Article

Protein tyrosine kinase inhibitors suppress the production of nitric oxide in mixed glia, microglia-enriched or astrocyte-enriched cultures

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Nitric oxide (NO) produced by glial cells has been implicated in the neuropathogenesis of various diseases. However, the signaling transduction pathway(s) for the production of NO in these cells is not well understood. To test whether protein tyrosine kinases (PTKs) are required for signaling events of NO production in glial cells, this study examined the effects of genistein and tyrphostin A25, two potent inhibitors of PTKs, on the production of NO in mouse primary mixed glia, microglia-enriched or astrocyte-enriched cultures exposed to lipopolysaccharide (LPS) or a combination of LPS and interferon-gamma (IFN gamma). LPS induced a dose-dependent increase in NO production from the mixed glia cultures. The LPS-induced NO production was significantly enhanced by stimulating the cells with IFN gamma. Genistein or tyrphostin A25 inhibited the production of NO in both LPS- and IFN gamma/LPS-stimulated mixed glia cultures. The production of NO in the stimulated microglia-enriched or astrocyte-enriched cultures was also inhibited by tyrphostin A25. To verify the cellular sources of NO, immunocytochemical staining of inducible NO synthase (iNOS) was followed by staining with the microglia marker Mac-1 or the astrocyte marker glial fibrillary acid protein (GFAP) in microglia-enriched or astrocyte-enriched cultures. The expression of iNOS and the production of NO in microglia-enriched cultures were significantly higher than those in the identically stimulated astrocyte-enriched cultures. These results demonstrate that PTKs are involved in the signaling events of LPS-induced NO production in microglia and astrocytes, and that microglia are more responsive than astrocytes to stimuli which induce NO. These results may provide insights into therapeutic interventions in the pathway for NO production in the brain.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... In addition, activated microglia secret a variety of proin¯ammatory and cytotoxic factors including nitric oxide (NO), tumor necrosis factor alpha (TNFa), interleukin-1 beta (IL-1b), arachidonic acid, eicosanoids and reactive oxygen species (Banati et al. 1993). The production of in¯ammatory and cytotoxic factors has been demonstrated in glial cell cultures following exposure to lipopolysaccharide (LPS), human immunode®ciency virus-1 coat protein gp120, or bamyloid (Boje and Arora 1992;Chao et al. 1992;Kong et al. 1996;Minghetti and Levi 1998;Liu et al. 2000aLiu et al. , 2000b. Moreover, the production and accumulation of these factors have been attributed to neurodegeneration (Chao et al. 1992;Dawson et al. 1993;Bronstein et al. 1995;Jeohn et al. 1998). ...
... Effect of LPS stimulation on the release of TNFa and viability of microglia Microglia become readily activated in response to a variety of immune stimuli including amyloid peptides, HIV glycoprotein gp120 and the in¯ammagen LPS (Chao et al. 1992;Kong et al. 1996;Liu et al. 2000a). Release of TNFa is a sensitive and speci®c indicator for microglial activation (Giulian 1993;Kong et al. 1996). ...
... Effect of LPS stimulation on the release of TNFa and viability of microglia Microglia become readily activated in response to a variety of immune stimuli including amyloid peptides, HIV glycoprotein gp120 and the in¯ammagen LPS (Chao et al. 1992;Kong et al. 1996;Liu et al. 2000a). Release of TNFa is a sensitive and speci®c indicator for microglial activation (Giulian 1993;Kong et al. 1996). Stimulation of primary rat microglia with 0.1±1000 ng/mL of LPS triggered the release of TNFa into the culture medium such that signi®cant levels of secreted TNFa were detected as early as 2 h post LPS treatment (Fig. 1). ...
Article
Microglia, the resident immune cells in the brain, play a pivotal role in immune surveillance, host defense, and tissue repair in the CNS. In response to immunological challenges, microglia readily become activated as characterized by morphological changes, expression of surface antigens, and production of immune modulators that impact on neurons to induce neurodegeneration. However, little is known concerning the fate of activated microglia. In the present study, stimulation of cultured rat primary microglia with 1 ng/mL of the inflammagen lipopolysaccharide (LPS) resulted in a maximal activation as measured by the release of tumor necrosis factor alpha (TNFα). However, treatment with higher concentrations of LPS resulted in significantly lower quantities of detectable TNFα. Further analysis revealed that overactivation of microglia with higher concentrations of LPS (> 1 ng/mL) resulted in a time- and dose-dependent apoptotic death of microglia as defined by DNA strand breaks, surface expression of apoptosis-specific markers (phosphatidylserine), and activation of caspase-3. In contrast, astrocytes were insensitive to LPS-induced cytotoxicity. In light of the importance of microglia and the limited replenishment mechanism, depletion of microglia from the brain may severely hamper its capacity for combating inflammatory challenges and tissue repair. Furthermore, overactivation-induced apoptosis of microglia may be a fundamental self-regulatory mechanism devised to limit bystander killing of vulnerable neurons.
... Activation of microglia is believed to contribute to neurodegenerative processes through the release of proinflammatory and/or cytotoxic factors, including interleukin-1 (IL-1), tumor necrosis factor-␣ (TNF␣), nitric oxide (NO), reactive oxygen intermediates, arachidonic acid metabolites, and quinolinic acid (Chao et al., 1992;Dickson et al., 1993;Lee et al., 1993;Brosnan et al., 1994;Matsuo et al., 1995;Minghetti and Levi, 1995;Espey et al., 1997). Production of these factors by microglia after exposure to lipopolysaccharide (LPS), the human immunodeficiency virus-1 coat protein gp120, or ␤-amyloid has been well documented (Boje and Arora, 1992;Chao et al., 1992;Dawson et al., 1994;Ii et al., 1996;Kong et al., 1996). Furthermore, activation of microglia and subsequent production of proinflammatory and cytotoxic factors have been attributed to increased neurotoxicity in in vitro neuron-glia cultures treated with LPS, ␤-amyloid, or a combination of IL-1, TNF␣, and interferon-␥ (Chao et al., 1992;Dawson et al., 1994;Jeohn et al., 1998), suggesting that microglia-derived factors such as NO and TNF␣ are important mediators of inflammationmediated neurodegeneration. ...
... Levels of TNF␣ in the culture medium were measured at 6 hr after LPS stimulation, a time at which the release of the cytokine is known to be near its maximal levels (Liu et al., 2000a). A previous report from our laboratory indicated that microglia are the major source of TNF␣ (Kong et al., 1996). Stimulation of mesencephalic cultures with increasing concentrations of LPS (0, 1, 3, 6, 10, or 1000 ng/ml) resulted in a dose-dependent release of TNF␣ into the culture medium with maximal levels of TNF␣ released at 10 ng/ml LPS (Fig. 5B). ...
... Previous experiments have demonstrated that the LPS-induced release of TNF␣ and, to a degree, the production of NO are from microglial cells (Kong et al., 1996). One explanation to account for greater levels of NO formation and TNF␣ release in LPS-treated mesencephalic cultures compared with hippocampal or cortical cultures is that, at the time of treatment, mesencephalic cultures may have contained greater numbers of reactive microglia compared with hippocampal or cortical cultures. ...
Article
Full-text available
Inflammation in the brain has been increasingly associated with the development of a number of neurological diseases. The hallmark of neuroinflammation is the activation of microglia, the resident brain immune cells. Injection of bacterial endotoxin lipopolysaccharide (LPS) into the hippocampus, cortex, or substantia nigra of adult rats produced neurodegeneration only in the substantia nigra. Although LPS appeared to impact upon mesencephalic neurons in general, an extensive loss of dopaminergic neurons was observed. Analysis of the abundance of microglia revealed that the substantia nigra had the highest density of microglia. When mixed neuron-glia cultures derived from the rat hippocampus, cortex, or mesencephalon were treated with LPS, mesencephalic cultures became sensitive to LPS at a concentration as low as 10 ng/ml and responded in a dose-dependent manner with the production of inflammatory factors and a loss of dopaminergic and other neurons. In contrast, hippocampal or cortical cultures remained insensitive to LPS treatment at concentrations as high as 10 microg/ml. Consistent with in vivo observations, mesencephalic cultures had fourfold to eightfold more microglia than cultures from other regions. The positive correlation between abundance of microglia and sensitivity to LPS-induced neurotoxicity was further supported by the observation that supplementation with enriched microglia derived from mesencephalon or cortex rendered LPS-insensitive cortical neuron-glia cultures sensitive to LPS-induced neurotoxicity. These data indicate that the region-specific differential susceptibility of neurons to LPS is attributable to differences in the number of microglia present within the system and may reflect levels of inflammation-related factors produced by these cells.
... However, the response of these cells to LPS differs from that of microglial cells: both produce cytokines, but there is a controversy regarding NO production by cultured astrocytes. Several authors report the production of NO in rodent astrocyte cultures stimulated with LPS, mostly through the detection of its decomposition product nitrite in the culture supernatant (Galea et al., 1992;Simmons & Murphy, 1992;Park & Murphy, 1994;Kong et al., 1996;Pahan et al., 1997;(Chen et al., 1998;Garcõ Âa-Nogales et al., 1999;Suk et al., 2001), whereas other authors do not detect nitrite production in LPS-treated astrocyte cultures (Boje & Arora, 1992;Chao et al., 1992;Hewett et al., 1993;Yang et al., 1998). However, only a few studies have determined the cellular localization of NO production by means of iNOS immunocytochemistry or NADPH diaphorase staining, revealing that either microglial cells and some astrocytes (Galea et al., 1992;Kong et al., 1996) or only microglial cells (Yang et al., 1998) are responsible for NO production in LPS-treated astrocyte cultures. ...
... Several authors report the production of NO in rodent astrocyte cultures stimulated with LPS, mostly through the detection of its decomposition product nitrite in the culture supernatant (Galea et al., 1992;Simmons & Murphy, 1992;Park & Murphy, 1994;Kong et al., 1996;Pahan et al., 1997;(Chen et al., 1998;Garcõ Âa-Nogales et al., 1999;Suk et al., 2001), whereas other authors do not detect nitrite production in LPS-treated astrocyte cultures (Boje & Arora, 1992;Chao et al., 1992;Hewett et al., 1993;Yang et al., 1998). However, only a few studies have determined the cellular localization of NO production by means of iNOS immunocytochemistry or NADPH diaphorase staining, revealing that either microglial cells and some astrocytes (Galea et al., 1992;Kong et al., 1996) or only microglial cells (Yang et al., 1998) are responsible for NO production in LPS-treated astrocyte cultures. In addition, some authors claim that only microglial cells are responsible for NO production in LPS-treated mixed glia or astroglia±microglia cocultures (Vincent et al., 1996(Vincent et al., , 1997Yang et al., 1998;Possel et al., 2000). ...
... Nevertheless, our results suggest that relatively few microglial cells are responsible for a higher production of NO than expected if they are in contact with astroglial cells. Several studies show that the only cells with iNOS expression in rodent glial cell cultures after LPS-stimulation are microglial cells (Boje & Arora, 1992;Vincent et al., 1996Vincent et al., , 1997Yang et al., 1998;Possel et al., 2000), whereas some authors have detected GFAP-positive cells with NADPH diaphorase staining or iNOS immunolabelling after the addition of LPS to rat (Galea et al., 1992) or mouse (Kong et al., 1996) astrocyte cell cultures, respectively. The NO-producing astrocytes that have been identi®ed represent a small population of astrocytes. ...
Article
Several stimuli result in glial activation and induce nitric oxide (NO) production in microglial and astroglial cells. The bacterial endotoxin lipopolysaccharide (LPS) has been widely used to achieve glial activation in vitro, and several studies show that both microglial and, to a lesser extent, astroglial cell cultures produce NO after LPS treatment. However, NO production in endotoxin-treated astrocyte cultures is controversial. We characterized NO production in microglial, astroglial and mixed glial cell cultures treated with lipopolysaccharide, measured as nitrite accumulation in the culture media. We also identified the NO-producing cells by immunocytochemistry, using specific markers for the inducible NO synthase (iNOS) isoform, microglial and astroglial cells. Only microglial cells showed iNOS immunoreactivity. Thus, contaminating microglial cells were responsible for NO production in the secondary astrocyte cultures. We then analysed the effect of astrocytes on NO production by microglial cells using microglial-astroglial cocultures, and we observed that this production was clearly enhanced in the presence of astroglial cells. Soluble factors released by astrocytes did not appear to be directly responsible for such an effect, whereas nonsoluble factors present in the cell membrane of LPS-treated astrocytes could account, at least in part, for this enhancement.
... These findings suggest that additional mechanisms may be involved in the neuroprotective effects of minocycline. Previous reports showed that LPS-stimulated glial cells produce such proinflammatory cytokines as TNF-a and IL-1b, which contribute to neuronal cell death by LPSinduced cytotoxicity (Hetier et al. 1990; Glauser et al. 1991; Raitz et al. 1991; Boje and Arora 1992; Chao et al. 1992; Kong et al. 1996; McGeer et al. 1988). Yrjänheikki et al. (1998 Yrjänheikki et al. ( , 1999), especially, suggested that the neuroprotection of minocycline was associated with inhibition of induction ICE mRNA, release of IL-1b, and COX-2 expression. ...
... As such, it is likely that minocycline has neuroprotective effects at multiple levels and on multiple targets. It has been reported that LPS stimulates glia and increases the production of proinflammatory cytokines, such as TNF-a, contributing to neuronal cell death by LPS-induced cytotoxicity (McGeer et al. 1988; Hetier et al. 1990; Glauser et al. 1991; Raitz et al. 1991; Boje and Arora 1992; Chao et al. 1992; Kong et al. 1996 ). It has also been reported that TNFa , expressed in neurons and/or glial cells, causes apoptotic cell death, in part, through iNOS/NO expression after injury (Streit et al. 1998). ...
... It has also been reported that TNFa , expressed in neurons and/or glial cells, causes apoptotic cell death, in part, through iNOS/NO expression after injury (Streit et al. 1998). Other reports have shown that certain protein kinases, including p38 MAPK and MAPK, are involved in iNOS/NO expression in astrocytes and microglia as intracellular signaling pathways (Feinstein et al. 1994; Simmons and Murphy 1994; Kong et al. 1996; Bhat et al. 1998; Tikka and Koistinaho 2001; Tikka et al. 2001a). In addition, we reported that apoptosis induced by TNF-a after SCI may be mediated, in part, via NO production through prior induction of iNOS (Yune et al. 2003). ...
Article
We attempted to ascertain the neuroprotective effects and mechanisms of minocycline in inflammatory-mediated neurotoxicity using primary neuron/glia co-cultures treated with lipopolysaccharide (LPS). Neuronal cell death was induced by treatment with LPS for 48 h, and the cell damage was assessed using lactate dehydrogenase (LDH) assays and by counting microtubule-associated protein-2 (MAP-2) positive cells. Through terminal transferase deoxyuridine triphosphate-biotin nick end labeling (TUNEL)-staining and by measuring caspase-3 activity, we found that LPS-induced neuronal cell death was mediated by apoptosis. We determined that pre-treatment with minocycline significantly inhibited LPS-induced neuronal cell death. In addition, LPS induced inducible nitric oxide synthase (iNOS) expression significantly, resulting in nitric oxide (NO) production within glial cells, but not in neurons. Both nitric oxide synthase (NOS) inhibitors (N(G)-monomethyl-L-arginine monoacetate (L-NMMA) and S-methylisothiourea sulfate (SMT)) and minocycline inhibited iNOS expression and NO release, and increased neuronal survival in neuron/glia co-cultures. Pre-treatment with minocycline significantly inhibited the rapid and extensive production of tumor necrosis factor-alpha (TNF-alpha) mediated by LPS in glial cells. We also determined that the signaling cascade of LPS-mediated iNOS induction and NO production was mediated by TNF-alpha by using neutralizing antibodies to TNF-alpha. Consequently, our results show that the neuroprotective effect of minocycline is associated with inhibition of iNOS induction and NO production in glial cells, which is mediated by the LPS-induced production of TNF-alpha.
