Article

CED-1 Is a Transmembrane Receptor that Mediates Cell Corpse Engulfment in C. elegans

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

We cloned the C. elegans gene ced-1, which is required for the engulfment of cells undergoing programmed cell death. ced-1 encodes a transmembrane protein similar to human SREC (Scavenger Receptor from Endothelial Cells). We showed that ced-1 is expressed in and functions in engulfing cells. The CED-1 protein localizes to cell membranes and clusters around neighboring cell corpses. CED-1 failed to cluster around cell corpses in mutants defective in the engulfment gene ced-7. Motifs in the intracellular domain of CED-1 known to interact with PTB and SH2 domains were necessary for engulfment but not for clustering. Our results indicate that CED-1 is a cell surface phagocytic receptor that recognizes cell corpses. We suggest that the ABC transporter CED-7 promotes cell corpse recognition by CED-1, possibly by exposing a phospholipid ligand on the surfaces of cell corpses.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

Supplementary resource (1)

... The ced-2/5/12 pathway mediates the activation of the small GTPase CED-10/Rac1, leading to rearrangement of the actin cytoskeleton for cell corpse engulfment (Wang et al., 2003). In the ced-1/6/7 pathway, TTR-52 binds to both exposed PS and the extracellular domain of CED-1, acting as a bridging molecule to cross-link PS with CED-1 Zhou et al., 2001). CED-7, a homolog of the mammalian ABC transporter, functions in both dying and engulfing cells, is required for the enrichment of CED-1 around cell corpses (Mapes et al., 2012;Wu and Horvitz, 1998). ...
... The intracellular domain of CED-1 contains two conserved putative tyrosine phosphorylation sites, the NPXY (residues 962-965) and YXXL motifs (residues 1019-1022), which can interact with proteins containing PTB and Src Homology 2 (SH2) domains, respectively (Zhou et al., 2001). Y2H assays showed that the CED-6 PTB domain was sufficient to interact with the intracellular domain of CED-1(CED-1-CT) (Figure 3-figure supplement 1I). ...
... To investigate whether CED-6 is required for TRIM-21 binding to CED-1 to mediate its degradation, we first mutated the conserved residues of N962 to alanine and of Y965 to phenylalanine in the NPXY motif and introduced mutations into the P ced-1 ced-1 reporter. We then determined the number of ACs in developmental stages in embryos and found that N962A and Y965F did not attenuate the engulfment defects of ced-1(e1735) mutants ( Table 3), indicating that both residues were necessary for complete engulfment of CED-1, which was consistent with the results of a previous study (Zhou et al., 2001). ...
Article
Full-text available
The phagocytic receptor CED-1 mediates apoptotic cell recognition by phagocytic cells, enabling cell corpse clearance in Caenorhabditis elegans . Whether appropriate levels of CED-1 are maintained for executing the engulfment function remains unknown. Here, we identified the C. elegans E3 ubiquitin ligase tripartite motif containing-21 (TRIM-21) as a component of the CED-1 pathway for apoptotic cell clearance. When the NPXY motif of CED-1 was bound to the adaptor protein CED-6 or the YXXL motif of CED-1 was phosphorylated by tyrosine kinase SRC-1 and subsequently bound to the adaptor protein NCK-1 containing the SH2 domain, TRIM-21 functioned in conjunction with UBC-21 to catalyze K48-linked poly-ubiquitination on CED-1, targeting it for proteasomal degradation. In the absence of TRIM-21, CED-1 accumulated post-translationally and drove cell corpse degradation defects, as evidenced by direct binding to VHA-10. These findings reveal a unique mechanism for the maintenance of appropriate levels of CED-1 to regulate apoptotic cell clearance.
... CED-1 and CED-10 are well known for their roles in phagocytosis and degradation of apoptotic cell corpses in C. elegans and other organisms, but how such pathways would interact with exophers budding from living neurons was unclear. In the case of apoptotic cells, loss of CED-1 or CED-10 leads to an accumulation of cell corpses [30]. We found that ced-1 mutants had significantly reduced exopher and starry night numbers, similar to the effects we observed in arf-6 mutants and sec-10 hypodermis-specific knockdown ( Figure 8A). ...
... To better determine if the effects of CED-1 on exopher production might be via direct interaction of hypodermal CED-1 with the emerging exopher, we examined CED-1 protein association with exophers. In particular we used a hypodermis-specific, GFP-tagged, version of CED-1 that lacks C-terminal CED-1 sequences, and increases the duration of CED-1/target associations that are normally otherwise quite transient [30]. Indeed, hypodermal CED-1ΔC::GFP clearly labeled the periphery of exophers undergoing engulfment. ...
... Worm cultures, genetic crosses, and other C. elegans husbandry were performed according to standard methods [50]. Mutants used in this study: anoh-1(tm4762) [32], arf-6(tm1447) [41], arl-8(wy271) [51], ced-1(e1735) [30], cnt-1(tm2313) [41], cup-5(ar465) [52], daf-2(e1370) [53], rab-35(b1034) [26], ttr-52(tm2078) [31], sid-1(qt9) [54]. A complete list of strains used in this study is provided in Table S1. ...
Preprint
Full-text available
C. elegans neurons under stress can produce giant vesicles, several microns in diameter, called exophers. Current models suggest that exophers are neuroprotective, providing a mechanism for stressed neurons to eject toxic protein aggregates and organelles. However, little is known of the fate of the exopher once it leaves the neuron. We found that exophers produced by mechanosensory neurons in C. elegans are engulfed by surrounding hypodermal skin cells, and are then broken up into numerous smaller vesicles that acquire hypodermal phagosome maturation markers, with vesicular contents gradually degraded by hypodermal lysosomes. Consistent with the hypodermis acting as an exopher phagocyte, we found that the hypodermal plasma membrane adjacent to newly formed exophers surrounds the exopher and accumulates F-actin. Efficient fission of engulfed exopher-phagosomes to produce smaller vesicles and degrade their contents required phagosome maturation factors SAND-1/Mon1, GTPase RAB-35, the CNT-1 ARF-GAP, and microtubule motor associated GTPase ARL-8, suggesting a close coupling of phagosome fission and phagosome maturation. Lysosome activity was required to degrade exopher contents in the hypodermis but not for exopher-phagosome resolution into smaller vesicles. Importantly, we found that GTPase ARF-6 and effector SEC-10/Exocyst activity in the hypodermis, along with the CED-1 phagocytic receptor, is required for efficient production of exophers by the neuron. Our results indicate that the neuron requires specific interaction with the phagocyte for an efficient exopher response, a mechanistic feature potentially conserved with mammalian exophergenesis, and similar to neuronal pruning by phagocytic glia that influences neurodegenerative disease.
... The engulfment of cells undergoing apoptosis is mediated by phagocytosis that involves an evolutionary conserved transmembrane receptor protein encoded by the ced-1 gene, the orthologue of mammalian Scavenger Receptor from Endothelial Cells or SREC. Therefore, using CED-1 tagged GFP enables the detection of apoptotic cell death and their engulfment by the neighboring cells [48]. ...
... To test if the BTZ induces apoptosis in C. elegans, we treated wild-type worms expressing ced-1::gfp with different concentrations of BTZ. Expression and cluster formation of CED-1::GFP around the dying cells is used as a cytological marker to detect apoptosis [48]. In line with our in vitro data, BTZ strongly induces After cell lysis, equal amounts of proteins were separated by SDS-PAGE, transferred to the PVDF membrane, and immunoblotted with antibodies of anti-ubiquitin, Skp2, p53, p27, p21, MTH1 and HSP60. ...
Article
Full-text available
Non-melanoma skin cancer (NMSC), encompassing basal and squamous cell carcinoma, is the most prevalent cancer in the United States. While surgical removal remains the conventional therapy with a 95% 5-year cure rate, there is a growing interest in exploring alternative treatment strategies. In this study, we investigated the role of Bortezomib (BTZ), a proteasome inhibitor, in NMSC. Using two NMSC cell lines (A431 and A388), we examined the effects of BTZ treatment. Our results demonstrated that 48 h of BTZ treatment led to downregulating Skp2 expression in both A431 and A388 cells while upregulating p53 expression, specifically in A388 cells. These alterations resulted in impaired cellular growth and caspase-dependent cell death. Silencing Skp2 in A388 cells with siRNA confirmed the upregulation of p53 as a direct target. Furthermore, BTZ treatment increased the Bax to Bcl-2 ratio, promoting mitochondrial permeability and the subsequent release of cytochrome C, thereby activating caspases. We also found that BTZ exerted its antitumor effects by generating reactive oxygen species (ROS), as blocking ROS production significantly reduced BTZ-induced apoptotic cell death. Interestingly, BTZ treatment induced autophagy, which is evident from the increased expression of microtubule-associated proteins nucleoporin p62 and LC-3A/B. In addition to cell lines, we assessed the impact of BTZ in an in vivo setting using Caenorhabditis elegans ( C. elegans ). Our findings demonstrated that BTZ induced germline apoptosis in worms even at low concentrations. Notably, this increased apoptosis was mediated through the activity of CEP-1, the worm’s counterpart to mammalian p53. In summary, our study elucidated the molecular mechanism underlying BTZ-induced apoptosis in NMSC cell lines and C. elegans . By targeting the skp2/p53 axis, inducing mitochondrial permeability, generating ROS, and promoting autophagy, BTZ demonstrates promising anti-cancer activity in NMSC. These findings provide novel insights into potential therapeutic strategies for controlling the unregulated growth of NMSC.
... Germ cell apoptosis was measured either using the reporter CED-1::GFP for engulfed apoptotic nuclei or by counting germ cell corpses, as previously described [30,31]. We used two methods to measure germ cell death for following reasons: (1) measuring the number of CED-1-positive germ cells using the CED-1::GFP transgenic animals to observe the engulfing cell during apoptosis and (2) measuring the number of cell corpses in ced-1 mutant background, an engulfment defective mutant to check whether caffeine intake affects apoptosis through a defect in the engulfment pathway. ...
... Based on the decreased amount of methionine caused by caffeine intake, we investigated whether caffeine intake affects germ cell apoptosis or proliferation due to the caffeine-induced impairment of the methionine cycle. We observed the level of engulfment using the transgenic animals carrying the transgene bcIs39 [Plim-7::ced-1::gfp], which expresses GFP-tagged CED-1 in gonadal sheath cells [31]. The level of engulfment was higher in CIAs than in the caffeine-free diet group and a noticeable increase was observed after 24 h of caffeine treatment ( Figure 3A). ...
Article
Full-text available
Caffeine (1,3,7-trimethylxanthine) is a widely consumed bioactive substance worldwide. Our recent study showed that a reduction in both reproduction and yolk protein production (vitellogenesis) caused by caffeine intake were improved by vitamin B12 supplementation, which is an essential co-factor in methionine metabolism. In the current study, we investigated the role of methionine in the reproduction of caffeine-ingested animals (CIAs). We assessed the effect of methionine metabolism on CIAs and found that caffeine intake decreased both methionine levels and essential enzymes related to the methionine cycle. Furthermore, we found that the caffeine-induced impairment of methionine metabolism decreased vitellogenesis and increased germ cell apoptosis in an LIN-35/RB-dependent manner. Interestingly, the increased germ cell apoptosis was restored to normal levels by methionine supplementation in CIAs. These results indicate that methionine supplementation plays a beneficial role in germ cell health and offspring development by regulating vitellogenesis.
... S3E). To assess whether the germ cell loss and brood size reduction were due to increased cell death, we used a CED-1::GFP reporter to visualize apoptotic germ cells in adults (50). Increased germ cell apoptosis was already detectable in the his-59 single mutant, and such a phenotype was enhanced in the his-55; his-59 double mutant ( fig. ...
... Cell death assays CED-1::GFP expressed in gonadal sheath cells was used to count engulfed germ line corpses as described previously (50). Strains containing CED-1::GFP in wild-type and mutant backgrounds were maintained at 20°C. ...
Article
Full-text available
During metazoan development, the marked change in developmental potential from the parental germline to the embryo raises an important question regarding how the next life cycle is reset. As the basic unit of chromatin, histones are essential for regulating chromatin structure and function and, accordingly, transcription. However, the genome-wide dynamics of the canonical, replication-coupled (RC) histones during gametogenesis and embryogenesis remain unknown. In this study, we use CRISPR-Cas9-mediated gene editing in Caenorhabditis elegans to investigate the expression pattern and role of individual RC histone H3 genes and compare them to the histone variant, H3.3. We report a tightly regulated epigenome landscape change from the germline to embryos that are regulated through differential expression of distinct histone gene clusters. Together, this study reveals that a change from a H3.3- to H3-enriched epigenome during embryogenesis restricts developmental plasticity and uncovers distinct roles for individual H3 genes in regulating germline chromatin.
... Using bcIs39[lim-7p::ced-1::GFP] to visualize Sh1, a transgene that produces a CED-1::GFP fusion protein that fully rescues the sheath cell function of CED-1 to engulf germ cell corpses (Zhou et al., 2001), we found that a majority of gonads (70%) are in Class 1, confirming the existence of bare regions. Indeed, in many cases, the distance between the proximal-most DTC measurement and the distal-most Sh1 measurement exceeds 25 µm ( Figure 1G; Figure 1-figure supplement 1D). ...
... Sh1 visualization in live worms: bcIs39 [lim-7p::CED-1::GFP] (Zhou et al., 2001) encodes a functional membrane-localized fusion to CED-1. tnIs5 and tnIs6 encode an identical non-functional fusion to the first 61 amino acids of LIM-7 (tnIs5 or tnIs6) denoted here as 'lim-7p::GFP' that includes 2.23 kb upstream, the first two exons, and the first intron of lim-7 fused to GFP (Hall et al., 1999). ...
Article
Full-text available
Gap-junctional signaling mediates myriad cellular interactions in metazoans. Yet, how gap junctions control the positioning of cells in organs is not well understood. Innexins compose gap junctions in invertebrates and affect organ architecture. Here, we investigate the roles of gap-junctions in controlling distal somatic gonad architecture and its relationship to underlying germline stem cells in Caenorhabditis elegans . We show that a reduction of soma–germline gap-junctional activity causes displacement of distal sheath cells (Sh1) towards the distal end of the gonad. We confirm, by live imaging, transmission electron microscopy, and antibody staining, that bare regions—lacking somatic gonadal cell coverage of germ cells—are present between the distal tip cell (DTC) and Sh1, and we show that an innexin fusion protein used in a prior study encodes an antimorphic gap junction subunit that mispositions Sh1. We determine that, contrary to the model put forth in the prior study based on this fusion protein, Sh1 mispositioning does not markedly alter the position of the borders of the stem cell pool nor of the progenitor cell pool. Together, these results demonstrate that gap junctions can control the position of Sh1, but that Sh1 position is neither relevant for GLP-1/Notch signaling nor for the exit of germ cells from the stem cell pool.
