ArticleLiterature Review

Transforming growth factor-β and insulin-like signalling pathways in parasitic helminths

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

The signal transduction pathways involved in regulating developmental arrest in the free-living nematode, Caenorhabditis elegans, are fairly well characterised. However, much less is known about how these processes may influence the developmental timing and maturation in helminth parasites. Here, we provide an overview of two signalling pathways implicated in the regulation of dauer larva formation in C. elegans, the insulin-like signalling pathway and the transforming growth factor-beta pathway, and explore what is known about these signalling pathways in a variety of parasitic helminths. Understanding the differences about how these pathways are affected by environmental cues in free-living versus parasitic species of helminths may provide insights into novel mechanisms for the control or prevention of helminth-induced disease.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... dafachronic acids, DAs) to regulate cellular processes critical to development, reproduction and lifespan [10,11,19,20]. Although homologous signalling pathways have been proposed or partially described for parasitic nematodes [21][22][23][24][25][26], knowledge is incomplete and functional information mostly lacking. Clearly, the availability of comprehensive genomic and transcriptomic data sets for nematodes of the order Strongylida (parasite.wormbase.org) ...
... Specifically, the third-stage larvae (L3s) of H. contortus survive in the environment and will not develop to the next stage until activated by cues in the gut of the host animal; similarly, the fourth-stage larvae (L4s) may arrest in development within the host in response to seasonal and/or host factors [34][35][36]. Although previous studies have explored aspects of TGF-β and IGF-1 signalling pathways in H. contortus and investigated the functionality of selected molecules, including Hc-hsp-90, Hc-daf- 16 and Hc-daf-2 [22,[37][38][39][40][41][42][43][44], there are still significant gaps in our knowledge and understanding of the signalling pathways linked to dauer in this species. ...
... Although similarities in dauer signalling have been proposed [21][22][23][24][25]64] and verified through in silico studies [39,45], there are some differences in the number of signalling homologues between C. elegans and parasitic nematodes. In the present study, although genes coding for pheromone receptors (daf-37 and daf-38) and insulinlike peptides (i.e. ...
Article
Full-text available
Background Signalling pathways have been extensively investigated in the free-living nematode Caenorhabditis elegans, but very little is known about these pathways in parasitic nematodes. Here, we constructed a model for the dauer-associated signalling pathways in an economically highly significant parasitic worm, Haemonchus contortus. Methods Guided by data and information available for C. elegans, we used extensive genomic and transcriptomic datasets to infer gene homologues in the dauer-associated pathways, explore developmental transcriptomic, proteomic and phosphoproteomic profiles in H. contortus and study selected molecular structures. Results The canonical cyclic guanosine monophosphate (cGMP), transforming growth factor-β (TGF-β), insulin-like growth factor 1 (IGF-1) and steroid hormone signalling pathways of H. contortus were inferred to represent a total of 61 gene homologues. Compared with C. elegans, H. contortus has a reduced set of genes encoding insulin-like peptides, implying evolutionary and biological divergences between the parasitic and free-living nematodes. Similar transcription profiles were found for all gene homologues between the infective stage of H. contortus and dauer stage of C. elegans. High transcriptional levels for genes encoding G protein-coupled receptors (GPCRs), TGF-β, insulin-like ligands (e.g. ins-1, ins-17 and ins-18) and transcriptional factors (e.g. daf-16) in the infective L3 stage of H. contortus were suggestive of critical functional roles in this stage. Conspicuous protein expression patterns and extensive phosphorylation of some components of these pathways suggested marked post-translational modifications also in the L3 stage. The high structural similarity in the DAF-12 ligand binding domain among nematodes indicated functional conservation in steroid (i.e. dafachronic acid) signalling linked to worm development. Conclusions Taken together, this pathway model provides a basis to explore hypotheses regarding biological processes and regulatory mechanisms (via particular microRNAs, phosphorylation events and/or lipids) associated with the development of H. contortus and related nematodes as well as parasite-host cross talk, which could aid the discovery of new therapeutic targets.
... The mechanism of glucose uptake in Caenorhabditis elegans is almost identical to that found in mammalian cells ....Pr ospects & Overviews H. You et al. [57,58]. While there is strongly overlapping function between these systems in roundworm and in mammals, it remains uncertain whether insulin modulates the processing of glucose uptake in a similar manner in schistosomes. ...
... Two IRs have been isolated from schistosomes to date, and their recent characterisation in both S. mansoni (SmIR-1 and SmIR-2) [40] and S. japonicum (SjIR-1 and SjIR-2) [41], led us to reconsider the question of the potential importance of insulin in host-schistosome interactions. The SmIRs [40] and SjIRs [41] belong to the family of IRs having a conserved catalytic domain, and share a conserved a2b2 heterotetramer structure with those of EmIR, C. elegans (CeIR) [57,58] and Homo [human insulin receptor (HIR)] [40]. Based on the results of phylogenetic and sequence analysis and immunolocalisation studies, IR-1 and IR-2 (the latter is phylogenetically closer to EmIR than to IR-1) could have distinct functions in schistosomes [41]. ...
... It has been demonstrated in two-hybrid analysis that the ligand domains of SmIRs [40], SjIRs [41] and EmIR [65] can bind human insulin specifically, indicating that cellular growth and reproduction in these parasites may be dependent on the host hormone [16,57,58,67]. Whereas systematic genomic analysis failed to demonstrate the presence of the insulin molecule in S. Japonicum [68], the identification of the SjIRs and other components in the insulin pathway suggest that the IRs may bind host insulin to facilitate the growth and metabolism of adult schistosomes. ...
... overcrowding, reduced sustenance) subsequently triggering the release of 'dauer promoting' pheromones that lead to the formation of dauer larvae. At the metabolic level, neuronal signals are mediated through signaling pathways of 'abnormal dauer formation' (daf) genes; predominantly via the insulin response pathway [18]. ...
... The TGF-β pathway in C. elegans is one of the major signaling pathways associated with entry into the dauer stage, and is often thought of as a parallel system to the the insulin/IGF pathway, although secondary path to it. Like the insulin response/IGF pathway, the active TGF-β pathway acts to suppress entry into the dauer stage [18]. The TGF-β pathway functions through ligand binding to cellular receptors; type I (DAF-1) and type II (DAF-4) (Fig. 5). ...
... During successful TGF-β signaling, a relationship forms where DAF-8/14, through directly inhibiting DAF-3/5 in the nucleus, prevents dauer entry (Fig. 5). In experimental conditions, it has been shown that DAF-3 mutants are unable to form dauer larvae, and as such, have a severely reduced lifespan [18]. ...
Article
Full-text available
Studies of the molecular mechanisms that are involved in stress responses (environmental or physiological) have long been used to make links to disease states in humans. The nematode model organism, Caenorhabditis elegans, undergoes a state of hypometabolism called the 'dauer' stage. This period of developmental arrest is characterized by a significant reduction in metabolic rate, triggered by ambient temperature increase and restricted oxygen/ nutrients. C. elegans employs a number of signal transduction cascades in order to adapt to these unfavourable conditions and survive for long times with severely reduced energy production. The suppression of cellular metabolism, providing energetic homeostasis, is critical to the survival of nematodes through the dauer period. This transition displays molecular mechanisms that are fundamental to control of hypometabolism across the animal kingdom. In general, mammalian systems are highly inelastic to environmental stresses (such as extreme temperatures and low oxygen), however, there is a great deal of conservation between the signal transduction pathways of nematodes and mammals. Along with conserving many of the protein targets in the stress response, many of the critical regulatory mechanisms are maintained, and often differ only in their level of expression. Hence, the C. elegans model outlines a framework of critical molecular mechanisms that may be employed in the future as therapeutic targets for addressing disease states.
... In addition, many life cycle traits, such as migratory routes taken through organs and tissues, length of prepatency and patency periods, fecundity, longevity and body size are influenced by factors from the host and/or the environment (Gibbs, 1986). Signal transduction pathways play key roles in growth and development, but little is currently known regarding the molecular mechanisms through which parasites sense the environmental factors influencing these developmental strategies or how they functionally interpret and respond to the signals (reviewed by Beall and Pearce, 2002). In C. elegans, environmental stress (e.g. ...
... depletion of food and/or crowding ) on the first larval stage (L1) triggers an 'alternative' developmental pathway, mediated through the stimulation of chemosensory neurons by a constitutively-expressed pheromone and, after the second moult, a 'dauer' larva is formed (Golden and Riddle, 1984). In this nematode at least two signalling pathways are currently recognised to regulate this transition, namely the transforming growth factor-beta (TGFb) pathway and the insulin-like pathway (reviewed by Patterson and Padgett, 2000; Beall and Pearce, 2002). ...
... Under favourable environmental conditions, sensory neurons release acetylcholine which interacts with a muscarinic receptor on an interneuron , resulting in the release of an insulin-like ligand which then interacts with DAF-2 (a receptor kinase), thus activating a kinase-dependent insulin-like signalling cascade. This cascade results in the translocation of serine/threonine kinase AKT-1/2 to the nucleus and the phosphorylation of DAF-16 (a forkhead transcription factor), permitting the expression of genes involved in growth and reproductive development (reviewed by Beall and Pearce, 2002). ...
Article
Molecular biological research on the development and reproduction of parasites is of major significance for many fundamental and applied areas of medical and veterinary parasitology. Together with knowledge of parasite biology and epidemiology, the application of molecular tools and technologies provides unique opportunities for elucidating developmental and reproductive processes in helminths. This article focuses specifically on recent progress in studying the molecular mechanisms of development, sexual differentiation and reproduction in parasitic nematodes of socio-economic importance and comparative analyses, where appropriate, with the free-living nematode Caenorhabditis elegans. It also describes the implications of such work for understanding reproduction, tissue migration, hypobiosis, signal transduction and host-parasite interactions at the molecular level, and for seeking new means of parasite intervention.