... Quantitative analysis for the level of NO release from cultured microglia and primary glial cultures was determined with the Greiss reagent by estimation of medium nitrite levels as previously described (Kong et al., 1996). Unstable NO is readily oxidized to the stable end-products nitrites and nitrates and the aforementioned test accurately and rapidly assays these adducts. ...
... It is therefore likely, based on the phenotypic homologies between peripheral macrophages and microglia, that protein tyrosine phosphorylation is an integral component of the signal transduction pathways involved in the regulation of microglial activation. Indeed, a recent study, demonstrating that protein tyrosine kinase inhibitors, genestein and tyrphostin A-25 inhibit LPS/gIFN-induced NO production in mixed glia cultures (Kong et al., 1996), supports these conclusions. Protein tyrosine kinases do not exert their e€ects in isolation but rather co-ordinate their e€ects with protein tyrosine phosphatases (Sun & Tonks, 1994 ). ...
Article
Microglial cells represent the first line of defence in the brain against infection and damage. However, under conditions of chronic inflammation and neurodegeneration, excessive activation of microglia can contribute to the neurodegenerative process by releasing a cornucopia of potentially cytotoxic substances including the cytotoxic free radical nitric oxide (NO). Although the cell signalling events implicated in NO formation in peripheral macrophages are well defined, events occurring in the phenotypically homologous cerebral microglial cell are not yet fully characterized. In the present study, a cloned murine microglial cell line (N9), stimulated with combined lipopolysaccharide/interferon‐γ (LPS/IFN) incubation, was shown to produce a significant increase in NO formation, as measured by medium nitrite levels, during 8–72 h exposure. LPS/IFN‐stimulated NO production was partially inhibited with the nitric oxide synthase (NOS) competitive antagonists; N ω ‐nitro‐ L ‐arginine methyl ester and N ω ‐nitro‐ L ‐arginine. The ability of the selective inducible (iNOS) inhibitor, aminoguanidine, but not the selective ‘neuronal‐type’ constitutive (cNOS) inhibitor 7‐nitroindazole, to inhibit NO production suggested a primary role of iNOS in this response and was confirmed by immunolabelling of activated cells with a specific iNOS antibody. A series of tyrosine kinase inhibitors, herbimycin A, genestein, tyrphostins, AG‐126, AG‐556 and the tyrosine phosphatase inhibitors, sodium orthovanadate and phenylarsine oxide, significantly attenuated LPS/IFN‐mediated NO production. The serine/threonine kinase inhibitors, staursporine (protein kinase C), H‐9 (cyclic GMP/cyclic AMP‐dependent kinase) or serine/threonine phosphatase inhibitors, cyclosporin A (phosphatase 2B) and okadaic acid (phosphatase 1/2A), reduced NO formation by an apparent cytostatic mechanism, as determined by cellular reduction of 3‐(4,5‐dimethylthiazol‐2‐yi)‐2,5‐diphenyl‐tetrazolium bromide (MTT). The present results suggest that the co‐ordinated activation of protein tyrosine kinases/phosphatases, and proximal signalling events implicating the interplay between serine‐threonine kinases/phosphatases, is intricately linked with inflammatory mediated mechanisms of iNOS activation in microglial cells by regulating the activation of the transcription factor NFκB. British Journal of Pharmacology (1998) 123 , 879–889; doi: 10.1038/sj.bjp.0701664
... Intracellularly, both second messenger-dependent and second messenger-independent mechanisms of cell signaling seem to participate in iNOS gene expression. Various activators and/or inhibitors of signaling kinases, including protein kinase C (Díaz- Guerra et al., 1996; Hellendall and Ting, 1997), protein kinase A (Imai et al., 1994; Hellendall and Ting, 1997; Mullet et al., 1997), and protein tyrosine kinases (Kong et al., 1996; Hellendall and Ting, 1997; Lee et al., 1997), have been shown to alter iNOS induction in cytokine and LPS-stimulated cells. Although previously it was shown that tyrosine kinase inhibitors inhibit NO production in glia (Kong et al., 1996; Hellendall and Ting, 1997), the identities of the specific kinases that are involved have not been clear. ...
... Various activators and/or inhibitors of signaling kinases, including protein kinase C (Díaz- Guerra et al., 1996; Hellendall and Ting, 1997), protein kinase A (Imai et al., 1994; Hellendall and Ting, 1997; Mullet et al., 1997), and protein tyrosine kinases (Kong et al., 1996; Hellendall and Ting, 1997; Lee et al., 1997), have been shown to alter iNOS induction in cytokine and LPS-stimulated cells. Although previously it was shown that tyrosine kinase inhibitors inhibit NO production in glia (Kong et al., 1996; Hellendall and Ting, 1997), the identities of the specific kinases that are involved have not been clear. ...
Article
Full-text available
Tumor necrosis factor-alpha (TNFalpha) and nitric oxide (NO), the product of inducible NO synthase (iNOS), mediate inflammatory and immune responses in the CNS under a variety of neuropathological situations. They are produced mainly by "activated" astrocytes and microglia, the two immune regulatory cells of the CNS. In this study we have examined the regulation of TNFalpha and iNOS gene expression in endotoxin-stimulated primary glial cultures, focusing on the role of mitogen-activated protein (MAP) kinase cascades. The bacterial lipopolysaccharide (LPS) was able to activate extracellular signal-regulated kinase (ERK) and p38 kinase subgroups of MAP kinases in microglia and astrocytes. ERK activation was sensitive to PD98059, the kinase inhibitor that is specific for ERK kinase. The activity of p38 kinase was inhibited by SB203580, a member of the novel class of cytokine suppressive anti-inflammatory drugs (CSAIDs), as revealed by blocked activation of the downstream kinase, MAP kinase-activated protein kinase-2. The treatment of glial cells with either LPS alone (microglia) or a combination of LPS and interferon-gamma (astrocytes) resulted in an induced production of NO and TNFalpha. The two kinase inhibitors, at micromolar concentrations, individually suppressed and, in combination, almost completely blocked glial production of NO and the expression of iNOS and TNFalpha, as determined by Western blot analysis. Reverse transcriptase-PCR analysis showed changes in iNOS mRNA levels that paralleled iNOS protein and NO while indicating a lack of effect of either of the kinase inhibitors on TNFalpha mRNA expression. The results demonstrate key roles for ERK and p38 MAP kinase cascades in the transcriptional and post-transcriptional regulation of iNOS and TNFalpha gene expression in endotoxin-activated glial cells.
... In many cell types analysed, protein tyrosine kinases are involved in NOS II induction and induction is inhibited by protein tyrosine kinase inhibitors such as genistein, herbimycin A or tyrphostins (Feinstein et al., 1994;Geng et al., 1995;Kong et al., 1996). ...
... In both types of receptor, tyrosine phosphorylation is essential for dimerization and the subsequent signal transduction. NOS II induction is inhibited by protein tyrosine kinase inhibitors such as genistein, herbimycin A or tyrphostins in many animal cells (Geng et al., 1995;Nishiya et al., 1995;Kong et al., 1996). In the present study, incubation of CMinduced DLD-1 cells with the protein tyrosine kinase inhibitors tyrphostin A25 and B42 inhibited NOS II mRNA expression in a concentration-dependent manner (Figure 7). ...
Article
Protein phosphorylation is involved in the induction of nitric oxide synthase II (NOS II, iNOS) in several types of animal cells. Here we have investigated the possible involvement of major protein kinases in the induction of NOS II expression in human DLD-1 cells. In DLD-1 cells, interferon-γ alone induced a submaximal NOS II expression; a cytokine mixture consisting of interferon-γ, tumour necrosis factor-α and interleukin-1β produced maximal NOS II induction. Activators of protein kinase A (forskolin, 8-dibutyryl-cyclic AMP), of protein kinase C (tetradecanoylphorbol-13-acetate), and of protein kinase G (8-bromo cyclic GMP) did not induce NOS II mRNA by themselves, nor did they alter NOS II mRNA induction in response to cytokines. Inhibitors of protein kinase A (compound H89), of protein kinase C (bisindolylmaleimide, chelerythrine or staurosporine), of phosphatidylinositol 3-kinase (wortmannin), of p38 mitogen-activated protein kinase (compound SB 203580) and of extracellular signal-regulated kinase (compound PD 98059) also had no influence on basal or cytokine-induced NOS II mRNA expression. Immunoprecipitation kinase assays showed no activation of extracellular signal-regulated kinase or p38 mitogen-activated protein kinase in cytokine-incubated DLD-1 cells. The c-Jun NH2-terminal kinase was activated by cytokines, but the most efficacious cytokine was tumour necrosis factor-α which did not induce NOS II by itself. In contrast, the protein tyrosine kinase inhibitor tyrphostin B42 (a specific inhibitor of interferon-γ-activated janus kinase 2) and the protein tyrosine kinase inhibitor tyrphostin A25 both reduced CM-induced NOS II mRNA expression in a concentration-dependent manner. These results suggest that activation of NOS II expression in DLD-1 cells is independent of the activities of protein kinases A, C and G, phosphatidylinositol 3-kinase, extracellular signal regulated kinase and p38 mitogen-activated protein kinase, but seems to require protein tyrosine kinase activity, especially the interferon-γ-activated janus kinase 2. British Journal of Pharmacology (1998) 123, 1716–1722; doi:10.1038/sj.bjp.0701782
... Primary astrocytes from neonatal Kunming mice were obtained as described previously (Kong et al., 1996;Li et al., 2017). In brief, the mouse cortex was dissociated with 0.05% trypsin/ethylenediaminetetraacetic acid and cultured in Dulbecco's modified Eagle medium supplemented with 10% fetal bovine serum, 100 U/mL penicillin, and 100 μg/mL streptomycin. ...
Article
Full-text available
Batroxobin is a thrombin-like serine protease from the venom of the Bothrops atrox and Bothrops moojeni snake species. Sirtuin 1 (Sirt1) has been shown to play an important role in neuroprotection after traumatic brain injury. However, its underlying mechanism of action remains poorly understood. The purpose of this study was to investigate whether the mechanism by which batroxobin participates in the activation of astrocytes is associated with Sirt1. Mouse models of nigrostriatal pathway injury were established. Immediately after modeling, mice were intraperitoneally administered 39 U/kg batroxobin. Batroxobin significantly reduced the expression of cleaved caspase-3 in both the substantia nigra and striatum, inhibited neuronal apoptosis, and promoted the recovery of rat locomotor function. These changes coincided with a remarkable reduction in astrocyte activation. Batroxobin also reduced Sirt1 expression and extracellular signal-regulated kinase activation in brain tissue. Intraperitoneal administration of the Sirt1-specific inhibitor EX527 (5 mg/kg) 30 minutes prior to injury could inhibit the abovementioned effects. In mouse astrocyte cultures, 1 ng/mL batroxobin attenuated interleukin-1β-induced activation of astrocytes and extracellular signal-regulated kinase. EX527 could also inhibit the effects of batroxobin. These findings suggest that batroxobin inhibits astrocyte activation after nigrostriatal pathway injury through the Sirt1 pathway. This study was approved by the
... Primary astrocytes were prepared from 1-day-old neonatal Kunming mice as described previously with some modifications [26]. Briefly, brain cortical tissues were dissociated in DMEM supplemented with 10% fetal bovine serum, 100 U/ml penicillin, and 100 μg/ml streptomycin. ...
Article
Full-text available
Background Astrocyte activation is a hallmark of traumatic brain injury resulting in neurological dysfunction or death for an overproduction of inflammatory cytokines and glial scar formation. Both the silent mating type information (Sirt1) expression and mitogen-activated protein kinase (MAPK) signal pathway activation represent a promising therapeutic target for several models of neurodegenerative diseases. We investigated the potential effects of Sirt1 upregulation and MAPK pathway pharmacological inhibition on astrocyte activation in vitro and in vivo. Moreover, we attempted to confirm the underlying interactions between Sirt1 and MAPK pathways in astrocyte activation after brain injury. Methods The present study employs an interleukin-1? (IL-1?) stimulated primary cortical astrocyte model in vitro and a nigrostriatal pathway injury model in vivo to mimic the astrocyte activation induced by traumatic brain injury. The activation of GFAP, Sirt1, and MAPK pathways were detected by Western blot; astrocyte morphological hypertrophy was assessed using immunofluorescence staining; in order to explore the neuroprotective effect of regulation Sirt1 expression and MAPK pathway activation, the motor and neurological function tests were assessed after injury. ResultsGFAP level and morphological hypertrophy of astrocytes are elevated after injury in vitro or in vivo. Furthermore, the expressions of phosphorylated extracellular regulated protein kinases (p-ERK), phosphorylated c-Jun N-terminal kinase (p-JNK), and phosphorylated p38 activation (p-p38) are upregulated, but the Sirt1 expression is downregulated. Overexpression of Sirt1 significantly increases the p-ERK expression and reduces the p-JNK and p-p38 expressions. Inhibition of ERK, JNK, or p38 activation respectively with their inhibitors significantly elevated the Sirt1 expression and attenuated the astrocyte activation. Both the overproduction of Sirt1 and inhibition of ERK, JNK, or p38 activation can alleviate the astrocyte activation, thereby improving the neurobehavioral function according to the modified neurological severity scores (mNSS) and balance latency test. Conclusions Thus, Sirt1 plays a protective role against astrocyte activation, which may be associated with the regulation of the MAPK pathway activation induced by brain injury in vitro and in vivo.
... Cell viability was expressed as a percentage of the control culture. Primary mixed glial cultures were prepared from l-day-old neonatal C57BL/6 mice as described previously with some modifications [24]. In brief, brain cortical tissues were dissociated in Dulbecco's modified Eagle medium (DMEM; Gibco/ BRL, Bethesda, MD, USA) supplemented with 10% heat-inactivated fetal bovine serum (FBS; Gibco/BRL), 100 U?mL 21 penicillin, and 100 mg mL 21 streptomycin and were seeded in 6-or 24-well culture plates. ...
Article
Full-text available
Traumatic brain injury (TBI) triggers a series of neuroinflammatory processes that contribute to evolution of neuronal injury. The present study investigated the neuroprotective effects and anti-inflammatory actions of berberine, an isoquinoline alkaloid, in both in vitro and in vivo TBI models. Mice subjected to controlled cortical impact injury were injected with berberine (10 mg·kg-1) or vehicle 10 min after injury. In addition to behavioral studies and histology analysis, blood-brain barrier (BBB) permeability and brain water content were determined. Expression of PI3K/Akt and Erk signaling and inflammatory mediators were also analyzed. The protective effect of berberine was also investigated in cultured neurons either subjected to stretch injury or exposed to conditioned media with activated microglia. Berberine significantly attenuated functional deficits and brain damage associated with TBI up to day 28 post-injury. Berberine also reduced neuronal death, apoptosis, BBB permeability, and brain edema at day 1 post-injury. These changes coincided with a marked reduction in leukocyte infiltration, microglial activation, matrix metalloproteinase-9 activity, and expression of inflammatory mediators. Berberine had no effect on Akt or Erk 1/2 phosphorylation. In mixed glial cultures, berberine reduced TLR4/MyD88/NF-κB signaling. Berberine also attenuated neuronal death induced by microglial conditioned media; however, it did not directly protect cultured neurons subjected to stretch injury. Moreover, administration of berberine at 3 h post-injury also reduced TBI-induced neuronal damage, apoptosis and inflammation in vivo. Berberine reduces TBI-induced brain damage by limiting the production of inflammatory mediators by glial cells, rather than by a direct neuroprotective effect.
