ArticlePDF Available

Tensile bond strength of a composite resin cement for bonded prosthesis to various dental alloys

Authors:

Abstract

The development of composite resin cements that chemically bond to dental alloys has improved the construction of resin-bonded prostheses. Composite resins can be selected for various situations, but specific clinical situations may require different alloys. This study evaluated the ability of a composite resin cement to bond to various dental alloys of different compositions. Ten pairs of disks for each alloy (two NiCr, two NiCrBe, one CuAl, one gold type IV, and one gold for metal ceramic) were bonded to a composite resin cement after air abrasion was performed with aluminum oxide. The disks were then rinsed in tap water and were ultrasonically cleaned in distilled water for 2 minutes. The tensile tests exhibited greater values for alloys ultrasonically cleaned, and the best results were recorded by NiCr and NiCrBe alloys.
Tensile bond strength of a composite resin cement for bonded
prosthesis to various dental alloys
Jos4 Henrique Rubo, DDS, a and Luiz Fernando Pegoraro, DDS b
Dental Sch0o] of Bauru, University of S~0 Paul0, S~0 Paule, Brazil
The development of composite resin cements that chemically bond to dental alloys has
improved the construction of resin-bonded prostheses. Composite resins can be
selected for various situations, but specific clinical situations may require different
alloys. This study evaluated the ability of a composite resin cement to bond to various
dental alloys of different compositions. Ten pairs of disks for each alloy (two NiCr, two
NiCrBe, one CuAI, one gold type IV, and one gold for metal ceramic) were bonded to a
composite resin cement after air abrasion was performed with aluminum oxide. The
disks were then rinsed in tap water and were ultrasonically cleaned in distilled water
for 2 minutes. The tensile tests exhibited greater values for alloys ultrasonically
cleaned, and the best results were recorded by NiCr and NiCrBe alloys. (J PROSTHET
DENT 1995;74:230-4.)
The development of composite resins that chemi-
cally bond to enamel and air-abraded base metal alloys has
improved the construction of adhesive fLxed partial den-
tures. Techniques such as electrolytic etch and silicoating,
despite their good bond strength, require expensive labo-
ratory equipment. Errors in the estimation of surface area
of the retainer for electrolytic etching may cause great
variations in bond strength. A simpler and more reliable
technique must be used. 1' 2 Certain metal structures do not
require mechanical retention to bond to the luting agents.
Researchers have conducted studies that have demon-
strated that some composite resins designated for this
purpose, especially Panavia-Ex cement (Kuraray Co., To-
kyo, Japan), have recorded greater bond strengths than
have other systems. 3, 4
This study evaluated the possible use of Panavia-Ex ce-
ment with various dental alloys of different compositions
and also verified the influence of ultrasonic cleaning of the
metal before it was bonded to the composite resin cement.
MATERIAL AND METHODS
Ten pairs of disks of each alloy listed in Table I were
formed from wax patterns made in a matrix. The resulting
disks were 2 mm thick and had two diameters: 10 and 12
mm. A standardized loop was cast to the disks for attach-
ment to a testing machine.
After casting was done, the disks were cleaned and
ground with 600-grit sandpaper to have two parallel flat
aAssistant Professor, Department of l~'osthodontics.
bAssociate Professor, Department of Prosthodontics.
Copyright 9 1995 by The Editorial Council of THE JOURNAL OF
PROSTHETIC DENTISTRY.
0022-3913/95/$3.00 + 0. 10/1/63725
!
!.3
~3
-1
j l
22
Fig. 1. Metallic cylinder.
230 THE JOLrRNAL OF PROSTHETIC DENTISTRY VOLUME 74 NUMBER 3
RUBO
AND PEGORARO THE JOURNAL OF PROSTHETIC DENTISTRY
/>
/
// //
Fig. 2. A, Metallic cylinder. B, Duralay acrylic resin. C, Adhesive tape. D, Disk. E, static
load.
