans T30-4 /
XP_002901169.1 6.00E-11 cyt HE859840
Molybdopterin biosynthesis protein Porphyra purpurea / NP_053945.1 2.00E-35 chl HE859454
30S ribosomal protein S18 Gemella sanguinis M325 /
ZP_08260903 2.00E-10 n.d. HE859511
Ribosomal protein L35 Pyropia yezoensis / YP_536952.1 1.00E-06 chl HE859735
Protein translation factor Griffithsia japonica/ AAM93956 2.00E-47 cyt HE859466
Eukaryotic translation elongation
factor 1 alpha 1
Chlamydomonas reinhardtii /
XP_001696568.1 2.00E-58 cyt HE859552
EF2, translation elongation factor 2 Ectocarpus siliculosus / CBJ32863.1 1.00E-36 cyt HE859801
Elongation factor-like protein Pseudoperkinsus tapetis /
ADE62443.1 3.00E-35 cyt HE859728
Clp protease ATP binding subunit Pyropia yezoensis / YP_537014.1 2.00E-58 cyt HE859649
Cysteine synthase Porphyra purpurea / AAP97124.1 1.00E-74 cyt HE859626
Der F 3 allergen Dermatophagoides farinae /
AAP35076.1 2.00E-05 n.d. HE859604
trpB gene product Acaryochloris marina MBIC11017 /
YP_001519094.1 5.00E-10 n.d. HE859936
Isoleucyl-tRNA synthetase Lacinutrix sp. 5H-3-7-4 /
YP_004579101.1 2.00E-36 cyt HE859750
Prefolding-like protein Opisthacanthus cayaporum /
CAX51417.1 3.00E-22 cyt HE859714
Protease inhibitor G11A6 Mayetiola destructor / ABB70517.1 1.00E-05 cyt HE859462
Signal peptidase, catalytic subunit Chlamydomonas reinhardtii /
XP_001697614.1 1.00E-22 cyt HE859469
6. Cell motility Actin Helicoverpa armigera / ADN84930.1 3.00E-24 cyt HE859471
Actin Pyropia yezoensis / BAB64309.1 7.00E-13 cyt HE859826
Actin Undaria pinnatifida / ADW66613.1 5.00E-97 cyt HE859564
Actin Pyropia yezoensis / BAG71158.1 7.00E-24 cyt HE859659
Actin 1 Paxillus involutus / ABQ85639.1 9.00E-17 cyt HE859928
Beta-actin Mauremys mutica / ADX86815.1 1.00E-21 cyt HE859680
Tropomyosin Crassostrea virginica / AAC61869.1 3.00E-24 mit HE859676
Troponin T-1 Drosophila melanogaster /
AAR24583.1 1.00E-05 cyt HE859762
Beta-tubulin Phytophthora palmivora / AAW58084 4.00E-64 cyt HE859549
Calponin Haliotis diversicolor / ABU53030 9.00E-40 cyt HE859480
7. Cell growth and death Cell division protein Pyropia yezoensis / YP_537009.1 2.00E-17 chl HE859522
Cell division protein FtsA Lacinutrix sp. 5H-3-7-4 /
YP_004578825.1 6.00E-67 cyt HE859665
CHK1 checkpoint homolog Xenopus (Silurana) tropicalis /
CAJ83813.1 8.00E-04 cyt HE859790
CHK1 checkpoint-like protein Helicoverpa armigera / ABK29471.1 1.00E-11 cyt HE859593
CHK1 checkpoint-like Protein Perca flavescens / ADX97237.1 2.00E-10 cyt HE859702
8. Membrane transporters ABC Transporter B family member 13 Arabidopsis thaliana / NP_174115 9.00E-16 n.d. HE859505
ABC Transporter Thalassiosira pseudonana
CCMP1335 / XP_002288593 1.00E-06 n.d. HE859535
ATP-binding cassette (ABC)
superfamily
Ectocarpus siliculosus / CBJ32723.1 1.00E-05 cyt HE859694
9. Vesicular transport and
metabolism
Endoplasmic reticulum vesicle
transporter protein
Arabidopsis thaliana / NP_564162 6.00E-06 cyt HE859464
Desiccation tolerance in Pyropia columbina 949
Continuation
Functional category Putative identity Species and accession number E value D*
Pyropia
accession
number
GTPase SAR1 Triticum aestivum / ACD03831.1 2.00E-04 mit HE859693
Small GTP-binding protein Solanum lycopersicum / AAA80679 8.00E-06 cyt HE859512
10. Cell wall metabolism Cell wall-associated hydrolase Microscilla marina ATCC 23134 /
ZP_01689674.1 1.00E-17 cyt HE859576
Cell wall-associated hydrolase Escherichia sp 3_2_53FAA /
ZP_04532936.1 3.00E-39 cyt HE859695
Cell wall-associated hydrolase Escherichia sp. 3_2_53FAA /
ZP_04532936.1 3.00E-09 cyt HE859906
Cell wall-associated hydrolase Escherichia sp. 3_2_53FAA /
ZP_04532936.1 2.00E-11 cyt HE859921
Cell wall-associated hydrolase Escherichia sp. 3_2_53FAA /
ZP_04532936.1 3.00E-13 cyt HE859926
Cell wall-associated hydrolase Escherichia sp. 3_2_53FAA /
ZP_04532936.1 2.00E-12 cyt HE859929
Cell wall-associated hydrolase Escherichia sp. 3_2_53FAA /
ZP_04532936.1 2.00E-15 cyt HE859930
Cell wall-associated hydrolase Microscilla marina ATCC 23134 /
ZP_01689674.1 5.00E-19 cyt HE859413
Putative cell wall-Associated hydrolase Campylobacter jejuni subsp. jejuni
BH-01-0142 / ZP_03217789.1 9.00E-11 cyt HE859421
Cell wall-associated hydrolase Prevotella bryantii B14 /
ZP_07059369.1 9.00E-25 cyt HE859434
Cell wall-associated hydrolase Burkholderia multivorans
ATCC17616 / YP_001949468.1 1.00E-25 cyt HE859495
Cell wall-associated hydrolase Erysipelothrix rhusiopathiae ATCC
19414 / ZP_08082416.1 2.00E-18 cyt HE859498
Cell wall-associated Hydrolase Brucella abortus NCTC 8038 /
ZP_05822976.1 2.00E-14 mit HE859566
Cell wall-associated hydrolase Brucella suis bv. 4 str. 40 /
ZP_05839398.1 7.00E-19 cyt HE859629
Chitin deacetylase 7 precursor Tribolium castaneum /
NP_001104012.1 7.00E-10 cyt HE859430
Glycine cleavage system protein H Hydrogenivirga sp. 128-5-R1-1 /
ZP_02176878.1 7.00E-15 cyt HE859890
Glycosyl transferase Rhodospirillum photometricum DSM
122 / CCG06616.1 1.00E-11 n.d. HE859904
11. Photosynthesis and
chloroplast proteins
Photosystem I P700 chlorophyll A
apoprotein A1
Porphyra purpurea / NP_053894.1 8.00E-72 chl HE859902
Photosystem II protein D1 Pyropia yezoensis / YP_536893.1 1.00E-41 chl HE859757
Photosystem II protein D2 Pyropia yezoensis / YP_537038.1 4.00E-62 chl HE859806
Photosystem II protein D2 Porphyra purpurea / NP_053967 5.00E-93 chl HE859500
Ferredoxin NADP+ reductase Pisum sativum / AAB59349.1 6.00E-05 chl HE859729
23S Ribosomal RNA Vigna unguiculata / CAO02530.1 2.00E-09 chl HE859509
Ribosomal protein S3 Vigna unguiculata / CAO02550.1 5.00E-12 chl HE859706