... The first is a lim-7 promoter-driven cytoplasmic GFP that was used to label the Sh1 cell in a foundational study of the C. elegans hermaphrodite gonad, tnIs6[lim-7::GFP] (Hall et al., 1999; Figure 2F). The second is a lim-7 promoter-driven functional cell death receptor tagged with GFP, bcIs39[lim-7p::ced-1::GFP] (Zhou et al., 2001), which is the basis of a recent study that reports a more proximal boundary of Sh1 ( Figure 2G, strain DG5020; Tolkin et al., 2022). The third is a lim-7 promoter-driven membrane-localized GFP made by us to mark the sheath cell membrane without tagging an endogenous protein, rlmIs5[lim-7p::GFP::CAAX] ( Figure 2H). ...
... Along those lines, it seems possible that the Sh1 cells might have mechanisms to exclude the cell death receptor CED-1 from the cell membrane domain that contacts proliferating germ cells. The bcIs39 transgene is typically used to study engulfment of apoptotic germ cell corpses at the bend of the gonad and rescues ced-1 loss-of-function mutants for apoptotic germ cell corpse engulfment (Zhou et al., 2001). We find this marker to be unreliable in the distal region of the cell, and to cause gonad defects especially but not only when combined with endogenously tagged inx-8(qy78). ...
Article
Full-text available
The Caenorhabditis elegans adult hermaphrodite germline is surrounded by a thin tube formed by somatic sheath cells that support germ cells as they mature from the stem-like mitotic state through meiosis, gametogenesis, and ovulation. Recently, we discovered that the distal Sh1 sheath cells associate with mitotic germ cells as they exit the niche Gordon et al., 2020. Here, we report that these sheath-associated germ cells differentiate first in animals with temperature-sensitive mutations affecting germ cell state, and stem-like germ cells are maintained distal to the Sh1 boundary. We analyze several markers of the distal sheath, which is best visualized with endogenously tagged membrane proteins, as overexpressed fluorescent proteins fail to localize to distal membrane processes and can cause gonad morphology defects. However, such reagents with highly variable expression can be used to determine the relative positions of the two Sh1 cells, one of which often extends further distal than the other.
... MEGF10 is an ortholog of Drosophila Draper and the C. elegans protein CED-1, which help to mediate axon pruning by Drosophila glial cells and phagocytosis of apoptotic cells by worms, respectively.86,87 MEGF10 has also been shown to mediate phagocytosis through the involvement of other proteins, such as GULP1 and ABCA1, but little is known about the function of GULP1 in this pathway.88-90 ...
Article
Full-text available
Background Stroke is an acute cerebrovascular disease in which brain tissue is damaged due to sudden obstruction of blood flow to the brain or the rupture of blood vessels in the brain, which can prompt ischemic or hemorrhagic stroke. After stroke onset, ischemia, hypoxia, infiltration of blood components into the brain parenchyma, and lysed cell fragments, among other factors, invariably increase blood–brain barrier (BBB) permeability, the inflammatory response, and brain edema. These changes lead to neuronal cell death and synaptic dysfunction, the latter of which poses a significant challenge to stroke treatment. Results Synaptic dysfunction occurs in various ways after stroke and includes the following: damage to neuronal structures, accumulation of pathologic proteins in the cell body, decreased fluidity and release of synaptic vesicles, disruption of mitochondrial transport in synapses, activation of synaptic phagocytosis by microglia/macrophages and astrocytes, and a reduction in synapse formation. Conclusions This review summarizes the cellular and molecular mechanisms related to synapses and the protective effects of drugs or compounds and rehabilitation therapy on synapses in stroke according to recent research. Such an exploration will help to elucidate the relationship between stroke and synaptic damage and provide new insights into protecting synapses and restoring neurologic function.
... To this end, we followed apoptosis induction in the C. elegans germline and intestine upon infection by the different PA14 strains. Specifically, to track the engulfment and clearance of dead germ cells within the gonads, we used a C. elegans strain expressing a GFP tagged CED-1 transmembrane receptor that mediates cell corpse engulfment [17]. We found that whereas PA14Δ3tox infection induced more germ cell apoptosis compared to the mildly pathogenic OP50 E. Coli strain, nearly twice as much apoptotic cells were observed in the gonads of C. elegans that were exposed to a PA14 strain overexpressing PemB ( Fig. 2A). ...
Article
Full-text available
Pseudomonas aeruginosa is one of the leading nosocomial opportunistic pathogens causing acute and chronic infections. Among its main virulent factors is the Type III secretion system (T3SS) which enhances disease severity by delivering effectors to the host in a highly regulated manner. Despite its importance for virulence, only six T3SS-dependent effectors have been discovered so far. Previously, we identified two new potential effectors using a machine-learning algorithm approach. Here we demonstrate that one of these effectors, PemB, is indeed virulent. Using a live Caenorhabditis elegans infection model, we demonstrate this effector damages the integrity of the intestine barrier leading to the death of the host. Implementing a high-throughput assay using Saccharomyces cerevisiae, we identified several candidate proteins that interact with PemB. One of them, EFT1, has an ortholog in C. elegans (eef-2) and is also an essential gene and a well-known target utilized by different pathogens to induce toxicity to the worm. Accordingly, we found that by silencing the eef-2 gene in C. elegans, PemB could no longer induce its toxic effect. The current study further uncovers the complex machinery assisting P. aeruginosa virulence and may provide novel insight how to manage infection associated with this hard-to-treat pathogen.
... To confirm Pt-RNA-mediated apoptosis in a multicellular organism, the CED-1::GFP reporter Caenorhabditis elegans (C. elegans) strain was used [20][21][22]. Apoptotic cell death in mitotically active germ cells of this worm leads to exposure of phosphatidylserine on the outer leaflet of the plasma membrane. ...
... Since DYS-1 (dystrophin ortholog) has a pivotal role in relaying mechanical signals and acts as a gravity sensor in C. elegans (Zhou and Chen, 2011), mutations in dys-1 lead to deficient dystrophin, rendering insensitivity to microgravity (Towers et al., 2006;Zhang et al., 2014). Additionally, because CED-1 is a crucial component of the apoptotic pathway responsible for mediating cell corpse engulfment in C. elegans (Zhou et al., 2001), mutants of ced-1 exhibit a relatively mild defect in apoptotic cell engulfment (Wang et al., 2013), resulting in enhanced radiosensitivity (Gao et al., 2017). Therefore, examining the expressions of these genes in space-flown dys-1 and ced-1 mutant C. elegans can contribute to verifying the effectiveness of these 59 potential indicators of space radiation. ...
Article
During space exploration, space radiation is widely recognized as an inescapable perilous stressor, owing to its capacity to induce genomic DNA damage and escalate the likelihood of detrimental health outcomes. Rapid and reliable estimation of space radiation dose holds paramount significance in accurately assessing the health risks associated with spaceflight. However, the identification of space radiation-responsive genes, with their potential to serve as early indicators for diagnosing radiation dose associated with spaceflight, continues to pose a significant challenge. In this study, based on the evolutionarily conserved mechanism of radiation response, an in silico analysis method of homologous comparison was performed to identify the Caenorhabditis elegans orthologues of human radiation-responsive genes with possible roles in the major processes of response to radiation, and thereby to explore the potential C. elegans radiation-responsive genes for evaluating the levels of space radiation exposure. The results showed that there were 60 known C. elegans radiation-responsive genes and 211 C. elegans orthologues of human radiation-responsive genes implicated in the major processes of response to radiation. Through an investigation of all available transcriptomic datasets obtained from space-flown C. elegans, it was observed that the expression levels of the majority of these putative C. elegans radiation-responsive genes identified in this study were notably changed across various spaceflight conditions. Furthermore, this study indicated that within the identified genes, 19 known C. elegans radiation-responsive genes and 40 newly identified C. elegans orthologues of human radiation-responsive genes exhibited a remarkable positive correlation with the duration of spaceflight. Moreover, a noteworthy presence of substantial multi-collinearity among the majority of these identified genes was observed. This observation lends support to the possibility of treating each identified gene as an independent indicator of radiation dose in space. Ultimately, a subset of 15 potential radiation-responsive genes was identified, presenting the most promising indicators for estimation of radiation dose associated with spaceflight in C. elegans.
... We tested stress-induced germ cell apoptosis in the PrD6-mutant animals and compared it with wild-type and the knockout (KO) strain. To facilitate the detection of germ cell corpses, we performed RNAi in the ced-1 gene, which is required for the degradation of the germ cell corpse (Zhou et al., 2001). We subjected the animals of the different strains and alleles to control conditions (20°C and bacteria), to heat shock (3 h at 31°C with 1 h at 20°C for recovery time) or starvation (no bacteria for 6 h). ...
Article
Full-text available
Stress granules (SGs) are sites for mRNA storage, protection, and translation repression. TIA1 and TIAR1 are two RNA-binding proteins that are key players in SGs formation in mammals. TIA1/TIAR have a prion-like domain (PrD) in their C-terminal that promotes liquid-phase separation. Lack of any TIA1/TIAR has severe consequences in mice. However, it is not clear whether the failure to form proper SGs is the cause of any of these problems. We disrupted two predicted α-helices within the prion-like domain of the Caenohabditis elegans TIA1/TIAR homolog, TIAR-1, to test whether its association with SGs is important for the nematode. We found that tiar-1 PrD mutant animals continued to form TIAR-1 condensates under stress in the C. elegans gonad. Nonetheless, TIAR-1 condensates appeared fragile and disassembled quickly after stress. Apparently, the SGs continued to associate regularly as observed with CGH-1, an SG marker. Like tiar-1-knockout nematodes, tiar-1 PrD mutant animals exhibited fertility problems and a shorter lifespan. Notwithstanding this, tiar-1 PrD mutant nematodes were no sensitive to stress. Our data demonstrate that the predicted prion-like domain of TIAR-1 is important for its association with stress granules. Moreover, this domain may also play a significant role in various TIAR-1 functions unrelated to stress, such as fertility, embryogenesis and lifespan.
... CED-1 is a transmembrane receptor that mediates apoptotic cell corpse engulfment in the nematode. Thus, using fluorescently labelled CED-1 allows the identification and scoring of gonadal sheath cells that surround each apoptotic corpse [34][35][36]. Synchronized L4 worms were exposed to CEES or HN2 in M9 for 30 min. Afterwards, worms were placed on NGM plates and incubated at RT for 24 h. ...
Article
Full-text available
Caenorhabditis elegans (C. elegans) is gaining recognition and importance as an organismic model for toxicity testing in line with the 3Rs principle (replace, reduce, refine). In this study, we explored the use of C. elegans to examine the toxicities of alkylating sulphur mustard analogues, specifically the monofunctional agent 2-chloroethyl-ethyl sulphide (CEES) and the bifunctional, crosslinking agent mechlorethamine (HN2). We exposed wild-type worms at different life cycle stages (from larvae L1 to adulthood day 10) to CEES or HN2 and scored their viability 24 h later. The susceptibility of C. elegans to CEES and HN2 paralleled that of human cells, with HN2 exhibiting higher toxicity than CEES, reflected in LC 50 values in the high µM to low mM range. Importantly, the effects were dependent on the worms' developmental stage as well as organismic age: the highest susceptibility was observed in L1, whereas the lowest was observed in L4 worms. In adult worms, susceptibility to alkylating agents increased with advanced age, especially to HN2. To examine reproductive effects, L4 worms were exposed to CEES and HN2, and both the offspring and the percentage of unhatched eggs were assessed. Moreover, germline apoptosis was assessed by using ced-1p::GFP (MD701) worms. In contrast to concentrations that elicited low toxicities to L4 worms, CEES and HN2 were highly toxic to germline cells, manifesting as increased germline apoptosis as well as reduced offspring number and percentage of eggs hatched. Again, HN2 exhibited stronger effects than CEES. Compound specificity was also evident in toxicities to dopaminergic neurons-HN2 exposure affected expression of dopamine transporter DAT-1 (strain BY200) at lower concentrations than CEES, suggesting a higher neurotoxic effect. Mechanistically, nicotinamide adenine dinucleotide (NAD +) has been linked to mustard agent toxicities. Therefore, the NAD +-dependent system was investigated in the response to CEES and HN2 treatment. Overall NAD + levels in worm extracts were revealed to be largely resistant to mustard exposure except for high concentrations, which lowered the NAD + levels in L4 worms 24 h post-treatment. Interestingly, however, mutant worms lacking components of NAD +-dependent pathways involved in genome maintenance, namely pme-2, parg-2, and sirt-2.1 showed a higher and compound-specific susceptibility, indicating an active role of NAD + in genotoxic stress response. In conclusion, the present results demonstrate that C. elegans represents an attractive model to study the toxicology of alkylating agents, which supports its use in mechanistic as well as intervention studies with major strength in the possibility to analyze toxicities at different life cycle stages.
... Glial cells are an attractive candidate because of their close association with neurons and essential roles in neural development, synaptic plasticity, and injury responses 22,23 . During development and metamorphosis when substantial axon and dendrite pruning occurs, and during injury induced neuronal degeneration, glial cells detect and engulf neuronal debris through a conserved signaling pathway mediated by an engulfment receptor, MEGF10 and Jedi (vertebrates) 24,25 /CED-1 (C-elegans) 26 /Draper (Drosophila) [27][28][29] . Draper contains an ITAM domain found in many mammalian immunoreceptors which can be phosphorylated by Src42a to allow binding of an SH2 domain kinase, Shark 30 . ...
Article
Full-text available
Neuronal cell death and subsequent brain dysfunction are hallmarks of aging and neurodegeneration, but how the nearby healthy neurons (bystanders) respond to the death of their neighbors is not fully understood. In the Drosophila larval neuromuscular system, bystander motor neurons can structurally and functionally compensate for the loss of their neighbors by increasing their terminal bouton number and activity. We term this compensation as cross-neuron plasticity, and in this study, we demonstrate that the Drosophila engulfment receptor, Draper, and the associated kinase, Shark, are required for cross-neuron plasticity. Overexpression of the Draper-I isoform boosts cross-neuron plasticity, implying that the strength of plasticity correlates with Draper signaling. In addition, we find that functional cross-neuron plasticity can be induced at different developmental stages. Our work uncovers a role for Draper signaling in cross-neuron plasticity and provides insights into how healthy bystander neurons respond to the loss of their neighboring neurons.
... In contrast, hda-1 RNAi embryos arrested between the late gastrulation stage and bean stage, allowing us to tracked some of apoptotic events. To quantify apoptotic events, we used a secreted Annexin V (sAnxV::GFP) sensor to label apoptotic cells with externalized phosphatidylserine (exPS) on the surface of the plasma membrane in ced-1(e1735) mutant embryos which inhibits engulfment of apoptotic cells (Conradt et al., 2016 ;Mapes et al., 2012 ;Zhou et al., 2001 ). The sAnxV::GFP labeled an average of 10 cells in ced-1(e1735) mutant embryos treated with control RNAi and an average of 14 cells in ced-1(e1735); hda-1 RNAi embryos (Figure 3A-B ). ...