... Microglial production of cytotoxic factors after exposure to the proinflamogen lipopolysaccharide (LPS) has been well documented (Boje and Arora, 1992;Chao et al., 1992;Dawson et al., 1994;Kong et al., 1996;Liu et al., 2000). However, except for the substantia nigra (SN), acute administration of LPS in different brain regions does not induce an evident neuronal damage (Herrera et al., 2000;Kim et al., 2000;Liu et al., 2000;Lu et al., 2000;Ji et al., 2008;Espinosa-Oliva et al., 2011). ...
Article
To elucidate whether density of cells could contribute to the extent of microglial activation, we performed in vitro assays using three different densities of N13 microglia stimulated with LPS. Our results showed that induction of pro-inflammatory factors as TNF-α and iNOS was directly related to cell density, meanwhile the induction of the anti-inflammatory IL-10 was inversely related to cell density. Accordingly, in vivo assays showed that after LPS-injection, iNOS expression was more intense in substantia nigra, a brain area showing specific susceptibility to neurodegeneration after microglia activation, whereas IL-10 expression was more sustained in striatum, an area resistant to damage. These results support that microglia density is pivotal to control the balance between pro- and anti-inflammatory factors release.
... Auch in Gebieten vorübergehender zerebraler Ischämie findet sich ein Anstieg der Phosphotyrosin-Immunoreaktivität (107). Dies läßt vermuten, daß eine erhöhte Tyrosinphosphorylierung nach Stimulation von Mikrogliazellen in vivo erfolgt.Nach Abschluß unserer Arbeiten haben mehrere Arbeitsgruppen experimentell zeigen können, daß die EAE der Maus durch Tyrphostin hemmbar ist(19,20,31,32,106). Neben der Hemmung der iNOS haben dabei jedoch auch andere biologische Wirkungen der Tyrosinkinase-Hemmung wie z. ...
Article
Mikrogliazellen fungieren als Makrophagen im ZNS, wo sie verschiedene Abwehrfunktionen gegen Mikroorganismen übernehmen, Zellreste beseitigen und eine wichtige Rolle bei Autoimmunerkrankungen des ZNS spielen. Mikrogliazellen exprimieren unter anderem eine NO-Synthase, die durch Zytokine induzierbar ist. Da NO für Neurone und Oligodendrozyten toxisch sein kann, waren wir daran interessiert, Substanzen zu identifizieren, die eine hemmende Wirkung auf die zytokin-induzierbare NO-Synthase in Makrophagen und Mikrogliazellen haben. Unter den getesteten Zytokinen, Wachstumsfaktoren, Neuropeptiden, Chemokinen und Tyrosinkinase-Hemmern war lediglich der Tyrosinkinaseinhibitor Methyl-2,5-Dihydroxycinnamat als NO-Synthase-Hemmstoff erfolgreich. Da die NO-Produktion eine Rolle in der Pathogenese der Experimentellen Autoimmunen Enzephalomyelitis (EAE) und der Experimentellen Autoimmunen Neuritis (EAN) spielt, war auch die Möglichkeit eines therapeutischen Einsatzes des NO-Synthase-Inhibitors von Interesse. Dieser scheint jedoch im Falle von Methyl-2,5-Dihydroxycinnamat aufgrund seiner Toxizität in höherer Konzentration und des daraus resultierenden engen Therapeutischen Dosisfensters sehr eingeschränkt.
... Although LPS-produced iNOS induction in primary astrocytes has been reported (6, 10), the molecular events involved are not understood. Previous reports have shown a potential role for tyrosine kinase in LPS-produced iNOS induction (11,12). The murine iNOS promotor contains 24 transcriptional factor binding sites, including those for NF-kB and activator protein-1 (13,14). ...
Article
Full-text available
The signaling pathway involved in protein kinase C (PKC) activation and role of PKC isoforms in lipopolysaccharide (LPS)-induced nitric oxide (NO) release were studied in primary cerebellar astrocytes. LPS caused a dose- and time-dependent increase in NO release and inducible NO synthase (iNOS) expression. The tyrosine kinase inhibitor, genestein, the phosphatidylcholine-phospholipase C inhibitor, D609, and the phosphatidate phosphodrolase inhibitor, propranolol, attenuated the LPS effects, whereas the PI-PLC inhibitor, U73122, had no effect. The PKC inhibitors (staurosporine, Ro 31-8220, Go 6976, and calphostin C) also inhibited LPS-induced NO release and iNOS expression. However, long term (24 h) pretreatment of cells with 12-O-tetradecanoyl phorbol-13-acetate (TPA) did not affect the LPS response. Previous results have shown that TPA-induced translocation, but not down-regulation, of PKCeta occurs in astrocytes (Chen, C. C., and Chen, W. C. (1996) Glia 17, 63-71), suggesting possible involvement of PKCeta in LPS-mediated effects. Treatment with antisense oligonucleotides for PKCeta or delta, another isoform abundantly expressed in astrocytes, demonstrated the involvement of PKCeta, but not delta, in LPS-mediated effects. Stimulation of cells for 1 h with LPS caused activation of nuclear factor (NF)-kB in the nuclei as detected by the formation of a NF-kB-specific DNA-protein complex; this effect was inhibited by genestein, D609, propranolol, or Ro 31-8220 or by PKCeta antisense oligonucleotides, but not by long term TPA treatment. These data suggest that in astrocytes, LPS might activate phosphatidylcholine-phospholipase C and phosphatidylcholine-phospholipase D through an upstream protein tyrosine kinase to induce PKC activation. Of the PKC isoforms present in these cells, only activation of PKCeta by LPS resulted in the stimulation of NF-kB-specific DNA-protein binding and then initiated the iNOS expression and NO release. This is further evidence demonstrating that different members of the PKC family within a single cell are involved in specific physiological responses.
... This hypothesis is supported, in part, by the following results: The infection of mice with scrapie results in signi®cant increases in the expression of the IL-1a, IL-1b, and TNF-a, whose pattern correlates with the onset and development of molecular and clinical pathologic changes (Campbell 1994). Recent studies indicated that TNF-a and IFN-g induced iNOS in astrocytes in vitro (Kong et al, 1996). Although nNOS reduction in scrapie-infected mice and hamsters has been reported, there has been no previous studies of iNOS induction in scrapieinfected mice. ...
Article
Full-text available
The neuronal cell damage caused by inducible nitric oxide synthase (iNOS) in brain has been reported to be associated, at least in part, with many neurodegenerative diseases including Alzheimer's disease. We recently observed vacuolation and astrocytosis in the brains of ME7 scrapie strain-infected C57BL mice. To investigate if these phenomena might have a relationship to iNOS, the level of iNOS expression was measured immunohistochemically and molecular biologically in the brains of scrapie-infected C57BL mice. The number and size of astrocytes were increased and immunoreactivity of glial fibrillary acidic protein (GFAP) was significantly enhanced. iNOS immunoreactivity was observed in the astrocytes of the scrapie-infected group, but not in the control group. iNOS mRNA levels were increased in scrapie-infected mice compared to the levels in non-infected mice of the same age. Our results suggest that iNOS induction in reactive astrocytes is a part of the neurodegenerative mechanisms in scrapie infection.
... The PKC inhibitors staurosporine and GF109203X inhibited the increase in NCX activity in cultured microglia. In addition, we examined the effect of the tyrosine kinase inhibitor herbimycin A on IFN-c-induced increase in NCX activity, since tyrosine kinase has been reported to be involved in microglial activation by lipopolysaccharide (LPS) and IFN-c (Kong et al. 1996;Lockhart et al. 1998). Herbimycin A inhibits the increase in NCX activity in microglia. ...
Article
The Na(+)-Ca2+ exchanger (NCX) plays a role in regulating intracellular Ca2+ concentration, but little is known about NCX in microglia. We examined mRNA expression of NCX isoforms in cultured rat microglia and the effect of interferon-gamma (IFN-gamma) on NCX activity. RT-PCR showed that all of the known NCX isoforms, NCX1-3, are expressed in cultured microglia. Ouabain and monensin increased 45Ca2+ uptake and intracellular Ca2+ concentration in microglia, suggesting the presence of NCX activity in the reverse mode. Treatment with IFN-gamma (100 U/mL) caused a biphasic increase in NCX activity. The transient increase in NCX activity by IFN-gamma for 1 h was blocked by the protein kinase C (PKC) inhibitors, staurosporine and GF109203X, and the tyrosine kinase inhibitor, herbimycin A. The delayed increase in NCX activity by IFN-gamma for 24 h was blocked by the protein synthesis inhibitor cycloheximide and actinomycin D. Treatment with IFN-gamma for 24 h increased NCX mRNA and protein levels. The increase in NCX activity and NCX protein by IFN-gamma for 24 h was blocked by staurosporine, GF109203X, herbimycin A and the extracellular signal-regulated kinase inhibitor, PD98059. These findings suggest that NCX is up-regulated by IFN-gamma in a biphasic manner in microglia. Moreover, PKC and tyrosine kinase are involved in the up-regulation of NCX and the extracellular signal-regulated protein kinase is also involved in the delayed increase in NCX activity.
Article
The neuronal cell damage caused by inducible nitric oxide synthase (iNOS) in brain has been reported to be associated, at least in part, with many neurodegenerative diseases including Alzheimer's disease. We recently observed vacuolation and astrocytosis in the brains of ME7 scrapie strain-infected C57BL mice. To investigate if these phenomena might have a relationship to iNOS, the level of iNOS expression was measured immunohistochemically and molecular biologically in the brains of scrapie-infected C57BL mice. The number and size of astrocytes were increased and immunoreactivity of glial fibrillary acidic protein (GFAP) was significantly enhanced. iNOS immunoreactivity was observed in the astrocytes of the scrapie-infected group, but not in the control group. iNOS mRNA levels were increased in scrapie-infected mice compared to the levels in non-infected mice of the same age. Our results suggest that iNOS induction in reactive astrocytes is a part of the neurodegenerative mechanisms in scrapie infection.
Article
Currently, the underlying mechanisms and the specific cell types associated with Japanese encephalitis-associated leukocyte trafficking are not understood. Brain microvascular endothelial cells represent a functional barrier and could play key roles in leukocyte central nervous system trafficking. We found that cultured brain microvascular endothelial cells were susceptible to Japanese encephalitis virus (JEV) infection with limited amplification. This type of JEV infection had negligible effects on cell viability and barrier integrity. Instead, JEV-infected endothelial cells attracted more leukocytes adhesion onto surfaces and the supernatants promoted chemotaxis of leukocytes. Infection with JEV was found to elicit the elevated production of intercellular adhesion molecule-1, cytokine-induced neutrophil chemoattractant-1, and regulated-upon-activation normal T-cell expressed and secreted, contributing to the aforementioned leukocyte adhesion and chemotaxis. We further demonstrated that extracellular signal-regulated kinase was a key upstream regulator which stimulated extensive endothelial gene induction by up-regulating cytosolic phospholipase A(2) , NF-κB, and cAMP response element-binding protein via signals involving phosphorylation. These data suggest that JEV infection could activate brain microvascular endothelial cells and modify their characteristics without compromising the barrier integrity, making them favorable for the recruitment and adhesion of circulating leukocytes, thereby together with other unidentified barrier-disrupting mechanisms contributing to Japanese encephalitis and associated neuroinflammation.
Article
Although ethanol has long been recognized as an immunosuppressant, the effects of ethanol on immune functions in the central nervous system (CNS) have not been well characterized. Glial cells function as immune effector cells within the CNS. Nitric oxide (NO), generated by inducible NO synthase (iNOS) of activated glial cells, appears to participate in the immune defense and the pathogenesis of brain injury and several neurologic diseases. The goal of the present study was to examine the effects of ethanol on NO production and mRNA expression of iNOS following its induction by bacterial endotoxin lipopolysaccharide (LPS) in cultured glial cells. After incubation of mixed glia with LPS for 24 hr, the levels of nitrite in the culture medium were assayed by Griess reaction. We found that LPS (10–500 ) induced a concentration-dependent increase in the production of NO which was abolished by the selective iNOS inhibitor aminoguanidine. While ethanol treatment (25 to 400 mM, 24 hr exposure) had no direct effect on basal NO production, it significantly suppressed the LPS-induced increase of nitrite levels in a concentration-dependent manner. Using a semiquantitative reverse transcriptase polymerase chain reaction, we found that while ethanol by itself was unable to induce iNOS mRNA, it nevertheless suppressed LPS-induced iNOS mRNA expression. Our results that ethanol had no direct effect on NO production but inhibited LPS-induced NO, indicated an immunomodulatory role by ethanol. These findings suggest that ethanol may ameliorate the consequenses of overwhelming NO generation through iNOS induction in glial cells following infection, inflammation or CNS injuries.
Article
The study aimed to investigate the involvement of nitric oxide (NO) in maneb (MB)- and paraquat (PQ)-induced Parkinson's disease (PD) phenotype in mouse and its subsequent contribution to lipid peroxidation. Animals were treated intraperitoneally with or without MB and PQ, twice a week for 3, 6 and 9 weeks. In some sets of experiments (9 weeks treated groups), the animals were treated intraperitoneally with or without inducible nitric oxide synthase (iNOS) inhibitor-aminoguanidine, tyrosine kinase inhibitor-genistein, nuclear factor-kappa B (NF-kB) inhibitor-pyrrolidine dithiocarbamate (PDTC) or p38 mitogen activated protein kinase (MAPK) inhibitor-SB202190. Nitrite content and lipid peroxidation were measured in all treated groups along with respective controls. RNA was isolated from the striatum of control and treated mice and reverse transcribed into cDNA. RT-PCR was performed to amplify iNOS mRNA and western blot analysis was done to check its protein level. MB- and PQ-treatment induced nitrite content, expressions of iNOS mRNA and protein and lipid peroxidation as compared with respective controls. Aminoguanidine resulted in a significant attenuation of iNOS mRNA expression, nitrite content and lipid peroxidation demonstrating the involvement of nitric oxide in MB- and PQ-induced lipid peroxidation. Genistein, SB202190 and PDTC reduced the expression of iNOS mRNA, nitrite content and lipid peroxidation in MB- and PQ-treated mouse striatum. The results obtained demonstrate that nitric oxide contributes to an increase of MB- and PQ-induced lipid peroxidation in mouse striatum and tyrosine kinase, p38 MAPK and NF-kB regulate iNOS expression.
Article
The aim of this study was to characterize the changes in neutrophils and cytokines in BAL fluid following acute lung injury (ALI), and to determine the protective effect of post-injury treatment with IL-10. A rat model of ALI was established by evenly spraying LPS (16 mg/kg) into the lungs followed by observation for 48 h. Histological changes and the kinetics of neutrophil infiltration were evaluated in the injured lungs. The cytokines (TNF-alpha, IL-6, IL-10 and interferon-gamma) and macrophage-inflammatory protein (MIP-2) were measured in BAL fluid by ELISA. The activation of BAL fluid neutrophils was investigated after treatment with IL-10 in vitro. The protective effect on histology and MIP-2 levels of intra-tracheal instillation of IL-10 12 and 16 h after LPS treatment was studied in vivo. Intra-tracheal instillation of LPS caused significant lung injury and the activation of neutrophils. The levels of TNF-alpha and IL-6 in BAL fluid peaked at 8 and 16 h after LPS instillation respectively. IL-10 levels reached a maximum at 16-24 h, at the beginning of resolution of tissue injury. IL-10 inhibited the activation of neutrophils in vitro and MIP-2 induction in vivo. IL-10 had a protective effect if it was administered 12 but not 16 h after LPS. Neutrophils appeared to play an important role in ALI. Time-dependent treatment with IL-10 after intra-tracheal instillation of LPS was effective in protecting rats from ALI, probably by suppressing pulmonary infiltration with activated neutrophils.