... Compared with C. elegans, the reduced number of genes coding for SMAD-related transcription factors and insulin/insulin-like peptides in T. canis and A. suum suggest divergences in both TGF-β and insulin-like signalling between the free-living and the two parasitic nematodes. Specifically, orthologues of Ce-daf-3, Ce-daf-5, Ce-daf-8 and Ce-daf-14 were not detected in T. canis or A. suum, suggesting a uniqueness in TGF-β signalling in these two species (clade III), as suggested previously by other workers for other parasitic nematodes such as Trichinella spiralis and Trichuris suis (clade I) [27,57]. In addition, apart from ins-1, ins-17 and ins-18, no orthologue of any of the other insulin/insulin-like peptide-coding genes (n = 37) of C. elegans (clade V) was found, implying a contraction of the gene family representing these signalling molecules in the two ascaridoids (clade III) studied here. ...
... In addition, differential transcriptional levels of the genes ins-17 and ins-18 in the L3 stage between T. canis and A. suum suggest a distinctive signalling mechanism in the host animal, since Ce-ins-17 and Ce-ins-18 promote dauer formation in C. elegans [59,65]. This difference might suggest unique roles for selected insulin-like peptides in regulating arrested development in host tissues or parasite-host interactions [57,66]. This hypothesis warrants testing through large-scale, integrative 'omic investigations. ...
Article
Full-text available
Background Toxocara canis is quite closely related to Ascaris suum but its biology is more complex, involving a phase of arrested development (diapause or hypobiosis) in tissues as well as transplacental and transmammary transmission routes. In the present study, we explored and compared dauer-like signalling pathways of T. canis and A. suum to infer which components in these pathways might associate with, or regulate, this added complexity in T. canis. Methods Guided by information for Caenorhabditis elegans, we bioinformatically inferred and compared components of dauer-like signalling pathways in T. canis and A. suum using genomic and transcriptomic data sets. In these two ascaridoids, we also explored endogenous dafachronic acids (DAs), which are known to be critical in regulating larval developmental processes in C. elegans and other nematodes, by liquid chromatography-mass spectrometry (LC-MS). Results Orthologues of C. elegans dauer signalling genes were identified in T. canis (n = 55) and A. suum (n = 51), inferring the presence of a dauer-like signalling pathway in both species. Comparisons showed clear differences between C. elegans and these ascaridoids as well as between T. canis and A. suum, particularly in the transforming growth factor-β (TGF-β) and insulin-like signalling pathways. Specifically, in both A. suum and T. canis, there was a paucity of genes encoding SMAD transcription factor-related protein (daf-3, daf-5, daf-8 and daf-14) and insulin/insulin-like peptide (daf-28, ins-4, ins-6 and ins-7) homologues, suggesting an evolution and adaptation of the signalling pathway in these parasites. In T. canis, there were more orthologues coding for homologues of antagonist insulin-like peptides (Tc-ins-1 and Tc-ins-18), an insulin receptor substrate (Tc-ist-1) and a serine/threonine kinase (Tc-akt-1) than in A. suum, suggesting potentiated functional roles for these molecules in regulating larval diapause and reactivation. A relatively conserved machinery was proposed for DA synthesis in the two ascaridoids, and endogenous Δ4- and Δ7-DAs were detected in them by LC-MS analysis. Differential transcription analysis between T. canis and A. suum suggests that ins-17 and ins-18 homologues are specifically involved in regulating development and migration in T. canis larvae in host tissues. Conclusion The findings of this study provide a basis for functional explorations of insulin-like peptides, signalling hormones (i.e. DAs) and related nuclear receptors, proposed to link to development and/or parasite-host interactions in T. canis. Elucidating the functional roles of these molecules might contribute to the discovery of novel anthelmintic targets in ascaridoids. Electronic supplementary material The online version of this article (10.1186/s13071-018-3265-y) contains supplementary material, which is available to authorized users.
... According to the theory of hormonal host-helminth cross-communication, endo-and paracrine hormonal systems of mammals (or even invertebrates) could influence the physiology and development of metazoan parasites through stimulation of evolutionarily conserved signalling systems [2,[37][38][39]. This theory has thus far been supported by several in vitro studies showing that parasite surface receptor kinases of the insulin-, the EGF-and the TGF-β-families can principally bind respective host-derived hormones [10,11,13,[37][38][39][40][41]. ...
... According to the theory of hormonal host-helminth cross-communication, endo-and paracrine hormonal systems of mammals (or even invertebrates) could influence the physiology and development of metazoan parasites through stimulation of evolutionarily conserved signalling systems [2,[37][38][39]. This theory has thus far been supported by several in vitro studies showing that parasite surface receptor kinases of the insulin-, the EGF-and the TGF-β-families can principally bind respective host-derived hormones [10,11,13,[37][38][39][40][41]. One of the most convincing examples supporting this theory has been brought up by Vicogne et al. [41] who demonstrated that human EGF can activate an EGF-receptor, such as tyrosine kinase of S. mansoni in vitro and at the surface of schistosomes, and that exogenously added EGF also influences protein and DNA synthesis in the parasite. ...
Article
Full-text available
The metacestode of the tapeworm Echinococcus multilocularis is the causative agent of alveolar echinococcosis, a lethal zoonosis. Infections are initiated through establishment of parasite larvae within the intermediate host's liver, where high concentrations of insulin are present, followed by tumour-like growth of the metacestode in host organs. The molecular mechanisms determining the organ tropism of E. multilocularis or influences of host hormones on parasite proliferation are poorly understood to date. Using in vitro cultivation systems for parasite larvae we show that physiological concentrations (10 nM) of human insulin significantly stimulate the formation of metacestode larvae from parasite stem cells and promote asexual growth of the metacestode. Addition of human insulin to parasite larvae led to increased glucose uptake and enhanced phosphorylation of Echinococcus insulin signalling components, including an insulin receptor-like kinase, EmIR1, for which we demonstrate predominant expression in the parasite's glycogen storage cells. We also characterized a second insulin receptor family member, EmIR2, and demonstrated interaction of its ligand binding domain with human insulin in the yeast two-hybrid system. Addition of an insulin receptor inhibitor resulted in metacestode killing, prevented metacestode development from parasite stem cells, and impaired the activation of insulin signalling pathways through host insulin. Our data indicate that host insulin acts as a stimulant for parasite development within the host liver and that E. multilocularis senses the host hormone through an evolutionarily conserved insulin signalling pathway. Hormonal host-parasite cross-communication, facilitated by the relatively close phylogenetic relationship between E. multilocularis and its mammalian hosts, thus appears to be important in the pathology of alveolar echinococcosis. This contributes to a closer understanding of organ tropism and parasite persistence in larval cestode infections. Furthermore, our data show that Echinococcus insulin signalling pathways are promising targets for the development of novel drugs.
... Surprisingly, our findings suggest that while the ability to activate DAF-16 remains stable until the fifth day of adulthood, it is not involved in promoting the lifespan of post-reproductive worms subjected to HGD. It is, therefore, reasonable to conclude that DAF-16 is inactivated through DAF-2 which promotes glucose uptake and metabolism 84 . In addition, DAF-2 may be necessary through crosstalk with the UPR programme as the IRE-1/XBP-1 axis has been previously reported to compensate for the ablation of the IIS pathway 85 . ...
Article
Full-text available
Metabolic diseases often share common traits, including accumulation of unfolded proteins in the endoplasmic reticulum (ER). Upon ER stress, the unfolded protein response (UPR) is activated to limit cellular damage which weakens with age. Here, we show that Caenorhabditis elegans fed a bacterial diet supplemented high glucose at day 5 of adulthood (HGD-5) extends their lifespan, whereas exposed at day 1 (HGD-1) experience shortened longevity. We observed a metabolic shift only in HGD-1, while glucose and infertility synergistically prolonged the lifespan of HGD-5, independently of DAF-16. Notably, we identified that UPR stress sensors ATF-6 and PEK-1 contributed to the longevity of HGD-5 worms, while ire-1 ablation drastically increased HGD-1 lifespan. Together, we postulate that HGD activates the otherwise quiescent UPR in aged worms to overcome ageing-related stress and restore ER homeostasis. In contrast, young animals subjected to HGD provokes unresolved ER stress, conversely leading to a detrimental stress response.
... mTOR is a serine/threonine kinase and a downstream effector of the PI3K/Akt signaling pathway, and the components of this pathway interact with many other pathways, including the Ras/MAPK pathway (Ras family of small GTPase proteins/mitogen-activated protein kinases) (Saxton and Sabatini, 2017). Studies using Echinococcus multilocularis as a model organism have shown that host insulin, epithelial growth factor, and transforming growth factor can interact directly with the parasite through the conserved RTK signaling pathway and the serine/threonine pathway (Beall and Pearce, 2002;Brehm and Spiliotis, 2008). In addition, insulin stimulation was found to activate the parasite PI3K/Akt signaling pathway, and inhibition of the insulin receptor and closure of the PI3K signaling pathway in Echinococcus would result in reduced survival and developmental levels of parasite larvae. ...
Article
Taenia solium cysts were collected from pig skeletal muscle and analyzed via a shotgun proteomic approach to identify known proteins in the cyst fluid and to explore host-parasite interactions. Cyst fluid was aseptically collected and analyzed with shotgun liquid chromatography-tandem mass spectrometry (LC-MS/MS). Gene alignment and annotation were performed using Blast2GO software followed by gene ontology analysis of the annotated proteins. The pathways were further analyzed with the Kyoto Encyclopedia of Genes and Genomes (KEGG), and a protein-protein interaction (PPI) network map was generated using STRING software. A total of 158 known proteins were identified, most of which were low-molecular-mass proteins. These proteins were mainly involved in cellular and metabolic processes, and their molecular functions were predominantly related to catalytic activity and binding functions. The pathway enrichment analysis revealed that the known proteins were mainly enriched in the PI3K-Akt and glycolysis/gluconeogenesis signaling pathways. The nodes in the PPI network mainly consisted of enzymes involved in sugar metabolism. The cyst fluid proteins screened in this study may play important roles in the interaction between the cysticerci and the host. The shotgun LC-MS/MS, gene ontology, KEGG, and PPI network map data will be used to identify and analyze the cyst fluid proteome of cysticerci, which will provide a basis for further exploration of the invasion and activities of T. solium.