Ribosomal protein L4 Pyropia yezoensis / YP_536993.1 5.00E-24 chl HE859613
30S ribosomal protein S13 Trichodesmium erythraeum IMS101 /
YP_722618.1 4.00E-23 chl HE859559
Ribosomal protein L2 Chlamydomonas reinhardtii /
ACS16390.1 1.00E-35 chl HE859868
30S ribosomal protein S12 Porphyra purpurea / NP_049316.1 6.00E-16 cyt HE859584
40S ribosomal protein S16 Phytophthora infestans T30-4 /
XP_002899087.1 2.00E-13 cyt HE859787
50S ribosomal protein L3P Cyanobacterium sp.UCYN-A /
YP_003422083.1 3.00E-05 chl HE859842
50S ribosomal protein L3 Prochlorococcus marinus str. MIT
9515 / YP_001012054.1 5.00E-15 chl HE859881
50S ribosomal protein L4 Lyngbya sp. PCC 8106 /
ZP_01619314.1 3.00E-12 chl HE859818
50S ribosomal protein L4 Cyanothece sp. PCC 7424 /
YP_002378953.1 1.00E-06 chl HE859828
50S ribosomal protein L13 Arthrospira platensis NIES-39 /
BAI90083.1 4.00E-37 chl HE859578
60S ribosomal protein L29-1 Glycine max / XP_003546330 2.00E-20 cyt HE859481
RNA polymerase beta subunit Porphyra purpurea / NP_053860.1 3.00E-32 chl HE859802
950 Latin American Journal of Aquatic Research
Continuation
Functional category Putative identity Species and accession number E value D*
Pyropia
accession
number
ATP synthase beta subunit Trebouxia photobiont / ABP98704.1 9.00E-11 chl HE859691
ATP synthase CF1 delta subunit Porphyra purpurea / NP_053853.1 1.00E-14 chl HE859731
Cell division protein Porphyra purpurea / NP_053937.1 5.00E-16 chl HE859460
Ferredoxin, chloroplast precursor Micromonas sp. RCC299 /
XP_002508604.1 2.00E-22 chl HE859587
Photochlorophyllide reductase subunit
B
Porphyra purpurea / NP_053888.1 2.00E-12 chl HE859810
Photochlorophyllide reductase subunit
B
Pyropia yezoensis / YP_536960.1 4.00E-52 chl HE859555
HESB-like domain-containing protein
2
Zea mays / NP_001149194 8.00E-38 chl HE859536
12. Respiration and
mitochondrial proteins
NADH dehydrogenase subunit 4L Porphyra purpurea / NP_049322.1 7.00E-06 mit HE859443
NADH dehydrogenase subunit 7 Coccomyxa subellipsoidea C-169 /
YP_004339024.1 3.00E-14 mit HE859913
Cytochrome C oxidase Ephedra viridis / AAD01658.1 4.00E-09 mit HE859770
Cytochrome C oxidoreductase subunit
II
Porphyra purpurea / NP_049294.1 7.00E-36 mit HE859672
Cytochrome C oxidase subunit III Tricula hortensis / YP_003434166.1 2.00E-57 mit HE859617
Cytochrome C oxidase subunit IV Aedes aegypti / XP_001663204.1 7.00E-16 mit HE859683
Ribosomal protein S3 Porphyra purpurea / NP_049318.1 4.00E-12 mit HE859602
Ribosomal protein S5 Griffithsia japonica / AAP80699.1 7.00E-64 mit HE859456
40S ribosomal protein S13-2 Arabidopsis thaliana / NP_567151.1 8.00E-43 mit HE859742
40S ribosomal protein S15 Oryza sativa Japonica Group /
BAD30388 3.00E-24 mit HE859501
50S ribosomal protein L16 Psychrobacter arcticus 273-4 /
YP_263793.1 5.00E-06 mit HE859479
50S ribosomal protein L16 Porphyra purpurea / NP_049319.1 8.00E-15 mit HE859664
conserved hypothetical protein Clostridium botulinum NCTC 2916/
ZP_02955128.1 3.00E-08 mit HE859899
HNH endonuclease Arthrospira maxima CS-328 /
ZP_03274502.1 3.00E-15 mit HE859427
Reverse transcriptase Synechococcus sp. PCC 7335 /
ZP_05039776.1 4.00E-12 mit HE859447
Reverse transcriptase Arthrospira platensis NIES-39 /
BAI90930.1 3.00E-10 mit HE859590
Reverse transcriptase Porphyra purpurea / NP_049296.1 7.00E-40 mit HE859800
F-Type H-ATPase beta subunit Ectocarpus siliculosus / CBJ32298.1 1.00E-45 mit HE859457
Dehydration responsive protein Corchorus olitorius / BAJ11784.1 1.00E-13 mit HE859843
Putative microvillar-like protein 5 Phlebotomus perniciosus /
ADJ57676.1 6.00E-06 mit HE859901
Tumor differentially expressed protein Haplopelma schmidti / ACH48223.1 2.00E-06 mit HE859663
13. Others Senescence-associated protein Cupressus sempervirens /
ACA30301.1 5.00E-33 cyt HE859606
Lipoprotein Lactobacillus rhamnosus GG /
CAR86203.1 5.00E-31 n.d HE859514
Lipoprotein Lactobacillus rhamnosus GG /
CAR86203.1 9.00E-11 n.d HE859908
Low-density lipoprotein receptor-
related protein
Ascaris suum / ADY39765.1 2.00E-13 n.d. HE859807
Apolipoprotein D isoform 2 Apis mellifera / XP_623787.2 3.00E-08 n.d. HE859474
Putative apolipoprotein D Aedes aegypti / XP_001660232.1 5.00E-10 n.d. HE859648
Dermatopontin 2 Biomphalaria glabrata / AAZ80785.1 1.00E-05 n.d. HE859882
Cysteine-rich venom protein Aedes aegypti / XP_001655503.1 5.00E-07 n.d. HE859698
Venom allergen Aedes aegypti / XP_001655382 1.00E-36 n.d. HE859494
Leucine rich protein Arachis hypogaea / ABH09321.1 2.00E-12 n.d HE859468
Pg1 protein Staphylococcus aureus subsp. aureus
MN8 / ZP_06947416 4.00E-24 n.d. HE859493
Short-chain collagen C4-like Amphimedon queenslandica /
XP_003391538.1 4.00E-22 cyt HE859623
Similar To DUF221 domain protein Leptosphaeria maculans / CBX98851 1.00E-19 n.d. HE859532
Microvillar-like protein 5 Phlebotomus perniciosus /
ADJ57676.1 4.00E-05 cyt HE859418
Desiccation tolerance in Pyropia columbina 951
Continuation
Functional category Putative identity Species and accession number E value D*
Pyropia
accession
number
Tep1 Anopheles arabiensis / ACG68562.1 5.00E-11 cyt HE859562
Viral A-type inclusion protein Trichomonas vaginalis G3 /
XP_001319569.1 1.00E-06 cyt HE859685
Yip1 domain-containing protein Dictyostelium discoideum /
XP_639001 3.00E-31 n.d. HE859496
Figure 1. Functional categorization of ESTs obtained from hydration and desiccation P. columbina libraries. Percentage
values indicate the number of ESTs grouped in each functional group in relation to the total number of sequences
obtained in each library.