Preprint
Full-text available
Asymmetric cell divisions (ACDs) generate two daughter cells with identical genetic information but distinct cell fates through epigenetic mechanisms. However, the process of partitioning different epigenetic information into daughter cells remains unclear. Here, we demonstrate that the nucleosome remodeling and deacetylase (NuRD) complex is asymmetrically segregated into the surviving daughter cell rather than the apoptotic one during ACDs in Caenorhabditis elegans. The absence of NuRD triggers apoptosis via the EGL-1-CED-9-CED-4-CED-3 pathway, while an ectopic gain of NuRD enables apoptotic daughter cells to survive. We identify the vacuolar H+–adenosine triphosphatase (V-ATPase) complex as a crucial regulator of NuRD’s asymmetric segregation. V-ATPase interacts with NuRD and is asymmetrically segregated into the surviving daughter cell. Inhibition of V-ATPase disrupts cytosolic pH asymmetry and NuRD asymmetry. We suggest that asymmetric segregation of V-ATPase may cause distinct acidification levels in the two daughter cells, enabling asymmetric epigenetic inheritance that specifies their respective life-versus-death fates.
... In Drosophila, Draper (Drpr) is the best-known receptor responsible for phagocytosis of neurons (15). As a homolog of the Caenorhabditis elegans engulfment receptor CED-1 (16) and the mammalian engulfment receptors Jedi-1 and MEGF10 (17), Drpr is involved in many contexts of neuronal phagocytosis, including the clearance of apoptotic neurons during embryonic development (15,18), axon and dendrite pruning during neuronal remodeling (19,20), injury-induced neurite degeneration (21,22), and removal of destabilized boutons at neuromuscular junctions (23). Despite the well-known importance of Drpr in sculpting the nervous system, how Drpr recognizes degenerating neurons in vivo is still unclear. ...
Article
Full-text available
Phagocytic clearance of degenerating neurons is triggered by "eat-me" signals exposed on the neuronal surface. The conserved neuronal eat-me signal phosphatidylserine (PS) and the engulfment receptor Draper (Drpr) mediate phagocytosis of degenerating neurons in Drosophila. However, how PS is recognized by Drpr-expressing phagocytes in vivo remains poorly understood. Using multiple models of dendrite degeneration, we show that the Drosophila chemokine-like protein Orion can bind to PS and is responsible for detecting PS exposure on neurons; it is supplied cell-non-autonomously to coat PS-exposing dendrites and to mediate interactions between PS and Drpr, thus enabling phagocytosis. As a result, the accumulation of Orion on neurons and on phagocytes produces opposite outcomes by potentiating and suppressing phagocytosis, respectively. Moreover, the Orion dosage is a key determinant of the sensitivity of phagocytes to PS exposed on neurons. Lastly, mutagenesis analyses show that the sequence motifs shared between Orion and human immunomodulatory proteins are important for Orion function. Thus, our results uncover a missing link in PS-mediated phagocytosis in Drosophila and imply conserved mechanisms of phagocytosis of neurons.
... Across vertebrate and invertebrate systems, glia engulf unwanted synapses, though the molecular mechanisms underpinning this key step of neural circuit refinement are largely obscure (Marin et al., 2005;Doherty et al., 2009;Chung et al., 2013;Tasdemir-Yilmaz and Freeman, 2014;McLaughlin et al., 2019). In Drosophila, the primary glial phagocytosis receptor is Draper which has considerable homology to mammalian Jedi-1 and MEGF10, as well as CED-1 in C. elegans (Zhou et al., 2001;Suzuki and Nakayama, 2007;Wu et al., 2009). Drosophila glia require Draper to phagocytose neuronal debris (Freeman et al., 2003;Awasaki et al., 2006;MacDonald et al., 2006). ...
Article
Full-text available
Glial phagocytic activity refines connectivity, though molecular mechanisms regulating this exquisitely sensitive process are incompletely defined. We developed the Drosophila antennal lobe as a model for identifying molecular mechanisms underlying glial refinement of neural circuits in the absence of injury. Antennal lobe organization is stereotyped and characterized by individual glomeruli comprised of unique olfactory receptor neuronal (ORN) populations. The antennal lobe interacts extensively with two glial subtypes: ensheathing glia wrap individual glomeruli, while astrocytes ramify considerably within them. Phagocytic roles for glia in the uninjured antennal lobe are largely unknown. Thus, we tested whether Draper regulates ORN terminal arbor size, shape, or presynaptic content in two representative glomeruli: VC1 and VM7. We find that glial Draper limits the size of individual glomeruli and restrains their presynaptic content. Moreover, glial refinement is apparent in young adults, a period of rapid terminal arbor and synapse growth, indicating that synapse addition and elimination occur simultaneously. Draper has been shown to be expressed in ensheathing glia; unexpectedly, we find it expressed at high levels in late pupal antennal lobe astrocytes. Surprisingly, Draper plays differential roles in ensheathing glia and astrocytes in VC1 and VM7. In VC1, ensheathing glial Draper plays a more significant role in shaping glomerular size and presynaptic content; while in VM7, astrocytic Draper plays the larger role. Together, these data indicate that astrocytes and ensheathing glia employ Draper to refine circuitry in the antennal lobe before the terminal arbors reach their mature form and argue for local heterogeneity of neuron-glia interactions.
... For example, the α V β 3 integrin binds PS via the bridging protein MFG-E8 (Hanayama et al., 2002), and the Tryo3-Axl-Mer (TAM) family of receptors interact with PS via the bridging molecules Protein S or GAS6 in mammalian cells (Rothlin et al., 2015). PS on the surfaces of dying cells is directly recognized by the phagocytic receptor CED-1 in Caenorhabditis elegans (Zhou et al., 2001b;Li et al., 2015) and by Draper, the homolog of CED-1 in Drosophila (MacDonald et al., 2006;Tung et al., 2013). CED-1 was also proposed to interact with PS through TTR-52, a bridging molecule (Wang et al., 2010), indicating that it can use both mechanisms to recognize apoptotic cells. ...
Article
Full-text available
Phosphatidylserine (PS) is a lipid component of the plasma membrane. It is asymmetrically distributed to the inner leaflet in live cells. In cells undergoing apoptosis, phosphatidylserine is exposed to the outer surfaces. The exposed phosphatidylserine acts as an evolutionarily conserved “eat-me” signal that attracts neighboring engulfing cells in metazoan organisms, including the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster, and mammals. During apoptosis, the exposure of phosphatidylserine to the outer surface of a cell is driven by the membrane scramblases and flippases, the activities of which are regulated by caspases. Cells undergoing necrosis, a kind of cell death frequently associated with cellular injuries and morphologically distinct from apoptosis, were initially believed to allow passive exposure of phosphatidylserine through membrane rupture. Later studies revealed that necrotic cells actively expose phosphatidylserine before any rupture occurs. A recent study in C. elegans further reported that the calcium ion (Ca²⁺) plays an essential role in promoting the exposure of phosphatidylserine on the surfaces of necrotic cells. These findings indicate that necrotic and apoptotic cells, which die through different molecular mechanisms, use common and unique mechanisms for promoting the exposure of the same “eat me” signal. This article will review the mechanisms regulating the exposure of phosphatidylserine on the surfaces of necrotic and apoptotic cells and highlight their similarities and differences.
... Dys-1 (dystrophin ortholog) plays an essential role in transmitting mechanical signals and serving as a gravity sensor in C. elegans (Zhou and Chen, 2011), and the mutation of dys-1 results in the deficient dystrophin, which shows insensitivity to microgravity (Towers et al., 2006;Zhang et al., 2014). CED-1 is a vital component of the apoptotic pathway that mediates cell corpse engulfment in C. elegans (Zhou et al., 2001), and the mutant of ced-1 displays a relatively weak defect in the engulfment of apoptotic cells (Wang et al., 2013), which shows an enhanced radiosensitivity (Gao et al., 2017). The dauer C. elegans larvae were isolated and loaded into the experimental culture container containing fresh NGM without E. coli to arrest growth at several hours prelaunch, which avoided interference between different development stages and generations. ...
Article
During spaceflight, multiple unique hazardous factors, particularly microgravity and space radiation, can induce different types of DNA damage, which pose a constant threat to genomic integrity and stability of living organisms. Although organisms have evolved different kinds of conserved DNA repair pathways to eliminate this DNA damage on Earth, the impact of space microgravity on the expressions of these DNA repair genes and their regulatory miRNAs has not been fully explored. In this study, we integrated all existing datasets, including both transcriptional and miRNA microarrays in wild-type (WT) Caenorhabditis elegans that were exposed to the treatments of spaceflight (SF), spaceflight control with a 1g centrifugal device (SC), and ground control (GC) in three space experiments with the periods of 4, 8 and 16.5 days. The results of principal component analysis showed the gene expression patterns for five major DNA repair pathways (i.e., non-homologous end joining (NHEJ), homologous recombination (HR), mismatch repair (MMR), nucleotide excision repair (NER), and base excision repair (BER)) were well separated and clustered between SF/GC and SC/GC treatments after three spaceflights. In the 16.5-days space experiment, we also selected the datasets of dys-1 mutant and ced-1 mutant of C. elegans, which respectively presented microgravity-insensitivity and radiosensitivity. Compared to the WT C. elegans flown in the 16.5-days spaceflight, the separation distances between SF and SC samples were significantly reduced in the dys-1 mutant, while greatly enhanced in the ced-1 mutant for five DNA repair pathways. By comparing the results of differential expression analysis in SF/GC versus SC/GC samples, we found the DNA repair genes annotated in the pathways of BER and NER were prominently down-regulated under microgravity during both the 4- and 8-days spaceflights. While, under microgravity, the genes annotated in MMR were dominatingly up-regulated during the 4-days spaceflight, and those annotated in HR were mainly up-regulated during the 8-days spaceflight. And, most of the DNA repair genes annotated in the pathways of BER, NER, MMR, and HR were up-regulated under microgravity during the 16.5-days spaceflight. Using miRNA-mRNA integrated analysis, we determined the regulatory networks of differentially expressed DNA repair genes and their regulatory miRNAs in WT C. elegans after three spaceflights. Compared to GC conditions, the differentially expressed miRNAs were analyzed under SF and SC treatments of three spaceflights, and some altered miRNAs that responded to SF and SC could regulate the expressions of corresponding DNA repair genes annotated in different DNA repair pathways. In summary, these findings indicate that microgravity can significantly alter the expression patterns of DNA repair genes and their regulatory miRNAs in space-flown C. elegans. The alterations of the expressions of DNA repair genes and the dominating DNA repair pathways under microgravity are possibly related to the spaceflight period. In addition, the key miRNAs are identified as the post-transcriptional regulators to regulate the expressions of various DNA repair genes under microgravity. These altered miRNAs that responded to microgravity can be implicated in regulating diverse DNA repair processes in space-flown C. elegans.
... In C. elegans, two parallel redundant regulatory pathways control the process of engulfment of ACs. In the ced-1/6/7 pathway [4][5][6], the phagocytic receptor CED-1 recognizes 'eat-me' signal phosphatidylserine (PS) [7][8][9]. In the ced-2/5/12 pathway [10][11][12][13], several receptors including the phosphatidylserine receptor PSR-1 [14], MOM-5, and integrin INA-1 [15] are proposed to recognize and bind to the PS. ...
Article
Full-text available
As the final step in apoptosis, apoptotic cells (ACs) are swiftly removed by specialized phagocytes, such as macrophages, or nonprofessional phagocytes, such as epidermal cells. Genetic studies of model organisms such as Caenorhabditis elegans have helped to elucidate the mechanisms of AC clearance and the underlying causes of disorders related to dysregulation of these pathways. C. elegans possesses six class B scavenger receptor homologs, but it is unknown if they affect apoptosis. Here we show that only the loss of function of scav-3, the C. elegans homolog of human LIMP-2, resulted in a considerable accumulation of cell corpses, which was caused by a failure in degradation rather than engulfment. SCAV-3 was found to be widely distributed and localized in lysosomes to maintain the integrity of the lysosomal membrane. Further study revealed that loss of scav-3 had no effect on phagosome maturation or the recruitment of lysosomes to phagosomes carrying cell corpses. Moreover, we discovered that the hydrolytic enzymes contained in the lysosomes were reduced in phagosomes in scav-3 mutants. Thus, hydrolases may leak from the damaged lysosome during phagolysosome formation due to the loss of scav-3 function, which reduces lysosome digestion activity and thus directly contributes to the elimination of apoptotic cells.
... Consistently, his-59; his-55 double mutants displayed significantly reduced brood sizes (Fig. 3C). To assess whether the germ cell loss and brood size reduction were due to increased cell death, we used a CED-1::GFP reporter to visualize apoptotic germ cells in adults (42). Increased germ cell apoptosis was detected in the his-59 single H3 mutant, and such a phenotype is enhanced in the his-55; his-59 double mutant ( Fig. 3D and E). ...
Preprint
Full-text available
During metazoan development, the dramatic potency change from germline to embryos raises an important question regarding how the new life cycle is reset. Here, we report a tightly regulated epigenome landscape change from the parental germline to embryos in C. elegans . The epigenome is enriched with histone H3 in early-stage germ cells but switches to a histone variant H3.3-enriched epigenome in the mature egg. This H3.3-dominant epigenome persists in early-stage embryos until gastrulation, when the epigenome becomes H3 abundant again. We further demonstrate that this developmentally programmed H3 → H3.3 → H3 epigenome landscape change is regulated through differential expression of distinct histone gene clusters and is required for both germline integrity and early embryonic cellular plasticity. Together, this study reveals that a bimodal expression of H3 versus H3.3 is important for epigenetic reprogramming during gametogenesis and embryonic plasticity. One Sentence Summary Developmentally programmed epigenome resets cellular plasticity at the parental-to-zygote transition in C. elegans .
... The Dock180 family of atypical Rho GEFs consists of eleven members and is subdivided into four groups (A-D) based on sequence homology, and regulatory domains. The Dock-C subfamily members, which includes Dock7, lack the SH3 domain in Dock-A/B needed for interactions with ELMO proteins that drive Rac-dependent cytoskeletal remodeling [61][62][63] and their biological function is largely uncharacterized 29 . Dock7 has mostly been studied in brain development where it regulates neuronal polarity and Schwann cell migration 64,65 . ...
Preprint
Full-text available
Cancer cells, both within a developing tumor and during metastatic spread, encounter many stresses that require adaptive mechanisms to survive and maintain malignant progression. Here we describe a signaling complex involving the small GTPase Cdc42 and Dock7, a Cdc42/Rac GEF and unique Cdc42-effector, that has a previously unappreciated role in regulating AKT, mTOR, and other mTOR signaling and regulatory partners including the TSC1/TCS2 complex and S6K during serum starvation. Dock7 is highly expressed in triple-negative breast cancers and is essential for the malignant properties in nutrient-deprived growth conditions of several cancer cell lines. We find that Dock7 interacts with phosphorylated AKT to maintain a low, but critical activation of a rapamycin-sensitive and Raptor-independent mTORC1-like activity required for survival during nutrient stress. Following the knock-out of Dock7 from cancer cells, interactions between AKT and the phosphatase PHLPP increased while phosphorylation of AKT at Ser473 decreased, suggesting Dock7 protects AKT from dephosphorylation. The DHR1 domain of Dock7, previously of unknown function, is responsible for maintaining AKT Ser473 phosphorylation during serum starvation through an interaction requiring its C2-like motif. Together, these findings indicate that Dock7 protects and maintains the phosphorylation of AKT to sustain a tonic mTOR/S6K activity in cancer cells necessary for their resistance to anoikis and to prevent them from undergoing apoptosis during stressful conditions.