... However, there are other forms of arrested development in parasitic nematodes that occur in host animals, such as: (i) hypobiosis of the fourth-stage larvae of species of Ostertagia, Teladorsagia, Haemonchus and Cooperia of ruminants (reviewed by Gibbs, 1986;Michel, 1974); (ii) arrested development of the tissuemigrating larvae of Ancylostoma, Baylisascaris and Toxocara species in paratenic hosts (Gibbs, 1986;Michel, 1974;Strube et al., 2013); and (iii) suspended development of the infective larvae of Brugia malayi, Dirofilaria immitis, Loa loa and Onchocerca volvulus in intermediate hosts. The hormonal signalling mechanism might play roles in these different forms of developmental arrest and/or in the activation of parasitic larvae in response to host conditions or factors, such as immune responses, hormone levels, and/or parasite factors (Beall and Pearce, 2002;Beckage, 1991;Lok, 2016;Ogawa et al., 2009;Strube et al., 2007;Viney et al., 2005). Beyond nematodes, the chemosensory signalling pathways controlling development likely exist in trematodes and cestodes as well. ...
Chapter
Full-text available
Intestinal helminths are extremely widespread and highly prevalent infections of humans, particularly in rural and poor urban areas of low and middle-income countries. These parasites have chronic and often insidious effects on human health and child development including abdominal problems, anaemia, stunting and wasting. Certain animals play a fundamental role in the transmission of many intestinal helminths to humans. However, the contribution of zoonotic transmission to the overall burden of human intestinal helminth infection and the relative importance of different animal reservoirs remains incomplete. Moreover, control programmes and transmission models for intestinal helminths often do not consider the role of zoonotic reservoirs of infection. Such reservoirs will become increasingly important as control is scaled up and there is a move towards interruption and even elimination of parasite transmission. With a focus on southeast Asia, and the Philippines in particular, this review summarises the major zoonotic intestinal helminths, risk factors for infection and highlights knowledge gaps related to their epidemiology and transmission. Various methodologies are discussed, including parasite genomics, mathematical modelling and socio-economic analysis, that could be employed to improve understanding of intestinal helminth spread, reservoir attribution and the burden associated with infection, as well as assess effectiveness of interventions. For sustainable control and ultimately elimination of intestinal helminths, there is a need to move beyond scheduled mass deworming and to consider animal and environmental reservoirs. A One Health approach to control of intestinal helminths is proposed, integrating interventions targeting humans, animals and the environment, including improved access to water, hygiene and sanitation. This will require coordination and collaboration across different sectors to achieve best health outcomes for all.
... However, there are other forms of arrested development in parasitic nematodes that occur in host animals, such as: (i) hypobiosis of the fourth-stage larvae of species of Ostertagia, Teladorsagia, Haemonchus and Cooperia of ruminants (reviewed by Gibbs, 1986;Michel, 1974); (ii) arrested development of the tissuemigrating larvae of Ancylostoma, Baylisascaris and Toxocara species in paratenic hosts (Gibbs, 1986;Michel, 1974;Strube et al., 2013); and (iii) suspended development of the infective larvae of Brugia malayi, Dirofilaria immitis, Loa loa and Onchocerca volvulus in intermediate hosts. The hormonal signalling mechanism might play roles in these different forms of developmental arrest and/or in the activation of parasitic larvae in response to host conditions or factors, such as immune responses, hormone levels, and/or parasite factors (Beall and Pearce, 2002;Beckage, 1991;Lok, 2016;Ogawa et al., 2009;Strube et al., 2007;Viney et al., 2005). Beyond nematodes, the chemosensory signalling pathways controlling development likely exist in trematodes and cestodes as well. ...
Chapter
In the past two decades, significant progress has been made in the sequencing, assembly, annotation and analyses of genomes and transcriptomes of parasitic worms of socioeconomic importance. This progress has somewhat improved our knowledge and understanding of these pathogens at the molecular level. However, compared with the free-living nematode Caenorhabditis elegans, the areas of functional genomics, transcriptomics, proteomics and metabolomics of parasitic nematodes are still in their infancy, and there are major gaps in our knowledge and understanding of the molecular biology of parasitic nematodes. The information on signalling molecules, molecular pathways and microRNAs (miRNAs) that are known to be involved in developmental processes in C. elegans and the availability of some molecular resources (draft genomes, transcriptomes and some proteomes) for selected parasitic nematodes provide a basis to start exploring the developmental biology of parasitic nematodes. Indeed, some studies have identified molecules and pathways that might associate with developmental processes in related, parasitic nematodes, such as Haemonchus contortus (barber's pole worm). However, detailed information is often scant and ‘omics resources are limited, preventing a proper integration of ‘omic data sets and comprehensive analyses. Moreover, little is known about the functional roles of pheromones, hormones, signalling pathways and post-transcriptional/post-translational regulations in the development of key parasitic nematodes throughout their entire life cycles. Although C. elegans is an excellent model to assist molecular studies of parasitic nematodes, its use is limited when it comes to explorations of processes that are specific to parasitism within host animals. A deep understanding of parasitic nematodes, such as H. contortus, requires substantially enhanced resources and the use of integrative ‘omics approaches for analyses. The improved genome and well-established in vitro larval culture system for H. contortus provide unprecedented opportunities for comprehensive studies of the transcriptomes (mRNA and miRNA), proteomes (somatic, excretory/secretory and phosphorylated proteins) and lipidomes (e.g., polar and neutral lipids) of this nematode. Such resources should enable in-depth explorations of its developmental biology at a level, not previously possible. The main aims of this review are (i) to provide a background on the development of nematodes, with a particular emphasis on the molecular aspects involved in the dauer formation and exit in C. elegans; (ii) to critically appraise the current state of knowledge of the developmental biology of parasitic nematodes and identify key knowledge gaps; (iii) to cover salient aspects of H. contortus, with a focus on the recent advances in genomics, transcriptomics, proteomics and lipidomics as well as in vitro culturing systems; (iv) to review recent advances in our knowledge and understanding of the molecular and developmental biology of H. contortus using an integrative multiomics approach, and discuss the implications of this approach for detailed explorations of signalling molecules, molecular processes and pathways likely associated with nematode development, adaptation and parasitism, and for the identification of novel intervention targets against these pathogens. Clearly, the multiomics approach established recently is readily applicable to exploring a wide range of interesting and socioeconomically significant parasitic worms (including also trematodes and cestodes) at the molecular level, and to elucidate host–parasite interactions and disease processes.
... It is well known that adult schistosomes 2 of 15 consume their dry weight of glucose from host blood every 5 h [4] as this sugar is the major nutrient source for worm survival, growth, and maturity, and is required to meet the considerable energy requirements of mature female schistosomes especially which lay large numbers of eggs daily. Whereas there is much information regarding the mechanism of insulin signaling in Caenorhabditis elegans [5], it remains to be established whether the pathway and the regulation of glucose are similar in schistosomes. Genome-wide interrogation has revealed the presence of an insulin signaling pathway in Schistosoma japonicum [6], Schistosoma mansoni [7], and Schistosoma haematobium [8,9]. ...
Article
Full-text available
We showed previously that the Schistosoma japonicum insulin-like peptide (SjILP) binds the worm insulin receptors, thereby, activating the parasite’s insulin pathway and emphasizing its important role in regulating uptake of glucose, a nutrient essential for parasite survival. Here we show that SjILP is differentially expressed in the schistosome life cycle and is especially highly transcribed in eggs, miracidia, and adult female worms. RNA inference was employed to knockdown SjILP in adults in vitro, with suppression confirmed by significantly reduced protein production, declined adenosine diphosphate levels, and reduction in glucose consumption. Immunolocalization showed that SjILP is located to lateral gland cells of mature intra-ovular miracidia in the schistosome egg, and is distributed on the ciliated epithelium and internal cell masses of newly transformed miracidia. In schistosomula, SjILP is present on the tegument in two antero-lateral points, indicating highly polarized expression during cercarial transformation. Analysis of serum from S. japonicum-infected mice by ELISA using a recombinant form of SjILP as an antigen revealed IgG immunoreactivity to this molecule at 7 weeks post-infection indicating it is likely secreted from mature eggs into the host circulation. These findings provide further insights on ILP function in schistosomes and its essential roles in parasite survival and growth in different development stages.
... It is reasonable to conclude that DAF-16 is inactivated through DAF-2 as both DAF-2 and AGE-1 are required to extend lifespan in post-reproductive worms. Perhaps, they both function in promoting glucose uptake and metabolism in order to extend lifespan of aged animals 63 . In addition, DAF-2 and AGE-1 could possibly be required through crosstalk with the UPR programme as the IRE-1/XBP-1 axis has been previously reported to compensate for the ablation of the IIS pathway 48 . ...
Preprint
Full-text available
Aging is one of the most critical risk factors for the development of metabolic syndromes. Prominent metabolic diseases, namely type 2 diabetes and insulin resistance, have a strong association with endoplasmic reticulum (ER) stress. Upon ER stress, the unfolded protein response (UPR) is activated to limit cellular damage by adapting to stress conditions and restoring ER homeostasis. However, adaptive genes upregulated from the UPR tend to decrease with age. Although stress resistance correlates with increased longevity in a variety of model organisms, the links between the UPR, ER stress resistance, and longevity remain poorly understood. Here, we show that supplementing bacteria diet with 2% glucose (high glucose diet, HGD) in post-reproductive 7-day-old (7DO) C. elegans significantly extend their lifespan in contrast to shortening the lifespan of reproductive 3-day-old (3DO) animals. The insulin-IGF receptor DAF-2 and its immediate downstream target, phosphoinositide 3-kinase (PI3K) AGE-1, were found to be critical factors in extending the lifespan of 7DO worms on HGD. The downstream transcription factor forkhead box O (FOXO) DAF-16 did not extend the lifespan of 7DO worms on HGD in contrast of its previously reported role in modulating lifespan of 3DO worms. Furthermore, we identified that UPR activation through the highly conserved ATF-6 and PEK-1 sensors significantly extended the longevity of 7DO worms on HGD but not through the IRE-1 sensor. Our results demonstrate that HGD extends lifespan of post-reproductive worms in a UPR-dependent manner but independently of FOXO. Based on these observations, we hypothesise that HGD activates the otherwise quiescent UPR in aged worms to overcome age-related stress and to restore ER homeostasis. In contrast, young adult animals subjected to HGD leads to unresolved ER stress, conversely leading to a deleterious stress response.