remodeling is also ATP-dependent (Luo & Dean,
1999). In the case of P. columbina it seems reasonable
to hypothesize the occurrence of a higher energy
production by the mitochondrial system during
hydration, as many metabolic reactions are necessary
to maintain a homeostatic redox state and, as a result,
a healthy physiological condition during the
hydration-desiccation cycle. Moreover, the decline in
ATP production resulting from a general metabolic
slow down during desiccation could be beneficial in
preventing ROS production triggered by the electronic
alterations induced by low water potential. In vascular
plants under water stress, ROS production has been
detected in apoplast, xylem vessels, chloroplasts and
mitochondria (Mittler et al., 2004; Toldi et al., 2009).
Therefore, it is possible that desiccation in P.
columbina induces ROS production in the organelles,
a hypothesis that needs to be experimentally
demonstrated. Additionally, the mitochondrial meta-
bolism should be measured in order to demonstrate a
decay-activation sequence of this system during the
desiccation-hydration cycle.
In the context of ROS attenuation by the
antioxidant system during the hydration-desiccation
cycle, several antioxidant enzymes should be expre-
ssed. In fact, a peroxiredoxin (PRX) typical 2-Cys, an
arachidonate 5-lipoxygenase, a glutathione S-transfe-
rase, and several cytochrome P450 and HSPs (heat
shock proteins, 27, 40, 70, 80, 90 types) were detected
during hydration. Moreover, during desiccation,
enzymes such as thioredoxin (TRX), catalase and low
variants of HSPs (70 and 90, gene sequences different
952 Latin American Journal of Aquatic Research
from hydrated fronds) were expressed. PRXs are
involved in detoxification of hydrogen peroxide,
alkylhydroperoxides and peroxinitrites (Hall et al.,
2009). These enzymes react at low peroxide
concentrations and may become inactive at higher
concentrations. In plants, PRX transcripts increase in
response to different abiotic stresses such as salinity,
drought, and heavy metals (Wood et al., 2003; Dietz,
2011). Their expression in algae has been poorly
studied, although some studies indicate they are
regulated by light, oxygen, copper, desiccation and
redox state (Goyer et al., 2002; Contreras-Porcia et
al., 2011a, 2001b; Lovazzano et al., 2013; see section
3 in Contreras-Porcia & López-Cristoffanini, 2012). In
vascular plants, several PRXs have been described
based on their catalytic mechanisms and subcellular
localization (Baier & Dietz, 1997). In this study, PRX
expresses mainly when fronds are hydrated, is
localized exclusively in the chloroplast, and its
reduction is TRX-dependent. The chloroplast TRX
activity was also recorded during desiccation (Table
2). Therefore, it seems likely that P. columbina PRX
play an important role in buffering oxidative stress
and in post-desiccation detoxification of lipoperoxides
in the chloroplast. However, other attenuation systems
might also be operating in both environmental
conditions in order to normalize the redox state
imbalance. For example, a chlorophycean ferredoxin
was identified during desiccation (Table 2). This is a
small protein that plays a key role in electron
distribution in the chloroplast (Schürmann &
Buchanan, 2008) by regulating the chloroplast
metabolic network through the TRX system, and
contributes directly to ascorbate antioxidant protection
(i.e., antioxidant compound and ascorbate peroxidase
substrate) and PRX regeneration (Ceccoli et al., 2011;
Dietz, 2011).
Another enzyme detected in hydrated fronds was a
lipoxygenase (LOX, Table 1), a dioxygenase which
peroxidates polyunsaturated fatty acids (Gigon et al.,
2004). Lipid molecules produced by lipid degrading
enzymes, such as oxylipins, can act as secondary
messengers of stress-response signal transduction
pathways (Blée, 2002; Vellosillo et al., 2007).
However, a hyper-stimulation of lipoxygenase activity
could induce an accumulation of lipope-roxides,
which leads to cell damage and organelle dysfunction.
For example, Contreras et al. (2009) demonstrated that
hyper-activity of LOX led to an over-production of
lipoperoxides, and at the end, to cell death in sensitive
species under copper-induced oxidative stress. The
particular expression of this enzyme during hydration
could explain the exceptional control of the lipid
peroxidation in P. columbina (Contreras-Porcia et al.,
2011a) in comparison with several other algae (Flores-
Molina et al., unpublished data). Moreover, the
involvement of PRX during the hydration-desiccation
cycle may additionally explain the effective ROS and
lipoperoxide attenuation in this species.
Several cytochrome P450 variants were found in P.
columbina under natural conditions of hydration and
desiccation. These enzyme variants are present in all
living species and catalyze the oxygenation of a high
variety of substrates (Anzenbacher & Anzenbacherová,
2003). It has been demonstrated that P450s are
induced by abiotic and biotic stress (Narusaka et al.,
2004; Stolf-Moreira et al., 2011). Some P450s have
been identified as ABA 8´hydroxylase that degrades
ABA (abscidic acid) during the hydration-desiccation
cycle (Kushiro et al., 2004; Shinozaki & Yamaguchi-
Shinozaki, 2007). In vascular plants, ABA is over-
produced during desiccation (as in P. columbina,
Guajardo et al. pers. comm.), causes stomatal closure,
and induces stress related genes. However, via the
ABA 8´hydroxylase-P450, ABA concentration is
reduced to basal levels during the transition from
desiccation to hydration (Kushiro et al., 2004). ABA
has been recently identified in several algal species
(i.e., Tarakhovskaya et al., 2007; Yokoya et al., 2010),
although its role in regulating the expression of genes
associated with tolerance to abiotic/biotic stress has
not being explored. In P. columbina the functional
role of P450 could open new avenues to learn on
tolerance pathways involved in managing
environmental stressors, such as the ABA involvement
in transcription of regulatory networks of desiccation
stress signals and gene expression. Moreover, ABA in
P. columbina could be involved in the up-regulation of
several compounds like sugar, prolines and
polyamines (e.g., putrescine, spermidine and
spermine), which are known to increase their
expression under water stress in vascular plants and
algae (Guill & Tuteja, 2010; Alcázar et al., 2011;
Kumar et al., 2011). Thus, it is also possible to
hypothesize regarding the participation of the ABA-
independent pathways in the regulatory response to
dehydration stress. Indeed, a Clp-protease was
identified during desiccation (Table 2), and the clp
gene not only was induced by dehydration, but was
also up-regulated during natural senescence
(Nakashima et al., 1997). Analysis of the clp gene in
transgenic plants indicates that the clp promoter
contains cis-acting element(s) involved not only in
ABA independent stress-responsive gene expression
but also in senescence-activated gene expression
(Simpson et al., 2003). Thus, several tolerance
pathways, previously unknown in algae and other
organisms, could be synergistically activated under
particular environmental stress conditions.