Article
Dynorphins (dyn) are a major class of endogenous opioid peptides that modulate the functions of immune cells. However, the effects of dyn on the immune functions of glial cells in the central nervous system (CNS) have not been well characterized. Because nitric oxide (NO) and the proinflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) produced by glial cells are involved in various physiopathological conditions in the CNS, this study examined the effects of dyn on the production of NO and TNF-alpha from mouse glial cells treated with lipopolysaccharide (LPS). LPS induced a concentration-dependent increase in the production of NO or TNF-alpha from the mouse primary mixed glia cultures. Ultralow concentrations (10(-16)-10(-12) M) of dynorphin (dyn) A-(1-8) significantly inhibited the LPS-induced production of NO or TNF-alpha. The inhibitory effects of dyn A-(1-8) were not blocked by nor-binaltorphimine, a selective kappa opioid receptor antagonist. U50-488H, a selective kappa opioid receptor agonist, did not affect the LPS-induced production of NO or TNF-alpha. Ultralow concentrations (10(-16)-10(-12) M) of des-[Tyr1]-dyn A-(2-17), a nonopioid analog that does not bind to kappa opioid receptors, exhibited the same inhibitory effects as dyn A-(1-17) and dyn A-(1-8). These results suggest that dyn modulate the immune functions of microglia and/or astrocytes in the brain and these modulatory effects of dyn are not mediated by classical kappa opioid receptors.
Article
Proinflammatory cytokines, tumor necrosis factor-alpha (TNF alpha), interleukin-1 (IL-1), and interleukin-6 (IL-6), produced by glial cells have been implicated in the neuropathogenesis of various diseases. However, the signal transduction pathway(s) for the production of these cytokines in glial cells are not well understood. This study examined the effects of two potent protein tyrosine kinase inhibitors, genistein and tyrphostin A25, on lipopolysaccharide (LPS)-induced production of TNF alpha, IL-1 alpha, and IL-6 in mouse primary mixed glia, microglia- or astrocyte-enriched cultures. LPS dose-dependently increased the production of TNF alpha, IL-1 alpha, and IL-6 from the mixed glia cultures. Genistein or tyrphostin A25 significantly inhibited the LPS-induced production of these cytokines. The LPS-induced TNF alpha, IL-1 alpha, and IL-6 production in microglia- or astrocyte-enriched cultures were also inhibited by tyrphostin A25. These results demonstrate that protein tyrosine kinases are involved in the signaling events of the LPS-induced production of TNF alpha, IL-1 alpha, or IL-6 in microglia or astrocytes, which may provide insights into therapeutic interventions in the pathway for cytokine production in the brain.
Article
Rat C6 glioma cells have been used to characterize molecular events involved in the regulation of inducible nitric oxide synthase (iNOS) gene expression stimulated by interferon-gamma (IFN-gamma) plus lipopolysaccharide (LPS). IFNs induce a signaling event which involves activation of Stat1 transcription factor. Previous studies have shown that IFNs also induce extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) activation. However, the mechanisms by which IFNs stimulate MAPK activation remain elusive. Here we show that in C6 glioma cells, transiently expressing the dominant-negative form of c-Ha-Ras (Asn-17) abrogated IFN-gamma-induced ERK1 and ERK2 activation. Furthermore, PD98059, a specific MEK1 inhibitor, also blocked this activation. These results indicate that p21ras and MEK1 are required for IFN-gamma-induced ERK1 and ERK2 activation. Recent studies have reported that MAPK is responsible for serine phosphorylation of Stat1 which is required for Stat1's DNA binding and maximal transcriptional activity. Thus, we examined the role of the Ras-MAPK pathway in Stat1 activation and subsequent iNOS induction in C6 glioma cells. Further experiments showed that neither Asn-17 Ras expression nor concentrations of PD98059, which completely abrogated IFN-gamma-induced ERK1 and ERK2 activation, affected Stat1 DNA binding activity or iNOS induction, indicating that the Ras-MAPK pathway does not appear to be involved in the activation of Stat1 and subsequent iNOS induction in C6 glioma cells.
Article
The human apolipoprotein (apo) E4 isoform is associated with an increased risk for Alzheimer's disease (AD) and poor prognosis after acute CNS injury. Addition of human apoE inhibits murine microglial activation in culture, suggesting that microglia might be an important physiological target of apoE. In the present study, we examined the role of endogenous murine apoE in modulating microglial nitric oxide (NO) production following lipopolysaccharide (LPS) stimulation. Brain cultures from apoE-deficient mouse pups showed enhanced NO production relative to cultures from wild-type mice and from transgenic mice expressing the human apoE3 isoform, demonstrating that endogenous apoE produced by glial cultures is capable of inhibiting microglial function. ApoE produced within the brain may suppress microglial reactivity and thus alter the CNS response to acute and chronic injury.
Article
1. Nitric oxide (NO) production in C6 glioma cells was directly monitored in real time by electrochemical detection with a NO-specific biosensor. 2. We present here the first direct evidence that noradrenaline elicits long-lasting NO production in C6 cells pretreated with lipopolysaccharide and interferon-gamma, an effect blocked by NG-monomethyl-L-arginine, a NO synthase inhibitor. 3. This direct electrochemical measurement of glia-derived NO should facilitate our understanding of the kinetics of glial signaling in glia-glia and glia-neuron networks in the brain.
Article
Activation of brain glial cells with the bacterial endotoxin lipopolysaccharide (LPS), the HIV-1 coat protein gp120, or beta-amyloid-derived peptides, stimulates the expression of several cytokines, including tumor necrosis factor-alpha (TNFalpha), interleukin-1 (IL-1) and IL-6. and nitric oxide (NO) which have been proposed as causes of neurodegeneration in the brain. In the present study, the neurotoxic effects of several cytokines, alone or in various combinations, and the correlations of the release of lactate dehydrogenase, the loss of neurons, and the secretion of NO in brain neuronal cell injury were investigated in murine primary mixed neuronal/glial cell cultures. A specific combination of cytokines, i.e., IL-1 (1 ng/ml)+ TNFalpha (10 ng/ml)/interferon-gamma (IFNgamma) (200 u/ml), induced a dramatic neuronal cell injury in the neuron/glia cultures, and its cytotoxic profile was very similar to that seen with the LPS/IFNgamma-induced neuron injury. This indicates that among the many toxic immune mediators secreted in response to LPS, IL-1 and TNFalpha can mimic LPS as the triggering signals and primary mediators for glia-mediated neuron injury in the presence of IFNgamma. This study provides new insights about the cytotoxic mechanism(s) for cytokine-mediated neuron injury.
Article
Ethanol increases human and animal susceptibility to opportunistic lung infections in part by suppression of endotoxin (LPS) and bacteria-mediated upregulation of inducible nitric oxide synthase (iNOS) in alveolar macrophages (AM). LPS and cytokine-induced NOS mRNA are dependent on NF-kappaB/Rel (NFkappaB) and Activator Protein-1 (AP-1), which are regulated in turn by protein kinase C and tyrosine kinase-dependent phosphorylation. ETOH does not directly inhibit NFkappaB or AP-1, in vivo, but rather inhibits LPS-induced activation of the MEKK/MAP kinase system and inhibition of inhibitory protein IkappaBalpha required for formation of AP-1 and NFkappaB, respectively. in AM. Both transcription factors are involved iNOS mRNA transcription. LPS-induced upregulation of MEKK/MAP tyrosine kinase upregulates NADPH oxidase activity and oxygen free radical formation required for activation of NFkappaB and AP-1 and phosphorylation of IkappaBalpha. LPS downregulates endogenous calcium-sensitive PKC isozymes (PKCdelta), which repress iNOS mRNA expression. ETOH inhibits LPS-induced upregulation of iNOS mRNA by preventing its ability to decrease PKCdelta and upregulate tyrosine kinase-mediated phosphorylation. This effect of ETOH is prevented by inhibitors of PKC and tyrosine kinase. The data support the hypothesis that ETOH inhibits LPS-induced upregulation of iNOS mRNA by interfering with the phosphorylation processes involved in activation of the nuclear transcription factors NFkappaB and AP-1.
Article
Results of previous studies indicate that monophosphoryl lipid A (MLA) reduces myocardial infarct size when administered 24 but not 1 h before a prolonged period of regional ischemia in dogs and rabbits. This cardioprotective effect of MLA could be reversed by the administration of the adenosine triphosphate (ATP)-sensitive potassium channel (K(ATP)) blockers, glibenclamide, or 5-hydroxydecanoate. MLA also was shown to attenuate myocardial stunning in dogs; however, its mechanism in this model remains unknown. Therefore the major aim of our study was to determine the dose-related effect of MLA to enhance contractile function in stunned myocardium and to determine the role of the K(ATP) channel in mediating its cardioprotective effect. To produce myocardial stunning, barbital-anesthetized dogs were subjected to five cycles of 5 min of left anterior descending (LAD) coronary artery occlusion interspersed with 10 min of reperfusion and finally followed by 2 h of reperfusion. Regional segment shortening (%SS) was determined by sonomicrometers implanted in the subendocardium of the ischemic region. Single intravenous doses of MLA in the range of 10-35 microg/kg given 24 h before ischemia resulted in an improvement in %SS over a 2-h reperfusion period. Similar to results obtained in the canine and rabbit infarct models, cardioprotection against stunning with MLA appears to require activation of K(ATP) channels during ischemia, because glibenclamide (50 microg/kg, 15 min before ischemia) completely blocked the effect of MLA to improve regional %SS during reperfusion. Cardioprotective doses of MLA were without effect on systemic hemodynamics, blood gases, and pH throughout the experiment. No treatment-related effects on regional myocardial blood flow were observed during ischemia or reperfusion. These results suggest that MLA improves %SS at doses of 10-35 microg/kg by an ATP-sensitive potassium channel-dependent process, and that MLA may mimic the antistunning effects observed during the second window of ischemic preconditioning.
Article
We investigated the time course of inducible nitric oxide synthase (iNOS) enzymatic activity and immunocytochemical localization of iNOS expression after traumatic brain injury (TBI), as well as the possible role of iNOS in the pathogenesis of TBI. Male Sprague-Dawley rats were anesthetized and underwent moderate parasagittal fluid-percussion brain injury. Rats were decapitated 5 minutes, 6 hours, 1 day, 3 days, 7 days, or 14 days later, and iNOS enzymatic activities were measured (n = 6-8). To determine whether nitric oxide produced by iNOS contributed to the histopathological consequences of TBI, inhibition of iNOS activity using aminoguanidine (intraperitoneal injections of 100 mg/kg aminoguanidine [n = 9] or vehicle [n = 8], twice each day) was conducted for 3 days. Significantly elevated iNOS activity was detected at 3 days (276.8+/-72.3% of contralateral value, means +/- standard errors; P < 0.05), and the most robust increase occurred 7 days after TBI (608.0+/-127.0%, P < 0.01) in the injured parietal cerebral cortex. Immunostaining for iNOS and glial fibrillary acidic protein, at 3 and 7 days after TBI, revealed that the major cellular sources of iNOS expression were cortical Layer 1 astrocytes and macrophages within the subarachnoid space. Administration of aminoguanidine did not reduce contusion volume significantly; however, treatment reduced total cortical necrotic neuron counts (1367.6+/-210.3; P < 0.01, compared with vehicle, 2808.5+/-325.1). These data indicate that iNOS is expressed after moderate parasagittal fluid-percussion brain injury, in a time-dependent manner, and that inhibition of iNOS synthesis improves histopathological outcomes. Thus, inhibition of iNOS activation may represent a potential therapeutic strategy for the treatment of TBI.
Article
Full-text available
Human astrocytoma T67 cells constitutively express a neuronal NO synthase (NOS-I) and, following administration of lipopolysaccharide (LPS) plus interferon-gamma (IFNgamma), an inducible NOS isoform (NOS-II). Previous results indicated that a treatment of T67 cells with the combination of LPS plus IFNgamma, by affecting NOS-I activity, also inhibited NO production in a very short time. Here, we report that under basal conditions, a NOS-I protein of about 150 kDa was weakly and partially tyrosine-phosphorylated, as verified by immunoprecipitation and Western blotting. Furthermore, LPS plus IFNgamma increased the tyrosine phosphorylation of NOS-I, with a concomitant inhibition of its enzyme activity. The same effect was observed in the presence of vanadate, an inhibitor of phosphotyrosine-specific phosphatases. On the contrary, genistein, an inhibitor of protein-tyrosine kinases, reduced tyrosine phosphorylation of NOS-I, enhancing its enzyme activity. Finally, using reverse transcriptase-polymerase chain reaction, we have observed that a suboptimal induction of NOS-II mRNA expression in T67 cells was enhanced by vanadate (or L-NAME) and inhibited by genistein. Because exogenous NO has been found to suppress NOS-II expression, the decrease of NO production that we have obtained from the inactivation of NOS-I by LPS/IFNgamma-induced tyrosine phosphorylation provides the best conditions for NOS-II expression in human astrocytoma T67 cells.
Article
Stimulation of murine primary mixed cortical neuron/glia cultures with lipopolysaccharide, an endotoxin, was used as a model for inflammatory disorders of the central nervous system. Lipopolysaccharide (20 microg/ml) increased the secretion of lactate dehydrogenase, a marker for cell injury, and nitric oxide into the culture medium. The lipopolysaccharide-induced release of lactate dehydrogenase into the culture medium was reduced by pituitary adenylate cyclase-activating polypeptide (PACAP) at 10(-14)-10(-12) M. The 27- and 38-amino-acid forms of PACAP were equipotent and their dose-response curves were U-shaped. PACAP6-38, a specific type I PACAP receptor antagonist, blocked the reduction by PACAP38 of the lipopolysaccharide-induced release of lactate dehydrogenase. The lipopolysaccharide-induced secretion of nitric oxide into the culture medium was reduced by PACAP at 10(-14)-10(-12) M and 10(-8)-10(-6) M. The 27- and 38-amino-acid forms of PACAP were equipotent. PACAP6-38 blocked the reduction of the lipopolysaccharide-induced secretion of nitric oxide by PACAP38 at 10(-12) M, but not at 10(-8) M. Vasoactive intestinal polypeptide reduced the lipopolysaccharide-induced release of lactate dehydrogenase into the culture medium at 10(-14)-10(-12) M, but these concentrations of vasoactive intestinal polypeptide had no effect on the lipopolysaccharide-induced secretion of nitric oxide. PACAP6-38 did not effect the reduction of the lipopolysaccharide-induced release of lactate dehydrogenase into the culture medium by 10(-12) M vasoactive intestinal polypeptide. These results indicate that stimulation of type I PACAP receptors by femtomolar concentrations of PACAP can prevent neuron death in a model for inflammatory disorders of the CNS. These results suggest that PACAP is also an extraordinarily potent inhibitor of some microglial functions.