... Hu, 2007). The similarity between the L3 stage of some parasitic nematodes and the dauer stage of C. elegans has been extensively discussed (Beall and Pearce, 2002;Ogawa et al., 2009;Crook, 2014;Lok, 2016), and it has been proposed that the dauer stage is a pre-adaptation to parasitism (cf. Crook, 2014). ...
Article
In this study, we explored the molecular alterations in the developmental switch from the L3 to the exsheathed L3 (×L3) and to the L4 stage of Haemonchus contortus in vitro using an integrated transcriptomic, proteomic and bioinformatic approach. Totals of 9,754 mRNAs, 88 microRNAs (miRNAs) and 1,591 proteins were identified, and 6,686 miRNA-mRNA pairs inferred in all larval stages studied. Approximately 16% of transcripts in the combined transcriptome (representing all three larval stages) were expressed as proteins, and there were positive correlations (r = 0.39-0.44) between mRNA transcription and protein expression in the three distinct developmental stages of the parasite. Of the predicted targets, 1,019 (27.0%) mRNA transcripts were expressed as proteins, and there was a negative correlation (r = -0.60 to -0.50) in the differential mRNA transcription and protein expression between developmental stages upon pairwise comparison. The changes in transcription (mRNA and miRNA) and protein expression from the free-living to the parasitic life cycle phase of H. contortus related to enrichments in biological pathways associated with metabolism (e.g., carbohydrate and lipid degradation, and amino acid metabolism), environmental information processing (e.g., signal transduction, signalling molecules and interaction) and/or genetic information processing (e.g., transcription and translation). Specifically, fatty acid degradation, steroid hormone biosynthesis and the Rap1 signalling pathway were suppressed, whereas transcription, translation and protein processing in the endoplasmic reticulum were upregulated during the transition from the free-living L3 to the parasitic xL3 and L4 stages of the nematode in vitro. Dominant post-transcriptional regulation was inferred to elicit these changes, and particular miRNAs (e.g., hco-miR-34 and hco-miR-252) appear to play roles in stress responses and/or environmental adaptations during developmental transitions of H. contortus. Taken together, these integrated results provide a comprehensive insight into the developmental biology of this important parasite at the molecular level in vitro. The approach applied here to H. contortus can be readily applied to other parasitic nematodes.
... Modulation of these pathways can be mediated by protein phosphorylation/dephosphorylation [57], and, in TTs, such posttranslational modification dynamics could be mediated with the participation of the serine/threonine protein phosphatases PP1 and PP2A, which were exclusively detected in the TT stage. In parasitic helminths, previous studies have demonstrated important roles of host insulin or insulin-like peptides of parasite origin in larval development [58,59]. For M. corti and E. multilocularis, the effects of human insulin in tyrosine-phosphorylation status, glucose content, survival and asexual reproduction rate have been described [57,60]. ...
Article
Biological significance: Cestodiases are parasitic diseases with serious impact on human and animal health. Efforts to develop more effective strategies for diagnosis, treatment or control of cestodiases are impaired by the still limited knowledge on many aspects of cestode biology, including the complex developmental processes that occur in the life cycles of these parasites. Mesocestoides corti is a good experimental model to study the transition from the larval to the adult stage, called strobilation, which occur in typical cestode life-cycles. The performed proteomics approach provided large-scale identification and quantification of M. corti proteins. Many stage-specific or differentially expressed proteins were detected in the larval tetrathyridium (TT) stage and in the strobilated, adult worm (ST) stage. Functional comparative analyses of the described protein repertoires shed light on function and processes associated to specific features of both stages, such as less differentiation and asexual reproduction in TTs, and proglottization/segmentation and sexual differentiation in ST. Moreover, many of the identified stage-specific proteins are useful as cestode developmental markers, and are potential targets for development of novel diagnostic methods and therapeutic drugs for cestodiases.
... Experimentally, TGF-b has been found to be important for the control of worm-mediated inhibition of several inflammatory diseases (43). Many nematode species express TGF-b homologs (44) and some, including H. polygyrus, secrete products that can signal through the TGF-bR (19,45). HES from H. polygyrus has previously been shown to drive regulatory (Foxp3) T cell responses and to increase production of both TGF-b and IL-10, another immune-modulatory cytokine (19). ...
Article
Full-text available
Helminth infections have been suggested to impair the development and outcome of Th1 responses to vaccines and intracellular microorganisms. However, there are limited data regarding the ability of intestinal nematodes to modulate Th1 responses at sites distal to the gut. In this study, we have investigated the effect of the intestinal nematode Heligmosomoides polygyrus bakeri on Th1 responses to Mycobacterium bovis bacillus Calmette-Guérin (BCG). We found that H. polygyrus infection localized to the gut can mute BCG-specific CD4(+) T cell priming in both the spleen and skin-draining lymph nodes. Furthermore, H. polygyrus infection reduced the magnitude of delayed-type hypersensitivity (DTH) to PPD in the skin. Consequently, H. polygyrus-infected mice challenged with BCG had a higher mycobacterial load in the liver compared with worm-free mice. The excretory-secretory product from H. polygyrus (HES) was found to dampen IFN-γ production by mycobacteria-specific CD4(+) T cells. This inhibition was dependent on the TGF-βR signaling activity of HES, suggesting that TGF-β signaling plays a role in the impaired Th1 responses observed coinfection with worms. Similar to results with mycobacteria, H. polygyrus-infected mice displayed an increase in skin parasite load upon secondary infection with Leishmania major as well as a reduction in DTH responses to Leishmania Ag. We show that a nematode confined to the gut can mute T cell responses to mycobacteria and impair control of secondary infections distal to the gut. The ability of intestinal helminths to reduce DTH responses may have clinical implications for the use of skin test-based diagnosis of microbial infections.
... Studies have shown that TGF-b and insulin signaling pathways in C. elegans can trigger an 'alternative' developmental pathway, and can regulate and transit the environmental stresses on the first larval stage of the parasite [88,89]. In particular, the disruption of both signaling pathways leads to arrested development in this species [90,91]. ...
Article
Full-text available
Cystic hydatid disease (CHD) is caused by the larval stages of the cestode and affects humans and domestic animals worldwide. Protoscoleces (PSCs) are one component of the larval stages that can interact with both definitive and intermediate hosts. Previous genomic and transcriptomic data have provided an overall snapshot of the genomics of the growth and development of this parasite. However, our understanding of how PSCs subvert the immune response of hosts and maintains metabolic adaptation remains unclear. In this study, we used Roche 454 sequencing technology and in silico secretome analysis to explore the transcriptome profiles of the PSCs from E. granulosus and elucidate the potential functions of the excretory-secretory proteins (ESPs) released by the parasite. A large number of nonredundant sequences as unigenes were generated (26,514), of which 22,910 (86.4%) were mapped to the newly published E. granulosus genome and 17,705 (66.8%) were distributed within the coding sequence (CDS) regions. Of the 2,280 ESPs predicted from the transcriptome, 138 ESPs were inferred to be involved in the metabolism of carbohydrates, while 124 ESPs were inferred to be involved in the metabolism of protein. Eleven ESPs were identified as intracellular enzymes that regulate glycolysis/gluconeogenesis (GL/GN) pathways, while a further 44 antigenic proteins, 25 molecular chaperones and four proteases were highly represented. Many proteins were also found to be significantly enriched in development-related signaling pathways, such as the TGF-β receptor pathways and insulin pathways. This study provides valuable information on the metabolic adaptation of parasites to their hosts that can be used to aid the development of novel intervention targets for hydatid treatment and control.
... Such interactions might well be maintained after the constitution of the laminated layer which appears to be an exchange surface as well as a barrier (Vuitton and Gottstein 2010). Depending on the available Echinococcus genome data, future work will be the identification of the TGF-β/BMP signaling pathway-related ligands, whether host or self in origin, upstream receptors and downstream nuclear partner(s), and the target gene(s) (Beall and Pearce 2002; Brehm 2010a, b). In addition, it needs to be further elucidated the mechanism of the interaction of EgSmads with Co-Smad in response to an activating signal and how the phosphorylation status of the Smad protein regulates its interaction and consequently its function. ...
Article
Full-text available
Smad family proteins are essential cellular mediators of the transforming growth factor-β superfamily. In the present study, we identified two members of the Smad proteins, Smad8 and Smad4 homologues (termed as EgSmadE and EgSmadD, respectively), from Echinococcus granulosus, the causative agent of cystic echinococcosis (CE). Phylogenetic analysis placed EgSmadE in the Smad1, 5, and 8 subgroup of the R-Smad sub-family and EgSmadD in the Co-Smad family. Furthermore, EgSmadE and EgSmadD attained a high homology to EmSmadE and EmSmadD of E. multilocularis, respectively. Both EgSmadE and EgSmadD were co-expressed in the larval stages and exhibited the highest transcript levels in activated protoscoleces, and their encoded proteins were co-localized in the sub-tegumental and tegumental layer of the parasite. As shown by yeast two-hybrid and pull-down analysis, EgSmadE displayed a positive binding interaction with EgSmadD. In addition, EgSmadE localized in the nuclei of Mv1Lu cells (mink lung epithelial cells) upon treatment with human TGF-β1 or human BMP2, indicating that EgSmadE is capable of being translocated into nucleus, in vitro. Our study suggests that EgSmadE and EgSmadD may take part in critical biological processes, including echinococcal growth, development, and parasite-host interaction.
... The Caenorhabditis elegans genome encodes a single insulin/IGF-1-like receptor (daf-2) and 40 members of insulinlike peptides (ILPs) (Li et al., 2003). Recently, it has been confirmed that in C. elegans, daf-2 modulates glucose transport via the insulin signaling pathway, in similar manner to that found in mammalian cells (Beall and Pearce, 2002). Whether insulin regulates glucose uptake in schistosomes by a similar mechanism to that observed in C. elegans remains to be determined. ...