Table
I. Alloys used in this study
Product name Type
Manufacturer
Durabond MS NiCr
Unibond NiCr
Biobond II NiCrBe
Co Span VS NiCrBe
Duracast MS CuA1
Wilkinson AuAgCu
Degudent U AuPdPt
Dental Gaucho Marquart e Cia. Ltda., Brazil
Unitek Co., Monrovia, Calif.
Dentsply Int. Inc., York, Pa.
Ceramometal Ltda., Porto Alegre, Brazil
Dental Gaucho Marquart e Cia. Ltda., Brazil
Coimpa Ltda., Brazil
Coimpa Ltda., Brazil
surfaces and were then subjected to four thermal cycles to
simulate a porcelain firing surface:
A metallic cylinder was used to align two disks during
cementation. This cylinder had a central slit and two con-
centric bases with two different diameters: the base was
10 3 mm, and the superior surface was 12 1 mm (Fig.
1).
The two metal disks were fixed surface-to-surface to
standardize space for the luting agent with 60 ~m thick
adhesive tape (Scotch double-face adhesive tape, 3M Co.,
St. Paul, Minn.). These disks were retained inside the cyl-
inder. Acrylic resin (Durallay-Relliance Dental Mfg. Co.,
Worth, Ill.) was added on the external surface of the disk
with the smaller diameter, whereas the larger disk was
sustained in position by the superior shoulder in the cyl-
inder. Acrylic resin was also added between the larger disk
and head of a static load to ensure complete contact on both
sides of the disk. After the acrylic resin was cured, the tape
was removed, and space for the luting agent was stan-
dardized (Fig. 2).
Before cementation, the surfaces were treated by two
methods: for group A the surfaces were air-abraded with
aluminum oxide and were cleaned in tap water, and for
group B the surfaces were air-abraded with aluminum ox-
ide and were ultrasonically cleaned for 2 minutes in
distilled water.
The dental adhesive Panavia-Ex cement was mixed ac-
cording to the manufacturer's instructions. It was applied
to internal surfaces of two disks that were returned to the
cylinder and was maintained under a static load of 5 kg for
SEPTEMBER 1995 231
THE JOURNAL OF PROSTHETIC DENTISTRY RUBO AND PEGORARO
9O
Tensile 80
Bond
Strength 70
(kgffcm 2)
60
50
40
30
20
10
0 Durabond Co Span VS Unibond Biobond II Wilkinson Duracast Degudent
Alloys
l
Group A
I I Group B
Fig. 3. Mean values of tensile bond strength between Panavia-Ex cement and alloys
tested.
Table
II. Means (in kg/cm 2) and standard deviations of
bond strength of samples cemented with Panavia-Ex
cement
Alloy Group Mean SD
Durabond A 78,30 4,58
B 81,09 7,09
Unibond A 77,56 7,99
B 79,55 8,89
Biobond II A 67,86 4,05
B 69,21 3,45
Co Span Vs A 78,23 7,04
B 83,38 12,19
Duracast A 55,38 3,57
B 63,10 5,09
Wilkinson A 54,92 5,60
B 56,26 6,76
Degudent U A 29,40 2,78
B 53,37 3,84
Group A, cleaned in tap water; group B, ult~'asonic cleaning.
N = 10 for each sample.
Table
III. Two-way analysis of variance
Sum of Mean
Source dr* squares square F
Alloys 6 27517,1 4586,18 110,768t
Treatments 1 1598,06 1598,06 38,5975t
Interaction 6 1979,56 329,927 7,96862t
Error 126 5216,81 41,4033
Total 139 36311,5
*f (6;126) = 2,1; f (1;126) = 3,84; f (6;126) = 2,1.
tSignificant.
6 minutes. After the excess was removed, margins were
covered with a gel (Oxyguard, Kuraray Co., Tokyo, Japan),
because this material does not cure in the presence of ox-
ygen. The disks were stored in water at 37 ~ C for 24 hours,
and the tensile tests were recorded in a universal testing
machine (Dinamometros Kratos Ltd., S~o Paulo, Brazil) at
a crosshead speed of 0.5 mm/minute.