Article
A high-throughput screening (HTS) assay for inhibitors of nitric oxide (NO) production by activated microglia was developed and used to compare the relative activities of various anti-inflammatory compounds and cell-permeable protein kinase inhibitors. BV-2 cells, an immortalized line that retains phenotypic features of microglia and produces NO in response to lipopolysaccharide (LPS), were used in the activation paradigm for the HTS assay. A characteristic feature of the compounds that were the most potent dose-dependent inhibitors of NO production is their ability to modulate serine/threonine protein kinases. The anti-inflammatory compound K252a, an inhibitor of calmodulin (CaM)-regulated protein kinases, had one of the highest potencies in the assay. Other classes of kinase inhibitors, including the protein kinase A inhibitor H-89, the mitogen activated protein kinase inhibitors PD98059 and SB203580, and the tyrosine kinase inhibitor genistein, were less potent and efficacious than K252a or the general serine/threonine/tyrosine kinase inhibitor staurosporine. K252a suppresses production of the inducible nitric-oxide synthase (iNOS). The inhibitory effect of K252a is not due to cell toxicity and does not correlate with inhibition of NFkappaB nuclear translocation. The mechanism of action appears to involve inhibition of phosphorylation of the transcription factor CREB, a protein whose activity is modulated by phosphorylation by CaM-dependent protein kinases. These data suggest that signal transduction pathways mediated by CaM-dependent protein kinases warrant future study as potential drug discovery targets.
Article
Cerebral inflammation often originates in a region where neuronal death occurs and thereafter slowly spreads outward. This study aimed to elucidate the roles of neurons in modulating the production of inflammatory factors stimulated by the bacterial endotoxin lipopolysaccharide (LPS). Culturing neurons with mixed glia reduced nitrite and tumor necrosis factor-alpha (TNF-alpha) production compared to cultures with only mixed glia, and shifted the dose-response curve to the right. The decreased nitrite and TNF-alpha production were not due to the cytotoxicity of LPS. Immunocytochemical analysis of glia-neuron co-cultures revealed the morphological changes in the activated microglia. Culturing PC12 cells with rat mixed-glia also reduced nitrite production. The influence of neurons on glial inflammation was partly due to the cell-cell contacts between neurons and glia via neural cell adhesion molecules (NCAM) because NCAM significantly reduced LPS-stimulated nitrite production. These results demonstrate that neurons reduce the production of inflammatory factors by glia. Since cerebral inflammation is important in many neurological disorders, this study might provide insight about the role of glia-neuron interactions in inflammatory responses in the brain.
Article
We measured the rectal temperature of free-moving, conscious rats after intracerebroventricular (i.c.v.) injections of lipopolysaccharide (LPS) and interleukin-1beta (IL-1beta) with or without various antagonists to investigate the mechanisms involved in LPS-induced fever. LPS (3 microg) elicited significant increases in rectal temperature, which lasted from 0.5 h to more than 8 h after administration. This febrile response was inhibited by pretreatment with L-nitro-arginine (LNA), indomethacin (IND), genistein (GEN), tyrphostin 46 and anti-rat IL-1beta antibody (anti-IL-1beta Ab), but was not inhibited by pretreatment with daidzein or chelerythrine (CHE) into the ventricle. LPS (0.3 microg) following orthovanadate (i.c.v.) produced fever, although the small amount of LPS (0.3 microg) or orthovanadate alone showed no effect on rectal temperature. I.c.v. injections of IL-1beta also induced fever of approximately 4-h duration. This effect was inhibited by pretreatment with IND and anti-IL-1beta Ab, but was not inhibited by pretreatment with LNA, GEN or CHE into the ventricle. These findings demonstrate that in the central nervous system, LPS increases IL-1beta production after activation of tyrosine kinase and NO synthase, and IL-1beta promotes prostaglandin production resulting in increased rectal temperature. Activation of tyrosine kinase in the central nervous system is probably a trigger for the febrile response induced by LPS.
Article
Inducible nitric oxide synthase (iNOS) has been shown to be present in a variety of cell types, and nitric oxide (NO) has been implicated in a multitude of biological functions. The purpose of this review is twofold: (1) to provide a comprehensive table of cell types that produce NO together with the effects of agents used to study iNOS regulation, as a ready reference for the investigators in the field; and (2) to summarize recent observations dealing with iNOS signal transduction mechanisms. Initially, the major regulation of NO production was believed to occur at the transcription step, but now it is recognized that NO regulation can occur at the transcriptional, posttranscriptional, translational, and posttranslational level. There have been a number of studies of the regulation of iNOS in various cell types, often yielding conflicting results. The major emphasis of this review is on iNOS signal transduction mechanisms. For example, the role of JAK kinases and mitogen-activated protein (MAP) kinases in iNOS regulation is elaborated. In addition, species differences in the iNOS promoter region and the role of RNA structure in iNOS expression is discussed. The role MAP kinases play in translational regulation in addition to transcriptional regulation is emphasized. An analysis of the current data and suggestions for future studies are also presented.
Article
Microglia as the first line of defensive cells in the brain produce free radicals including superoxide and nitric oxide (NO), contributing to neurodegeneration. An opioid receptor antagonist, naloxone, has been considered pharmacologically beneficial to endotoxin shock, experimental cerebral ischemia, and spinal cord injury. However, the mechanisms underlying these beneficial effects of naloxone are still not clear. This study explores the effects of naloxone on the production of superoxide and NO by the murine microglial cell line, BV2, stimulated with lipopolysaccharide (LPS) as measured by electron paramagnetic resonance (EPR). The production of superoxide triggered by phobol-12-myristate-13-acetate (PMA) resulted in superoxide dismutase (SOD)-inhibitable, catalase-uninhibitable 5,5-dimethyl-1-pyrroline N-oxide (DMPO) hydroxyl radical adduct formation. LPS enhanced the production of superoxide and triggered the formation of non-heme iron-nitrosyl complex. Cells pre-treated with naloxone showed significant reduction of superoxide production by 35%. However, it could not significantly reduce the formation of non-heme iron-nitrosyl complex and nitrite. Taken together, the results expand our understanding of the neuroprotective effects of naloxone as it decreases superoxide production by microglia.
Article
An inflammatory response in the CNS mediated by activation of microglia is a key event in the early stages of the development of neurodegenerative diseases. Using mouse cortical mixed glia cultures, we have previously demonstrated that the bacterial endotoxin lipopolysaccharide induces the activation of microglia and the production of proinflammatory factors. Naloxone, an opioid receptor antagonist, inhibits the lipopolysaccharide-induced activation of microglia and the production of proinflammatory factors. Using neuron-glia co-cultures, we extended our study to determine if naloxone has a neuroprotective effect against lipopolysaccharide-induced neuronal damage and analysed the underlying mechanism of action for its potential neuroprotective effect. Pretreatment of cultures with naloxone (1 microM) followed by treatment with lipopolysaccharide significantly inhibited the lipopolysaccharide-induced production of nitric oxide and the release of tumor necrosis factor-alpha, and significantly reduced the lipopolysaccharide-induced damage to neurons. More importantly, both naloxone and its opioid-receptor ineffective enantiomer (+)-naloxone were equally effective in inhibiting the lipopolysaccharide-induced generation of proinflammatory factors and the activation of microglia, as well as in the protection of neurons. These results indicate that the neuroprotective effect of naloxone is mediated by its inhibition of microglial activity and may be unrelated to its binding to the classical opioid receptors.
Article
Nitric oxide (NO) produced by microglia has been implicated in the pathogenesis of various central nervous system diseases; however, the intracellular signal pathways for the production of NO are not well known. Protein kinase C (PKC) plays a key role in a variety of signal transduction processes. To elucidate how PKC regulates microglial NO production, we examined the effects of PKC inhibitors on lipopolysaccharide (LPS)-stimulated NO production by primary cultured rat microglia. Staurosporine, a non-selective PKC inhibitor, increased LPS-induced production of NO at 0.1-10 nM range of concentration. Protein kinase A (PKA) inhibitor, H89, did not affect LPS-induced NO production, suggesting that staurosporine effect is not mediated by inhibition of PKA. However, other two PKC inhibitors, whose specificities for PKC isoforms were different, Gö6976 and Ro-32-0432, exhibited different effects on NO production from staurosporine; the former inhibited and the latter showed no effect. Interestingly, an activator of PKC, phorbol 12-myristate 13-acetate (PMA) also increased LPS-induced production of NO at 1-10 nM range of concentration, suggesting that prolonged incubation with PMA caused down-regulation of PKC. These results indicate that the inhibition or down-regulation of some PKC isoforms causes the enhancement of NO production. The different effects of PKC inhibitors on the NO production suggest that the different PKC isoforms play different roles in regulation of NO production in microglia.
Article
The expression of inducible nitric oxide synthase (iNOS) and the production of nitric oxide (NO) after exposure to endotoxins has been implicated in immune-mediated neurotoxicity. The indolocarbazole compound Gö6976, which has been described as a selective protein kinase C (PKC) inhibitor in vitro, rescued neurons from lipopolysaccharide/interferon-gamma (LPS/IFNgamma)- or interleukin-1alpha/tumor necrosis alpha/IFNgamma (IL-1alpha/TNFalpha/IFNgamma)-induced cytotoxicity in murine primary neuron-glia co-cultures. Other compounds known to inhibit PKC, Ro31-8220, GF109203X, Gö7874, H7, staurosporine and H89, failed to rescue neurons from the LPS/IFNgamma-induced cytotoxicity. These results suggest that the neuroprotection by Gö6976 from the LPS/IFNgamma-induced neuronal cell death is not mediated through its reputed effects on PKC activity. The neuroprotection paralleled the inhibition of iNOS gene expression and NO production. However, further analyses correlating NO production with the extent of neurotoxicity suggested that additional mechanism(s) besides the inhibition of the iNOS/NO system may be responsible for the neuroprotective effects of Gö6976. An understanding of the mechanism underlying the neuroprotective effect of Gö6976 may provide key insights into potential interventions for immune-mediated neurodegenerative diseases.
Article
Glia in the brain respond to various toxins with an increased expression of inducible nitric oxide synthase (iNOS) and an increased production of nitric oxide (NO). Here, we report that lipopolysaccharide (LPS)-induced expression of iNOS was down-regulated post-transcriptionally through the destabilization of iNOS mRNA by the indolocarbazole compound, Gö6976, in murine microglia. This Gö6976 effect is specific for iNOS since tumor necrosis factor alpha was unaffected by the compound. Interestingly, the post-transcriptional effects ascribed to Gö6976 were not observed with other inhibitors of protein kinase A, C (PKC), G, or protein tyrosine kinases. Instead, these kinases appear to affect the iNOS/NO system at the transcriptional level. In the past, Gö6976 has been reported to be a rather specific inhibitor of PKC in vitro. Results from our experiments, through prolonged treatment with phorbol esters and with the various PKC inhibitors including phorbol ester-insensitive PKC isotype inhibitor, suggest that the Gö6976-mediated post-transcriptional regulation of iNOS gene expression and NO production in microglia is not mediated through its reputed effects on PKC activity. Since the effects of various neurotoxins and certain neurodegenerative diseases may be manifested through alterations in the iNOS/NO system, post-transcriptional control of this system may represent a novel strategy for therapeutic intervention.
Article
We investigated the effect of agmatine, an arginine metabolite synthesized in the brain, in cultured microglia obtained from neonatal rat cerebral cortex. Agmatine (1-300 microM) did not affect viability of cultured microglia. Activation of microglia by lipopolysaccharide (LPS, 1 microg/ml) caused the expression of inducible nitric oxide synthase (iNOS) and the production of nitric oxide (NO) assessed as the accumulation of nitrite in the culture supernatants. Agmatine had no effect on the expression of iNOS, but significantly suppressed the LPS-induced NO production in a concentration-dependent manner. Agmatine was also effective in suppressing the production of NO induced by a combination of interferon-gamma (500 U/ml) and amyloid beta protein (10 microM). In co-cultures of rat cortical neurons and microglia, LPS caused significant loss of neuron viability. The LPS neurotoxicity was not observed in the absence of microglia, and was completely blocked by the NOS inhibitor diphenyleneiodoium chloride. The neuronal death induced by microglia-derived NO was significantly attenuated by the presence of agmatine. These results suggest that agmatine works to protect neurons by inhibiting the production of NO in microglia.
Article
We investigated the time-dependency of the action of nitric oxide (NO) on glia-mediated neuronal cell death. Cortical neuron-glia co-cultures were treated with lipopolysaccharide and interferon gamma (LPS/IFNgamma). The production of NO was first detectable 9 h after the exposure to LPS/IFNgamma and increased for up to 48 h. A significant neuronal cell death was observed 36-48 h after treatment with LPS/IFNgamma. The NO generated at the initial stage of NO synthesis (about 12 h) following exposure to LPS/IFNgamma was found to be critical for LPS/IFNgamma-induced neurotoxicity. Furthermore, the rate of NO production at the initial stage of NO synthesis was correlated linearly with the extent of neuronal cell death. These findings suggest that the maximal rate of NO synthesis, instead of the accumulated NO(2)(-) level, is a sensitive index for predicting endotoxin-induced cytotoxicity.
Article
Neuroinflammation induces a complex molecular cascade that leads to the proteolysis of cells. Matrix metalloproteinases (MMPs) attack all components of the extracellular matrix in a number of neuroinflammatory diseases and cause a delayed opening of the blood-brain barrier (BBB). Earlier, we showed that lipopolysaccharide (LPS) disrupted the BBB through the action of gelatinase B (MMP-9). In a study of cerebral ischemia, gelatinase A (MMP-2) was seen in astrocytic end-feet and stromelysin-1 (MMP-3) in microglia. Since other MMPs may be important in LPS-induced injury, we studied the gene transcription and cellular localization of several MMPs and an inflammatory mediator, tumor necrosis factor (TNF-alpha), using competitive polymerase chain reaction (PCR) and immunohistochemical methods. Significantly elevated levels of MMP-2 and -3 mRNA were observed in LPS-injected brains by 2 h after injection as compared to non-injected brain tissue (P<0.05). By 8 h post-LPS injection, gene expression of MMP-2 and -3 had declined in both saline- and LPS-injected tissue, while TNF-alpha mRNA levels rose significantly. Immunohistochemistry of control brains confirmed the earlier observation of MMP-2 immunoreactivity in processes abutting cerebral blood vessels, which increased after LPS injection. The expression of MMP-9 and MMP-3 was localized mainly to the cerebrovasculature in LPS-stimulated brain tissue, predominantly in the perivascular cells of the basal lamina near the site of injection. Both of these proteinases were present at the site of LPS injection at 8 h, but MMP-2 was absent. Our results show that MMP genes are up-regulated prior to the induction of cytokines such as TNF-alpha, and that MMP proteins are prominent around blood vessels in LPS-induced neuroinflammation.
Article
Glial activation is associated with inflammation-related neuron degeneration in the brain. A variety of protein kinases are assumed to contribute to the expression of inflammation-related products, such as nitric oxide (NO) and proinflammatory cytokines, however, the mechanisms of glial activation and glia-mediated neurotoxicity remain unclear. We found that the indolocarbazole, Gö6976, originally known as a selective protein kinase C (PKC) inhibitor, protects neurons from glia-mediated damage and suppresses lipopolysaccharide (LPS)-induced microglial production of inflammatory factors. The purpose of the study we report here was to determine the mechanism underlying the neuroprotective effect of Gö6976 in mesencephalic neuron/glia cultures. Gö6976 suppressed LPS-induced neurotoxicity in mesencephalic neuron/glia cultures and the protective effect of Gö6976 paralleled the suppression of p38 mitogen activated protein kinase (MAPK) activation and inhibition of NO production. Gö6976 did not directly inhibit the activity of p38 MAPK; rather, the inhibitor suppressed the phosphorylation of p38 MAPK, suggesting that the target of Gö6976 is a signaling event upstream of p38 MAPK. Although Gö6976 was originally known to be a selective PKC inhibitor, the neuroprotection was not mediated through its reputed effects on PKC activity. This paper demonstrates that the neuroprotective effect of Gö6976 against LPS-induced damage is mediated through the inhibition of proinflammatory factors, such as NO from microglia, by inhibiting the phosphorylation of p38 MAPK.