Desiccation tolerance in Pyropia columbina 953
Proteases are indispensable for the normal
functioning of cells and tissues in all living organisms.
However, their activities need to be correctly
regulated (Habib & Fazili, 2007). During the
hydration-desiccation cycle in P. columbina, several
peptidases were identified (Tables 1 and 2). Even
though the expression of these proteins is required for
protein metabolism, an over-expression can be
potentially harmful. During hydration, a
metallocarboxypeptidase inhibitor (CPI) was
identified, that forms a less active or fully inactive
enzyme. In vascular plants, CPIs are activated by
metals, mechanical wounds or insect injury
(Villanueva et al., 1998; Habib & Fazili, 2007; Harada
et al., 2010), and its expression is ABA-regulated
(Villanueva et al., 1998). Thus, this type of protease in
P. columbina could be part of the ABA genes that are
regulated during the hydration-desiccation cycle
needed to maintain cellular integrity under water
deficiency.
ABC (ATP binding cassette) transporter sequences
were identified in desiccated fronds. These
transporters are involved in translocation of a wide
variety of compounds across cell membranes,
including ions, carbohydrates, lipids, xenobiotics,
drugs, and heavy metals (Ehrmann et al., 1998; Sipos
& Kuchler, 2006; Contreras et al., 2010). These
transporters have been reported during metal tolerance
in vascular plants, carrying metal complexes from
cytosol to the vacuole (Clemens, 2001). Also, in
humans they appear associated with the protection of
placental tissue by preventing cellular accumulation of
cytotoxic compounds (Aye & Keelan, 2013). The
participation of these transporters in desiccated P.
columbina was unexpected, despite information which
recently demonstrated that tolerance to desiccation in
the free-living soil bacterium Rhizobium legume-
nosarum was associated with ABC-transporter activity
(Vanderlinde et al., 2010). In the bacterium, a
mutation in the ATP-binding component of a
previously uncharacterized ATP transporter (Young et
al., 2006) decreased the tolerance to desiccation due to
low exopolysaccharides levels in the cell wall
envelope of the mutant. That study demonstrated the
crucial role of polysaccharides and their transport in
organisms tolerant to desiccation. Therefore, our
results suggest, for the first time in algae, the
involvement of ABC-transporters in desiccation
tolerance, possibly through cell wall stabilization
during desiccation stress.
Several HSP were identified during hydration and
desiccation stress. These proteins are recognized in
prokaryotes and eukaryotes during responses to
different physiological and environmental stress
conditions (Feder & Hofmann, 1999). HSPs induction
leads to a state of resistance for subsequent stress in
the cell by preventing protein aggregation (Feder &
Hofmann, 1999) and suppressing apoptosis (e.g.,
HSP90 see Beere et al., 2000 and Ravagnan et al.,
2001). HSP70 blocks apoptosis by binding apoptosis
activating factor-1 (Apaf-1), thereby preventing the
formation of the apoptosome complex (Ravagnan et
al., 2001). In fish hepatocytes, HSPs induction is
involved in stress tolerance by modulating the action
of key proteins and kinases in the signal transduction
pathways (Padmini & Usha-Rani, 2011). In the
seaweeds Fucus serratus and F. vesiculosus, a small
HSP has also been recorded in response to abiotic
stress, but its specific role remains undetermined
(Pearson et al., 2010).
During desiccation sequences of cell-wall
hydrolases, glycosyl transferases, and chitin deacety-
lases (CDA) all involved in cell wall metabolism
were identified. CDA, a type of carbohydrate esterase,
hydrolyzes the acetamide group in the N-
acetylglucosamine polymers derived from glucose
(e.g., chitin), and promotes the formation of
glucosamine units (e.g., chitosan). The substrates for
this enzyme come from the carbon (fructose 6-
phosphate) and nitrogen (glutamine) metabolism
(Ghormade et al., 2010). CDA was first discovered in
extracts of the fungus Mucor rouxii (Araki & Ito,
1975). It was further reported associated with cell wall
synthesis. CDA has also been reported in association
with spore formation in yeast and attack-defense
systems in plant-pathogen interactions. In P.
columbina an over-activation of this enzyme is likely
to occur, due to the induction, under desiccation stress,
of a fructose-1,6-phosphatase (Table 2) that can over-
produce fructose 6-phosphate, an important precursor
of the CDA substrate. Thus, the potential induction of
CDA in desiccated P. columbina may help in
remodeling and maintaining cell wall integrity during
growth, survival, and pathogenesis.
CONCLUSIONS
Despite their crucial ecological role as primary
producers, molecular information on stress responses
in intertidal macroalgae remains limited. Pyropia
columbina, such as others Porphyra and Pyropia
species, is a good model for unravelling some of the
biological and molecular responses associated with
desiccation and other environmental conditions that
may cause oxidative stress. In this context, two
subtracted EST libraries were constructed in order to
understand the metabolic pathways active during the
hydration-desiccation cycle in this species. Results
954 Latin American Journal of Aquatic Research
showed that a significant portion of the transcripts had
no known homologues in algae or other organisms as
far as sequence data were available. These sequences
are interesting since they could represent genes unique
to this species. On the other hand, several
genes/proteins not previously described in algae were
differentially expressed in both environmental
conditions. This information contributes to a better
understanding the molecular mechanisms involved in
tolerance to desiccation. However, a confirmation of
the expression profiles of the reported genes by qPCR
is needed to characterize, for example, temporality of
the gene expression profile during the hydration-
desiccation cycle. Additionally, our study provides for
the first time, a set of candidate genes for further
examination of the physiological responses to other
environmental stressors. This genetic background will
broaden our understanding on physiological
differences may contribute, or even determine, the
ecological features of macroalgae inhabiting the
intertidal rocky zone.
ACKNOWLEDGEMENTS
Funding provided by FONDECYT 11085019 and
partially by FONDECYT 1120117, to LCP, and
Marine Genomics Europe Technology Platforms Bid
no. 43, to LCP, JC, MK and RR. Additional funding
comes from FONDAP 1501-0001 (CONICYT), to the
Center for Advanced Studies in Ecology &
Biodiversity (CASEB) Program 7, and to JC.