... To determine whether the prevention of cell death was necessary for MTCH-1 depletion to enhance stress resistance, we counted the number of NSM neurons present in adult animals using a HIS-24::GFP reporter line 26 and scored the number of germline apoptotic corpses present in adulthood using a CED-1::GFP reporter strain. 27 NSM number and frequency of CED-1::GFP halos increase upon inhibition of developmental apoptosis (DA; embryo and early larvae) and physiological apoptosis (adult germline), respsectively. 25 Our experiments revealed that mtch-1(RNAi) had no effect on NSM number or frequency of CED-1::GFP cells in adulthood (Figures S4B and S4C). ...
Article
Full-text available
The age-related loss of protein homeostasis (proteostasis) is at the heart of numerous neurodegenerative diseases. Therefore, finding ways to preserve proteome integrity in aged cells may be a powerful way to promote long-term health. Here, we show that reducing the activity of a highly conserved mitochondrial outer membrane protein, MTCH-1/MTCH2, suppresses age-related proteostasis collapse in Caenorhabditis elegans without disrupting development, growth, or reproduction. Loss of MTCH-1 does not influence proteostasis capacity in aged tissues through previously described pathways but instead operates by reducing CED-4 levels. This results in the sequestration of HSP-90 by inactive CED-3, which in turn leads to an increase in HSF-1 activity, transcriptional remodeling of the proteostasis network, and maintenance of proteostasis capacity with age. Together, our findings reveal a role for programmed cell death factors in determining proteome health and suggest that inhibiting MTCH-1 activity in adulthood may safeguard the aging proteome and suppress age-related diseases.
... The selection process was repeated with the offspring of the selected F2 worms at 15 °C, and epifluorescence microscopy was used to identify a brood in which 100% of worms screened tested positive for germline GFP expression. The strain bcIs39[P(lim-7)ced-1::GFP+lin-15(+)] (MD701) were also used[41]. ...
Article
Full-text available
The TP53 gene is mutated in over 50% of human cancers, and the C. elegans p53-1 (cep-1) gene encodes the ortholog CEP-1. CEP-1 is activated by ultraviolet type C (UVC)-induced DNA damage and activates genes that induce germline apoptosis. UVC treatment of gain-of-function glp-1(ar202gf)/Notch tumorous animals reduces germline stem cell numbers (and overall tumor size), while UVC treatment of double-mutant cep-1/p53(gk138);glp-1/Notch(ar202gf) increases DNA damage adducts and stem cell tumor volume. We compared UVC-induced mitotic stem cell death and animal lifespans for the two different C. elegans tumorous strains. C. elegans stem cell compartment death has never been observed, and we used engulfed small stem cells, notable by green fluorescent puncta, to count cell death events. We found UVC treatment of glp-1(ar202gf) animals increased stem cell death and increased lifespan. However, UVC treatment of double-mutant cep-1/p53(gk138);glp-1/Notch(ar202gf) animals decreased stem cell death, increased tumor volume, and decreased animal lifespan. There are pharmacological agents that induce p53-independent cell death of human cells in culture; and two notable protocols are the PARP-trapping agents of temozolomide plus talazoparib and the nucleoside analogue 8-amino-adenosine. It is important to determine ways to rapidly test for pharmacological agents able to induce p53-independent cell death. We tested feeding cep-1/p53(gk138);glp-1/Notch(ar202gf) nematodes with either 8-amino-adenosine or temozolomide plus talazoparib and found both were able to decrease tumor volume. This is the first comparison for p53-independent responses in cep-1/p53(gk138);glp-1/Notch(ar202gf) animals and showed UVC DNA damage increased tumor volume and decreased lifespan while PARP inhibition decreased tumor volume.
... Figure 3A shows that there was no difference in the number of cell apoptosis in embryos between N2 and nhr-14(tm1473). ced-1(e1735) [20] and vps-18(tm1125) [21] has been reported to affect cell corpse clearance. We also found no difference in the number of cell apoptosis in germline between wild type and nhr-14(tm1473) mutants in the background of ced-1(e1735) and vps-18(tm1125) (Fig. 3B, C). ...
Article
Full-text available
Background Nuclear hormone receptors are involved in transcriptional regulation and many important cellular processes including development and metabolism. However, its role in DNA damage-induced apoptosis remains elusive. Methods Synchronized young adult animals were irradiated with different doses of gamma-Ray, and then put back to culture at 20 °C. Germline cell apoptosis was scored at different time point. Results Deletion of nhr-14 led to decreased DNA damage-induced germline apoptosis, but not the physiological programmed cell death. We also demonstrate that nhr-14 functions downstream of the DNA damage checkpoint pathway. Moreover, we show that nhr-14 regulates egl-1 and ced-13 transcription upon DNA damage. Mechanistically, NHR-14 forms a complex with CEP-1/p53 and binds directly to the egl-1 promoter to promote egl-1 transcription.. Conclusions Our results indicate that NHR-14/HNF4α cooperates with CEP-1/p53 to regulate DNA damage-induced apoptosis. Graphic abstract
... Over the past decades, the use of Drosophila species in genetics has continually provided information on vertebrates, facilitating the development of important therapeutic targets for defective cell clearance in organisms [7]. Several key proteins required for ACs clearance have been identified in D. melanogaster; for example, Draper (Drpr) [8,9], Croquemort (Crq) [10,11], and αPS3/βν integrin [12,13]. However, the detailed molecular mechanisms and signals associated with efferocytosis have not been elucidated. ...
Article
Apoptotic cell (AC) clearance is a complex process in which phagocytes recognize, engulf, and digest ACs during organismal development and tissue homeostasis. Impaired efferocytosis results in developmental defects and autoimmune diseases. In the current study, we performed RNA-sequencing to systematically identify regulators involved in the phagocytosis of ACs by Drosophila melanogaster macrophage-like S2 cells, followed by targeted RNA interference screening. Wunen2 (Wun2), a homolog of mammalian lipid phosphate phosphatase (LPP), was deemed as required for efferocytosis both in vitro and in vivo. However, efferocytosis was independent of Wun2 phosphatase activity. Proteomic analysis further revealed that Rab11 and its effector Rip11 are interaction partners of Wun2. Therefore, Wun2 collaborates with Rip11 and Rab11 to mediate efficient recycling of the phagocytic receptor βν integrin subunit to the plasma membrane. The loss of Wun2 results in the routing of βv integrin subunit (Itgbn) into lysosomes, leading to its degradation. The deficiency of βv integrin subunit on the cell surface leads to aberrant and disorganized actin cytoskeleton, thereby influencing the formation of macrophage pseudopodia toward ACs and thus failure to engulf them. The findings of this study provide insights that clarify how phagocytes coordinate AC signals and adopt a precise mechanism for the maintenance of engulfment receptors at their cell membrane surface to regulate efferocytosis.
... CED-1 is a transmembrane protein that functions in the engulfing (sheath) cells surrounding the surface of apoptotic cells. GFP tagged to CED-1 in the ced-1::gfp(smIs34) transgenic strain can serve as a ring marker for scoring cell corpses [54,[56][57][58][59]. We crossed this strain to the various smc-5/6 mutants, and the results showed that nse-4(tm7158), smc-5(ok2421), and smc-6(ok3294) but not nse-4(tm7141) presented more apoptotic cells than the wild-type ( Figure 6A). ...
Article
Full-text available
The Structural Maintenance of Chromosomes (SMC) complex plays an important role in maintaining chromosome integrity, in which the SMC5/6 complex occupies a central position by facilitating mitotic and meiotic processes as well as DNA repair. NSE-4 Kleisin is critical for both the organization and function of the SMC5/6 complex, bridging NSE1 and NSE3 (MAGE related) with the head domains of the SMC5 and SMC6 proteins. Despite the conservation in protein sequence, no functional relevance of the NSE-4 homologous protein (NSE-4) in Caenorhabditis elegans has been reported. Here, we demonstrated the essential role of C. elegans NSE-4 in genome maintenance and DNA repair. Our results showed that NSE-4 is essential for the maintenance of chromosomal structure and repair of a range of chemically induced DNA damage. Furthermore, NSE-4 is involved in inter-sister repair during meiosis. NSE-4 localizes on the chromosome and is indispensable for the localization of NSE-1. Collectively, our data from this study provide further insight into the evolutionary conservation and diversification of NSE-4 function in the SMC-5/6 complex.
... Genetic screening in C. elegans identified two partially redundant phagocytic pathways (ced-1/6/7 and ced-2/5/10/12) that are highly evolutionarily conserved (Reddien et al., 2001). CED-1 (Draper in flies, MEGF10 in mammals) (Zhou et al., 2001) interacts with CED-6 (dCed-6 in flies, GULP in mammals) (Liu and Hengartner, 1998;Su et al., 2002) to recruit the clathrin protein CHC-1 and its junctional components AP2 and epsin (Chen et al., 2013b;Shen et al., 2013), rearranging the cytoskeleton and facilitating phagocytic pseudopod expansion. CED-2, CED-5, CED-10, CED-12, and PSR-1 (homologs of CrkⅡ, DOCK180, RacGTPase, PH-SH3 domain, and PSR, respectively, in mammals) constitute another phagocytic pathway (Gumienny et al., 2001;Hsu and Wu, 2010;Wu et al., 2017). ...
Article
Full-text available
Ubiquitination, a critical post-translational modification of proteins, refers to the covalent attachment of ubiquitin to the substrate and is involved in various biological processes such as protein stability regulation, DNA damage repair, and apoptosis, among others. E3 ubiquitin ligases are essential enzymes of the ubiquitin pathway with high substrate specificity and precisely regulate specific proteins’ turnover. As one of the most well-studied forms of programmed cell death, apoptosis is substantially conserved across the evolutionary tree. The final critical stage in apoptosis is the removal of apoptotic cells by professional and non-professional phagocytes. Apoptosis and apoptotic cell clearance are crucial for the normal development, differentiation, and growth of multicellular organisms, as well as their association with a variety of inflammatory and immune diseases. In this review, we discuss the role of ubiquitination and deubiquitination in apoptosis and apoptotic cell clearance.
... It is also possible to detect apoptotic cells in live worms by staining them with acridine orange or SYTO 12 vital dyes, which stain nucleic acids specifically within the dying cells (Lant and Derry 2014). An indirect method to visualize dead cells is with CED-1::GFP, which is expressed in the neighboring cells that engulf the dying cells (Zhou et al. 2001). CED-1 is a transmembrane receptor that clusters around cell corpses. ...
Article
Light microscopes are the cell and developmental biologists' "best friend", providing a means to see structures and follow dynamics from the protein to the organism level. A huge advantage of C. elegans as a model organism is its transparency, which coupled with its small size means that nearly every biological process can be observed and measured with the appropriate probe and light microscope. Continuous improvement in microscope technologies along with novel genome editing techniques to create transgenic probes have facilitated the development and implementation of a dizzying array of methods for imaging worm embryos, larvae and adults. In this review we provide an overview of the molecular and cellular processes that can be visualized in living worms using light microscopy. A partial inventory of fluorescent probes and techniques successfully used in worms to image the dynamics of cells, organelles, DNA, and protein localization and activity is followed by a practical guide to choosing between various imaging modalities, including widefield, confocal, lightsheet, and structured illumination microscopy. Finally, we discuss the available tools and approaches, including machine learning, for quantitative image analysis tasks, such as colocalization, segmentation, object tracking, and lineage tracing. Hopefully, this review will inspire worm researchers who have not yet imaged their worms to begin, and push those who are imaging to go faster, finer, and longer.
... Les dommages de l'ADN déclenchent également l'apoptose dans les cellules en pachytène via l'activation de CEP-1/P53 (Derry et al., 2001;Schumacher et al., 2001). Pour savoir si la voie de réparation des dommages à l'ADN est fonctionnelle dans le mutant met-1(n4337), j'ai irradié des animaux possédant un transgène ced-1::GFP qui marque les cellules apoptotiques (Zhou et al., 2001). 24h après irradiation (60Gy) L'inactivation des acteurs de cette voie résulte en une stérilité, ou en une perte de la fertilité progressive au cours des générations (Rechavi and Lev, 2017 (Ruby et al., 2006). ...
Thesis
Les modifications post-traductionelles des histones contribuent à l’expression génique et à la stabilité du génome. La méthylation de la lysine 4 de l’histone H3 (H3K4me), une marque associée aux promoteurs de gènes transcrits, est déposé par les methyltransferases hautement conservées de la famille SET1, dans le contexte du complexe COMPASS. SET-2, l’homologue de SET1 chez Caenorhabditis elegans, est responsable de la déposition de H3K4me dans la lignée germinale, et son inactivation provoque une perte progressive de la fertilité. Le but de mon travail de thèse a été d’étudier comment SET-2 et la méthylation de H3K4 contribuent au maintien de la lignée germinale. J’ai montré que l’absence de SET-2 provoque une sensibilité accrue aux dommages à l’ADN. Cependant, les voies de signalisation et de réparation de ces dommages sont fonctionnelles dans le mutant set-2. Par séquençage de l’ADN, j’ai par ailleurs montré que la stérilité progressive observée en l’absence de set-2 n’est pas due à une capacité de réparation réduite. L’ensemble de mes résultats suggère que H3K4me pourrait agir en aval de la signalisation de dommages à l’ADN, en influençant l’organisation de la chromatine aux sites des cassures double brin. J’ai d’autre part mis en évidence une nouvelle fonction pour la méthylation de H3K4 dans l’organisation de la chromatine en montrant que set-2 interagit génétiquement avec le complexe Condensine II et la Topoisomérase II, facteurs clefs de l’organisation mitotique des chromosomes. Des expériences de microscopie par FLIM-FRET ont d’ailleurs validé une fonction de H3K4 méthylée dans l’organisation de la chromatine dans la lignée germinale. Enfin, j’ai montré par analyses transcriptomiques que la protéine CFP-1 du complexe COMPASS est impliquée dans la régulation du programme transcriptionnel de la lignée germinale et que cette fonction est indépendante de SET-2. L’ensemble de mes résultats montre comment la régulation chromatinienne impacte le maintien d’une lignée germinale fonctionnelle à plusieurs niveaux.
Article
Microtubule-based kinesin motor proteins are crucial for intracellular transport, but their hyperactivation can be detrimental for cellular functions. This study investigated the impact of a constitutively active ciliary kinesin mutant, OSM-3CA, on sensory cilia in C. elegans . Surprisingly, we found that OSM-3CA was absent from cilia but underwent disposal through membrane abscission at the tips of aberrant neurites. Neighboring glial cells engulf and eliminate the released OSM-3CA, a process that depends on the engulfment receptor CED-1. Through genetic suppressor screens, we identified intragenic mutations in the OSM-3CA motor domain and mutations inhibiting the ciliary kinase DYF-5, both of which restored normal cilia in OSM-3CA-expressing animals. We showed that conformational changes in OSM-3CA prevent its entry into cilia, and OSM-3CA disposal requires its hyperactivity. Finally, we provide evidence that neurons also dispose of hyperactive kinesin-1 resulting from a clinic variant associated with amyotrophic lateral sclerosis, suggesting a widespread mechanism for regulating hyperactive kinesins.