Article
Full-text available
A better understanding of the molecular mechanisms required for schistosomes to take up glucose, the major nutritional source exploited by these blood flukes from their mammalian hosts and the subsequent metabolism required to fuel growth and fecundity, can provide new avenues for developing novel interventions for the control of schistosomiasis. This aspect of parasitism is particularly important to paired adult schistosomes, due to their considerable requirements for the energy needed to produce the extensive numbers of eggs laid daily by the female worm. This review describes recent advances in characterizing glucose metabolism in adult schistosomes. Potential intervention targets are discussed within the insulin signaling and glycolysis pathways, both of which play critical roles in the carbohydrate and energy requirements of schistosomes.
... The pathways identified using KOBAS such as TGF-β signaling pathway and insulin signaling pathway trigger an ''alternative'' developmental pathway and regulate the transition of environmental stress on C. elegans in the first larval stage of its life cycle [46,47]. The disruption of both insulin-like and DAF-7 transforming growth factor (TGF)-β signalling pathways causes developmental arrest [48,49]. ...
Article
Full-text available
Background Teladorsagia circumcincta (order Strongylida) is an economically important parasitic nematode of small ruminants (including sheep and goats) in temperate climatic regions of the world. Improved insights into the molecular biology of this parasite could underpin alternative methods required to control this and related parasites, in order to circumvent major problems associated with anthelmintic resistance. The aims of the present study were to define the transcriptome of the adult stage of T. circumcincta and to infer the main pathways linked to molecules known to be expressed in this nematode. Since sheep develop acquired immunity against T. circumcincta, there is some potential for the development of a vaccine against this parasite. Hence, we infer excretory/secretory molecules for T. circumcincta as possible immunogens and vaccine candidates. Results A total of 407,357 ESTs were assembled yielding 39,852 putative gene sequences. Conceptual translation predicted 24,013 proteins, which were then subjected to detailed annotation which included pathway mapping of predicted proteins (including 112 excreted/secreted [ES] and 226 transmembrane peptides), domain analysis and GO annotation was carried out using InterProScan along with BLAST2GO. Further analysis was carried out for secretory signal peptides using SignalP and non-classical sec pathway using SecretomeP tools. For ES proteins, key pathways, including Fc epsilon RI, T cell receptor, and chemokine signalling as well as leukocyte transendothelial migration were inferred to be linked to immune responses, along with other pathways related to neurodegenerative diseases and infectious diseases, which warrant detailed future studies. KAAS could identify new and updated pathways like phagosome and protein processing in endoplasmic reticulum. Domain analysis for the assembled dataset revealed families of serine, cysteine and proteinase inhibitors which might represent targets for parasite intervention. InterProScan could identify GO terms pertaining to the extracellular region. Some of the important domain families identified included the SCP-like extracellular proteins which belong to the pathogenesis-related proteins (PRPs) superfamily along with C-type lectin, saposin-like proteins. The 'extracellular region' that corresponds to allergen V5/Tpx-1 related, considered important in parasite-host interactions, was also identified. Six cysteine motif (SXC1) proteins, transthyretin proteins, C-type lectins, activation-associated secreted proteins (ASPs), which could represent potential candidates for developing novel anthelmintics or vaccines were few other important findings. Of these, SXC1, protein kinase domain-containing protein, trypsin family protein, trypsin-like protease family member (TRY-1), putative major allergen and putative lipid binding protein were identified which have not been reported in the published T. circumcincta proteomics analysis. Detailed analysis of 6,058 raw EST sequences from dbEST revealed 315 putatively secreted proteins. Amongst them, C-type single domain activation associated secreted protein ASP3 precursor, activation-associated secreted proteins (ASP-like protein), cathepsin B-like cysteine protease, cathepsin L cysteine protease, cysteine protease, TransThyretin-Related and Venom-Allergen-like proteins were the key findings. Conclusions We have annotated a large dataset ESTs of T. circumcincta and undertaken detailed comparative bioinformatics analyses. The results provide a comprehensive insight into the molecular biology of this parasite and disease manifestation which provides potential focal point for future research. We identified a number of pathways responsible for immune response. This type of large-scale computational scanning could be coupled with proteomic and metabolomic studies of this parasite leading to novel therapeutic intervention and disease control strategies. We have also successfully affirmed the use of bioinformatics tools, for the study of ESTs, which could now serve as a benchmark for the development of new computational EST analysis pipelines.
... Because the TGF-b signaling pathway is important in dauer development in C. elegans, we also monitored the expression of the TGF-b homolog, Bxy-daf-7, which was upregulated in L III larvae treated with either a blend of C16 and C18 FAEEs or LY294002 ( Figure S2D). Although this transcriptional upregulation is contrary to what is seen in C. elegans, it is similar to what is seen in animal-parasitic nematodes [27][28][29][30]. (D) Effects of FAEEs on L IV formation. ...
Article
The pinewood nematode Bursaphelenchus xylophilus has caused severe damage to pine forests in large parts of the world [1-4]. Dispersal of this plant-parasitic nematode occurs when the nematode develops into the dispersal fourth larval stage (LIV) upon encountering its insect vector, the Monochamus pine sawyer beetle, inside an infected pine tree [5-9]. Here, we show that LIV formation in B. xylophilus is induced by C16 and C18 fatty acid ethyl esters (FAEEs), which are produced abundantly on the body surface of the vector beetle specifically during the late development pupal, emerging adult, and newly eclosed adult stages. The LIV can then enter the tracheal system of the adult beetle for dispersal to a new pine tree. Treatment of B. xylophilus with long-chain FAEEs, or the PI3 kinase inhibitor LY294002, promotes LIV formation, while Δ(7)-dafachronic acid blocks the effects of these chemicals, suggesting a conserved role for the insulin/IGF-1 and DAF-12 pathways in LIV formation. Our work provides a mechanism by which LIV formation in B. xylophilus is specifically coordinated with the life cycle of its vector beetle. Knowledge of the chemical signals that control the LIV developmental decision could be used to interfere with the dispersal of this plant-parasitic nematode.
... SmIR-1 and SmIR-2 belong to the family of IRs containing a conserved catalytic domain, and sequence analysis showed they share a conserved α2β2 heterotetramer structure with those of E. multilocularis IR (EmIR) and HIR [26]. The parasite IRs were able to bind human insulin [25], [26], supporting earlier reports showing that parasites can use host insulin or insulin-like growth factors to regulate and control growth and development [27], [28]. Based on the sequence of the EmIR gene, one type of IR was also amplified by reverse transcriptase-polymerase chain reaction (RT-PCR) from both Taenia crassiceps and Taenia solium [29]; these IRs have been implicated in the establishment, growth and reproduction of these cestodes by exploitation of the host endocrine system [30], [31]. ...
Article
Full-text available
Schistosomes depend for growth and development on host hormonal signals, which may include the insulin signalling pathway. We cloned and assessed the function of two insulin receptors from Schistosoma japonicum in order to shed light on their role in schistosome biology. We isolated, from S. japonicum, insulin receptors 1 (SjIR-1) and 2 (SjIR-2) sharing close sequence identity to their S. mansoni homologues (SmIR-1 and SmIR-2). SjIR-1 is located on the tegument basal membrane and the internal epithelium of adult worms, whereas SjIR-2 is located in the parenchyma of males and the vitelline tissue of females. Phylogenetic analysis showed that SjIR-2 and SmIR-2 are close to Echinococcus multilocularis insulin receptor (EmIR), suggesting that SjIR-2, SmIR-2 and EmIR share similar roles in growth and development in the three taxa. Structure homology modelling recovered the conserved structure between the SjIRs and Homo sapiens IR (HIR) implying a common predicted binding mechanism in the ligand domain and the same downstream signal transduction processing in the tyrosine kinase domain as in HIR. Two-hybrid analysis was used to confirm that the ligand domains of SjIR-1 and SjIR-2 contain the insulin binding site. Incubation of adult worms in vitro, both with a specific insulin receptor inhibitor and anti-SjIRs antibodies, resulted in a significant decrease in worm glucose levels, suggesting again the same function for SjIRs in regulating glucose uptake as described for mammalian cells. Adult worms of S. japonicum possess insulin receptors that can specifically bind to insulin, indicating that the parasite can utilize host insulin for development and growth by sharing the same pathway as mammalian cells in regulating glucose uptake. A complete understanding of the role of SjIRs in the biology of S. japonicum may result in their use as new targets for drug and vaccine development against schistosomiasis.
... Over recent years, it has become established that members of the TGF-β gene superfamily are required in helminth organisms to direct a suite of developmental processes, most clearly observed in the free-living nematode C. elegans (Patterson & Padgett, 2000). Strikingly, the complex signalling pathway, with two receptor subunits and intracellular kinases, is conserved from mammals to nematodes (Estevez et al., 1993;Gomez-Escobar et al., 1997;Newfeld et al., 1999), trematodes (Beall & Pearce, 2001;Osman et al., 2006;Freitas et al., 2007) and cestodes (Zavala-Gongora et al., 2006), indicating the potential for molecular cross-talk between evolutionarily distant organisms (Luckhart et al., 2003). An important, but unproven, hypothesis is that parasites may have adapted genes first involved in endogenous body organisation to interact with the immune system of their host (Gomez-Escobar et al., 2000). ...
Article
Full-text available
The transforming growth factor-beta (TGF-beta) gene family regulates critical processes in animal development, and plays a crucial role in regulating the mammalian immune response. We aimed to identify TGF-beta homologues from 2 laboratory model nematodes (Heligmosomoides polygyrus and Nippostrongylus brasiliensis) and 2 major parasites of ruminant livestock (Haemonchus contortus and Teladorsagia circumcincta). Parasite cDNA was used as a template for gene-specific PCR and RACE. Homologues of the TGH-2 subfamily were isolated, and found to differ in length (301, 152, 349 and 305 amino acids respectively), with variably truncated N-terminal pre-proteins. All contained conserved C-terminal active domains (>85% identical over 115 amino acids) containing 9 cysteine residues, as in C. elegans DAF-7, Brugia malayi TGH-2 and mammalian TGF-beta. Surprisingly, only the H. contortus homologue retained a conventional signal sequence, absent from shorter proteins of other species. RT-PCR assays of transcription showed that in H. contortus and N. brasiliensis expression was maximal in the infective larval stage, and very low in adult worms. In contrast, in H. polygyrus and T. circumcincta, tgh-2 transcription is higher in adults than infective larvae. The molecular evolution of this gene family in parasitic nematodes has diversified the pre-protein and life-cycle expression patterns of TGF-beta homologues while conserving the structure of the active domain.