Authors' Contributions: LCP, JC, and RR
conceived and designed the project. MK and RR were
responsible for library construction and sequencing.
CLC, CL, MFM, EG, DT, and AN performed
functional annotation analyses. LCP wrote the
manuscript. All authors edited the manuscript. All
authors read and approved the manuscript.
REFERENCES
Alcázar, R., M. Bitrián, D. Bartels, C. Koncz, T.
Altabella & A.F. Tiburcio. 2011. Polyamine
metabolic canalization in response to drought stress
in Arabidopsis and the resurrection plant
Craterostigma plantagineum. Plant Signal. Behav., 6:
243-250.
Alpert, P. 2000. The discovery, scope, and puzzle of
desiccation tolerance in plants. Plant Ecol., 151: 5-17.
Alveal, K. 1970. Estudios ficoecológicos en la región
costera de Valparaíso. Rev. Biol. Mar., 14: 7-88.
Anzenbacher, P. & E. Anzenbacherová. 2003. Cyto-
chromes P450: review on their basic principles. Proc.
Indian Natl. Sci. Acad., B69: 883-991.
Araki, Y. & E. Ito. 1975. A pathway of chitosan
formation in Mucor rouxii. Enzymatic deacetylation
of chitin. Eur. J. Biochem., 55: 71-78.
Aye, I.L. & J.A. Keelan. 2013. Placental ABC
transporters, cellular toxicity and stress in pregnancy.
Chem. Biol. Interact., 203: 456-466.
Baier, M. & K.J. Dietz. 1997. The plant 2-Cys
peroxiredoxin BAS1 is a nuclear-encoded chloroplast
protein: its expressional regulation, phylogenetic
origin, and implications for its specific physiological
function in plants. Plant J., 12: 179-190.
Baldauf, S.L., A.J. Roger, I. Wenk-Siefert & W.F.
Doolittle. 2000. A kingdom-level phylogeny of
eukaryotes based on combined protein data. Science,
290: 972-977.
Bartels, D., K. Schneider, G. Terstappen, D. Piatkowski
& F. Salamini. 1990. Molecular cloning of ABA-
modulated genes from the resurrection plant
Craterostigma plantagineum which are induced
during desiccation. Planta, 181: 27-34.
Beere, H.M., B.B. Wolf, K. Cain, D.D. Mosser, A.
Mahboubi, T. Kuwana, P. Tailor, R.I. Morimoto,
G.M. Cohen & D.R. Green. 2000. Heat-shock protein
70 inhibits apoptosis by preventing recruitment of
procaspase-9 to the Apaf-1 apoptosome. Nat. Cell
Biol., 2: 469-475.
Bernacchia, G. & A. Furini. 2004. Biochemical and
molecular responses to water stress in resurrection
plants. Physiol. Plant., 121: 175-181.
Blée, E. 2002. Impact of phyto-oxylipins in plant
defense. Trends Plant Sci., 7: 315-322.
Blouin, N.A., J.A. Brodie, A.C. Grossman, P. Xu & S.H.
Brawley. 2011. Porphyra: a marine crop shaped by
stress. Trends Plant Sci., 16: 29-37.
Breiman, A., T.W Fawcett, M.L. Ghirardi & A.K.
Mattoo. 1992. Plant organelles contain distinct
peptidylprolyl cis, trans-isomerases. J. Biol. Chem.,
267: 21293-21296.
Buschmann, A.H., M.C. Hernandez-Gonzalez & D.
Varela. 2008. Seaweed future cultivation in Chile:
perspectives and challenges. Int. J. Environ. Pollut.,
33: 432-456.
Ceccoli, R.D., N.E. Blanco, M. Medina & N. Carrillo.
2011. Stress response of transgenic tobacco plants
expressing a cyanobacterial ferredoxin in chloro-
plasts. Plant Mol. Biol., 76: 535-544.
Ciechanover, A., D. Finley & A. Varshavsky. 1984. The
ubiquitin-mediated proteolytic pathway and mecha-
nisms of energy-dependent intracellular protein
degradation. J. Cell. Biochem., 24: 27-53.
Contreras, L., D. Mella, A. Moenne & J.A. Correa. 2009.
Differential responses to copper-induced oxidative
Desiccation tolerance in Pyropia columbina 955
stress in the marine macroalgae Lessonia nigrescens
and Scytosiphon lomentaria (Phaeophyceae). Aquat.
Toxicol., 94: 94-102.
Contreras, L., A. Moenne, F. Gaillard, P. Potin & J.A.
Correa. 2010. Proteomic analysis and identification of
copper stress-regulated proteins in the marine alga
Scytosiphon gracilis (Phaeophyceae). Aquat.
Toxicol., 96: 85-89.
Contreras-Porcia, L. & C. López-Cristoffanini. 2012.
Proteomics in seaweeds: Ecological interpretations.
In: M. Sameh (ed.). Gel Electrophoresis - Advanced
Techniques. InTech, available from: http://www.inte-
chopen.com/books/gel-electrophoresis-advanced
techniques/proteomics-in-seaweeds-ecological-interpre-
tations.
Contreras-Porcia, L., D. Thomas, V. Flores & J.A.
Correa. 2011a. Tolerance to oxidative stress induced
by desiccation in Porphyra columbina (Bangiales,
Rhodophyta). J. Exp. Bot., 62: 1815-1829.
Contreras-Porcia, L., G. Dennett, A. González, E.
Vergara, C. Medina, J.A. Correa & A. Moenne.
2011b. Identification of copper-induced genes in the
marine alga Ulva compressa (Chlorophyta). Mar.
Biotech., 13: 544-556.
Contreras-Porcia, L., S. Callejas, D. Thomas, C. Sordet,
G. Pohnert, A. Contreras, A. Lafuente, M.R. Flores-
Molina & J.A. Correa. 2012. Seaweeds early
development: detrimental effects of desiccation and
attenuation by algal extracts. Planta, 235: 337-348.
Clemens, S. 2001. Molecular mechanisms of plant metal
tolerance and homeostasis. Planta, 212: 475-486.
Diatchenko, L., Y.F. Lau, A.P. Campbell, A. Chenchik,
F. Moqadam, B. Huang, S. Lukyanov, K. Lukyanov,
N. Gurskaya, E.D. Sverdlov & P.D. Siebert. 1996.
Suppression subtractive hybridization: a method for
generating differentially regulated or tissue-specific
cDNA probes and libraries. Proc. Natl. Acad. Sci.,
93: 6025-6030.
Dietz, K.J. 2011. Peroxiredoxins in plants and
cyanobacteria. Antioxid. Redox Signal, 15: 1129-1159.
Dinakar, C., D. Djilianov & D. Bartels. 2012.
Photosynthesis in desiccation tolerant plants: energy
metabolism and antioxidative stress defense. Plant
Sci., 182: 29-41.