RESULTS
AND DISCUSSION
Table II lists the means and standard deviations of
samples luted with Panavia-Ex cement. The data from
Table II were computed by a two-way analysis of variance
(ANOVA) to verify the differences among alloys and
surface treatments. The analysis presented in Table III
identified significant differences among alloys (p < 0.01),
treatments (p < 0.01), and interactions between groups
(p < 0.01). The multiple comparisons with the Tukey test
revealed significant differences among alloys within the
two groups (p < 0.05) (Tables IV through VI).
The analyses disclosed that specimens of NiCr and
NiCrBe alloys were superior to the other metals despite the
surface treatment and that these results were in agree-
ment with those of former investigations (Fig. 3). 2-5 Among
the NiCr and NiCrBe alloys, Biobond II recorded the low-
est bond strengths and was statistically significant com-
pared with Durabond and Co Span V S alloys.
CuA1 alloys had less bonding strengths than NiCr and
NiCrBe alloys, but they were similar to AuAgCu alloys and
were far superior to AuPdPt alloys. Statistical differences
were evident among these alloys. The CuA1 alloy was in-
troduced in this study to see whether it could be used as a
retainer of adhesive fixed partial dentures because of its
cost-effectiveness and popularity. The success of this pros-
thesis depends not only on the bond strength of enamel/
232 VOLUME 74 NUMBER 3
RUBO AND PEGORARO THE JOURNAL OF PROSTHETIC DENTISTRY
Table
IV, Differences between mean tensile bond strength for specimens cleaned in tap water (Tukey test)
Durabond Unibond Biobond II Co Span VS Duracast Wilkinson
Durabond
Unibond 0.73
Biobond II 10.43" 9.69
CO Span VS 0.06 0.67 10.36"
Duracast 22.72* 21.28" 12.28" 22.65*
Wilkinson 23.37* 22.64* 12.29" 23.31" 0.65
Degudent U 48.49* 48.15" 38.46* 48.82* 26.17" 25.51"
*Significant (critical value = 9.84).
Table
V. Differences between mean tensile bond strength for specimens ultrasonically cleaned (Tukey test)
Durabond Unibond Biobond II Co Span V8 Duracast Wilkinson
Durabond
Unibond 1.53
Biobond II 11.87" 10.33"
CO Span VS 5.29 6.83 17.16"
Duracast 17.98" 16.45" 6.11 23.28*
Wilkinson 24.83* 23.29* 12.95" 30.12" 6.84
Degudent U 27.72* 26.18" 15.84" 33.01" 9.73 2.89
*Significant (critical value = 9,84).
Table
VI. Differences between mean tensile bond strength for specimens under different cleansing methods (Tukey test)
Group B
Co Span Degudent
Group A Durabond Unibond Biobond II VS Duracast Wilkinson U
Durabond 2.79 1.25 9.08 8.08 15.19" 22.03* 24.93*
Unibond 3.52 1.99 8.34 8.82 14.45" 21.30" 24.19"
Biobond II 13.22" 11.68" 1.35 18.51" 4.76 11.60" 14.49"
CoSpan VS 2.85 1.31 9.01 8.14 15.13" 21.97" 24.86*
Duracast 25.70* 24.17" 13.83" 31.00" 7.72 0.87 2.01
Wilkinson 26.16" 25.30* 1&29 31.45" 8.17 1.33 1.55
Degudent U 51.58" 50.14" 39.81" 56.97* 33.69* 26.85* 23.96*
Group A, cleaned in tap water; group B, ultrasonic cleaning.
*Significant (critical value = 9.84).
resin/metal but also on the indications for placement of
resin-bonded prostheses, precise abutment design, and
suitable occlusal relationships. If these requirements are
met, CuA] alloys can be used as retainers for resin-bonded
prostheses.
Bonding between Panavia-Ex composite resin cement
and metal is possible because of a covalent link between
the phosphate monomer and metallic ions on the oxide
layer of the metal surface. Consequently, differences in
bond strength verified among alloys must be related to a
greater or lesser attraction of the monomer to the compo-
nents of alloys. 6 Studies conducted by Omura et al. 7 and
Wada 8 illustrated that the phosphate monomer of Pana-
via-Ex composite resin cement had a greater attraction to
basic metals, which was also confirmed in this research
with NiCr and NiCrBe alloys.