... Insulin binds to specific insulin receptors (IR), located at the surface of target cells in many organisms of different phyla (van der Geer et al., 1994;Roovers et al., 1995;Ruan et al., 1995;Kimura et al., 1997;Hubbard & Till, 2000;Konrad et al., 2003). Due to the ubiquitous presence of insulin-like signalling pathways in metazoans, a similar system could also be used in helminth infections (Beall & Pearce, 2002). Nevertheless, particularly in taenids, very little information has been generated regarding the role of insulin and its signalling pathways, although its widespread importance in metazoans suggests that insulin/IR-mediated signalling may control parasite development and possibly several aspects of the host -parasite relationship. ...
Article
Full-text available
Hormones play a significant role in murine cysticercosis (Taenia crassiceps), and increase the frequency of porcine cysticercosis caused by Taenia solium. In the present study, we report the in vitro effect of insulin on the larval stages of T. crassiceps (ORF strain) and T. solium. In vitro exposure of T. crassiceps cysticerci to insulin was found to stimulate this parasite's reproduction twofold with respect to control values, while the same treatment had no effect on T. solium cysticerci. Moreover, normal female mice (BALB/cAnN) infected with T. crassiceps cysticerci previously exposed to insulin presented larger parasite loads than mice inoculated with vehicle-treated cysticerci. To determine the possible molecular mechanisms by which insulin affects T. crassiceps, the insulin receptor was amplified by means of reverse transcriptase-polymerase chain reaction (RT-PCR). Interestingly, both T. crassiceps and T. solium expressed the insulin receptor, although insulin had effects only on T. crassiceps. These results demonstrate that insulin has a dichotomistic effect; it acts directly only on T. crassiceps cysticerci reproduction, possibly through its binding to a specific insulin receptor synthesized by the parasite. Thus, insulin may be recognized by T. crassiceps cysticercus cells as a mitogenic factor, and contribute to parasite proliferation inside the host, as well as to the female mouse susceptibility to T.crassiceps. This phenomenon has not been reported for cysticercosis caused by T. solium, which could, in part, be related to the poor effect of insulin upon the human parasite.
... They act via binding to receptor tyrosine kinases of the insulin receptor superfamily which are located at the surface of target cells and of which members have already been identified in a wide variety of animal organisms including chordates (van der Geer et al., 1994; Hubbard and Till, 2000), insects (Ruan et al., 1995; Fernandez et al., 1995), nematodes (Kimura et al., 1997), molluscs (Roovers et al., 1995; Lardans et al., 2001), and in a cnidarian (Steele et al., 1996). Based on the widespread utilisation of insulin-like signalling mechanisms in metazoans it has been suggested that similar systems could also be used for developmental control in parasitic helminths (Beall and Pearce, 2002), although, as yet, no insulin receptor-like receptor tyrosine kinases have been characterised from these organisms. As the first example of such a molecule in a platyhelminth, we report here the identification of the insulin receptor orthologue EmIR from E. multilocularis. ...
Article
Receptor kinases play a key role in the communication of cells with their environment and could be important mediators of the effects of host cytokines on endoparasitic organisms. In this paper we describe, for the first time, the characterisation of a receptor tyrosine kinase of the insulin receptor family from a parasitic helminth. Using a degenerative PCR approach, we identified and completely characterised the 5.5kb coding DNA for an Echinococcus multilocularis factor (EmIR) which displays significant homologies to insulin receptors of different phylogenetic origin. EmIR exhibited a domain structure which is typical for the protein family and contained all catalytically important residues at corresponding positions. One striking difference between EmIR and known insulin receptors was the presence of a 172 amino acid insert in the tyrosine kinase region of, as yet, unknown function. In yeast two-hybrid analyses, the ligand binding domains of the human insulin receptor and of EmIR showed comparable affinity to human insulin. The EmIR encoding chromosomal locus (emir) was characterised and comprised 16.5kb. Southern blot hybridisations demonstrated that emir is present as a single copy locus in E. multilocularis. Furthermore, structural comparisons indicated that emir and the insulin receptor genes from mammals and insects derive from a common ancestor. Based on reverse transcriptase-polymerase chain reaction analyses, emir was found to be expressed in the two larval stages metacestode and protoscolex. EmIR is, therefore, likely to play an important role in echinococcal development and possibly also in the interaction with the mammalian host.
... Under dauer inducing conditions, insulin-like signalling is downregulated and DAF-16 is released to promote dauer development. If the development of dauer larvae and parasitic L3i is controlled by similar molecular signalling mechanisms as has been proposed by Beall and Pearce (2002), then we would expect that this latter condition operates constitutively in the preinfective larvae of most parasitic nematodes for which dauer-like arrest of the L3i is the sole developmental alternative. On the other hand, in the case of the thread-worm, S. stercoralis, a subset of postparasitic larvae develop to free-living adults while others arrest as L3i. ...
Article
A forkhead transcription factor gene, fktf-1, which we propose to be orthologous to the Caenorhabditis elegans dauer-regulatory gene daf-16 has been discovered in the parasitic nematode Strongyloides stercoralis. Genomic and cDNA sequences from both species predict alternately spliced a and b message isoforms. In contrast to C. elegans, where two a isoforms, daf-16a1 and daf-16a2, are found, a single fktf-1a isoform is found in S. stercoralis. Five of the 10 introns found in the C. elegans gene are found in the proposed S. stercoralis ortholog. Functional motifs common to DAF-16 and several mammalian forkhead transcription factors are conserved in FKTF-1. These include the forkhead DNA binding domain, four Akt/protein kinase B phosphorylation sites and a C-terminal domain that may associate with factors such as the steroid receptor coactivator and other factors necessary for transcriptional regulation. An N-terminal serine-rich domain found in DAF-16A is greatly expanded in FKTF-1A. This domain is missing in DAF-16B, FKTF-1B and all mammalian orthologs. FKTF-1 shows the closest phylogenetic relationship to DAF-16 among all known mammalian and nematode forkhead transcription factors. Like its proposed Caenorhabditis ortholog, the fktf-1 message is expressed at all stages of the life cycle examined thus far. Discovery of fktf-1 indicates the presence of an insulin-like signalling pathway in S. stercoralis similar to that known to regulate dauer development in C. elegans. This pathway is a likely candidate to control infective larval arrest and reactivation as well as regulation of the switch between parasitic and free-living development in the parasite.
... SmCN is preferentially expressed in the excretory system of the parasite, where it is envisaged to regulate ion fluxes in analogy with the vertebrate kidney [10,11]. SmT␤R-I expression occurs on the surface of adult schistosomes, and it has been speculated that it may have a sex-specific function in the female gonads as well [12] [13]. An additional clue that SmT␤R-I may play an important role in the development of female reproductive organs comes from studies showing the expression of the schistosome homologs for the Sma-and Mad-related proteins Smad2 (SmSmad2) and Smad4 (SmSmad4) in the female gonads [14] [15]. ...
Article
In eukaryotes, FK506-binding proteins with a molecular weight of 12 kDa (FKBP12s) influence a variety of signal transduction pathways that regulate cell division, differentiation, and ion homeostasis. Amongst these, TGFbeta signaling and calcineurin (CN) phosphatase activity is modulated by FKBP12 via binding to TGFbeta-family type I receptors (TbetaR-Is) or to the CN subunit A, respectively. In this work, we demonstrate the tissue-specific expression of the Schistosoma mansoni FKBP12 homologue (SmFKBP12) in the gonads of female parasites as well as in the tegument of both genders. Components of the TGFbeta pathway have been characterized in schistosomes and their roles in mediating host-parasite or male-female interactions proposed. We show that a schistosome TGFbeta-family type I receptor (SmTbetaR-I, SmRK-1) is expressed in the female gonads, suggesting that SmFKBP12 may regulate its activity in this tissue. This hypothesis is supported by yeast two-hybrid analyses showing a direct binding of SmFKBP12 and SmTbetaR-I, which was specifically inhibited by the drug FK506. Our data provide the first evidence for the activity of a transmembrane receptor in the vitellarium of schistosome females and indicate that FKBP12-meditated regulation of the TGFbeta pathway is evolutionarily conserved in a primitive metazoan such as Schistosoma. Furthermore, we show that the schistosome CN (SmCN) is not expressed in the female gonads, but co-localizes with SmFKBP12 only in the tegument. From these data we conclude an SmFKBP12/SmTbetaR-I, but not an SmCN/SmFKBP12 interplay in the female gonads.
... Maximal levels of daf-7 expression in S. ratti and P. trichosuri occur during the infective L3 stage, whereas Ce-daf-7 mRNA peaks in arrested L1 and L2 stages, and is lowest in the developmentally arrested dauer stage (Ren et al., 1996; Crook et al., 2005). The Brugia ortholog, tgh-2, is also expressed maximally in the microfilarial stage, which is a developmentally arrested stage (Gomez-Escobar et al., 2000; Beall and Pearce, 2002). There was no detectable difference in expression between L3 exposed to a serum stimulus (activated L3) (Hawdon and Schad, 1993) and non-activated L3, suggesting that DAF-7 mRNA is expressed in the free-living L3 prior to infection. ...