Preprint
Full-text available
Lipid homeostasis is critical to the survival of neurons. Lipid transporters from the ATP-binding cassette A (ABCA) subfamily are important regulators of lipid trafficking and are associated with multiple neurodegenerative diseases. How ABCA transporters regulate specific aspects of lipid homeostasis to impact neurodegeneration is an outstanding question. Here we report that the Drosophila ABCA protein Engulfment ABC Transporter in the ovary (Eato) contributes to phagocytosis-dependent neurodegeneration by playing two opposing roles in neurons and nearby phagocytes: In neurons, Eato prevents dendrites and axons from being attacked and engulfed by neighboring phagocytes; in phagocytes, however, Eato enhances the ability of these cells to detect neurons as engulfment targets. Thus, Eato deficiency in neurons alone results in severe phagocytosis-dependent dendrite and axon degeneration, whereas removing Eato from both neurons and phagocytes completely rescues the neurite degeneration. Surprisingly, Eato exerts its functions in both neurons and phagocytes by suppressing the effects of the eat-me signal phosphatidylserine (PS) exposed on the cell surface. Interestingly, multiple human and C. elegans ABCA homologs can compensate for the loss of Eato in phagocytes but not in neurons, suggesting both conserved and cell type-specific activities of these ABCA proteins. These results reveal how ABCA proteins participate in neurodegeneration by regulating PS homeostasis and imply possible mechanisms of neuron-phagocyte interactions in neurodegenerative diseases.
Article
CED-1 is a transmembrane receptor involved in the recognition of “eat-me” signals displayed on the surface of apoptotic cells and thus central for the subsequent engulfment of the cell corpse in C. elegans. The roles of CED-1 in engulfment are well established, as are its downstream effectors. The latter includes the adapter protein CED-6/GULP and the ABC family homolog CED-7. However, how CED-1 is maintained on the plasma membrane in the absence of engulfment is currently unknown. Here, we show that CED-6 and CED-7 have a novel role in maintaining CED-1 correctly on the plasma membrane. We propose that the underlying mechanism is via endocytosis as CED-6 and CED-7 act redundantly with clathrin and its adaptor, the AP2 complex, in ensuring correct CED-1 localization. In conclusion, CED-6 and CED-7 impact other cellular processes than engulfment of apoptotic cells.
Article
The impact of exposure to microbial pathogens on animal reproductive capacity and germline physiology is not well understood. The nematode Caenorhabditis elegans is a bacterivore that encounters pathogenic microbes in its natural environment. How pathogenic bacteria affect host reproductive capacity of C. elegans is not well understood. Here, we show that exposure of C. elegans hermaphrodites to the Gram-negative pathogen Pseudomonas aeruginosa causes a marked reduction in brood size with concomitant reduction in the number of nuclei in the germline and gonad size. We define two processes that are induced that contribute to the decrease in the number of germ cell nuclei. First, we observe that infection with P. aeruginosa leads to the induction of germ cell apoptosis. Second, we observe that this exposure induces mitotic quiescence in the proliferative zone of the C. elegans gonad. Importantly, these processes appear to be reversible; when animals are removed from the presence of P. aeruginosa, germ cell apoptosis is abated, germ cell nuclei numbers increase, and brood sizes recover. The reversible germline dynamics during exposure to P. aeruginosa may represent an adaptive response to improve survival of progeny and may serve to facilitate resource allocation that promotes survival during pathogen infection.
Preprint
Neuronal remodeling generates an enormous amount of cellular debris, which is cleared from the nervous system by glia. At the larva-to-adult transition, Drosophila astrocytes transform into phagocytes and engulf degenerating larval synapses, axonal and dendritic debris. Here we show Tweek, a member of the bridge-like lipid transfer protein family, is upregulated in astrocytes as they ramp up their phagocytic function early in metamorphosis, and is essential for internalization and degradation of neuronal debris. Tweek forms a bridge between the endoplasmic reticulum (ER) and plasma membrane (PM), and loss of Tweek disrupts ER-PM contact formation and membrane lipid distribution. Patient-identified mutations in the human homolog associated with Alkuraya-Kucinskas syndrome resulted in similar defects in neuronal remodeling, indicating these are loss of function mutations. We propose Tweek helps establish and maintain ER-PM contacts during astrocyte phagocytic function and drives bulk lipid transfer to the plasma membrane for continued efficient internalization and degradation of neuronal debris.
Article
Melanoma antigen (MAGE) genes encode for a family of proteins that share a common MAGE homology domain. These genes are conserved in eukaryotes, and have been linked to a variety of cellular and developmental processes including ubiquitination and oncogenesis in cancer. Current knowledge on the MAGE family of proteins mainly comes from the analysis of yeast and human cell lines, and their functions have not been reported at an organismal level in animals. C. elegans, only encodes one known MAGE gene member, mage-1 (NSE3 in yeast), forming part of the SMC-5/6 complex. Here, we characterize the role of mage-1/nse-3 in mitosis and meiosis in C. elegans. mage-1/nse-3 has a role in inter-sister recombination repair during meiotic recombination and for preserving chromosomal integrity upon treatment with a variety of DNA damaging agents. MAGE-1 directly interacts with NSE-1 and NSE-4. In contrast to smc-5, smc-6, and nse-4 mutants which cause the loss of NSE-1 nuclear localization and strong cytoplasmic accumulation, mage-1/nse-3 mutants have a reduced level of NSE-1::GFP, remnant NSE-1::GFP being partially nuclear but largely cytoplasmic. Our data suggest that MAGE-1 is essential for NSE-1 stability and the proper functioning of the SMC-5/6 complex.
Chapter
Phagocytosis is carried out by cells such as macrophages of the immune system, whereby particulates like bacteria and apoptotic bodies are engulfed and sequestered within phagosomes for subsequent degradation. Hence, phagocytosis is important for infection resolution and tissue homeostasis. Aided by the innate and adaptive immune system, the activation of various phagocytic receptors triggers a cascade of downstream signaling mediators that drive actin and plasma membrane remodeling to entrap the bound particulate within the phagosome. Modulation of these molecular players can lead to distinct changes in the capacity and rates of phagocytosis. Here, we present a fluorescence microscopy-based technique to quantify phagocytosis using a macrophage-like cell line. We exemplify the technique through the phagocytosis of antibody-opsonized polystyrene beads and Escherichia coli. This method can be extended to other phagocytes and phagocytic particles.Key wordsPhagocytosis Phagosome Phagocytic index Microscopy Immunofluorescence Quantification
Chapter
The nematode Caenorhabditis elegans offers many experimental advantages to study conserved mechanisms of phagocytosis and phagocytic clearance. These include the stereotyped timing of phagocytic events in vivo for time-lapse imaging, the availability of transgenic reporters labeling molecules involved in different steps of phagocytosis, and the transparency of the animal for fluorescence imaging. Further, the ease of forward and reverse genetics in C. elegans has enabled many of the initial discoveries of proteins involved in phagocytic clearance. In this chapter, we focus on phagocytosis by the large undifferentiated blastomeres of C. elegans embryos, which engulf and eliminate diverse phagocytic cargo from the corpse of the second polar body to cytokinetic midbody remnants. We describe the use of fluorescent time-lapse imaging to observe the distinct steps of phagocytic clearance and methods to normalize this process to distinguish defects in mutant strains. These approaches have enabled us to reveal new insights from the initial signaling to induce phagocytosis up until the final resolution of phagocytic cargo in phagolysosomes.Key wordsPhagocytosis Phagosome maturation Phagosome-lysosome fusion Phagolysosome resolution Time-lapse imaging Fluorescent reporters Caenorhabditis elegans embryos
Article
Recently, 6-PPD quinone (6-PPDQ), a derivative of tire antioxidant 6-PPD, was reported to have acute toxicity for organisms. However, the possible reproductive toxicity of 6-PPDQ is still largely unclear. In this study, the reproductive toxicity of 6-PPDQ after long-term exposure was further investigated in Caenorhabditis elegans. Exposure to 1 and 10 μg/L 6-PPDQ reduced the reproductive capacity. Meanwhile, exposure to 1 and 10 μg/L 6-PPDQ enhanced the germline apoptosis, which was accompanied by upregulation of ced-3, ced-4, and egl-1 expressions and downregulation of ced-9 expression. The observed increase in germline apoptosis in 1 and 10 μg/L 6-PPDQ exposed nematodes was associated with the enhancement in DNA damage and increase in expressions of related genes of cep-1, clk-2, hus-1, and mrt-2. The detected enhancement in germline apoptosis in 1 and 10 μg/L 6-PPDQ exposed nematodes was further associated with the increase in expressions of ced-1 and ced-6 governing the cell corpse engulfment process. Molecular docking analysis indicated the binding potentials of 6-PPDQ with three DNA damage checkpoints (CLK-2, HUS-1, and MRT-2) and corpse-recognizing phagocytic receptor CED-1. Therefore, our data suggested the toxicity on reproductive capacity by 6-PPDQ at environmentally relevant concentrations by enhancing DNA damage- and cell corpse engulfment-induced germline apoptosis in organisms.
Preprint
Full-text available
Neuronal cell death and subsequent brain dysfunction are hallmarks of aging and neurodegeneration, but how the nearby healthy neurons (bystanders) respond to the cell death of their neighbors is not fully understood. In the Drosophila larval neuromuscular system, bystander motor neurons can structurally and functionally compensate for the loss of their neighbors by increasing their axon terminal size and activity. We termed this compensation as cross-neuron plasticity, and in this study, we demonstrated that the Drosophila engulfment receptor, Draper, and the associated kinase, Shark, are required in glial cells. Surprisingly, overexpression of the Draper-I isoform boosts cross-neuron plasticity, implying that the strength of plasticity correlates with Draper signaling. Synaptic plasticity normally declines as animals age, but in our system, functional cross-neuron plasticity can be induced at different time points, whereas structural cross-neuron plasticity can only be induced at early stages. Our work uncovers a novel role for glial Draper signaling in cross-neuron plasticity that may enhance nervous system function during neurodegeneration and provides insights into how healthy bystander neurons respond to the loss of their neighboring neurons.
Article
Full-text available
C. elegans neurons under stress can produce giant vesicles, several microns in diameter, called exophers. Current models suggest that exophers are neuroprotective, providing a mechanism for stressed neurons to eject toxic protein aggregates and organelles. However, little is known of the fate of the exopher once it leaves the neuron. We found that exophers produced by mechanosensory neurons in C. elegans are engulfed by surrounding hypodermal skin cells and are then broken up into numerous smaller vesicles that acquire hypodermal phagosome maturation markers, with vesicular contents gradually degraded by hypodermal lysosomes. Consistent with the hypodermis acting as an exopher phagocyte, we found that exopher removal requires hypodermal actin and Arp2/3, and the hypodermal plasma membrane adjacent to newly formed exophers accumulates dynamic F-actin during budding. Efficient fission of engulfed exopher-phagosomes to produce smaller vesicles and degrade their contents requires phagosome maturation factors SAND-1/Mon1, GTPase RAB-35, the CNT-1 ARF-GAP, and microtubule motor associated GTPase ARL-8, suggesting a close coupling of phagosome fission and phagosome maturation. Lysosome activity was required to degrade exopher contents in the hypodermis but not for exopher-phagosome resolution into smaller vesicles. Importantly, we found that GTPase ARF-6 and effector SEC-10/Exocyst activity in the hypodermis, along with the CED-1 phagocytic receptor, is required for efficient production of exophers by the neuron. Our results indicate that the neuron requires specific interaction with the phagocyte for an efficient exopher response, a mechanistic feature potentially conserved with mammalian exophergenesis, and similar to neuronal pruning by phagocytic glia that influences neurodegenerative disease.
Article
Programmed cell death (PCD) is crucial for normal development and homeostasis. Our first insights into the genetic regulation of apoptotic cell death came from in vivo studies in the powerful genetic model system of C. elegans. More recently, novel developmental cell death programs occurring both embryonically and post-embryonically, and sex-specifically, have been elucidated. Recent studies in the apoptotic setting have also shed new light on the intricacies of phagocytosis in particular. This review provides a brief historical perspective of the origins of PCD studies in C. elegans, followed by a more detailed description of non-canonical apoptotic and non-apoptotic death programs. We conclude by posing open questions and commenting on our outlook on the future of PCD studies in C. elegans, highlighting the importance of advanced imaging tools and the continued leveraging of C. elegans genetics both with classical and modern cutting-edge approaches.
Article
Full-text available
Autophagy is a catabolic process during which cytosolic material is enwrapped in a newly formed double membrane structure called the autophagosome, and subsequently targeted for degradation in the lytic compartment of the cell. The fusion of autophagosomes with the lytic compartment is a tightly regulated step and involves membrane-bound SNARE proteins. These play a crucial role as they promote lipid mixing and fusion of the opposing membranes. Among the SNARE proteins implicated in autophagy, the essential SNARE protein YKT6 is the only SNARE protein evolutionary conserved from yeast to humans. Here we show that alterations in YKT6 function, in both mammalian cells and nematodes, produce early and late autophagy defects that result in reduced survival. Moreover, mammalian autophagosomal YKT6 is phospho-regulated by the ULK1 kinase, preventing premature bundling with the lysosomal SNARE proteins and thereby inhibiting autophagosome-lysosome fusion. Together, our findings reveal that timely regulation of the YKT6 phosphorylation status is crucial throughout autophagy progression and cell survival.
Article
During an animal's development, a large number of cells undergo apoptosis, a suicidal form of death. These cells are promptly phagocytosed by other cells and degraded inside phagosomes. The recognition, engulfment, and degradation of apoptotic cells is an evolutionarily conserved process occurring in all metazoans. Recently, we discovered a novel event in the nematode Caenorhabditis elegans: the double-membrane autophagosomes are recruited to the surface of phagosomes; subsequently, the outer membrane of an autophagosome fuses with the phagosomal membrane, allowing the inner vesicle to enter the phagosomal lumen and accumulate there over time. This event facilitates the degradation of the apoptotic cell inside the phagosome. During this study, we developed a real-time imaging protocol monitoring the recruitment and fusion of autophagosomes to phagosomes over two hours during embryonic development. This protocol uses a deconvolution-based microscopic imaging system with an optimized setting to minimize photodamage of the embryo during the recording period for high-resolution images. Furthermore, acid-resistant fluorescent reporters are chosen to label autophagosomes, allowing the inner vesicles of an autophagosome to remain visible after entering the acidic phagosomal lumen. The methods described here, which enable high sensitivity, quantitative measurement of each step of the dynamic incorporation in developing embryos, are novel since the incorporation of autophagosomes to phagosomes has not been reported previously. In addition to studying the degradation of apoptotic cells, this protocol can be applied to study the degradation of non-apoptotic cell cargos inside phagosomes, as well as the fusion between other types of intracellular organelles in living C. elegans embryos. Furthermore, its principle of detecting the membrane fusion event can be adapted to study the relationship between autophagosomes and phagosomes or other intracellular organelles in any biological system in which real-time imaging can be conducted. This protocol was validated in: eLife (2022), DOI: 10.7554/eLife.72466.