The bonding strengths of AuPdPt alloys were far inferior
to those of the other alloys, but two factors must be consid-
ered: the low amount of basic metal in the composition of
the AuPdPt alloys and an inadequate surface treatment
before bonding. The latter factor was critical, because
when the surface was cleaned in ultrasonic bath the results
almost doubled. Ultrasonic cleaning in distilled water con-
siderably enhanced the bond strength of AuPdPt/Pana-
via-Ex composite resin cement and did not interfere with
other alloys. This finding rejected the hypothesis that ul-
trasonic cleaning eliminated debris not removed by sand-
blasting of the metal. Although this procedure improved
SEPTEMBER 1995 233
THE JOURNAL OF PROSTHETIC DENTISTRY RUBO AND PEGORARO
the bond strength, the best surface treatment for AuPdPt
alloys is still tin electroplating, s, 9
CLINICAL IMPLICATIONS
The values recorded in this study supported the prom-
ising clinical results with Panavia-Ex cement and NiCr
and NiCrBe alloys. This composite resin cement can also
be used for dowel and crown cementation, and new
perspectives are being entertained for the use of this
cement with other alloys. However, the appropriate sur-
face treatment for each alloy should be the subject of ad-
ditional research.
CONCLUSIONS
1. Durabond recorded the greatest adhesion for the
metal samples that were air-abraded with aluminum ox-
ide and cleansed in tap water. Durabond was followed by
Co Span VS, Unibond, Biobond II, Duracast, Wilkinson,
and Degudent U for bonding strength.
2. The best bond strengths ofmetal specimens subjected
to air abrasion and ultrasonic cleaning were those of Co
Span VS, Durabond, Unibond, Biobond II, Duracast,
Wilkinson, and Degudent U, respectively.
3. Metal samples treated with ultrasonic cleaning ex-
hibited greater values, particularly with Degudent U alloy,
which recorded a statistically significant difference from
the other specimens.
We thank Dr. Gerald Barrack, Clinical Professor, Department
of Prosthodontics and Occlusion, New York University, College of
Dentistry, for his help and encouragement.
REFERENCES
1. Re GJ, Kaiser DA, Malone WF,
Garcia-Godoy
F. Shear bond strengths
and scanning electron microscope evaluation of three different reten-
tive methods for resin-bonded retainers. J PROSTh~T DENT 1988;59:568-
73.
2. Hill GL, Zidan 0, Gomez Marin O. Bond strengths of etched base met-
als: effects of errors in surface area estimation. J PROSTHET DENT
1986;56:41-5.
3. Harley KE, lbbetson RJ. The adhesive strengths of three resin cements
used with berillium-free nickel-chrome alloy [Abstract]. J Dent Res
1987;66:835.
4. Pegoraro LF, Barrack G. A comparison of bond strengths of adhesive
cast-restorations using different designs, bonding agents and luting
resins. J PROSTHET DENT 1987;57:133-8.
5. Barrack G. Etched cast restorations. A five-year review. NY St Dent J
1985;51:220-2.
6. Watanabe F, Powers JM, Lorey RE. In vitro bonding of prosthodontic
adhesives to dental alloys. J Dent Res 1988;67:479-83.
7. Omura I, Yamaguchi J, ttarada I, Wada T. Adhesive and mechanical
ProPerties of a new dental adhesive [Abstract]. J Dent Res 1984;63:233.
8. Wada T. International symposium on adhesive prosthodontics.
Nijmegen: Eurosound Drukkerij, 1986:9-19.
9. Gates WD, Diaz Arnold AM, Aquilino SA, Ryther JS. Comparison of the
adhesive strength of a BIS-GMA cement to tin-plated and non tin-
plated alloys. J PROSTHET DENT 1993;69:12-6.