Article
Immune stimulants, such as the bacterial endotoxin, lipopolysaccharide (LPS), the human immunodeficiency virus-1 coat protein gp120, or beta-amyloid peptides, lead to glial activation and production of various immune mediators, such as nitric oxide (NO) and proinflammatory cytokines in the brain. These mediators appear to contribute to neuronal cell death in neurodegenerative diseases. However, the signaling pathways, which mediate the neurotoxic effect by the endotoxin, are not understood. The purpose of this study was to determine the role of mitogen-activated protein kinase (MAPK) in LPS-induced neurodegeneration using mesencephalic dopaminergic neuron/glia cultures. We have found that the p38 MAPK is important in LPS-induced death of mesencephalic neurons in rat neuron-glia mixed cultures. Upon treatment with 10 ng/ml LPS, the number of dopaminergic neurons decreased by 80% within 48 h, preceded by a significant production of NO by glia. Neuroprotection by selective inhibition of p38 MAPK activity paralleled a decrease in LPS-induced inducible nitric oxide synthase (iNOS) expression. These events were significantly reduced by the selective p38 MAPK inhibitor, SB202190, but not by the inactive analogue SB202474. Inhibition of iNOS activity and NO production by treatment with GW274150 was also neuroprotective. Although the p38 MAPK inhibitor afforded significant neuroprotection from LPS toxicity in the neuron-glia mixed culture, it failed to protect dopaminergic neurons from 6-hydroxy-dopamine-induced toxicity, which acts directly on dopaminergic neurons by inducing hydroxyl radical formation from the mitochondria. The results suggest that p38 MAPK in glia plays a significant role in the LPS-induced death of mesencephalic neurons through induction of nitric oxide synthase and resulting NO production.
Article
Isolated primary microglia are highly activated in conventional culture systems. This has restricted studies to the use of late stage measures of activation rather than highly sensitive immunophenotypic and morphological criteria that mark even very early stages of microglial activation in vivo. In the present study, serum-free, serine- and glycine-free medium and poly-L-lysine coated surfaces have been used to demonstrate for the first time isolated rat microglia which (i) downregulate their immunoreactivity for antibodies recognizing complement receptor 3 and major histocompatibility complex antigens while differentiating into ramified cells, and (ii) respond to a subset of modulators with upregulation of complement receptor 3-like immunoreactivity. During 2 weeks of culturing under basal conditions, ramification was accompanied by strong downregulation of OX-42, OX-18 and OX-6 immunoreactivity (antibodies recognizing complement receptor 3 and major histocompatibility complex class I and II antigens, respectively). Ramified cells had lower level immunoreactivity for all three markers than non-ramified cells. High OX-42 immunoreactivity was also associated with morphological signs of activation previously described in vivo. Enhanced OX-42 immunoreactivity was induced by applying either serine and glycine or lipopolysaccharide (LPS) while granulocyte macrophage-colony stimulating factor increased cell number without affecting OX-42 immunoreactivity. LPS induced alterations were apparent within 24 h, were transient, and did not include changes in OX-18 or OX-6 immunoreactivity, cell number or proportion of ramified cells. The results attest to the special efficacy of this culture method for the investigation of the early microglial reaction by use of highly sensitive immunophenotypic criteria.
Article
Microglia rapidly respond to CNS injury, yet the mechanisms leading to their activation and inactivation remain poorly defined. In particular, few studies have established how interactions between inflammatory mediators affect the innate immune response of microglia. To begin to establish how microglia integrate signals from multiple inflammatory mediators, we examined the effects of interleukin 1beta (IL-1beta), interleukin 6 (IL-6), tumor necrosis factor alpha (TNFalpha), interferon gamma (IFN-gamma), and transforming growth factor beta1 (TGFbeta1) on both newborn and bulk-isolated adult microglia. To assess the functional state of the cells, we assayed the expression of cyclooxygenase 2 (Cox-2), interleukin 6, and tumor necrosis factor alpha, and two protein tyrosine kinases that have been implicated in microglial responses to activational stimuli, HCK and FAK. These studies demonstrated that IL-1beta, TNFalpha, IL-6, but not IFN-gamma increase the expression of Cox-2, whereas they all increase the expression of HCK and FAK. In these studies, TGFbeta1 either had no effect, or it decreased basal levels of these proteins. TGFbeta1 blocked activation by IL-1beta when given prior to, or simultaneously with, IL-1beta. TGFbeta1 blocked the induction of the tyrosine kinases, Cox-2, and the induction of IL-6 and TNFalpha mRNAs. However, TGFbeta1 was ineffective in antagonizing the induction of Cox-2 by either IL-6 or TNFalpha. We conclude that the TGFbeta receptor signaling cascades intersect with IL-1, but they may not interact with IL-6 or TNFalpha signaling pathways that lead to activation.
Article
Protein tyrosine kinase (PTK) activity is abundant in microglia, but the PTKs that participate in their activation have not been identified. For these studies, we used three paradigms to characterize PTK expression during microglial activation: resting and activated microglia were bulk fractionated from the adult brain, cultured newborn microglia were treated with lipopolysaccharide (LPS) to model the transition from activated toward phagocytic microglia, and PTK expression was examined in activated microglia in situ after facial nerve axotomy. Two PCR-based strategies were used to show that 21 different PTK genes are expressed by rat brain microglia: 5 receptor PTKs, 10 nonreceptor PTKs, and 6 members of the src family. Seven of the 21 PTKs were examined in greater detail. Five PTK mRNAs (fgr, hck, fak, jak-2, and flk-1) increased expression across all three models of activation. We conclude that they represent key components in the cascades that participate in microglial activation. In contrast, expression of fes and fms correlated with stimuli that affect microglial proliferation. Four of the PTKs (hck, fgr, fes, and fms) are believed to be myeloid cell specific and were not expressed by cultured astrocytes. HCK and FAK protein were also not expressed in lysates of immature astrocytes and oligodendrocytes. Because of their putative specificity, these kinases represent potential targets for inhibitors of microglial activation. Because reactive microglia can exacerbate the severity of neurological diseases, the identification of specific kinases that participate in microglial activation represents an important advance toward the development of new therapeutics.
Article
Full-text available
Synthesis of ADP-ribose polymers catalyzed by poly-(ADP-ribose) polymerase-1 (PARP-1) has been implicated in transcriptional regulation. Recent studies with PARP-1 null mice and PARP-1 inhibitors have also demonstrated that PARP-1 has an essential role in nuclear factor-kappaB (NF-kappaB)-dependent gene expression induced by various inflammatory stimuli. In this study, we used primary cultured mouse glial cells to investigate the role of poly(ADP-ribosyl)ation by PARP-1 in NF-kappaB-dependent gene expression. PARP-1 inhibitors and the antisense RNA for PARP-1 mRNA suppressed lipopolysaccharide (LPS)-induced expression of tumor necrosis factor-alpha and inducible nitric-oxide synthase, suggesting that PARP-1 activity has a critical role in synthesis. Western blotting with anti-poly(ADP-ribose) antibody revealed that PARP-1 itself was mainly poly(ADP-ribosyl)ated in glial cells, i.e. automodified PARP-1 (AM-PARP). The amounts of AM-PARP were not affected by LPS treatment, but were decreased by PARP-1 inhibitors. Electrophoretic mobility shift assay revealed that PARP-1 inhibitors and the antisense RNA for PARP-1 mRNA reduced the LPS-induced DNA binding of NF-kappaB. Non-modified PARP-1 also reduced the DNA binding of NF-kappaB via its physical association with NF-kappaB, whereas AM-PARP had no effect. On the other hand, enhancement of the automodification of PARP-1 by the addition of NAD+, its substrate, promoted the DNA binding of NF-kappaB. Furthermore, in in vitro transcription assay, the addition of AM-PARP or NAD+ to nuclear extracts promoted NF-kappaB p50-dependent transcription. These results indicate that automodification of PARP-1 positively up-regulates formation of the NF-kappaB.DNA complex and enhances transcriptional activation. Therefore, AM-PARP may be critical for the NF-kappaB-dependent gene expression of some inflammatory mediators in glial cells.
Article
Traumatic injury to the brain and spinal cord results in an early inflammatory response that is initiated by the release of proinflammatory cytokines followed by the infiltration and accumulation of polymorphonuclear leukocytes (PMNLs). The role of the inflammatory cascade on traumatic outcome remains controversial. Pleiotropic cytokines appear to function both protectively and destructively. The induction of cytokines can lead to the expression of the inducible form of nitric oxide synthase (iNOS), which in turn provokes the release of excessive amounts of nitric oxide (NO) that may participate in the pathogenesis of tissue injury. Hypothermia has been reported by various groups to be neuroprotective in brain and spinal cord trauma. We studied the effect of therapeutic hypothermia on cerebral IL-1beta concentrations, PMNL accumulation and iNOS activity after traumatic brain injury (TBI) and spinal cord injury (SCI). Based on current data therapeutic hypothermia may protect in models of traumatic injury by modulating deleterious inflammatory processes.
Article
Full-text available
The promoter of the murine gene encoding inducible nitric oxide synthase (iNOS) contains an NF-kappa B site beginning 55 base pairs upstream of the TATA box, designated NF-kappa Bd. Reporter constructs containing truncated promoter regions, when transfected into macrophages, revealed that NF-kappa Bd is necessary to confer inducibility by bacterial lipopolysaccharide (LPS). Oligonucleotide probes containing NF-kappa Bd plus the downstream 9 or 47 base pairs bound proteins that rapidly appeared in the nuclei of LPS-treated macrophages. The nuclear proteins bound to both probes in an NF-kappa Bd-dependent manner, but binding was resistant to cycloheximide only for the shorter probe. The proteins binding both probes reacted with antibodies against p50 and c-rel but not RelB; those binding the shorter probe also reacted with anti-RelA (p65). Pyrrolidine dithiocarbamate, which acts as a specific inhibitor of NF-kappa B, blocked both the activation of the NF-kappa Bd-binding proteins and the production of NO in LPS-treated macrophages. Thus, activation of NF-kappa Bd/Rel is critical in the induction of iNOS by LPS. However, additional, newly synthesized proteins contribute to the NF-kappa Bd-dependent transcription factor complex on the iNOS promoter in LPS treated mouse macrophages.
Article
Full-text available
Bacterial lipopolysaccharide (LPS) is a potent activator of antibacterial responses by macrophages. Following LPS stimulation, the tyrosine phosphorylation of several proteins is rapidly increased in macrophages, and this event appears to mediate some responses to LPS. We now report that two of these tyrosine phosphoproteins of 41 and 44 kDa are isoforms of mitogen-activated protein (MAP) kinase. Each of these proteins was reactive with anti-MAP kinase antibodies and comigrated with MAP kinase activity in fractions eluted from a MonoQ anion-exchange column. Following LPS stimulation, column fractions containing the tyrosine phosphorylated forms of p41 and p44 exhibited increased MAP kinase activity. Inhibition of LPS-induced tyrosine phosphorylation of these proteins was accompanied by inhibition of MAP kinase activity. Additionally, induction of p41/p44 tyrosine phosphorylation and MAP kinase activity by LPS appeared to be independent of activation of protein kinase C, even though phorbol esters also induced these responses. These results demonstrate that LPS induces the tyrosine phosphorylation and activation of at least two MAP kinase isozymes. Since MAP kinases appear to modulate cellular processes in response to extracellular signals, these kinases may be important targets for LPS action in macrophages.
Article
Full-text available
Exposure of primary cultures of neonatal rat cortical astrocytes to bacterial lipopolysaccharide (LPS) results in the appearance of nitric oxide synthase (NOS) activity. The induction of NOS, which is blocked by actinomycin D, is directly related to the duration of exposure and dose of LPS, and a 2-hr pulse can induce enzyme activity. Cytosol from LPS-treated astrocyte cultures, but not from control cultures, produces a Ca(2+)-independent conversion of L-arginine to L-citrulline that can be completely blocked by the specific NOS inhibitor NG-monomethyl-L-arginine. The induced NOS activity exhibits an apparent Km of 16.5 microM for L-arginine and is dependent on NADPH, FAD, and tetrahydrobiopterin. LPS also induces NOS in C6 glioma cells and microglial cultures but not in cultured cortical neurons. The expression of NOS in astrocytes and microglial cells has been confirmed by immunocytochemical staining using an antibody to the inducible NOS of mouse macrophages and by histochemical staining for NADPH diaphorase activity. We conclude that glial cells of the central nervous system can express an inducible form of NOS similar to the inducible NOS of macrophages. Inducible NOS in glia may, by generating nitric oxide, contribute to the neuronal damage associated with cerebral ischemia and/or demyelinating diseases.
Article
Full-text available
Nitric oxide (NO) mediates several biological actions, including relaxation of blood vessels, cytotoxicity of activated macrophages, and formation of cGMP by activation of glutamate receptors in cerebellar slices. Nitric oxide synthase (EC 1.14.23.-) immunoreactivity is colocalized with nicotinamide adenine di-nucleotide phosphate diaphorase in neurons that are uniquely resistant to toxic insults. We show that the nitric oxide synthase inhibitors, N omega-nitro-L-arginine (EC50 = 20 microM) and N omega-monomethyl-L-arginine (EC50 = 170 microM), prevent neurotoxicity elicited by N-methyl-D-aspartate and related excitatory amino acids. This effect is competitively reversed by L-arginine. Depletion of the culture medium of arginine by arginase or arginine-free growth medium completely attenuates N-methyl-D-aspartate toxicity. Sodium nitroprusside, which spontaneously releases NO, produces dose-dependent cell death that parallels cGMP formation. Hemoglobin, which complexes NO, prevents neurotoxic effects of both N-methyl-D-aspartate and sodium nitroprusside. These data establish that NO mediates the neurotoxicity of glutamate.
Article
Full-text available
A metabolic pathway of activated macrophages (M phi) involving oxidation of the guanido nitrogens of L-arginine is required for inhibition of growth and respiration of some target cells. The goal of this study was to identify the M phi metabolite(s) that induce these injuries. The stable products of the L-arginine pathway, NO2- and NO3-, were incapable of causing cytostasis under coculture conditions. However, NO2- became cytostatic upon mild acidification, which favors its transformation into nitrogen oxides of greater reactivity. This suggested that NO. (and/or NO2), recently identified as an M phi metabolite of L-arginine, could be a mediator. Authentic NO. caused cytostasis and respiratory inhibition in L1210 cells in a dose-dependent manner. The mitochondrial lesions caused by NO. were confined to complex 1 and 2, a pattern of injury identical to that seen after coculture with activated M phi. Inclusion of NO. scavenger systems prevented cytostasis from developing in M phi-L1210 cocultures. Thus, M phi-generated NO. can account for L-arginine-dependent cytostasis and respiratory inhibition.