Article
Full-text available
Synaptic pruning is a fundamental process of neuronal circuit refinement in learning and memory. Accumulating evidence suggests that glia participates in sculpting the neuronal circuits through synapse engulfment. However, whether glial involvement in synaptic pruning has a role in memory formation remains elusive. Using newly developed phagocytosis reporter mice and three-dimensional ultrastructural characterization, we found that synaptic engulfment by cerebellar Bergmann glia (BG) frequently occurred upon cerebellum-dependent motor learning in mice. We observed increases in pre- and postsynaptic nibbling by BG along with a reduction in spine volume after learning. Pharmacological blockade of engulfment with Annexin V inhibited both the spine volume reduction and overnight improvement of motor adaptation. These results indicate that BG contribute to the refinement of the mature cerebellar cortical circuit through synaptic engulfment during motor learning.
Thesis
p>To examine the biological function of death receptors in B cell malignancies, the responsiveness to Fas- and TRAIL receptor-induced apoptosis was determined in a panel of Burkitt lymphoma (BL) cell lines including Epstein-Barr virus negative and positive lines with type I, II and III latency programmes. The patterns of resistance to either signal differed between distinct groups of BL cell lines and in some cases resistance was independent of the levels of receptor expressed. I examined the role of molecular determinants that modulate death receptor-mediated apoptosis in other cell systems, receptor mutations and the expression of FADD, caspase 8, decoy and soluble receptors as well as the signalling inhibitors FLIPL and FAP-1. However, these did not correlate with the observed patterns of sensitivity in BL. Therefore novel mechanisms may underlie resistance to death receptor-induced apoptosis in these cells. Death receptors have also been implicated in apoptosis induced by chemotherapeutic agents. Although BL cell lines readily underwent apoptosis when treated with the DNA-damaging drug, CDDP, there was no evidence for a major role of Fas and TRAIL receptors in CDDP-induced apoptosis of a BL cell line containing wild type p53. To compare the results from BL cell lines with primary B cells, the responsiveness to death receptor-mediated apoptosis was also tested in ex vivo chronic lymphocytic leukaemia (CLL) cells. The majority of CLL cells analysed were susceptible to spontaneous apoptosis in vitro , a significant number was sensitive to Fas-induced apoptosis whereas the entire cell panel were resistant to TRAIL-induced apoptosis. Resistance to TRAIL- and in some cases to Fas-induced apoptosis was receptor-independent consistently with the observations in BL cell lines.</p
Article
We previously showed that the Arf1-mediated lipolysis pathway sustains stem cells and cancer stem cells (CSCs); its ablation resulted in necrosis of stem cells and CSCs, which further triggers a systemic antitumor immune response. Here we show that knocking down Arf1 in intestinal stem cells (ISCs) causes metabolic stress, which promotes the expression and translocation of ISC-produced damage-associated molecular patterns (DAMPs; Pretaporter [Prtp] and calreticulin [Calr]). DAMPs regulate macroglobulin complement-related (Mcr) expression and secretion. The secreted Mcr influences the expression and localization of enterocyte (EC)-produced Draper (Drpr) and LRP1 receptors (pattern recognition receptors [PRRs]) to activate autophagy in ECs for ATP production. The secreted ATP possibly feeds back to kill ISCs by activating inflammasome-like pyroptosis. We identify an evolutionarily conserved pathway that sustains stem cells and CSCs, and its ablation results in an immunogenic cascade that promotes death of stem cells and CSCs as well as antitumor immunity.
Article
Full-text available
Here we highlight the increasingly divergent functions of the Caenorhabditis elegans cell elimination genes in the nervous system, beyond their well-documented roles in cell dismantling and removal. We describe relevant background on the C. elegans nervous system together with the apoptotic cell death and engulfment pathways, highlighting pioneering work in C. elegans . We discuss in detail the unexpected, atypical roles of cell elimination genes in various aspects of neuronal development, response and function. This includes the regulation of cell division, pruning, axon regeneration, and behavioral outputs. We share our outlook on expanding our thinking as to what cell elimination genes can do and noting their versatility. We speculate on the existence of novel genes downstream and upstream of the canonical cell death pathways relevant to neuronal biology. We also propose future directions emphasizing the exploration of the roles of cell death genes in pruning and guidance during embryonic development.
Article
Full-text available
The 97-megabase genomic sequence of the nematode Caenorhabditis elegans reveals over 19,000 genes. More than 40 percent of the predicted protein products find significant matches in other organisms. There is a variety of repeated sequences, both local and dispersed. The distinctive distribution of some repeats and highly conserved genes provides evidence for a regional organization of the chromosomes.
Article
Full-text available
ATP-binding-cassette transporter 1 (ABC1) has been implicated in processes related to membrane-lipid turnover. Here, using in vivo loss-of-function and in vitro gain-of-function models, we show that ABC1 promotes Ca2+-induced exposure of phosphatidylserine at the membrane, as determined by a prothrombinase assay, membrane microvesiculation and measurement of transbilayer redistribution of spin-labelled phospholipids. That ABC1 promotes engulfment of dead cells is shown by the impaired ability of ABC1-deficient macrophages to engulf apoptotic preys and by the acquisition of phagocytic behaviour by ABC1 transfectants. Release of membrane phospholipids and cholesterol to apo-AI, the protein core of the cholesterol-shuttling high-density lipoprotein (HDL) particle, is also ABC1-dependent. We propose that both the efficiency of apoptotic-cell engulfment and the efflux of cellular lipids depend on ABC1-induced perturbation of membrane phosphatidylserine turnover. Transient local exposure of anionic phospholipids in the outer membrane leaflet may be sufficient to alter the general properties of the membrane and thus influence discrete physiological functions.
Article
Full-text available
During programmed cell death, cell corpses are rapidly engulfed. This engulfment process involves the recognition and subsequent phagocytosis of cell corpses by engulfing cells. How cell corpses are engulfed is largely unknown. Here we report that ced-5, a gene that is required for cell-corpse engulfment in the nematode Caenorhabditis elegans, encodes a protein that is similar to the human protein DOCK180 and the Drosophila melanogaster protein Myoblast City (MBC), both of which have been implicated in the extension of cell surfaces. ced-5 mutants are defective not only in the engulfment of cell corpses but also in the migrations of two specific gonadal cells, the distal tip cells. The expression of human DOCK180 in C. elegans rescued the cell-migration defect of a ced-5 mutant. We present evidence that ced-5 functions in engulfing cells during the engulfment of cell corpses. We suggest that ced-5 acts in the extension of the surface of an engulfing cell around a dying cell during programmed cell death. We name this new family of proteins that function in the extension of cell surfaces the CDM (for CED-5, DOCK180 and MBC) family.
Article
Full-text available
The expression of the hsp16 gene family in Caenorhabditis elegans has been examined by introducing hsp16-lacZ fusions into the nematode by transformation. Transcription of the hsp16-lacZ transgenes was totally heat-shock dependent and resulted in the rapid synthesis of detectable levels of beta-galactosidase. Although the two hsp16 gene pairs of C. elegans are highly similar within both their coding and noncoding sequences, quantitative and qualitative differences in the spatial pattern of expression between gene pairs were observed. The hsp16-48 promoter was shown to direct greater expression of beta-galactosidase in muscle and hypodermis, whereas the hsp16-41 promoter was more efficient in intestine and pharyngeal tissue. Transgenes that eliminated one promoter from a gene pair were expressed at reduced levels, particularly in postembryonic stages, suggesting that the heat shock elements in the intergenic region of an hsp16 gene pair may act cooperatively to achieve high levels of expression of both genes. Although the hsp16 gene pairs are never constitutively expressed, their heat inducibility is developmentally restricted; they are not heat inducible during gametogenesis or early embryogenesis. The hsp16 genes represent the first fully inducible system in C. elegans to be characterized in detail at the molecular level, and the promoters of these genes should find wide applicability in studies of tissue- and developmentally regulated genes in this experimental organism.
Article
Full-text available
We describe a dominant behavioral marker, rol-6(su-1006), and an efficient microinjection procedure which facilitate the recovery of Caenorhabditis elegans transformants. We use these tools to study the mechanism of C.elegans DNA transformation. By injecting mixtures of genetically marked DNA molecules, we show that large extrachromosomal arrays assemble directly from the injected molecules and that homologous recombination drives array assembly. Appropriately placed double-strand breaks stimulated homologous recombination during array formation. Our data indicate that the size of the assembled transgenic structures determines whether or not they will be maintained extrachromosomally or lost. We show that low copy number extrachromosomal transformation can be achieved by adjusting the relative concentration of DNA molecules in the injection mixture. Integration of the injected DNA, though relatively rare, was reproducibly achieved when single-stranded oligonucleotide was co-injected with the double-stranded DNA.
Article
Full-text available
Phagocyte recognition and ingestion of intact cells undergoing apoptosis are key events in this generally important program of cell death. Insufficient phagocyte capacity for apoptotic cells can result in failure to clear dying cells before membrane integrity is lost, resulting in leakage of noxious cell contents and severe tissue damage. However, no means has been available to increase phagocytic clearance of apoptotic cells. We now report that transfection of the macrophage adhesion molecule CD36 into human Bowes melanoma cells specifically conferred greatly increased capacity to ingest apoptotic neutrophils, lymphocytes, and fibroblasts, comparable to that exhibited by macrophages. Furthermore, when CD36 was transfected into another cell type with limited capacity to take up apoptotic bodies, the monkey COS-7 cell, similar effects were observed. Therefore, CD36 gene transfer can confer "professional" capacity to ingest apoptotic cells upon "amateur" phagocytes.
Article
Full-text available
Numerous immature thymocytes undergo apoptosis and are rapidly engulfed by phagocytic thymic macrophages. The macrophage surface receptors involved in apoptotic thymocyte recognition are unknown. We have examined the role of the class A macrophage scavenger receptor (SR-A) in the engulfment of apoptotic thymocytes. Uptake of steroid-treated apoptotic thymocytes by thymic and inflammatory-elicited SR-A positive macrophages is partially inhibited by an anti-SR-A mAb and more completely by a range of scavenger receptor ligands. Thymic macrophages from mice with targeted disruption of the SR-A gene show a 50% reduction in phagocytosis of apoptotic thymocytes in vitro. These data suggest that SR-A may play a role in the clearance of dying cells in the thymus.
Article
Full-text available
Recently, a murine scavenger receptor type B class I (SR-BI) was identified that binds high density lipoprotein (HDL) and mediates the selective uptake of cholesterol esters. The human CD36 and LIMPII analogous-1 (CLA-1) receptor shows high sequence homology with SR-BI, but their functional relationship has not been determined. Transfected cells expressing CLA-1 bound HDL with a Kd of about 35 microg/ml, similar to the Kd for HDL binding to rodent SR-BI. This binding resulted in an intracellular accumulation of HDL-derived [3H]cholesterol esters without internalization or degradation of 125I-apolipoprotein. CLA-1 was strongly expressed in the adrenal gland and was also abundant in liver and testis, suggesting that CLA-1, like SR-BI, could play a role in the metabolism of HDL. However, CLA-1 was also expressed in monocytes and, like SR-BI, recognized modified forms of low density lipoproteins as well as native LDL and anionic phospholipids. These findings suggest that CLA-1 might have additional physiological functions. We found that CLA-1 recognizes apoptotic thymocytes. Our results demonstrate that CLA-1, a close structural homologue of SR-BI, is also functionally related to SR-BI and may play an important role as a "docking receptor" for HDL in connection with selective uptake of cholesterol esters. An additional role in recognition of damaged cells is suggested by these studies.
Article
Full-text available
Scavenger receptors mediate the endocytosis of chemically modified lipoproteins, such as acetylated low density lipoprotein (Ac-LDL) and oxidized LDL (Ox-LDL), and have been implicated in the pathogenesis of atherosclerosis. The evidence that endothelial cells possess scavenger receptor activity is substantial, and this property is widely used in the isolation of endothelial cells from vascular tissues. In the current study, we have isolated, by expression cloning, the cDNA encoding a novel type of scavenger receptor expressed by endothelial cells (SREC), which mediates the binding and degradation of Ac-LDL. The primary structure of the molecule has no significant homology to other types of scavenger receptors, including the recently cloned endothelial cell Ox-LDL receptor, a member of the C-type lectin family. The cDNA encodes a protein of 830 amino acids with a calculated molecular mass of 85, 735 Da (mature peptide). Chinese hamster ovary cells stably expressing SREC bound 125I-labeled Ac-LDL with high affinity (Kd = 3.0 microg/ml, approximately 1.7 nM) and degraded them via an endocytic pathway. Association of DiII-Ac-LDL were effectively inhibited by Ox-LDL, malondialdehyde-modified LDL, dextran sulfate, and polyinosinic acid, but not by natural LDL and heparin. The cloned receptor has several characteristic domain structures, including an N-terminal extracellular domain with five epidermal growth factor-like cysteine pattern signatures and an unusually long C-terminal cytoplasmic domain (391 amino acids) composed of a Ser/Pro-rich region followed by a Gly-rich region.
Article
Full-text available
The rapid engulfment (phagocytosis) of cells undergoing programmed cell death (apoptosis) is a fundamental biological process that is not well understood. Here we report the cloning and functional characterization of ced-6, a gene specifically required for the engulfment of apoptotic cells in the nematode C. elegans. The CED-6 protein contains a phosphotyrosine binding domain at its N terminus and a proline/serine-rich region in its C-terminal half. Genetic mosaic analysis demonstrates that ced-6 acts within engulfing cells. We also show that ced-6 can promote the engulfment of cells at both early and late stages of apoptosis. Our data suggest that CED-6 is an adaptor molecule acting in a signal transduction pathway that specifically mediates the recognition and engulfment of apoptotic cells.
Article
Full-text available
Recognition of the exposure of phosphatidylserine (PS) on the outer surface of plasma membrane has been implicated in the phagocytosis of aged/apoptotic cells. Because oxidized low-density lipoprotein (OxLDL) has been reported to block the phagocytosis, here we examined whether lectin-like OxLDL receptor 1 (LOX-1), the OxLDL receptor in endothelial cells, mediates phagocytosis of aged/apoptotic cells by endothelial cells. Cultured bovine aortic endothelial cells (BAE) and Chinese hamster ovary (CHO) cells expressing bovine LOX-1 (BLOX-1-CHO), but not wild-type CHO-K1 cells, bound aged red blood cells (RBC) and apoptotic cells, which were further phagocytosed. The binding of aged RBC and the phagocytosis of apoptotic cells were inhibited by OxLDL, acetyl LDL, and other LOX-1 ligands in both BAE and BLOX-1-CHO. mAb against LOX-1 blocked the binding of aged RBC to BAE, suggesting a role for LOX-1 in the recognition of aged cells. The recombinant soluble LOX-1 inhibited the interactions of aged/apoptotic cells with both BLOX-1-CHO and BAE and distinguished aged RBC from native RBC and apoptotic cells from native cells. PS liposome inhibited these LOX-1-mediated interactions with aged/apoptotic cells, suggesting LOX-1 recognizes PS of the apoptotic cells. PS exposed on the surface of apoptotic cells is known to be procoagulant. Accordingly, increased OxLDL may be one of the reasons for enhanced coagulation in atherosclerosis, inhibiting the removal of apoptotic cells.