Article
Infective hookworm L3 encounter a host specific signal during invasion that re-activates suspended developmental pathways. Response to this cue is critical for the successful infection and completion of the life cycle in the host. In the free-living nematode Caenorhabditis elegans, recovery from the developmentally arrested dauer stage in response to environmental cues is analogous to the resumption of development in invading hookworm L3. Transforming growth factor beta (TGF-beta) and insulin-like signalling pathways mediate dauer formation and recovery. An insulin-like signalling pathway mediates L3 activation in hookworms. To determine the role of TGF-beta signalling in hookworm infection, an ortholog of the C. elegans TGF-beta signalling molecule daf-7 was cloned and characterised. Sequence from a hookworm expressed sequence tag was used to design specific primers for PCR amplification of Ac-daf-7 from Ancylostoma caninum infective L3 cDNA. Amplicons from the 5' and 3' ends were cloned, sequenced, and combined to create a full-length composite Ac-daf-7 cDNA sequence. The 1,634 nucleotide cDNA encoded a 355 amino acid open reading frame with significant homology to Ce-DAF-7 and other TGF-beta signalling molecules. The deduced amino acid sequence contained seven conserved cysteines characteristic of TGF-beta family members, as well as two additional conserved cysteines found in members of the TGF-beta/activin subfamily. Ac-DAF-7 contains a characteristic C-terminal ligand domain that is predicted to be released from a propeptide by proteolytic cleavage at a tetrabasic cleavage site. Ac-daf-7 mRNA was strongly detected by reverse transcriptase PCR in L3 and serum stimulated L3 cDNA, and weakly in cDNA from L1 and adult life cycle stages. Antiserum against Escherichia coli expressed recombinant Ac-DAF-7 detected the mature protein in L3 and adult soluble extracts, but not in excretory/secretory products from serum stimulated L3 or adults. Increased expression in arrested L3 stages suggests that Ac-daf-7 is important for developmental arrest.
... Nevertheless, while nearly the entire transcriptome of S. mansoni has been examined with the identification of 163,000 expressed sequence tags (ESTs) [12], a ligand of parasite origin for the TGF-b pathway(s) has remained elusive. This has led to the hypothesis that the ligands for schistosome TGF-b receptors are of host origin [5,13,14], and a suggestion that host TGF-b, signaling through SmRK2, plays a role in the pairing of male and female parasites [7]. ...
Article
Full-text available
Over 200 million people have, and another 600 million are at risk of contracting, schistosomiasis, one of the major neglected tropical diseases. Transmission of this infection, which is caused by helminth parasites of the genus Schistosoma, depends upon the release of parasite eggs from the human host. However, approximately 50% of eggs produced by schistosomes fail to reach the external environment, but instead become trapped in host tissues where pathological changes caused by the immune responses to secreted egg antigens precipitate disease. Despite the central importance of egg production in transmission and disease, relatively little is understood of the molecular processes underlying the development of this key life stage in schistosomes. Here, we describe a novel parasite-encoded TGF-beta superfamily member, Schistosoma mansoni Inhibin/Activin (SmInAct), which is key to this process. In situ hybridization localizes SmInAct expression to the reproductive tissues of the adult female, and real-time RT-PCR analyses indicate that SmInAct is abundantly expressed in ovipositing females and the eggs they produce. Based on real-time RT-PCR analyses, SmInAct transcription continues, albeit at a reduced level, both in adult worms isolated from single-sex infections, where reproduction is absent, and in parasites from IL-7R(-/-) mice, in which viable egg production is severely compromised. Nevertheless, Western analyses demonstrate that SmInAct protein is undetectable in parasites from single-sex infections and from infections of IL-7R(-/-) mice, suggesting that SmInAct expression is tightly linked to the reproductive potential of the worms. A crucial role for SmInAct in successful embryogenesis is indicated by the finding that RNA interference-mediated knockdown of SmInAct expression in eggs aborts their development. Our results demonstrate that TGF-beta signaling plays a major role in the embryogenesis of a metazoan parasite, and have implications for the development of new strategies for the treatment and prevention of an important and neglected human disease.
... In contrast, in A. caninum, S. stercoralis, S. ratti, and P. trichosuri, daf-7 is expressed predominantly in the infective L3 (Brand et al. 2005;Crook et al. 2005;Massey et al. 2005). Also in B. malayi, the daf-7 ortholog is expressed at highest levels in the microfilarial stage, which is considered to be developmentally arrested (Beall and Pearce 2002;Gomez-Escobar et al. 2000). Due to this different expression pattern, Brand et al. (2005) and Viney et al. (2005) conclude that daf-7 expression in parasitic nematodes coincides with arrested development. ...
Article
In opposite to the free-living soil nematode Caenorhabditis elegans, the genetic regulation of hypobiosis or inhibited or arrested development in parasitic nematodes is completely unknown. In C. elegans, the daf-genes or the age-1 gene are of major importance in signaling pathways regulating arrested development. To investigate if orthologs of these genes are present in the bovine lungworm Dictyocaulus viviparus, a PCR analysis with gene-specific primer combinations was performed. No orthologs of the age-1 or daf-genes could be identified in D. viviparus. The possible differences in the role of the daf-genes concerning arrested development in parasitic and free-living nematodes will be discussed.
... In C. elegans, environmental stress on the first larval stage triggers an ''alternative'' developmental pathway and, after the second moult, a ''dauer'' or ''arrested'' larva is formed (Golden and Riddle, 1984). Two of the three signalling pathways which regulate this transition, the transforming growth factor b (TGFb) and the insulin-like pathway (Patterson and Padgett, 2000;Beall and Pearce, 2002) are influenced by serotonin levels and disruption of either of these pathways causes developmental arrest (Ren et al., 1996;Sze et al., 2000). Environmental stress on pre-parasitic (L1-L3) stages is also associated with developmental arrest at the Fig. 4. Confirmatory RT-PCR of transcripts identified, by microarray, as differentially and non-differentially expressed between Teladorsagia circumcincta infective L3 (xL3) and L4. ...
Article
Suppression subtractive hybridisation was used to enrich genes expressed in a stage-specific manner in infective, exsheathed L3s (xL3) versus early L4s of the ovine nematode, Teladorsagia circumcincta prior to gene expression profiling by microarray. The 769 cDNA sequences obtained from the xL3-enriched library contained 361 unique sequences, with 292 expressed sequence tags (ESTs) being represented once ("singletons") and 69 sequences which were represented more than once (overlapping and non-overlapping "contigs"). The L4-enriched EST dataset contained 472 unique sequences, with 314 singletons and 158 contigs. Of these 833 sequences, 85% of the xL3 sequences and 86% of the L4 sequences exhibited homology to known genes or ESTs derived from other species of nematode. Quantitative differential expression (P<0.05) was demonstrated for 563 (68%) of the ESTs by microarray. Within the L3-specific dataset, more than 30% of the transcripts represented the enzyme, guanosine-5'-triphosphate (GTP)-cyclohydrolase, which is the first and rate-limiting enzyme of the tetrahydrobiopterin synthesis pathway and may be involved in critical elements of larval development. In L4s, proteolytic enzymes were highly up-regulated, as were collagens and a number of previously characterised secretory proteins, reflecting the rapid growth of these larvae in abomasal glands. Nucleotide sequence data reported in this paper are available in the EMBL, GenBank and DDJB databases under accession numbers AM 743198-AM 744942.
Article
Full-text available
Increasing attention has been focused on the applications of nanoparticles combined with growth factors (NPs/GFs) due to the substantial functions of GFs in regenerative medicine and disease treatments. Recently, redesigning materials and structures of the advanced modified NPs/GFs has provided improved effects compared with those of the original models. NPs/GFs with ideal biological functions are designed to fulfill desired goals. However, NPs/GFs need to overcome numerous obstacles in vivo, particularly with oral administration. This article reviews the recent studies of NPs/GFs with a focus on materials, structures, functions and obstacles and thus, highlights the existing challenges and perspectives.
Article
The cytokine transforming growth factor-P (TGF-beta) plays various functions in the control of Trypanosoma cruzi infectivity and in the progression of Chagas' disease. When we immunostained T cruzi-infected cardiomyocytes (after either in vivo or in vitro infections) for TGF-beta, we observed stronger immunoreactivity in parasites than in host cells. TGF-P immunoreactivity evolved during parasite cycle progression, with intense staining in amastigotes versus very faint staining in trypomastigotes. TGF-beta was present on the surface of amastigotes, in the flagellar pocket, and in intraparasitic vesicles as revealed by electron microscopy. However, no ortholog TGF-beta gene could be identified in the genome of T cruzi by in silico analysis or by extensive polymerase chain reaction and reverse transcriptase-polymerase chain reaction studies. Immunoreactive TGF-beta was most probably taken up by the parasite from the host cell cytoplasm because such an internalization process of biotinylated TGF-beta could be observed in axenic amastigotes in vitro. These observations represent the first example of a novel mechanism by which a primitive unicellular protozoan can use host cell TGF-beta to control its own intracellular life cycle.
Article
In Heterorhabditis bacteriophora, an insect-parasitic nematode, the third juvenile is the infective, developmentally arrested form. When it infects a suitable host, the infective juvenile (IJ) recovers from developmental arrest and resumes growth and development. This process is called recovery and it is the first outcome of the host-parasite interaction. Recovery is also very important from a commercial point of view. To characterize the recovery in H. bacteriophora, we sought to identify genes involved in this process. A large-scale bioassay for recovery was established and subtraction libraries of recovering IJ from arrested IJ transcripts were constructed at different time points. Most of the genes identified as differentially expressed between recovering and developmentally arrested IJs belonged to metabolic pathways. Elevated expression levels of 23 selected genes during recovery were confirmed by quantitative PCR. For eight of these genes, transcription silencing in H. bacteriophora resulted in a significant decline in IJ recovery rates, suggesting that these genes are critical to the recovery process. Two of the genes were associated with the insulin/IGFI pathway, known to regulate dauer formation in the free-living nematode Caenorhabditis elegans, whereas the other six genes were associated with pathways not previously associated with recovery in nematodes. These results suggest that although little is known about parasitism-unique genes, the pathways regulating recovery in H. bacteriophora include those activated in C. elegans and those that might be unique to parasitic nematodes; the latter may be activated in response to host signals and enable the parasite to recognize its host.
Article
Insulin receptors have been previously identified in Schistosoma japonicum that can bind human insulin. We used the purified recombined protein of the ligand domain of S.japonicum insulin receptor 2 (SjLD2) in three independent murine vaccine/challenge trials. Compared with controls, vaccination of mice with SjLD2 resulted in a significant reduction in faecal eggs, the stunting of adult worms and a reduction in liver granuloma density in all three trials. Furthermore, in the final trial, in which mature intestinal eggs were also quantified, there was a reduction in their number. These results suggest that development of a vaccine based on rSjLD2 for preventing transmission of zoonotic schistosomiasis is feasible.