Article
Full-text available
Tyrosine-specific protein kinase activity of the epidermal growth factor (EGF) receptor, pp60v-src and pp110gag-fes was inhibited in vitro by an isoflavone genistein. The inhibition was competitive with respect to ATP and noncompetitive to a phosphate acceptor, histone H2B. By contrast, genistein scarcely inhibited the enzyme activities of serine- and threonine-specific protein kinases such as cAMP-dependent protein kinase, phosphorylase kinase, and the Ca2+/phospholipid-dependent enzyme protein kinase C. When the effect of genistein on the phosphorylation of the EGF receptor was examined in cultured A431 cells, EGF-stimulated serine, threonine, and tyrosine phosphorylation was decreased. Phosphoamino acid analysis of total cell proteins revealed that genistein inhibited the EGF-stimulated increase in phosphotyrosine level in A431 cells.
Article
Full-text available
The promoter of the murine gene encoding inducible nitric oxide synthase (iNOS) contains an NF-kappa B site beginning 55 base pairs upstream of the TATA box, designated NF-kappa Bd. Reporter constructs containing truncated promoter regions, when transfected into macrophages, revealed that NF-kappa Bd is necessary to confer inducibility by bacterial lipopolysaccharide (LPS). Oligonucleotide probes containing NF-kappa Bd plus the downstream 9 or 47 base pairs bound proteins that rapidly appeared in the nuclei of LPS-treated macrophages. The nuclear proteins bound to both probes in an NF-kappa Bd-dependent manner, but binding was resistant to cycloheximide only for the shorter probe. The proteins binding both probes reacted with antibodies against p50 and c-rel but not RelB; those binding the shorter probe also reacted with anti-RelA (p65). Pyrrolidine dithiocarbamate, which acts as a specific inhibitor of NF-kappa B, blocked both the activation of the NF-kappa Bd-binding proteins and the production of NO in LPS-treated macrophages. Thus, activation of NF-kappa B/Rel is critical in the induction of iNOS by LPS. However, additional, newly synthesized proteins contribute to the NF-kappa Bd-dependent transcription factor complex on the iNOS promoter in LPS-treated mouse macrophages.
Article
Full-text available
The focal adhesion protein paxillin undergoes tyrosine phosphorylation in response to signals mediated by integrins, neuropeptides and oncogene products, possibly via activation of the focal adhesion-associated kinase, p125FAK. In the present work, tumor necrosis factor-alpha (TNF) stimulated tyrosine phosphorylation of paxillin in human neutrophils. Cell adhesion and participation of the beta 2 integrin CD18 were necessary, but not sufficient, for the response. Adherent neutrophils also tyrosine phosphorylated paxillin in response to phorbol ester, formylmethionyl-leucyl-phenylalanine and opsonized bacteria. In contrast, p125FAK was constitutively tyrosine phosphorylated in a manner unaffected by adherence and/or TNF. Thus, cytokines and microbial products are among the stimuli that can induce the tyrosine phosphorylation of paxillin, and kinases other than p125FAK may be responsible. This is the first identification of paxillin and p125FAK in human cells and neutrophils, and one of the few identifications of a specific protein that undergoes tyrosine phosphorylation in response to any agonist in neutrophils or in response to TNF in any cell.
Article
Full-text available
The purpose of this study was to investigate the induction of inducible nitric oxide synthase (iNOS) mRNA in the brain tissue of rats and mice under the following experimental conditions: in rats infected with borna disease virus and rabies virus, in mice infected with herpes simplex virus, and in rats after the induction of experimental allergic encephalitis. The results showed that iNOS mRNA, normally nondetectable in the brain, was present in animals after viral infection or after induction of experimental allergic encephalitis. The induction of iNOS mRNA coincided with the severity of clinical signs and in some cases with the presence of inflammatory cells in the brain. The results indicate that nitric oxide produced by cells induced by iNOS may be the toxic factor accounting for cell damage and this may open the door to approaches to the study of the pathogenesis of neurological diseases.
Article
Full-text available
The promoter region of the mouse gene for macrophage-inducible nitric oxide synthase (mac-NOS; EC 1.14.13.39) has been characterized. A putative TATA box is 30 base pairs upstream of the transcription start site. Computer analysis reveals numerous potential binding sites for transcription factors, many of them associated with stimuli that induce mac-NOS expression. To localize functionally important portions of the regulatory region, we constructed deletion mutants of the mac-NOS 5' flanking region and placed them upstream of a luciferase reporter gene. The macrophage cell line RAW 264.7, when transfected with a minimal promoter construct, expresses little luciferase activity when stimulated by lipopolysaccharide (LPS), interferon gamma (IFN-gamma), or both. Maximal expression depends on two discrete regulatory regions upstream of the putative TATA box. Region I (position -48 to -209) increases luciferase activity approximately 75-fold over the minimal promoter construct. Region I contains LPS-related responsive elements, including a binding site for nuclear factor interleukin 6 (NF-IL6) and the kappa B binding site for NF-kappa B, suggesting that this region regulates LPS-induced expression of the mac-NOS gene. Region II (position -913 to -1029) alone does not increase luciferase expression, but together with region I it causes an additional 10-fold increase in expression. Together the two regions increase expression 750-fold over activity obtained from a minimal promoter construct. Region II contains motifs for binding IFN-related transcription factors and thus probably is responsible for IFN-mediated regulation of LPS-induced mac-NOS. Delineation of these two cooperative regions explains at the level of transcription how IFN-gamma and LPS act in concert to induce maximally the mac-NOS gene and, furthermore, how IFN-gamma augments the inflammatory response to LPS.
Article
Full-text available
Nitric oxide (NO) formation via the expression of an endotoxin- and cytokine-inducible NO synthase (iNOS) within the vascular smooth muscle is thought to be responsible for the cardiovascular collapse that occurs during septic shock and antitumor therapy with cytokines. Because the molecular mechanisms that underlie induction of iNOS are still unclear and because tyrosine kinases are implicated in interleukin-1 beta (IL-1 beta)-induced prostaglandin synthesis in mesangial cells and in NO generation by an insulinoma cell line, we investigated the influence of tyrosine kinase inhibitors on iNOS induction in cultured rat aortic smooth muscle cells (RASMC). The production of biologically active NO was demonstrated by L-arginine-dependent guanosine 3',5'-cyclic monophosphate (cGMP) accumulation after a 3-h exposure to either IL-1 beta or lipopolysaccharide (LPS). Pretreatment of RASMC for 30 min with the tyrosine kinase inhibitor genistein prevented both IL-1 beta- and LPS-elicited cGMP accumulation in a concentration-dependent manner. Geldanamycin, a chemically different tyrosine kinase inhibitor, also blocked cGMP formation in response to both LPS and IL-1 beta at nanomolar concentrations. Genistein and geldanamycin inhibited cGMP accumulation even when added 90 min after LPS exposure, but no inhibition was observed when they were included at later time points (120-180 min), suggesting that the inhibitors had no direct effect on iNOS activity after its induction. Formation of cGMP in response to sodium nitroprusside and to NO released from bovine aortic endothelial cells remained virtually unaffected by genistein and geldanamycin.(ABSTRACT TRUNCATED AT 250 WORDS)
Article
Full-text available
Nitric oxide has been implicated as the effector molecule that mediates interleukin-1 beta (IL-1 beta)-induced inhibition of glucose-stimulated insulin secretion by rat islets. Brief exposures of islets (1 h) to IL-1 beta have been shown to inhibit glucose-stimulated insulin secretion at 8 or 18 h after removal of this cytokine. The purpose of this investigation was to determine if brief exposures of islets to IL-1 beta are sufficient to induce the formation of nitric oxide and to examine the signaling process associated with IL-1 beta-induced expression of nitric oxide synthase. We demonstrate that a 1-h pretreatment of islets with IL-1 beta followed by an 8-h incubation in the absence of this cytokine results in inhibition of glucose-stimulated insulin secretion (50%), which is completely prevented by pretreatment of islets with the nitric oxide synthase inhibitor NG-monomethyl-L-arginine (NMMA). The production of nitric oxide by islets under these pulse conditions is demonstrated by IL-1 beta-induced nitrite and electron paramagnetic resonance-detectable iron-nitrosyl complex formation, both of which are prevented by NMMA. IL-1 beta initiates a signal transduction process resulting in the expression of nitric oxide synthase. The signaling process appears to require the activation of a tyrosine kinase, since the tyrosine kinase inhibitor genistein prevents both IL-1 beta-induced inhibition of insulin secretion by islets and formation of nitric oxide by the insulinoma cell line RINm5F. These results show that short exposures of islets to IL-1 beta are sufficient to induce the formation of nitric oxide resulting in inhibition of glucose-stimulated insulin secretion and that a tyrosine kinase may participate in the early signaling events required for IL-1 beta to induce the expression of nitric oxide synthase.
Article
We investigated tumoricidal activation and induction of nitric oxide synthase (NOS) activity in macrophages from LPS-responsive (C3H/HeN) and -unresponsive mice (C3H/HeJ). Macrophages were incubated in vitro with a synthetic lipopeptide or with LPS and IFN-gamma. LPS and IFN-gamma activated C3H/HeN but not C3H/HeJ macrophages to lyse B16 melanoma cells. In contrast, lipopeptide and IFN-gamma activated macrophages from both strains of mice. Genistein, a specific inhibitor of protein tyrosine kinase, significantly blocked tumoricidal activation of macrophages from both strains of mice. Genistein did not affect tumor cell binding but significantly inhibited the production of nitric oxide. Genistein, herbimycin A, and tyrphostin inhibited the induction of NOS activity in macrophages from both strains of mice. These data suggest that protein tyrosine kinase activity is involved in the signal transduction pathway of LPS and other synthetic bacterial-related immunomodulators at a point preceding triggering of macrophage tumoricidal activation and expression of inducible NOS activity.
Article
Bacterial lipopolysaccharide (LPS) is a potent activator of antibacterial responses by macrophages. Following LPS stimulation, the tyrosine phosphorylation of several proteins is rapidly increased in macrophages, and this event appears to mediate some responses to LPS. We now report that two of these tyrosine phosphoproteins of 41 and 44 kDa are isoforms of mitogen-activated protein (MAP) kinase. Each of these proteins was reactive with anti-MAP kinase antibodies and comigrated with MAP kinase activity in fractions eluted from a MonoQ anion-exchange column. Following LPS stimulation, column fractions containing the tyrosine phosphorylated forms of p41 and p44 exhibited increased MAP kinase activity. Inhibition of LPS-induced tyrosine phosphorylation of these proteins was accompanied by inhibition of MAP kinase activity. Additionally, induction of p41/p44 tyrosine phosphorylation and MAP kinase activity by LPS appeared to be independent of activation of protein kinase C, even though phorbol esters also induced these responses. These results demonstrate that LPS induces the tyrosine phosphorylation and activation of at least two MAP kinase isozymes. Since MAP kinases appear to modulate cellular processes in response to extracellular signals, these kinases may be important targets for LPS action in macrophages. © by 92 by The American Society for Biochemistry and Molecular Biology, Inc.
Article
The focal adhesion protein paxillin undergoes tyrosine phosphorylation in response to signals mediated by integrins, neuropeptides and oncogene products, possibly via activation of the focal adhesion-associated kinase, p125FAK. In the present work, tumor necrosis factor-alpha (TNF) stimulated tyrosine phosphorylation of paxillin in human neutrophils. Cell adhesion and participation of the beta 2 integrin CD18 were necessary, but not sufficient, for the response. Adherent neutrophils also tyrosine phosphorylated paxillin in response to phorbol ester, formylmethionyl-leucyl-phenylalanine and opsonized bacteria. In contrast, p125FAK was constitutively tyrosine phosphorylated in a manner unaffected by adherence and/or TNF. Thus, cytokines and microbial products are among the stimuli that can induce the tyrosine phosphorylation of paxillin, and kinases other than p125FAK may be responsible. This is the first identification of paxillin and p125FAK in human cells and neutrophils, and one of the few identifications of a specific protein that undergoes tyrosine phosphorylation in response to any agonist in neutrophils or in response to TNF in any cell.
Article
Nitric oxide (NO) mediates several biological actions, including relaxation of blood vessels, cytotoxicity of activated macrophages, and formation of cGMP by activation of glutamate receptors in cerebellar slices. Nitric oxide synthase (EC 1.14.23.-) immunoreactivity is colocalized with nicotinamide adenine di-nucleotide phosphate diaphorase in neurons that are uniquely resistant to toxic insults. We show that the nitric oxide synthase inhibitors, N omega-nitro-L-arginine (EC50 = 20 microM) and N omega-monomethyl-L-arginine (EC50 = 170 microM), prevent neurotoxicity elicited by N-methyl-D-aspartate and related excitatory amino acids. This effect is competitively reversed by L-arginine. Depletion of the culture medium of arginine by arginase or arginine-free growth medium completely attenuates N-methyl-D-aspartate toxicity. Sodium nitroprusside, which spontaneously releases NO, produces dose-dependent cell death that parallels cGMP formation. Hemoglobin, which complexes NO, prevents neurotoxic effects of both N-methyl-D-aspartate and sodium nitroprusside. These data establish that NO mediates the neurotoxicity of glutamate.
Article
The purpose of this study was to investigate the induction of inducible nitric oxide synthase (iNOS) mRNA in the brain tissue of rats and mice under the following experimental conditions: in rats infected with borna disease virus and rabies virus, in mice infected with herpes simplex virus, and in rats after the induction of experimental allergic encephalitis. The results showed that iNOS mRNA, normally nondetectable in the brain, was present in animals after viral infection or after induction of experimental allergic encephalitis. The induction of iNOS mRNA coincided with the severity of clinical signs and in some cases with the presence of inflammatory cells in the brain. The results indicate that nitric oxide produced by cells induced by iNOS may be the toxic factor accounting for cell damage and this may open the door to approaches to the study of the pathogenesis of neurological diseases.
Article
LONG-TERM potentiation (LTP) in the hippocampus is thought to contribute to memory formation. In the Ca1 region, LTP requires the NMDA (N-methyl-n-aspartate) receptor-dependent influx of Ca2+ and activation of serine and threonine protein kinases. Because of the high amount of protein tyrosine kinases in hippocampus and cerebellum1,2, two regions implicated in learning and memory, we examined the possible additional requirement of tyrosine kinase activity in LTP. We first examined the specificity in brain of five inhibitors of tyrosine kinase3-5 (Table 1) and found that two of them, lavendustin A and genistein, showed substantially greater specificity for tyrosine kinase from hippocampus6 than for three serine-threonine kinases: protein kinase A, protein kinase C, and Ca2+/calmodulin kinase II. Lavendustin A and genistein selectively blocked the induction of LTP when applied in the bath or injected into the postsynaptic cell. By contrast, the inhibitors had no effect on the established LTP, on normal synaptic transmission, or on the neurotransmitter actions attributable to the actions of protein kinase A or protein kinase C. These data suggest that tyrosine kinase activity could be required postsynaptically for long-term synaptic plasticity in the hippocampus. As Ca2+ calmodulin kinase II or protein kinase C seem also to be required7,8, the tyrosine kinases could participate postsynaptically in a kinase network together with serine and threonine kinases.
Article
Activation of excitatory amino acid receptors increased [3H]phorbol-12,13-dibutyrate ([3H]PdBu) binding in four week cultures of striatal cells from postnatal day 7 rat pups (PN7), and in PN7 cells co-cultured the fourth week with striatal cells from postnatal day 1 rat pups. Kainate (KA), trans-1-amino-cyclopentyl-1,3-dicarboxylate (ACPD), and N-methyl-D-aspartate (NMDA) increased [3H]PdBu binding equally in both types of cultures, but alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) increased binding by 3-fold in the co-cultures. Thus, [3H]PdBu binding in these two types of striatal cultures offers a simple model system for studying the regulation of AMPA/KA receptor responses.