Article
Full-text available
Exposure of phosphatidylserine (PtdSer) has been implicated in the recognition and phagocytosis of senescent and apoptotic cells, and CD36 has been proposed as one receptor protein that recognizes PtdSer and other anionic phospholipids. We investigated the binding of phospholipid vesicles to the monocytic leukemia cell lines THP-1 and J774A.1 with a flow cytometric assay; vesicles contained 50 mol% PtdSer, phosphatidylinositol (PtdIns), or phosphatidylglycerol (PtdGro), with the balance being phosphatidylcholine. Specific, high affinity binding was observed for vesicles containing PtdSer, PtdIns, or PtdGro. Specificity of the assay was confirmed by control experiments with erythrocytes, which showed minimal vesicle binding, and with annexin V, which blocked the binding of PtdSer, PtdGro, and PtdIns vesicles to the THP-1 cells. However, O-phospho-L-serine (to 1 mM) had no effect on the binding of PtdSer vesicles, indicating that high affinity binding requires a surface containing multiple phosphoserine groups rather than a single molecule. A monoclonal antibody to CD36 blocked up to 60% of the specific binding of PtdSer vesicles but had minimal to no effect on the binding of PtdGro or PtdIns vesicles. This antibody also selectively inhibited the phagocytosis of PtdSer-containing vesicles as measured by fluorescence microscopy, indicating that CD36 is functionally significant for phagocytosis of this vesicle type. In addition, collagen and thrombospondin, two other putative ligands of CD36, were unable to inhibit the binding of PtdSer vesicles. We conclude that CD36 is the primary protein responsible for the high affinity binding of PtdSer vesicles to these monocyte-like cells. In addition, CD36 appears to be specific for PtdSer among anionic phospholipids, and non-phospholipid ligands of CD36 do not share binding sites with PtdSer on CD36.
Article
Full-text available
Development of the nematode Caenorhabditis elegans is highly reproducible and the fate of every somatic cell has been reported. We describe here a previously uncharacterized cell fate in C. elegans: we show that germ cells, which in hermaphrodites can differentiate into sperm and oocytes, also undergo apoptotic cell death. In adult hermaphrodites, over 300 germ cells die, using the same apoptotic execution machinery (ced-3, ced-4 and ced-9) as the previously described 131 somatic cell deaths. However, this machinery is activated by a distinct pathway, as loss of egl-1 function, which inhibits somatic cell death, does not affect germ cell apoptosis. Germ cell death requires ras/MAPK pathway activation and is used to maintain germline homeostasis. We suggest that apoptosis eliminates excess germ cells that acted as nurse cells to provide cytoplasmic components to maturing oocytes.
Article
Full-text available
Exposure of phosphatidylserine on the outer leaflet of the plasma membrane is a surface change common to many apoptotic cells. Normally restricted to the inner leaflet, phosphatidylserine appears as a result of decreased aminophospholipid translocase activity and activation of a calcium-dependent scramblase. Phosphatidylserine exposure has several potential biological consequences, one of which is recognition and removal of the apoptotic cell by phagocytes. It is still not clear which receptors mediate PS recognition on apoptotic cells; however, several interesting candidates have been proposed. These include the Class B scavenger and thrombospondin receptor CD36, an oxLDL receptor (CD68), CD14, annexins, beta2 glycoprotein I, gas-6 and a novel activity expressed on macrophages stimulated with digestible particles such as beta-glucan. Whether PS is the sole ligand recognized by phagocytes or whether it associated with other molecules to form a complex ligand remains to be determined.
Article
Full-text available
Macrophages in the Drosophila embryo are responsible for the phagocytosis of apoptotic cells and are competent to engulf bacteria. Croquemort (CRQ) is a CD36-related receptor expressed exclusively on these macrophages. Genetic evidence showed thatcrq was essential for efficient phagocytosis of apoptotic corpses but was not required for the engulfment of bacteria. The expression of CRQ was regulated by the amount of apoptosis. These data define distinct pathways for the phagocytosis of corpses and bacteria in Drosophila.
Article
Full-text available
Genetic and embryological experiments have established the Caenorhabditis elegans adult hermaphrodite gonad as a paradigm for studying the control of germline development and the role of soma-germline interactions. We describe ultrastructural features relating to essential germline events and the soma-germline interactions upon which they depend, as revealed by electron and fluorescence microscopy. Gap junctions were observed between oocytes and proximal gonadal sheath cells that contract to ovulate the oocyte. These gap junctions must be evanescent since individual oocytes lose contact with sheath cells when they are ovulated. In addition, proximal sheath cells are coupled to each other by gap junctions. Within proximal sheath cells, actin/myosin bundles are anchored to the plasma membrane at plaque-like structures we have termed hemi-adherens junctions, which in turn are closely associated with the gonadal basal lamina. Gap junctions and hemi-adherens junctions are likely to function in the coordinated series of contractions required to ovulate the mature oocyte. Proximal sheath cells are fenestrated with multiple small pores forming conduits from the gonadal basal lamina to the surface of the oocyte, passing through the sheath cell. In most instances where pores occur, extracellular yolk particles penetrate the gonadal basal lamina to directly touch the underlying oocytes. Membrane-bounded yolk granules were generally not found in the sheath cytoplasm by either electron microscopy or fluorescence microscopy. Electron microscopic immunocytochemistry was used to confirm and characterize the appearance of yolk protein in cytoplasmic organelles within the oocyte and in free particles in the pseudocoelom. The primary route of yolk transport apparently proceeds from the intestine into the pseudocoelom, then through sheath pores to the surface of the oocyte, where endocytosis occurs. Scanning electron microscopy was used to directly visualize the distal tip cell which extends tentacle-like processes that directly contact distal germ cells. These distal tip cell processes are likely to play a critical role in promoting germline mitosis. Scanning electron microscopy also revealed thin filopodia extending from the distal sheath cells. Distal sheath filopodia were also visualized using a green fluorescent protein reporter gene fusion and confocal microscopy. Distal sheath filopodia may function to stretch the sheath over the distal arm.
Article
Development of the nematode Caenorhabditis elegans is highly reproducible and the fate of every somatic cell has been reported. We describe here a previously uncharacterized cell fate in C. elegans: we show that germ cells, which in hermaphrodites can differentiate into sperm and oocytes, also undergo apoptotic cell death. In adult hermaphrodites, over 300 germ cells die, using the same apoptotic execution machinery (ced-3, ced-4 and ced-9) as the previously described 131 somatic cell deaths. However, this machinery is activated by a distinct pathway, as loss of egl-1 function, which inhibits somatic cell death, does not affect germ cell apoptosis. Germ cell death requires ras/MAPK pathway activation and is used to maintain germline homeostasis. We suggest that apoptosis eliminates excess germ cells that acted as nurse cells to provide cytoplasmic components to maturing oocytes.
Article
We describe a dominant behavioral marker, rol‐6(su‐1006), and an efficient microinjection procedure which facilitate the recovery of Caenorhabditis elegans transformants. We use these tools to study the mechanism of C.elegans DNA transformation. By injecting mixtures of genetically marked DNA molecules, we show that large extrachromosomal arrays assemble directly from the injected molecules and that homologous recombination drives array assembly. Appropriately placed double‐strand breaks stimulated homologous recombination during array formation. Our data indicate that the size of the assembled transgenic structures determines whether or not they will be maintained extrachromosomally or lost. We show that low copy number extrachromosomal transformation can be achieved by adjusting the relative concentration of DNA molecules in the injection mixture. Integration of the injected DNA, though relatively rare, was reproducibly achieved when single‐stranded oligonucleotide was co‐injected with the double‐stranded DNA.
Article
In the nematode C. elegans, cells undergoing programmed death in the developing ventral nerve cord were identified by Nomarski optics and prepared for ultrastructural study at various times after their birth in mitosis. The sequence of changes observed suggests that the hypodermis recognizes the dying cell before completion of telophase. The dying cell is engulfed and digestion then occurs until all that remains within the hypodermal cytoplasm is a collection of membranous whorls interspersed with condensed chromatin-like remnants. The process shares several features with apoptosis, the mode of programmed cell death observed in vertebrates and insects. The selection of cells for programmed death appears not to involve competition for peripheral targets.
Article
Phagocyte recognition and ingestion of intact cells undergoing apoptosis are key events in this generally important program of cell death. Insufficient phagocyte capacity for apoptotic cells can result in failure to clear dying cells before membrane integrity is lost, resulting in leakage of noxious cell contents and severe tissue damage. However, no means has been available to increase phagocytic clearance of apoptotic cells. We now report that transfection of the macrophage adhesion molecule CD36 into human Bowes melanoma cells specifically conferred greatly increased capacity to ingest apoptotic neutrophils, lymphocytes, and fibroblasts, comparable to that exhibited by macrophages. Furthermore, when CD36 was transfected into another cell type with limited capacity to take up apoptotic bodies, the monkey COS-7 cell, similar effects were observed. Therefore, CD36 gene transfer can confer "professional" capacity to ingest apoptotic cells upon "amateur" phagocytes.
Article
In the nematode C. elegans, cells undergoing programmed death in the developing ventral nerve cord were identified by Nomarski optics and prepared for ultrastructural study at various times after their birth in mitosis. The sequence of changes observed suggests that the hypodermis recognizes the dying cell before completion of telophase. The dying cell is engulfed and digestion then occurs until all that remains within the hypodermal cytoplasm is a collection of membranous whorls interspersed with condensed chromatin-like remnants. The process shares several features with apoptosis, the mode of programmed cell death observed in vertebrates and insects. The selection of cells for programmed death appears not to involve competition for peripheral targets.
Article
A computer program that progressively evaluates the hydrophilicity and hydrophobicity of a protein along its amino acid sequence has been devised. For this purpose, a hydropathy scale has been composed wherein the hydrophilic and hydrophobic properties of each of the 20 amino acid side-chains is taken into consideration. The scale is based on an amalgam of experimental observations derived from the literature. The program uses a moving-segment approach that continuously determines the average hydropathy within a segment of predetermined length as it advances through the sequence. The consecutive scores are plotted from the amino to the carboxy terminus. At the same time, a midpoint line is printed that corresponds to the grand average of the hydropathy of the amino acid compositions found in most of the sequenced proteins. In the case of soluble, globular proteins there is a remarkable correspondence between the interior portions of their sequence and the regions appearing on the hydrophobic side of the midpoint line, as well as the exterior portions and the regions on the hydrophilic side. The correlation was demonstrated by comparisons between the plotted values and known structures determined by crystallography. In the case of membrane-bound proteins, the portions of their sequences that are located within the lipid bilayer are also clearly delineated by large uninterrupted areas on the hydrophobic side of the midpoint line. As such, the membrane-spanning segments of these proteins can be identified by this procedure. Although the method is not unique and embodies principles that have long been appreciated, its simplicity and its graphic nature make it a very useful tool for the evaluation of protein structures.
Article
Numerous copies of domains, or modules, with similarity recognizable from sequence analysis, are being found in a wide variety of different proteins. New information on the structure and distribution of modules in the epidermal growth factor superfamily is presented.
Article
The Drosophila immune response uses many of the same components as the mammalian innate immune response, including signalling pathways that activate transcription factors of the Rel/NK-kappaB family. In response to infection, two Rel proteins, Dif and Dorsal, translocate from the cytoplasm to the nuclei of larval fat-body cells. The Toll signalling pathway, which controls dorsal-ventral patterning during Drosophila embryogenesis, regulates the nuclear import of Dorsal in the immune response, but here we show that the Toll pathway is not required for nuclear import of Dif. Cytoplasmic retention of both Dorsal and Dif depends on Cactus protein; nuclear import of Dorsal and Dif is accompanied by degradation of Cactus. Therefore the two signalling pathways that target Cactus for degradation must discriminate between Cactus-Dorsal and Cactus-Dif complexes. We identified new genes that are required for normal induction of transcription of an antibacterial peptide during the immune response. Mutations in three of these genes prevent nuclear import of Dif in response to infection, and define new components of signalling pathways involving Rel. Mutations in three other genes cause constitutive nuclear localization of Dif; these mutations may block Rel protein activity by a novel mechanism.
Article
The number of nongonadal nuclei in the free-living soil nematode Caenorhabditis elegans increases from about 550 in the newly hatched larva to about 810 in the mature hermaphrodite and to about 970 in the mature male. The pattern of cell divisions which leads to this increase is essentially invariant among individuals; rigidly determined cell lineages generate a fixed number of progeny cells of strictly specified fates. These lineages range in length from one to eight sequential divisions and lead to significant developmental changes in the neuronal, muscular, hypodermal, and digestive systems. Frequently, several blast cells follow the same asymmetric program of divisions; lineally equivalent progeny of such cells generally differentiate into functionally equivalent cells. We have determined these cell lineages by direct observation of the divisions, migrations, and deaths of individual cells in living nematodes. Many of the cell lineages are involved in sexual maturation. At hatching, the hermaphrodite and male are almost identical morphologically; by the adult stage, gross anatomical differences are obvious. Some of these sexual differences arise from blast cells whose division patterns are initially identical in the male and in the hermaphrodite but later diverge. In the hermaphrodite, these cells produce structures used in egg-laying and mating, whereas, in the male, they produce morphologically different structures which function before and during copulation. In addition, development of the male involves a number of lineages derived from cells which do not divide in the hermaphrodite. Similar postembryonic developmental events occur in other nematode species.
Article
After programmed cell death, a cell corpse is engulfed and quickly degraded by a neighboring cell. For degradation to occur, engulfing cells must recognize, phagocytose and digest the corpses of dying cells. Previously, three genes were known to be involved in eliminating cell corpses in the nematode Caenorhabditis elegans: ced-1, ced-2 and nuc-1. We have identified five new genes that play a role in this process: ced-5, ced-6, ced-7, ced-8 and ced-10. Electron microscopic studies reveal that mutations in each of these genes prevent engulfment, indicating that these genes are needed either for the recognition of corpses by other cells or for the initiation of phagocytosis. Based upon our study of double mutants, these genes can be divided into two sets. Animals with mutations in only one of these sets of genes have relatively few unengulfed cell corpses. By contrast, animals with mutations in both sets of genes have many unengulfed corpses. These observations suggest that these two sets of genes are involved in distinct and partially redundant processes that act in the engulfment of cell corpses.
Article
While determining the 5' ends of C. elegans actin mRNAs, we have discovered a 22 nucleotide spliced leader sequence. The leader sequence is found on mRNA from three of the four nematode actin genes. The leader also appears to be present on some, but not all, nonactin mRNAs. The actin mRNA leader sequence is identical to the first 22 nucleotides of a novel 100 nucleotide RNA transcribed adjacent, and in the opposite orientation, to the 5S ribosomal gene. The evidence suggests that the actin mRNA leader sequence is acquired from this novel nucleotide transcript by an intermolecular trans-splicing mechanism.
Article
Methods are described for the isolation, complementation and mapping of mutants of Caenorhabditis elegans, a small free-living nematode worm. About 300 EMS-induced mutants affecting behavior and morphology have been characterized and about one hundred genes have been defined. Mutations in 77 of these alter the movement of the animal. Estimates of the induced mutation frequency of both the visible mutants and X chromosome lethals suggests that, just as in Drosophila, the genetic units in C. elegans are large.