Reprint requests to:
DR. Jo~ H. RUBO
AL. OCTAVIO P. BRISOLA, 9-75
CEP: 17043-101 BAtmu
S{o PA~LO
BP~Z~L
Availability of JOURNAL Back Issues
As a service to our subscribers, copies of back issues of THE JOURNAL OF PROSTHETIC
DENTISTRY for the preceding 5 years are maintained and are available for purchase from
the publisher, Mosby, at a cost of $9.00 per issue. The following quantity discounts are
available: 25% off on quantities of 12 to 23, and one third off on quantities of 24 or more.
Please write to Mosby, Subscription Services, 11830 Westline Industrial Drive, St. Louis,
MO 63146-3318, or call (800)453-4351 or (314)453-4351 for information on availability of
particular issues. If unavailable from the publisher, photocopies of complete issues are
available from University Microfilms International, 300 N. Zeeb Rd., Ann Arbor, MI
48106, (313)761-4700.
234 VOLUME 74 NUMBER 3
... Nevertheless, studies show that bond strength between the metal and luting agents, especially the resin ones, is increased when the metallic surface of prosthetic parts is submitted to specific surface treatments. Moreover, some authors have sought to develop alternative methods of surface treatment such as: sandblasting with oxides of different granulation, electrolytic attack, and conditioning with acid substances; with the aim at promoting higher and steady adhesive union values in oral environment [3,[5][6][7]. ...
... For the nickel-chromium and titanium alloys conditioned with the treatment 2 (Cojet) elevated values were obtained. Thus, the results of this study are justified based on other studies [3,6,23,25]; which concluded that the low reactivity of noble alloys did not allow formation of oxidation layers, reducing the capacity of chemical union with the union agents and the resin cements. ...
Article
Full-text available
Objective: This study evaluated the hypothesis that different treatments of surface upon three metal alloys for metal ceramic dental prostheses (Gold; Nickel-Chromium; Titanium) do not Influence the values of bond strength with resin cement. Material and Methods: Twenty blocks, 5x5x5 mm, of each alloy were divided into two subgroups (n = 10) according to surface treatments: 1 (Primer): sandblasting with aluminum oxide particles 110 µm (Al2O3) + Alloy Primer (Kuraray); 2 (Cojet): sandblasting with silica oxide particles with Cojet-Sand + Silane ESPE-Sil. The conditioned blocks of each group were cemented, with Panavia F, to resin blocks under constant load of 750 g/10 min. The sets were cut to obtain 4 samples with dimensions of 10x1x1 mm per block (n = 10) and the adhesive surface with approximately 1 mm2. The microtensile test was done in the universal testing machine at 1 mm/min crosshead speed. The values of bond strength and standard deviation (MPa) were: Au P: 7.33 ± 1.93d; Au C: 13.35 ± 2.18c; NiCr P: 23.56 ± 6.5b; NiCr C: 42.6 ± 5.84a; Ti P: 26.17 ± 1.94b; Ti C: 44.30 ± 2.3a. Data were analyzed by variance test (ANOVA) and Tukey’s test, p < 0.05. Results: The results indicated that the conditioning with treatment 2 increased the bond strength between the resin cement and alloys. The lowest bond strengths values were obtained with gold alloy, regardless the surface treatment. Conclusion: The results denied the hypothesis that the metallic alloys surface treatments do not alter the bond strengths values.
... A carga de 5 kg, usada no processo de cimentação por Tabela 2 -Carga máxima de resistência à tração, expressa em N, dos 10 corpos-de-prova (cp) de cada um dos 4 grupos estudados, acrescidos da média (m), do desvio-padrão (dp) e do coeficiente de variação (cv), este expresso em porcentagem. Resistência à tração de coroas de NiCr cimentadas sobre munhões de liga de titânio, com 4 diferentes tipos de cimentos 10 minutos, foi escolhida por ser a mais utilizada, como pode ser constatado na literatura pertinente 5,10,13 . Entretanto, outros pesquisadores usaram cargas diferentes desta, que utilizaram 10 kg 1-2,15 . ...