Dreher, K. & J. Callis. 2007. Ubiquitin, hormones and
biotic stress in plants. Ann. Bot., 99: 787-822.
Ehrmann, M., R. Ehrle, E. Hofmann, W. Boos & A.
Schlösser. 1998. The ABC maltose transporter. Mol.
Microbiol., 29: 685-694.
Emanuelsson, O., H. Nielsen & G. von Heijne. 1999.
ChloroP, a neural network-based method for
predicting chloroplast transit peptides and their
cleavage sites. Protein Sci., 8: 978-984.
Emanuelsson, O., H. Nielsen, S. Brunak & G. von
Heijne. 2000. Predicting subcellular localization of
proteins based on their N-terminal amino acid
sequence. J. Mol. Biol., 300: 1005-1016.
Farrant, J.M., W. Brandt & G.G. Lindsey. 2007. An
overview of mechanisms of desiccation tolerance in
selected angiosperm resurrection plants. Plant Stress,
1: 72-84.
Feder, M.E. & G.E. Hofmann. 1999. Heat-shock
proteins, molecular chaperones, and the stress
response: evolutionary and ecological physiology.
Annu. Rev. Physiol., 61: 243-282.
Gaff, D.F. 1987. Desiccation tolerant plants in South
America. Oecologia, 74: 133-136.
Gao, S. & G. Wang. 2012. The enhancement of cyclic
electron flow around photosystem I improves the
recovery of severely desiccated Porphyra yezoensis
(Bangiales, Rhodophyta). J. Exp. Bot., 63: 4349-
4358.
Ghormade, V., S. Kulkarni, N. Doiphode, P.R.
Rajamohanan & M.V. Deshpande. 2010. Chitin
deacetylase: a comprehensive account on its role in
nature and its biotechnological applications. In: A.
Méndez-Vilas (ed.). Current research, t e c hn o log y
and education topics in applied microbiology
and microbial biotechnology. Formatex Research
Center, Badajoz, Microbiology Books Series, 2:
1054-1066.
Gigon, A., A.R. Matos, D. Laffray, Y. Zuily-Fodil &
A.T. Pham-Thi. 2004. Effect of drought stress on
lipid metabolism in the leaves of Arabidopsis
thaliana (ecotype Columbia). Ann. Bot., 94: 345-351.
Götz, S., J.M. García-Gómez, J. Terol, T.D. Williams,
S.H. Nagaraj, M.J. Nueda, M. Robles, M. Talón, J.
Dopazo & A. Conesa. 2008. High-throughput
functional annotation and data mining with the
Blast2GO suite. Nucleic Acid. Res., 36: 3420-3435.
Goyer, A., C. Haslekås, M. Miginiac-Maslow, U. Klein,
P. Le Marechal, J.P. Jacquot & P. Decottignies. 2002.
Isolation and characterization of a thioredoxin-
dependent peroxidase from Chlamydomonas
reinhardtii. Eur. J. Biochem., 269: 272-282.
Guill, S.S. & N. Tuteja. 2010. Polyamines and abiotic
stress tolerance in plants. Plant Signal. Behav., 5: 26-
33.
Guiry, M.D. & G.M. Guiry. 2013. AlgaeBase. World-
wide electronic publication, National University of
Ireland, Galway. http://www.algaebase.org. Reviewed:
9 February 2013.
956 Latin American Journal of Aquatic Research
Habib, H. & K.M. Fazili. 2007. Plant protease inhibitors:
a defense strategy in plants. Biotech. Mol. Biol. Rev.,
2: 68-85.
Hall, A., P.A. Karplus & L.B. Poole. 2009. Typical 2-
Cys peroxiredoxins: structures, mechanisms and
functions. FEBS J., 276: 2469-2477.
Harada, E., J.A. Kim, A.J. Meyer, R. Hell, S. Clemens &
Y.E. Choi. 2010. Expression profiling of tobacco leaf
trichomes identifies genes for biotic and abiotic
stresses. Plant Cell Physiol., 51: 1627-1637.
Hoekstra, F.A., E.A. Golovina & J. Buitink. 2001.
Mechanisms of plant desiccation tolerance. Trends
Plant Sci., 6: 431-438.
Hoffmann, A.J. & B. Santelices. 1997. Flora marina de
Chile central. Ediciones Universidad Católica de
Chile, Santiago, 434 pp.
Ingram, J. & D. Bartels. 1996. The molecular basis of
dehydration tolerance in plants. Annu. Rev. Plant
Physiol. Plant Mol. Biol., 47: 377-403.
Kanehisa, M., S. Goto, S. Kawashima, Y. Okuno & M.
Hattori. 2004. The KEGG resource for deciphering
the genome. Nucleic Acids Res., 32: D277-D280.
Kim, J.K., G.P. Kraemer & C. Yarish. 2008.
Physiological activity of Porphyra in relation to
eulittoral zonation. J. Exp. Mar. Biol. Ecol., 365: 75-
85.
Kumar, M., V. Gupta, N. Trivedi, P. Kumari, A.J. Bijo,
C.R.K. Reddy & B. Jha. 2011. Desiccation induced
oxidative stress and its biochemical responses in
intertidal red alga Gracilaria corticata (Gracilariales,
Rhodophyta). Environ. Exp. Bot., 72: 194-201.
Kurek, I., K. Aviezer, N. Erel, E. Herman & A. Breiman.
1999. The wheat peptidyl prolyl cis-trans-isomerase
FKBP77 is heat induced and developmentally
regulated. Plant Physiol., 119: 693-704.
Kurepa, J., A. Toh-E & J.A. Smalle. 2008. 26S
proteasome regulatory particle mutants have increased
oxidative stress tolerance. Plant J., 53: 102-114.
Kushiro, T., M. Okamoto, K. Nakabayashi, K.
Yamagishi, S. Kitamura, T. Asami, N. Hirai, T.
Koshiba, Y. Kamiya & E. Nambara. 2004. The
Arabidopsis cytochrome P450 CYP707A encodes
ABA 8’-hydroxylases: key enzymes in ABA
catabolism. EMBO J., 23: 1647-1656.
López-Cristoffanini, C., F. Tellier, R. Otaíza, J.A. Correa
& L. Contreras-Porcia. 2013. Differential tolerance to
desiccation: a factor driving the latitudinal distri-
bution of two sibling kelp species. Bot. Mar.,
(accepted).
Lovazzano, C., C. Serrano, J.A. Correa & L. Contreras-
Porcia. 2013. Comparative analysis of peroxiredoxin
activation in the brown macroalgae Scytosiphon
gracilis and Lessonia nigrescens (Phaeophyceae)
under copper stress. Physiol. Plant. 149: 378-388.
Luo, R.X. & D.C. Dean. 1999. Chromatin remodeling
and transcriptional regulation. J. Natl. Cancer Inst.,
91: 1288-1294.
Margulies, M., M. Egholm, W.E. Altman, S. Attiya, J.S.
Bader, L.A. Bemben, J. Berka, M.S. Braverman, Y.J.