Article
Primary astrocyte cultures, C6 glioma cells, and N18 neuroblastoma cells were assayed for nitric oxide synthase (NOS) activity with a bioassay of cyclic GMP production in RFL-6 fibroblasts. Treatment of astrocyte cultures for 16-18 h with lipopolysaccharide (LPS) induced NOS-like activity that was L-arginine and NADPH dependent, Ca2+ independent, and potentiated by superoxide dismutase. Induction was evident after 4 h, was dependent on the dose of LPS, and required protein synthesis. Treatment of astrocyte cultures with leucine methyl ester reduced microglial cell contamination from 7 to 1%, with a loss of 44% of NOS-like activity. C6 cells treated with LPS also showed Ca(2+)-independent and L-arginine-dependent NOS-like activity. N18 cells demonstrated constitutive Ca(2+)-dependent NOS-like activity that was not enhanced by LPS induction. These data indicate that NOS-like activity can be induced in microglia, astrocytes, and a related glioma cell line as it can in numerous other cell types, but not in neuron-like N18 cells.
Article
Activated microglial have been proposed to play a pathogenetic role in immune-mediated neurodegenerative diseases. To test this hypothesis, purified murine neonatal microglial were cocultured with neuronal cells derived from fetal brain. Activation with IFN-gamma and LPS of these cocultures brought about a sharp decrease in uptake of gamma-amino butyric acid and a marked reduction in neuronal cell survival. These effects varied with the density of microglia, the concentrations of the activation signals (IFN-gamma and LPS), and the duration of coculture. Inasmuch as addition of NG-monomethyl-L-arginine blocked these effects, a L-arginine-dependent neurocytotoxic mechanism was implicated. Abundant nitrite, a metabolite of the free radical nitric oxide (NO) derived from L-arginine, was detected in activated microglial/neuronal cell cocultures and in purified microglial cell cultures but not in purified astrocyte or neuronal cell cultures, suggesting that microglial were the principal source of the NO. These findings support the hypothesis that microglia are the source of a neurocytotoxic-free radical, and shed light on an additional mechanism of immune-mediated brain injury.
Article
The mutant human cell line 11.1 is unresponsive to interferon alpha. Here we describe the genetic complementation of this mutant and the identification and cloning of the wild-type gene that corrects the defect. Using transfection with genomic DNA in conjunction with a powerful back-selection, we isolated a cosmid that reverts the mutant phenotype of 11.1 cells. The cosmid encodes a single message whose level is greatly reduced in mutant cells. Complementary DNAs were cloned and found to be virtually identical to tyk2, a human mRNA encoding a non-receptor protein tyrosine kinase of previously unknown function. This finding shows that tyk2 links the interferon alpha/beta receptor to the cytoplasmic transcription factor that mediates activation of interferon-responsive genes.
Article
Protein tyrosine kinases (PTKs) are members of a growing family of oncoproteins and protooncoproteins that play a pivotal role in normal and abnormal proliferative processes. This hallmark identifies these unique proteins as potential targets for antiproliferative therapy. This review discusses the current status of PTK inhibitors, with special emphasis on tyrphostins as antiproliferative agents and as potential drugs for cancers, leukemias, psoriasis, and restenosis as well as other proliferative conditions. The development of tyrphostins as selective signal blockers can be viewed as a first step toward the development of "smart" cocktails as antiproliferative agents. Each of these custom-made cocktails will be aimed at proliferative conditions whose transduction pathways can be characterized by molecular tools. The review also discusses the use of PTK blockers as tools to study signal transduction processes in which protein tyrosine kinases are implicated.
Article
Although several explanations have been proposed for destruction of myelin and oligodendrocytes in multiple sclerosis, there is no proven mechanism of injury. We postulate that the autoimmune response seen in multiple sclerosis results in a cytokine-mediated increase in nitric oxide production by macrophages/microglia, smooth muscle cells and/or endothelium of the central nervous system. 3 mechanisms of cellular damage due to nitric oxide are proposed: 1. direct nitric oxide cytotoxicity; 2. injury due to peroxynitrite formation from superoxide anion and nitric oxide; and 3. nitric oxide-mediated elevations of cellular cGMP that enhance tumor necrosis factor-alpha toxicity. In support of these hypotheses, the anti-inflammatory effectors, dexamethasone and transforming growth factor-beta, ameliorate symptoms seen in clinical multiple sclerosis and experimental allergic encephalitis, respectively. These 2 immunomodulators also inhibit induction of cytokine-mediated nitric oxide production by macrophages. An experimental design and therapeutic interventions which will evaluate the role of nitric oxide in the pathophysiology of experimental allergic encephalitis are presented.
Article
Nitric oxide production by macrophages required either simultaneous or sequential exposure to gamma interferon and lipopolysaccharide; exposure to lipopolysaccharide followed by exposure to gamma interferon gave little response. The apparently evanescent nature of the lipopolysaccharide signal, necessitating persistent stimulation, could be essential to down-regulating nitric oxide production after bacteria are cleared in vivo.
Article
Long-term potentiation (LTP) in the hippocampus is thought to contribute to memory formation. In the Ca1 region, LTP requires the NMDA (N-methyl-D-aspartate) receptor-dependent influx of Ca2+ and activation of serine and threonine protein kinases. Because of the high amount of protein tyrosine kinases in hippocampus and cerebellum, two regions implicated in learning and memory, we examined the possible additional requirement of tyrosine kinase activity in LTP. We first examined the specificity in brain of five inhibitors of tyrosine kinase and found that two of them, lavendustin A and genistein, showed substantially greater specificity for tyrosine kinase from hippocampus than for three serine-threonine kinases: protein kinase A, protein kinase C, and Ca2+/calmodulin kinase II. Lavendustin A and genistein selectively blocked the induction of LTP when applied in the bath or injected into the postsynaptic cell. By contrast, the inhibitors had no effect on the established LTP, on normal synaptic transmission, or on the neurotransmitter actions attributable to the actions of protein kinase A or protein kinase C. These data suggest that tyrosine kinase activity could be required postsynaptically for long-term synaptic plasticity in the hippocampus. As Ca2+ calmodulin kinase II or protein kinase C seem also to be required, the tyrosine kinases could participate postsynaptically in a kinase network together with serine and threonine kinases.
Article
Macrophage-microglia were isolated from primary mixed brain cell cultures of normal newborn mice. They were successfully maintained in vitro for at least 8 weeks. Purity of the cultures was 97-100%, as determined by endocytosis of latex beads, non-specific staining through Fc receptors, EA and EAC rosette formation. These cells were non-specific esterase-positive, but peroxidase-negative. Electron-microscope observations revealed morphological similarities to mature macrophages. Isolated macrophage-microglia seldom incorporated [3H]thymidine in vitro. By means of 51Cr release assay, using monoclonal antibodies against mouse major histocompatibility complex (MHC) antigens and complement, we detected class I MHC (H-2) antigen on unstimulated macrophage-microglia, and both class I and class II (Ia) antigens on gamma-interferon-treated cells. These observations suggest possible immunoregulatory functions of macrophage-microglia in the central nervous system, as is characteristic of other cells of monocyte lineage.
Article
The sequential application of the peroxidase-antiperoxidase (PAP) technique with nickel-intensified DAB and with DAB alone was used to visualize black peptide-immunoreactive endings on amber serotonin-immunoreactive cells in 1-2-micron paraffin sections of the hamster medulla. Met-enkephalin- and substance P-positive terminals were present on serotonin cells in the raphe nuclei, the ventral reticular formation, and in the nucleus interfascicularis hypoglossi. The presence of enkephalin-immunoreactive endings on medullary serotonin-immunoreactive cells correlates with the analgesia and autonomic changes that result from the application of morphine or met-enkephalin to the medulla.
Article
Rat brain glial cells have the capacity to express a calcium-independent form of nitric oxide synthase (iNOS). To test if iNOS induction required tyrosine kinase activity, we made use of genistein, a selective inhibitor of tyrosine kinases. In both primary astrocyte cultures and C6 glioma cells, the presence of genistein prevented both lipopolysaccharide- and cytokine-induced NOS activity in a dose-dependent manner. The presence of tyrphostin-25 (10 microM), which is highly specific for tyrosine kinases, also blocked iNOS induction. Additional characterization showed that genistein blocked iNOS induction in a dose-dependent manner (IC50 of approximately 40 microM), that the continuous presence of genistein was not necessary to observe inhibition, and that preincubation with genistein led to higher levels of inhibition than the simultaneous addition of genistein and inducers. The decrease in iNOS activity due to genistein was accompanied by a decrease in iNOS mRNA level as detected by a specific PCR assay. These results indicate that induction of astroglial iNOS expression requires tyrosine kinase activity.
Article
Injury to the CNS elicits a complex cellular response involving both astrocytes and microglia. Reactive glial populations make up the so-called 'glial scar' that has long been implicated as a barrier to axonal regeneration or as a causal factor in the genesis of epilepsy. Using in vitro models involving highly enriched populations of brain cells we have observed that astroglial growth is regulated in part by an immunomodulatory growth factor, or cytokine, called interleukin-1 (IL-1). A second cytokine, granulocyte-macrophage colony-stimulating factor (GM-CSF) serves as a potent microglial mitogen and regulator of the microglial component of the glial scar. Employing cytokines as tools to manipulate reactive gliosis, we found that IL-1 supported neuronal growth by action upon astroglia, while GM-CSF initiated epileptic-like discharges through mechanisms involving reactive microglia. We propose that a 'cytokine network' involving IL-1 and GM-CSF mediates the composition of glial scars at sites of CNS injury; these reactive glia, in turn, influence the survival and function of neighboring neurons.
Article
Vitamin E, a lipophilic antioxidant, has effectively inhibited the activation of cytokine-induced nuclear factor kB (NFkB). Since NFkB plays a critical role in the induction of an isoform of nitric oxide synthase (iNOS) gene by lipopolysaccharide (LPS), we investigated the effect of a vitamin E derivative, pentamethyl-hydroxychromane (PMC), which is an extremely potent inhibitor of NFkB activation, on the induction of nitric oxide (NO) synthesis and iNOS mRNA by LPS. PMC inhibited the LPS-stimulated induction of NO production in a concentration-dependent fashion in cultured J774 macrophages and rat vascular smooth muscle cells without evidence of cytotoxicity. However, the addition of PMC to J774 macrophages after the induction of iNOS did not inhibit NO production. Treatment of J774 macrophages with LPS resulted in a significant expression of iNOS mRNA, which was profoundly reduced by PMC. Data suggest that PMC inhibits the induction of iNOS by preventing iNOS gene expression through inhibition of NFkB activation.
Article
We investigated tumoricidal activation and induction of nitric oxide synthase (NOS) activity in macrophages from LPS-responsive (C3H/HeN) and -unresponsive mice (C3H/HeJ). Macrophages were incubated in vitro with a synthetic lipopeptide or with LPS and IFN-gamma. LPS and IFN-gamma activated C3H/HeN but not C3H/HeJ macrophages to lyse B16 melanoma cells. In contrast, lipopeptide and IFN-gamma activated macrophages from both strains of mice. Genistein, a specific inhibitor of protein tyrosine kinase, significantly blocked tumoricidal activation of macrophages from both strains of mice. Genistein did not affect tumor cell binding but significantly inhibited the production of nitric oxide. Genistein, herbimycin A, and tyrphostin inhibited the induction of NOS activity in macrophages from both strains of mice. These data suggest that protein tyrosine kinase activity is involved in the signal transduction pathway of LPS and other synthetic bacterial-related immunomodulators at a point preceding triggering of macrophage tumoricidal activation and expression of inducible NOS activity.
Article
Nitric oxide (NO) is a short-lived, diffusible molecule that has a variety of biological activities including vasorelaxation, neurotransmission, and cytotoxicity. In the central nervous system, a constitutive form of nitric oxide synthase (NOS) has been localized in a subset of neurons and in endothelial cells. In addition, both constitutive and LPS-inducible NOS has been demonstrated in rat astrocytes and microglia in vitro. In this report, we present evidence for the production of NO, as measured by the production of nitrite, in highly enriched human fetal astrocyte cultures stimulated with IL-1 beta. The production of nitrite paralleled the induction of NADPH diaphorase enzyme activity in the perikarya of the majority of stimulated astrocytes. The IL-1 beta-induced nitrite production by astrocytes was markedly enhanced when cells were co-stimulated with IFN-gamma or TNF-alpha (IFN-gamma > TNF-alpha); LPS had no effect used as a single agent or in combination with other cytokines. NGMMA and NG-nitro-arginine, competitive inhibitors of NOS, diminished the accumulation of nitrite, but calmodulin antagonists (trifluoperazine, W-5 and W-7) had little or no inhibitory effect. Human fetal microglia, in contrast to astrocytes, failed to secrete significant amounts of nitrite in response to various stimuli. The results demonstrate the presence of an inducible form of NOS in human fetal astrocytes; human microglia, in turn, may control astrocyte NO production by providing IL-1 beta as an activating signal.
Article
Attention has focused on particular neurons as the source of nitric oxide (NO) within the parenchyma of the CNS. In contrast, glial cells have been viewed mainly as potential reservoirs of L-arginine, the substrate for nitric oxide synthase (NOS), and as likely targets for neuronally derived NO because of their proximity and their expression of soluble guanylyl cyclase (sGC). However, it is becoming evident that astrocytes display both constitutive and inducible NOS activity under various conditions, and that activated microglia express an inducible NOS. The NO-producing capacity of oligodendrocytes is not yet known. Glial-derived NO has significant implications for CNS pathophysiology, given the anatomical location and abundance of these cells, and the wide variety of potential interactions that NO can have with cellular biochemistry. Our intention here is to evaluate the evidence for NO production from non-neuronal CNS sources and thus prompt discussion about potential 'nitrinergic' roles for glial cells.
Article
The transduction of a signal is a change in form of the signal as it is passed from one carrier to another. The root "duce" means "to lead" in Latin; thus, a signal is led through a cell by steps of transduction (the same root is in the words seduce and duct as well as II Duce). The earliest transduction steps that were elucidated involved massive release of small molecule "second messengers", originally cAMP, that flooded a cell with information. With the understanding that such proteins as tyrosine kinases and Ras relatives are signal transducers, came the realization that many signaling pathways are more precise, sending controlled and probably weakly amplified signals to specific targets. These intracellular signals are often maintained in macromolecular form rather than being passed to small molecules.
Article
Recent studies indicate that human macrophages lack a high-output inducible nitric oxide synthase (NOS) antimicrobial system, In the present study, microglial cells derived from fetal human versus neonatal mouse brain were compared in a coculture assay of human and murine neuronal cell injury, Neurotoxicity (reflected by lactate dehydrogenase release and impaired neuronal uptake of [3H)'y-amino butyric acid) and nitric oxide (NO) production (assessed by measurement of nitrite) were observed only in cocultures containing interferon (IFN)--ylipopolysaccharide (LPS)-stimulated murine microglia. Cultures of purified human fetal microglia, however, did produce low levels of NO upon stimulation with IFN--y-LPS, These findings support the proposal that human macrophages have an inefficient IFN--y-inducible NOS and suggest that in tissues, such as brain, this deficiency could be advantageous for neighboring cells.
1% DMSO (vehicle control); (v) LPS (1.0 txg/ml) with tyrphostin A25
  • Ixg
Ixg/ml) with 0.1% DMSO (vehicle control); (v) LPS (1.0 txg/ml) with tyrphostin A25 (25 IxM); (vi) IFN'¢ (200 U/ml) and LPS (1.0 txg/ml) with