... Na máquina de ensaios, a velocidade do movimento do travessão foi de 0,5 mm/min 1,[3][4][6][7][9][10][11]13 . Entretanto, outros pesquisadores usaram outras velocidades de 0,5 cm/min 2,5,12,15 . ...
Article
Full-text available
RESUMO Neste trabalho de resistência à tração foi avaliada a eficiência de 4 agentes cimentantes (fosfato de zinco S. S. White, ionômero de vidro Ketac Cem Easymix, resina composta/ ionômero de vidro RelyX Luting 2 e resina acrílica especial Panavia 21 TC) usados para fixar coroas totais de NiCr a munhões tronco-cônicos, usinados em liga de Ti-6Al-4V. Foram utilizados 40 munhões, distribuídos em grupos de 10, para cada material. Os ensaios mecânicos foram realizados em uma máquina universal MTS 810, na velocidade de 0,5 mm/min. A respectiva Análise de Variância (ANOVA) apontou existir diferença significante entre os grupos e o teste de Tukey (p < 0,05) também mostrou diferenças significantes entre eles, exceto nas comparações fosfato versus RelyX e fosfato versus Ketac Cem. O melhor desempenho foi apresentado pela resina Panavia 21 (1.127,996 N); a resina composta/ionômero de vidro RelyX (478,197 N) mostrou comportamento similar apenas ao do fosfato (430,662 N), o qual apresentou desempenho semelhante ao ionômero de vidro Ketac Cem (227,705 N). Tensile strength of NiCr crowns cemented upon usinated titanium alloy abutments with 4 different types of cements Resistência à tração de coroas de NiCr cimentadas sobre munhões de liga de titânio, com 4 diferentes tipos de cimentos
... Com o objetivo de promover uma adesão satisfatória entre os materiais reparadores e as superfícies a serem reparadas, tratamentos prévios do substrato (metal e/ ou cerâmica) são descritos na literatura. Entretanto, a indicação do tratamento superficial está na dependência do tipo de fratura ocorrida e, consequentemente da superfície a ser preparada[14][15][16][17][18][19][20][21][22][23][24][25][26][27][28][29]. Até alguns anos atrás, pelo fato de haver escassez de materiais que possuíssem protocolo definido e específico para reparo em metalocerâmicas, era muito comum empregar, para tal finalidade, diferentes combinações entre sistemas adesivos e resinas compostas disponíveis no mercado para realização de restaurações, associando-se aos mais diversos tratamentos de superfície. ...
Article
div style="color: #000000; font-family: Verdana, Arial, Helvetica, sans-serif; font-size: 10px; background-image: initial; background-attachment: initial; background-origin: initial; background-clip: initial; background-color: #ffffff; margin: 8px;"> Este estudo avaliou a resistência de união adesiva entre quatro sistemas de reparo estético e uma liga de níquel-cromo para coroas metalocerâmica. Material e Métodos: Blocos de níquel-cromo foram fundidos e divididos em quatro grupos. Cada grupo foi submetido aos seguintes tratamentos de superfície: G1 - jateamento com Al<sub>2</sub>O<sub>3</sub> (50 µm) + Alloy Primer (Kuraray); G2 - jateamento com Al<sub>2</sub>O<sub>3</sub> (50 µm) + ácido fosfórico 37% + adesivo Adper Single Bond 2 (3M); G3 - condicionamento com o sistema Cojet-Sand (3M); G4 - condicionamento com o sistema Cojet-Sand + adesivo Adper Single Bond 2. Sobre a face condicionada dos blocos metálicos aplicou-se resina composta até obter-se um bloco de resina simétrico ao metálico. Estes conjuntos formados foram cortados obtendo-se 96 amostras de 10x1x1mm, com área adesiva de 1mm&sup2;. Após ciclagem térmica (500 ciclos de 5 a 55 ºC) todas as amostras foram submetidas ao teste de microtração com velocidade de 1mm/min em máquina de ensaio universal (EMIC). Resultados: Os valores de resistência adesiva (MPa) foram: G1: 24,49 ± 4,80, G2: 19,51 ± 3,90, G3: 38,93 ± 3,37 e G4: 36,49 ± 3,45. Os dados foram submetidos ao teste de análise de variância (ANOVA), indicando que valores de resistência adesiva do grupo G3 e G4 foram significativamente maiores do que nos grupos G1 e G2. Conclusão: Concluiu-se que a liga de NiCr condicionada com Cojet-Sand (G3 e G4) promoveu maiores valores de resistência adesiva à resina composta em comparação aos condicionamentos da mesma liga nos grupos G1 e G2. Palavras-chave: Ligas metálicas; resinas compostas; tratamentos de superfície. </div
... A carga de 5 kgf, aplicada no processo de cimentação, foi escolhida por ser a mais utilizada, como pode ser constatado na literatura pertinente 6,11,14 , entretanto, outros pesquisadores utilizaram 10 kgf 1-2, 16 . ...