Chen, Z. Chen, S.B. Dewell, L. Du, J.M. Fierro, X.V.
Gomes, B.C. Godwin, W. He, S. Helgesen, C.H. Ho,
G.P. Irzyk, S.C. Jando, M.L. Alenquer, T.P. Jarvie,
K.B. Jirage, J.B. Kim, J.R. Knight, J.R. Lanza, J.H.
Leamon, S.M. Lefkowitz, M. Lei, J. Li, K.L.
Lohman, H. Lu, V.B. Makhijani, K.E. McDade, M.P.
McKenna, E.W. Myers, E. Nickerson, J.R. Nobile, R.
Plant, B.P. Puc, M.T. Ronan, G.T. Roth, G.J. Sarkis,
J.F. Simons, J.W. Simpson, M. Srinivasan, K.R.
Tartaro, A. Tomasz, K.A. Vogt, G.A. Volkmer, S.H.
Wang, Y. Wang, M.P. Weiner, P. Yu, R.F. Begley &
J.M. Rothberg. 2005. Genome sequencing in
microfabricated high-density picolitre reactors.
Nature, 437: 376-380.
Mittler, R., S. Vanderauwera, M. Gollery & F. Van
Breusegem. 2004. Reactive oxygen gene network of
plants. Trends Plant Sci., 9: 490-498.
Nakashima, K., T. Kiyosue, K. Yamaguchi-Shinozaki &
K. Shinozaki. 1997. A nuclear gene, erd1, encoding a
chloroplast-targeted Clp protease regulatory subunit
homolog is not only induced by water stress but also
developmentally up-regulated during senescence in
Arabidopsis thaliana. Plant J., 12: 851-861.
Narusaka, Y., M. Narusaka, M. Seki, T. Umezawa, J.
Ishida, M. Nakajima, A. Enju & K. Shinozaki. 2004.
Crosstalk in the responses to abiotic and biotic
stresses in Arabidopsis: analysis of gene expression
in cytochrome P450 gene superfamily by cDNA
microarray. Plant Mol. Biol., 55: 327-342.
Padmini, E. & M. Usha-Rani. 2011. Heat-shock protein
90 alpha (HSP90α) modulates signaling pathways
towards tolerance of oxidative stress and enhanced
survival of hepatocytes of Mugil cephalus. Cell Stress
Chap., 16: 411-425.
Pearson, G.A., G. Hoarau, A. Lago-Leston, J.A. Coyer,
M. Kube, R. Reinhardt, K. Henckel, E.T. Serrao, E.
Corre & J.L. Olsen. 2010. An expressed sequence tag
analysis of the intertidal brown seaweeds Fucus
serrratus (L.) and F. vesiculosus (L.) (Heterokon-
tophyta, Phaeophyceae) in response to abiotic
stressors. Mar. Biotech., 12: 195-213.
Pena, L.B., L.A. Pasquini, M.L. Tomaro & S.M. Gallego.
2007. 20S proteasome and accumulation of oxidized
and ubiquitinated proteins in maize leaves subjected
to cadmium stress. Phytochem. 68: 1139-1146.
Desiccation tolerance in Pyropia columbina 957
Ravagnan, L., S. Gurbuxani, S.A. Susin, C. Maisse, E.
Daugas, N. Zamzami, T. Mak, M. Jäättela, J.M.
Penninger, C. Garrido & G. Kroemer. 2001. Heat-
shock protein 70 antagonizes apoptosis-inducing
factor. Nat. Cell Biol., 3: 839-843.
Safavi-Hemami, H., G. Bulaj, B.M. Olivera, N.A.
Williamson & A.W. Purcell. 2010. Identification of
Conus peptidylprolyl cis-trans isomerases (PPIases)
and assessment of their role in the oxidative folding
of conotoxins. J. Biol. Chem., 285: 12735-12746.
Santelices, B. 1989. Algas marinas de Chile. Distribución
ecológica, utilización y diversidad. Pontificia
Universidad Católica de Chile, Santiago, 399 pp.
Schürmann, P. & B.B. Buchanan. 2008. The ferredoxin/
thioredoxin system of oxygenic photosynthesis.
Antioxid. Redox Signal, 10: 1235-1274.
Scott, P. 2000. Resurrection plants and the secret of the
external leaf. Ann. Bot., 85: 159-166.
Shinozaki, K. & K. Yamaguchi-Shinozaki. 2007. Gene
networks involved in drought stress response and
tolerance. J. Exp. Bot., 58: 221-227.
Simpson, S.D., K. Nakashima, Y. Narusaka, M. Seki, K.
Shinozaki & K. Yamaguchi-Shinozaki. 2003. Two
different novel cis-acting elements of erd1, a clpA
homologous Arabidopsis gene function in induction
by dehydration stress and dark-induced senescence.
Plant J., 33: 259-270.
Sipos, G. & K. Kuchler. 2006. Fungal ATP-binding
cassette (ABC) transporters in drug resistance &
detoxification. Curr. Drug Targets, 7: 471-481.
Smith, C.M. & J.A. Berry. 1986. Recovery of
photosynthesis after exposure of intertidal algae to
osmotic and temperature stresses: comparative
studies of species with differing distributional limits.
Oecologia, 70: 6-12.
Stolf-Moreira, R., E.G.M. Lemos, L. Carareto-Alves, J.
Marcondes, S.S. Pereira, A.A.P. Rolla, R.M. Pereira,
N. Neumaier, E. Binneck, R.V. Abdelnoor, M.C.N.
Oliveira, F.C. Marcelino, J.R.B. Farias & A.L.
Nepomuceno. 2011. Transcriptional profiles of roots
of different soybean genotypes subjected to drought
stress. Plant Mol. Biol. Rep., 29: 19-34.
Sutherland, J.E., S.C. Lindstorm, W.A. Nelson, J. Brodie,
M.D.J. Lynch, M.S. Hwang, H.G. Choi, M. Miyata,
N. Kikuchi, M.C. Oliveira, T. Farr, C. Neefus, A.
Mols-Mortensen, D. Milstein & K.M. Muller. 2011.
A new look at an ancient order: generic revision of
Bangiales (Rhodophyta). J. Phycol., 47: 1131-1151.
Tarakhovskaya, E.R., Y.I. Maslov & M.F. Shishova.
2007. Phytohormones in algae. Russ. J. Plant
Physiol., 54: 163-170.
Toldi, O., Z. Tuba & P. Scott. 2009. Vegetative
desiccation tolerance: is it a goldmine for bioengi-
neering crops? Plant Sci., 176: 187-199.
Vanderlinde, E.M., J.J. Harrison, A. Muszyński, R.W.
Carlson & R.J. Turner & C.K. Yost. 2010.
Identification of a novel ABC transporter required for
desiccation tolerance, and biofilm formation in
Rhizobium leguminosarum bv. viciae 3841. FEMS
Microbiol. Ecol., 71: 327-340.
Vellosillo, T., M. Martínez, M.A. López, J. Vicente, T.