Article
The embryonic cell lineage of Caenorhabditis elegans has been traced from zygote to newly hatched larva, with the result that the entire cell lineage of this organism is now known. During embryogenesis 671 cells are generated; in the hermaphrodite 113 of these (in the male 111) undergo programmed death and the remainder either differentiate terminally or become postembryonic blast cells. The embryonic lineage is highly invariant, as are the fates of the cells to which it gives rise. In spite of the fixed relationship between cell ancestry and cell fate, the correlation between them lacks much obvious pattern. Thus, although most neurons arise from the embryonic ectoderm, some are produced by the mesoderm and a few are sisters to muscles; again, lineal boundaries do not necessarily coincide with functional boundaries. Nevertheless, cell ablation experiments (as well as previous cell isolation experiments) demonstrate substantial cell autonomy in at least some sections of embryogenesis. We conclude that the cell lineage itself, complex as it is, plays an important role in determining cell fate. We discuss the origin of the repeat units (partial segments) in the body wall, the generation of the various orders of symmetry, the analysis of the lineage in terms of sublineages, and evolutionary implications.
Article
Mutations in two nonessential genes specifically block the phagocytosis of cells programmed to die during development. With few exceptions, these cells still die, suggesting that, in nematodes, engulfment is not necessary for most programmed deaths. Instead, these deaths appear to occur by cell suicide.
Article
The classification of cell death can be based on morphological or biochemical criteria or on the circumstances of its occurrence. Currently, irreversible structural alteration provides the only unequivocal evidence of death; biochemical indicators of cell death that are universally applicable have to be precisely defined and studies of cell function or of reproductive capacity do not necessarily differentiate between death and dormant states from which recovery may be possible. It has also proved feasible to categorize most if not all dying cells into one or the other of two discrete and distinctive patterns of morphological change, which have, generally, been found to occur under disparate but individually characteristic circumstances. One of these patterns is the swelling proceeding to rupture of plasma and organelle membranes and dissolution of organized structure—termed “coagulative necrosis.” It results from injury by agents, such as toxins and ischemia, affects cells in groups rather than singly, and evokes exudative inflammation when it develops in vivo. The other morphological pattern is characterized by condensation of the cell with maintenance of organelle integrity and the formation of surface protuberances that separate as membrane-bounded globules; in tissues, these are phagocytosed and digested by resident cells, there being no associated inflammation.
Article
We recently reported that oxidized low density lipoprotein (OxLDL), but not acetyl LDL (AcLDL), inhibited the binding and phagocytosis of nonopsonized, oxidatively damaged red blood cells (OxRBCs) by mouse peritoneal macrophages, implying the involvement of a "scavenger receptor" other than the AcLDL receptor. Numerous studies establish that loss of plasma membrane phospholipid asymmetry, which increases phosphatidylserine expression on the outer leaflet of the membrane, can play a key role in macrophage recognition of damaged and apoptotic cells. We report here that this recognition is in part attributable to the same mouse macrophage receptor that recognizes OxLDL. As described in an accompanying paper, this is a plasma membrane protein of 94-97 kDa. Phosphatidylserine liposomes show strong ligand binding to the same 94- to 97-kDa protein and this binding is inhibited by OxLDL but not by AcLDL. Inhibition of the RBC membrane phospholipid translocase by incubation with sodium vanadate caused a progressive increase in the appearance of phosphatidylserine on the cell surface and a parallel increase in the binding of these RBCs to macrophages, binding that was inhibited by OxLDL. Finally, OxLDL also inhibited the binding of sickled RBCs and apoptotic thymocytes to mouse macrophages. However, the latter was incomplete (approximately 50%), suggesting that other receptors are also involved. We suggest that the OxLDL receptor plays a significant role in recognition of damaged and apoptotic cells.
Article
A complementary DNA for the Aequorea victoria green fluorescent protein (GFP) produces a fluorescent product when expressed in prokaryotic (Escherichia coli) or eukaryotic (Caenorhabditis elegans) cells. Because exogenous substrates and cofactors are not required for this fluorescence, GFP expression can be used to monitor gene expression and protein localization in living organisms.
Article
A key feature of apoptosis is that cells undergoing this programmed form of death are recognized by phagocytes and ingested while still intact, protecting tissues from the potentially harmful consequences of exposure to the contents of the dying cells. This article reviews recent data which indicate that phagocyte recognition of apoptotic cells as 'senescent-self' involves at least three classes of receptors on the phagocyte surface, while apoptotic cells may display their 'edible' status in a number of different ways.
Article
There are several factors that contribute to the specificities of protein tyrosine kinases (PTKs) in signal transduction pathways. While protein-protein interaction domains, such as the Src homology (SH2 and SH3) domains, regulate the cellular localization of PTKs and their substrates, the specificities of PTKs are ultimately determined by their catalytic domains. The use of peptide libraries has revealed the substrate specificities of SH2 domains and PTK catalytic domains, and has suggested cross-talk between these domains.
Article
The gene unc-76 (unc, uncoordinated) is necessary for normal axonal bundling and elongation within axon bundles in the nematode Caenorhabditis elegans. The UNC-76 protein and two human homologs identified as expressed sequence tags are not similar to previously characterized proteins and thus represent a new protein family. At least one of these human homologs can function in C. elegans, suggesting that it, like UNC-76, acts in axonal outgrowth. We propose that the UNC-76 protein, which is found in cell bodies and processes of all neurons throughout development, either has a structural role in the formation and maintenance of axonal bundles or transduces signals to the intracellular machinery that regulates axonal extension and adhesion.
Article
The Rho GTPases form a subgroup of the Ras superfamily of 20- to 30-kD GTP-binding proteins that have been shown to regulate a wide spectrum of cellular functions. These proteins are ubiquitously expressed across the species, from yeast to man. The mammalian Rho-like GTPases comprise at least 10 distinct proteins: RhoA, B, C, D, and E; Rac1 and 2; RacE; Cdc42Hs, and TC10. A comparison of the amino acid sequences of the Rho proteins from various species has revealed that they are conserved in primary structure and are 50%–55% homologous to each other. Like all members of the Ras superfamily, the Rho GTPases function as molecular switches, cycling between an inactive GDP-bound state and an active GTP-bound state. Until recently, members of the Rho subfamily were believed to be involved primarily in the regulation of cytoskeletal organization in response to extracellular growth factors. However, research from a number of laboratories over the past few years has revealed that the Rho GTPases play crucial roles in diverse cellular events such as membrane trafficking, transcriptional regulation, cell growth control, and development. Consequently, a major challenge has been to unravel the underlying molecular mechanisms by which the Rho GTPases mediate these various activities. Many targets of the Rho GTPases have now been identified and further characterization of some of them has provided major insights toward our understanding of Rho GTPase function at the molecular level. This review aims to summarize the general established principles about the Rho GTPases and some of the more recent exciting findings, hinting at novel, unanticipated functions of the Rho GTPases.
Article
The process by which extracellular signals are relayed from the plasma membrane to specific intracellular sites is an essential facet of cellular regulation. Many signaling pathways do so by altering the phosphorylation state of tyrosine, serine, or threonine residues of target proteins. Recently, it has become apparent that regulatory mechanisms exist to influence where and when protein kinases and phosphatases are activated in the cell. The role of scaffold, anchoring, and adaptor proteins that contribute to the specificity of signal transduction events by recruiting active enzymes into signaling networks or by placing enzymes close to their substrates is discussed.
Article
The C. elegans gene ced-7 functions in the engulfment of cell corpses during programmed cell death. We report that the CED-7 protein has sequence similarity to ABC transporters, is broadly expressed during embryogenesis, and is localized to the plasma membrane. Mosaic analysis revealed that ced-7 functions in both dying cells and engulfing cells during the engulfment process. We propose that CED-7 functions to translocate molecules that mediate homotypic adhesion between the cell surfaces of the dying and engulfing cells. Like CED-7, the mammalian ABC transporter ABC1 has been implicated in the engulfment of cell corpses, suggesting that CED-7 and ABC1 may be functionally similar and that the molecular mechanism underlying cell corpse engulfment during programmed cell death may be conserved from nematodes to mammals.
Article
To identify large proteins with an EGF-like-motif in a systematic manner, we developed a computer-assisted method called motif-trap screening. The method exploits 5'-end single-pass sequence data obtained from a pool of cDNAs whose sizes exceed 5 kb. Using this screening procedure, we were able to identify five known and nine new genes for proteins with multiple EGF-like-motifs from 8000 redundant human brain cDNA clones. These new genes were found to encode a novel mammalian homologue of Drosophila fat protein, two seven-transmembrane proteins containing multiple cadherin and EGF-like motifs, two mammalian homologues of Drosophila slit protein, an unidentified LDL receptor-like protein, and three totally uncharacterized proteins. The organization of the domains in the proteins, together with their expression profiles and fine chromosomal locations, has indicated their biological significance, demonstrating that motif-trap screening is a powerful tool for the discovery of new genes that have been difficult to identify by conventional methods.
Article
Although apoptotic cell death is widespread, dying cells are rarely seen in situ because of their rapid clearance by neighbouring phagocytes. Phagocytic recognition of apoptotic cells is less well understood than the death programme itself, but an increasing number of recent studies are highlighting its importance. This review discusses the nature of the receptors that have been implicated in apoptotic cell phagocytosis, the mechanisms of uptake and the immunological consequences of apoptotic cell ingestion.
Article
Intercellular signaling through the Notch/LIN-12 transmembrane receptors regulates growth and differentiation during animal development. Moreover, defects in the conserved Notch/LIN-12 pathway are linked to human diseases. Here, we review models for two key steps in Notch/LIN-12 signaling: ligand-mediated activation of the receptor and receptor-mediated activation of transcription. Ligand binding appears to permit proteolysis of the receptor; as a result, the receptor's intracellular domain can enter the nucleus and function as a transcriptional co-activator.
Article
Genetic studies of the nematode Caenorhabditis elegans have defined a variety of single-gene mutations that have specific effects on programmed cell death. Analyses of the genes defined by these mutations have revealed that cell death is an active process that requires gene function in cells that die. Specific genes are required not only to cause cell death but also to protect cells from dying. Gene interaction studies have defined a genetic pathway for the execution phase of programmed cell death in C. elegans. Molecular and biochemical findings are consistent with the pathway proposed from these genetic studies and have also revealed that the protein products of certain cell-death genes interact directly. This pathway appears to be conserved among organisms as diverse as nematodes and humans. Important questions remain to be answered about programmed cell death in C. elegans. For example, how does a cell decide to die? How is cell death initiated? What are the mechanisms of action of the cell-death protector and killer genes? What genes lie downstream of the cell-death execution pathway? The conservation of the central cell-death pathway suggests that additional genetic analyses of programmed cell death in C. elegans will help answer these questions, not only for this nematode but also for other organisms, including ourselves.
Article
Guidelines for submitting commentsPolicy: Comments that contribute to the discussion of the article will be posted within approximately three business days. We do not accept anonymous comments. Please include your email address; the address will not be displayed in the posted comment. Cell Press Editors will screen the comments to ensure that they are relevant and appropriate but comments will not be edited. The ultimate decision on publication of an online comment is at the Editors' discretion. Formatting: Please include a title for the comment and your affiliation. Note that symbols (e.g. Greek letters) may not transmit properly in this form due to potential software compatibility issues. Please spell out the words in place of the symbols (e.g. replace “α” with “alpha”). Comments should be no more than 8,000 characters (including spaces ) in length. References may be included when necessary but should be kept to a minimum. Be careful if copying and pasting from a Word document. Smart quotes can cause problems in the form. If you experience difficulties, please convert to a plain text file and then copy and paste into the form.
Article
Phagocytosis is an uptake of large particles governed by the actin-based cytoskeleton. Binding of particles to specific cell surface receptors is the first step of phagocytosis. In higher Eucaryota, the receptors able to mediate phagocytosis are expressed almost exclusively in macrophages, neutrophils, and monocytes, conferring immunodefence properties to these cells. Receptor clustering is thought to occur upon particle binding, that in turn generates a phagocytic signal. Several pathways of phagocytic signal transduction have been identified, including the activation of tyrosine kinases and (or) serine/threonine kinase C in pivotal roles. Kinase activation leads to phosphorylation of the receptors and other proteins, recruited at the sites of phagocytosis. Monomeric GTPases of the Rho and ARF families are likely to be engaged downstream of activated receptors. The GTPases, in cooperation with phosphatidylinositol 4-phosphate 5-kinase and phosphatidylinositol 3-kinase lipid modifying enzymes, can modulate locally the assembly of the submembranous actin filament system leading to particle internalization.
Article
Layering of neurons in the cerebral cortex and cerebellum requires Reelin, an extracellular matrix protein, and mammalian Disabled (mDab1), a cytosolic protein that activates tyrosine kinases. Here, we report the requirement for two other proteins, cell surface receptors termed very low density lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (ApoER2). Both receptors can bind mDab1 on their cytoplasmic tails and are expressed in cortical and cerebellar layers adjacent to layers that express Reelin. mDab1 expression is upregulated in knockout mice that lack both VLDLR and ApoER2. Inversion of cortical layers and absence of cerebellar foliation in these animals precisely mimic the phenotype of mice lacking Reelin or mDab1. These findings suggest that VLDLR and ApoER2 participate in transmitting the extracellular Reelin signal to intracellular signaling processes initiated by mDab1.
Article
Rim protein (RmP) is an ABC transporter of unknown function in rod outer segment discs. The human gene for RmP (ABCR) is affected in several recessive retinal degenerations. Here, we characterize the ocular phenotype in abcr knockout mice. Mice lacking RmP show delayed dark adaptation, increased all-trans-retinaldehyde (all-trans-RAL) following light exposure, elevated phosphatidylethanolamine (PE) in outer segments, accumulation of the protonated Schiff base complex of all-trans-RAL and PE (N-retinylidene-PE), and striking deposition of a major lipofuscin fluorophore (A2-E) in retinal pigment epithelium (RPE). These data suggest that RmP functions as an outwardly directed flippase for N-retinylidene-PE. Delayed dark adaptation is likely due to accumulation in discs of the noncovalent complex between opsin and all-trans-RAL. Finally, ABCR-mediated retinal degeneration may result from "poisoning" of the RPE due to A2-E accumulation, with secondary photoreceptor degeneration due to loss of the RPE support role.
Article
The hermaphrodite-specific neurons (HSNs) of the nematode Caenorhabditis elegans are generated embryonically in both hermaphrodites and males but undergo programmed cell death in males. The gene egl-1 encodes a BH3-containing cell death activator that is required for programmed cell death in C. elegans. Gain-of-function (gf) mutations in egl-1 cause the inappropriate programmed cell death of the HSNs in hermaphrodites. These mutations lie 5.6 kb downstream of the egl-1 transcription unit and disrupt the binding of the TRA-1A zinc finger protein, the terminal global regulator of somatic sexual fate. This disruption results in the activation of the egl-1 gene in the HSNs not only in males but also in hermaphrodites. Our findings suggest that in hermaphrodites TRA-1A represses egl-1 transcription in the HSNs to prevent these neurons from undergoing programmed cell death.