Article
Full-text available
RESUMO Por meio de tração, coroas totais de NiCr foram removidas de munhões pré-fabricados, compostos por uma liga de Ti-6Al-4V. Num total de 20 munhões, 10 foram usados com sua superfície original e 10 com sua superfície modifi cada por laser, ambos cimentados com fosfato do zinco. O teste mecânico foi executado em uma máquina universal MTS 810 ajustada a uma velocidade de 0,5 mm/min. A análise estatística foi feita pelo teste de Levene, o qual mostrou homogeneidade de variâncias entre os grupos (F = 2,21; p < 0,1). O subsequente teste " t " de Student mostrou haver diferenças signifi cantes entre os grupos. A modifi cação da superfície dos munhões através do laser causou um aumento na resistência à tração das coroas cimentadas com fosfato de zinco, de 430,66 para 1.514,87 N. Cimentation of crowns with fosfat of zinc on abutments of titanium alloy, radiated or not for laser Cimentação de coroas com fosfato de zinco sobre munhões de liga de titânio, irradiados ou não por laser
Article
O proposito deste trabalho foi a avaliacao in vitro da resistencia de uniao a tracao entre a liga de Ni-Cr (Durabond) e diferentes agentes cimentantes, submetidos, ou nao, a ciclagem termica. Por meio do processo de fundicao e posterior usinagem, foram obtidos setenta pares de cilindros metalicos (5,0 mm X 16,5 mm) distribuidos em sete grupos, com vinte amostras cada um, de acordo com os diferentes agentes cimentantes: a) grupo I - Dyract Cem; b) grupo II - Enforce com Fluor; c) grupo III – Panavia F; d) grupo IV – Panavia F com aplicacao de Alloy Primer; e) grupo V – Rely X com aplicacao de Ceramic Primer; f) grupo VI – Vitremer; g) grupo VII – cimento de fosfato de zinco, controle. Cada grupo foi dividido em dois subgrupos: (A) – sem ciclagem termica e (B) – com ciclagem termica. Em toda a superficie metalica cimentante, foi realizado microjateamento com particulas de Al 2 O 3 (50 i m), lavagem em ultra-som com agua destilada, durante 10 minutos e cimentacao, aos pares, por meio de um dispositivo adaptado a um torquimetro digital do sistema Branemark (Nobel Biocare Torque Controller), permitindo, alem do alinhamento perpendicular, o controle da pressao de cimentacao. Os corpos-de-prova foram armazenados em agua destilada durante 12 horas, sendo em seguida, os grupos B submetidos a ciclagem termica, enquanto os grupos A permaneciam pelo mesmo periodo de tempo, armazenados em agua destilada. Apos a termociclagem, os corpos-de-prova retornaram a agua destilada por mais 12 horas, sendo entao, submetidos ao ensaio mecânico de tracao em uma maquina Universal Instron, com velocidade de 0,5 mm/min. Os resultados foram analisados pela ANOVA e teste de Tukey, demonstrando diferencas estatisticamente significantes entre os materiais. A ciclagem termica, entretanto, nao apresentou significância estatistica. Os maiores valores de resistencia de uniao foram obtidos com o cimento Panavia F e os valores mais inferiores,com o cimento de fosfato de zinco.