Cascón, L. Dolan, M. Hamberg & C. Castresana.
2007. Oxylipins produced by the 9-lipoxygenase
pathway in Arabidopsis regulate lateral root
development and defense responses through a specic
signaling cascade. Plant Cell, 19: 831-846.
Vicré, M., J.M. Farrant & A. Driouich. 2004. Insights
into the cellular mechanisms of desiccation tolerance
among angiosperm resurrection plant species. Plant
Cell Environ., 27: 1329-1340.
Villanueva, J., F. Canals, S. Prat, D. Ludevid, E. Querol
& F.X. Avilés. 1998. Characterization of the wound-
induced metallocarboxypeptidase inhibitor from
potato. cDNA sequence, induction of gene
expression, subcellular immunolocalization and
potential roles of C-terminal propeptide. FEBS Lett.,
440: 175-182.
Vittorioso, P., R. Cowling, J.D. Faure, M. Caboche & C.
Bellini. 1998. Mutation in the Arabidopsis
PASTICCINO1 gene, which encodes a new FK506-
binding protein-like protein, has a dramatic effect on
plant development. Mol. Cell Biol., 18: 3034-3043.
Vucich, VA. & C.S. Gasser. 1996. Novel structure of a
high molecular weight FK506 binding protein from
Arabidopsis thaliana. Mol. Gen. Genet., 252: 510-
517.
Wang, Y., C. Liu, D. Yang, H. Yu & Y.C. Liou. 2010.
Pin1At encoding a peptidyl-prolylcis/trans isomerase
regulates flowering time in Arabidopsis. Mol. Cell,
37: 112-122.
Wellenreuther, R., I. Schupp, A. Poustka, S. Wiemann &
German cDNA Consortium. 2004. SMART
amplification combined with cDNA size fractionation
in order to obtain large full-length clones. BMC
Genom., 5: 36.
Wood, Z.A., L.B. Poole & P.A. Karplus. 2003.
Peroxiredoxin evolution and the regulation of
hydrogen peroxide signaling. Science, 300: 650-653.
Yokoya, N.S., W.A. Stirk, J. Van Staden, O. Novák, V.
Turečková, A. Pěnčík & M. Strnad. 2010. Endo-
genous cytokinins, auxins, and abscisic acid in red
algae from Brazil. J. Phycol., 46: 1198-1205.
Yoon, H.S., J.D. Hackett, C. Ciniglia, G. Pinto & D.
Bhattacharya. 2004. A molecular timeline for the
origin of photosynthetic eukaryotes. Mol. Biol. Evol.,
21: 809-818.
958 Latin American Journal of Aquatic Research
Young, J.P., L.C. Crossman, A.W. Johnston, N.R.
Thomson, Z.F. Ghazoui, K.H. Hull, M. Wexler, A.R.
Curson, J.D. Todd, P.S. Poole, T.H. Mauchline, A.K.
East, M.A. Quail, C. Churcher, C. Arrowsmith, I.
Cherevach, T. Chillingworth, K. Clarke, A. Cronin,
P. Davis, A. Fraser, Z. Hance, H. Hauser, K. Jagels,
S. Moule, K. Mungall, H. Norbertczak, E.
Rabbinowitsch, M. Sanders, M. Simmonds, S.
Whitehead & J. Parkhill. 2006. The genome of
Rhizobium leguminosarum has recognizable core and
accessory components. Genome Biol., 7: R34.
Received: 18 April 2013; Accepted: 8 October 2013
Yu, N.Y., J.R. Wagner, M.R. Laird, G. Melli, S. Rey, R.
Lo, P. Dao, S.C. Sahinalp, M. Ester, L.J. Foster &
F.S. Brinkman. 2010. PSORTb 3.0: improved protein
subcellular localization prediction with refined
localization subcategories and predictive capabilities
for all prokaryotes. Bioinformatics, 26: 1608-1615.
Zagdańska, B. 1995. Respiratory energy demand for
protein turnover and ion transport in wheat leaves
upon water demand. Physiol. Plant., 95: 428-436.
ResearchGate has not been able to resolve any citations for this publication.
Article
In this review we briefly describe the lysosomal system, consider the evidence for multiplicity of protein degradation pathways in vivo, discuss in detail the ubiquitin‐mediated pathway of intracellular ATP‐dependent protein degradation, and also the possible significance of ubiquitin‐histone conjugates in chromatin. For detailed discussions of the various characteristics and physiological roles of intracellular protein breakdown, the reader is referred to earlier reviews [1–7] and reports of recent symposia [8–10]. Information on the ubiquitin system prior to 1981 was described in an earlier review [11]. Hershko has briefly reviewed more recent information [12].
Article
Leaves of the resurrection plant Craterostigma plantagineum Hochst, can be desiccated up to 1% relative water content and are still viable after rehydration. To clone genes related to this extreme desiccation tolerance, an in-vitro system was first developed which allows the induction of the same resurrection response in callus tissue upon treatment with abscisic acid (ABA). Several proteins and in-vitro-synthesized polypeptides were then identified which can be induced both in desiccation-tolerant, naturally dried leaves and in ABA-treated calli surviving after rehydration. Complementary-DNA clones corresponding to mRNAs expressed only in desiccation-tolerant tissues were obtained and classified into several gene families. In hybrid-selected translation experiments, representative cDNA clones were associated with water stress and ABA-inducible polypeptides abundantly expressed in dried leaves and ABA-treated calli. The expression pattern of several of these abundant transcripts was analyzed in RNA-hybridization experiments. Upon stress or ABA treatment the transcription levels increased rapidly, but they declined after relief from the stress state. This, together with data on genomic copy numbers indicated that a set of abundantly expressed genes are involved in the desiccation process of resurrection plants. Data on endogenous ABA contents before and after stress applications and on the physiological effects of exogenous ABA treatments indicate that in Craterostigma plantagineum the induction of an extreme desiccation tolerance is mediated by this plant hormone.
Article
Eulittoral seaweeds at different tidal elevations are exposed to various frequencies and durations of emergence. Their physiological activities (e.g. nutrient uptake) may be affected by water loss during emersion. We used three Porphyra species from different tidal elevations to test whether species at different vertical elevations on the shore respond differently to the increasingly non-marine environment, in terms of their physiological activities including nutrient uptake, tissue carbon, nitrogen and phycoerythrin contents. Simulated tidal cycles produced water losses of 0%, 40±10% and 90±5% tissue water. Emersion was stressful for all species regardless of their habitat. It was more stressful to nitrate and phosphate uptake for the sublittoral species P. yezoensis than eulittoral species, P. umbilicalis and P. leucosticta. Interestingly, tissue N for thalli that had been emerged and then re-submerged was significantly higher than those of continuously submerged individuals. During exposure, tissue N contents of all species declined but recovered quickly (e.g. within 30 min) after re-submergence. This result suggests that emersion-induced N release may constitute an undescribed biogeochemical pathway linking marine, terrestrial, and atmospheric N reservoirs.