Article
O objetivo desse estudo foi avaliar a resistência à remoção por tração de cilindros metálicos cimentados à dentina bovina com três agentes de cimentação: cimento de fosfato de zinco – S.S.White, cimento de ionômero de vidro modificado por resina, Fuji Plus – GC, e cimento Resinoso 3M – 3M. A face vestibular foi desgastada obtendo-se uma superfície dentinária plana com largura superior a 5mm. Os dentes foram embutidos em um tubo de PVC com a superfície preparada em dentina voltada para a superfície externa. O remanescente dentinário foi padronizado com espessura entre 1,7 e 2,1mm. Foram confeccionados cilindros metálicos de Ni-Cr de 5mm de diâmetro por 3mm de espessura, apresentando um acessório em forma de alça na parte superior. Na porção inferior apresentaram uma borda periférica de 0,5mm e um alívio interno de 4mm de diâmetro com profundiade de 40ìm. Todos os cilindros receberam jateamento com óxido de alumínio com partículas de 50ìm. Os dentes foram divididos em três grupos de 15. Durante a cimentação foi empregada uma pressão de 2Kgf. Os corpos-de-prova foram armazenados em água destilada em estufa a 37ºC por 24h. A seguir foram submetidos ao teste de tração em uma máquina de ensaios universal (Instron), a uma velocidade de 0,5mm/min.Os resultados mostraram que os cilindros metálicos cimentados com cimento de fosfato de zinco exibiram a menor média de resistência (0,43MPa), seguido do cimento de ionômero de vidro modificado por resina (5,16MPa) e do cimento resinoso (7,80MPa). A análise estatística mostrou diferença estatisticamente significante entre os cimentos avaliados.
Article
Full-text available
The aim of this research was to establish the effect and variation in differing convergence angle and length of abutment on the retention of full veneer casted gold crown.
Article
Full-text available
In vitro tensile bond strengths were determined for three adhesive cements and two resin-bonded bridge cements to two alloys, each prepared by two methods: sandblasted Ni-Cr-Be alloy (I), electro-etched Ni-Cr-Be alloy (II), sandblasted Type IV gold alloy (III), and tin-plated Type IV gold alloy (IV). Storage conditions of 24 hours at 37 degrees C and 30 days at 70 degrees C were evaluated. The highest bond strengths were obtained for the electro-etched Ni-Cr-Be alloy, and all bond failures were cohesive. At both 24 hours and 30 days, the adhesive cements had the highest bond strengths to the other alloy/surface preparations (I, III, and IV). The adhesive cements usually failed cohesively under these conditions, whereas the resin-bonded bridge cements failed adhesively at the cement-alloy interface. Storage for 30 days at 70 degrees C caused average decreases of 30%, 5%, 15%, and 32% for alloy/surface preparations I to IV, respectively.
Article
This study compared the tensile bond strengths of two base metal alloys and two noble metal alloys, tin-plated and non-tin-plated, with an adhesive resinous cement. Two tin platers were compared for their effectiveness in enhancing the composite resin-to-metal bond. Cylinders of the alloys were bonded end to end with the adhesive cement, thermocycled for 24 hours, stored in distilled water for 27 days, and tested for tensile bond strength. The mean bond strengths and mode of failure were recorded, and scanning electron micrographs were recorded for subjective evaluation. Significant differences were demonstrated between the non-tin-plated and the tin-plated noble alloys and base metal alloys.
The adhesive strengths of three resin cements used with berillium-free nickel-chrome alloy [Abstract]
  • Ke Harley
  • Rj Lbbetson
Harley KE, lbbetson RJ. The adhesive strengths of three resin cements used with berillium-free nickel-chrome alloy [Abstract]. J Dent Res 1987;66:835.
International symposium on adhesive prosthodontics
  • T Wada
Wada T. International symposium on adhesive prosthodontics. Nijmegen: Eurosound Drukkerij, 1986:9-19.