Article
A better understanding of how schistosomes exploit host nutrients, neuro-endocrine hormones and signalling pathways for growth, development and maturation may provide new insights for improved interventions in the control of schistosomiasis. This paper describes recent advances in the identification and characterisation of schistosome tyrosine kinase and signalling pathways. It discusses the potential intervention value of insulin signalling, which may play an important role in glucose uptake and carbohydrate metabolism in schistosomes, providing the nutrients essential for parasite growth, development and, notably, female fecundity. Significant progress has also been made in the characterisation of other schistosome growth factor receptors, such as transforming growth factor beta receptor and epidermal growth factor receptor, and in our understanding of their roles in the host-parasite molecular dialogue and parasite development. The use of parasite signal transduction components as novel vaccine or drug targets may prove invaluable in prevention, treatment and control strategies to combat schistosomiasis.
Article
Alveolar echinococcosis, one of the most serious and life-threatening zoonoses in the world, is caused by the metacestode larval stage of the fox-tapeworm Echinococcus multilocularis. Mostly due to its accessibility to in vitro cultivation, this parasite has recently evolved into an experimental model system to study larval cestode development and associated host-parasite interaction mechanisms. Respective advances include the establishment of axenic in vitro cultivation systems for parasite larvae as well as culture systems by which the early development of metacestode vesicles from totipotent parasite stem cells can be reconstituted under controlled laboratory conditions. A series of evolutionarily conserved signalling molecules of the insulin, epidermal growth factor and transforming growth factor-beta pathways that are able to functionally interact with corresponding host cytokines have been described in E. multilocularis and most likely play a crucial role in parasite development within the liver of the intermediate host. Furthermore, a whole genome sequencing project has been initiated by which a comprehensive picture on E. multilocularis cell-cell communication systems will be available in due time, including information on parasite cytokines that are secreted towards host tissue and thus might affect the immune response. In this article, an overview of our current picture on Echinococcus signalling systems will be given, and the potential to exploit these pathways as targets for anti-parasitic chemotherapy will be discussed.
Article
Keywords: reference gene validation, Ancylostoma caninum, pregnancy and reactivation, Larval co-culture, IL-4 and IFN-Gamma, IGF-1, TGF-Beta. Thesis (Ph.D.)--North Carolina State University. Includes bibliographical references. Includes vita.
Article
Cytoplasmic protein tyrosine kinases of the Src family play a pivotal role in the regulation of cellular processes including proliferation and differentiation. Among other functions, Src kinases are involved in regulating the cell architecture. In an approach to identify protein tyrosine kinases from the medically important parasite Schistosoma mansoni, we isolated the TK3 gene by degenerate primer PCR and cDNA library screening. Sequencing of the complete cDNA and data-base analyses indicated that TK3 is a Src family kinase. Its predicted size of 71 kDa was confirmed by Western blot analysis. Southern blot analysis showed that TK3 is a single-copy gene, and Northern blot and RT-PCR experiments indicated its expression in both sexes and throughout development. Localization studies by in situ hybridization and immunolocalization revealed that TK3 is predominantly expressed in the reproductive organs such as the testes of the male and the ovary as well as the vitellarium of the female. Its enzymatic activity was confirmed by functional analyses. In transient transfection experiments with HEK293 cells, TK3 phosphorylated the well-known Src-kinase substrate p130 Cas, an intracellular scaffolding protein. Yeast two-hybrid screenings in a heterologous invertebrate system identified dAbi, vinculin and tubulin as binding partners, representing molecules that fulfill functions in the cell architecture of many organisms. These findings suggest that TK3 may play a role in signal transduction pathways organizing the cytoskeleton in the gonads of schistosomes.
Article
To elucidate the role of transforming growth factor beta (TGF-beta) signalling in the arrest/reactivation pathway of the Ancylostoma caninum hookworm, two parasite-encoded TGF-beta-like ligands were cloned and characterised. Ac-dbl-1 showed 60% amino acid identity to the Caenorhabditis elegansdbl-1 gene, which regulates growth while Ac-daf-7 showed 46% amino acid identity to Ce-daf-7 which regulates arrested development. Exon/intron organisation of the genes for Ac-dbl-1 and Ac-daf-7 were different from that of the corresponding C. elegans genes with nine and 10 exons, respectively, and introns ranging in size from 56 to 2,556 bp. Based on real-time reverse transcriptase (RT)-PCR, Ac-dbl-1 and Ac-daf-7 were expressed in all stages tested, i.e. egg, first/second stage larvae (L1/L2), infective third stage larvae (iL3), serum-stimulated third stage larvae (ssL3), and male and female adult worms. Expression of Ac-dbl-1 peaked in the adult male stage suggesting a similar role to Ce-dbl-1 in regulating male tail patterning. Ac-daf-7 expression was at a maximum in the arrested iL3 and reactivated ssL3 stages, which differs from that of Ce-daf-7 expression and may be unique to parasitic nematodes that have an obligate requirement to undergo developmental arrest. In support of the PCR results, antibodies to the A. caninum TGF-beta-like ligands detected proteins in iL3, ssL3, and adult worm extracts. Immunofluorescent studies showed that Ac-daf-7 is expressed in the anterior region of the iL3 similar to Ce-daf-7, which is localised to the ASI chemosensory neurons.
Article
Full-text available
The cytokine transforming growth factor-beta (TGF-beta) plays various functions in the control of Trypanosoma cruzi infectivity and in the progression of Chagas' disease. When we immunostained T. cruzi-infected cardiomyocytes (after either in vivo or in vitro infections) for TGF-beta, we observed stronger immunoreactivity in parasites than in host cells. TGF-beta immunoreactivity evolved during parasite cycle progression, with intense staining in amastigotes versus very faint staining in trypomastigotes. TGF-beta was present on the surface of amastigotes, in the flagellar pocket, and in intraparasitic vesicles as revealed by electron microscopy. However, no ortholog TGF-beta gene could be identified in the genome of T. cruzi by in silico analysis or by extensive polymerase chain reaction and reverse transcriptase-polymerase chain reaction studies. Immunoreactive TGF-beta was most probably taken up by the parasite from the host cell cytoplasm because such an internalization process of biotinylated TGF-beta could be observed in axenic amastigotes in vitro. These observations represent the first example of a novel mechanism by which a primitive unicellular protozoan can use host cell TGF-beta to control its own intracellular life cycle.
Article
Commonly studied nematode parasites have not proven amenable to simple genetic analyses and this has significantly reduced the available research options. We introduce here a nematode parasite of mammals, Parastrongyloides trichosuri, which has features uniquely suited for genetic analysis. This parasite has the capacity to undergo multiple reproductive cycles as a free-living worm and thereby amplify the numbers of its infective L3s in faeces. Culture conditions are presented that permit facile laboratory maintenance of this worm for >90 free-living life cycles (to date) without the need for re-entry into a permissive host. Even after long maintenance as a free-living worm, culture conditions can be manipulated to favour development of infective L3 worms, which remain able to successfully infect their marsupial hosts. The switch to infective L3 development is triggered by a secreted factor contained in culture medium conditioned by multiple generations of free-living worm culture. It is simple to perform single pair crosses with P. trichosuri to carry out Mendelian genetics in the laboratory and this has been done multiple times with sibling pairs to generate highly inbred lines. Lines of worms can readily be cryopreserved and recovered. Over 7000 expressed sequence tags have been produced from cDNAs at different life cycle stages and used to identify single nucleotide polymorphisms and microsatellites as genetic markers. Free-living worms live only a few days on average while the patency of parasitic infections can last for several months. Since we show this is not the result of re-infection, we conclude that parasitic worms have a lifespan capacity at least 20-30 times longer than their free-living counterparts. We discuss how it should be possible to exploit these unique features of P. trichosuri as a model for future studies that explore the genetic basis of longevity and parasitism.
Article
Haemonchus contortus of small ruminants is a parasitic nematode of major socio-economic importance world-wide. While there is considerable knowledge of the morphological changes which take place during the life cycle of H. contortus, very little is understood about the molecular and biochemical processes which govern developmental changes in the parasite. Recent technological advances and the imminent genomic sequence for H. contortus provide unique opportunities to investigate the molecular basis of such processes in parasitic nematodes. This article reviews molecular and biochemical aspects of development in H. contortus, reports on some recent progress on signal transduction molecules in this parasite and emphasises the opportunities that new technologies and the free-living nematode, Caenorhabditis elegans, offer for investigating developmental aspects in H. contortus and related strongylid nematodes, also in relation to developing novel approaches for control.
Article
Full-text available
The biology of the helminth parasiteSchistosoma mansoni is closely integrated with that of its mammalian host. SmRK1, a divergent type I transforming growth factor-β (TGF-β) receptor of unknown ligand specificity, was previously identified as a candidate for a receptor that allows schistosomes to respond to host-derived growth factors. The TGF-β family includes activin, bone morphogenetic proteins (BMPs), and TGF-β, all of which can play crucial roles in metazoan development. The downstream signaling protein of receptors that respond to TGF-β and activin is Smad2, whereas the receptors that respond to BMPs signal via Smad1. When a constitutively active mutant of SmRK1 was overexpressed with either schistosome Smad1 (SmSmad1) or SmSmad2, a receptor-dependent modulation of SmSmad phosphorylation and luciferase reporter activity occurred only with SmSmad2. To evaluate potential ligand activators of SmRK1, a chimeric receptor containing the extracellular domain of SmRK1 joined to the intracellular domain of the human type I TGF-β receptor was used. The chimeric receptor bound radiolabeled TGF-β and could activate a luciferase reporter gene in response to both TGF-β1 and TGF-β3 but not BMP7. Confirmatory results were obtained using full-length SmRK1. These experiments implicate TGF-β as a ligand for SmRK1 and as a potential host-derived regulator of parasite growth and development.
Article
Full-text available
Converging TGF-beta and insulin-like neuroendocrine signaling pathways regulate whether Caenorhabditis elegans develops reproductively or arrests at the dauer larval stage. We examined whether neurotransmitters act in the dauer entry or recovery pathways. Muscarinic agonists promote recovery from dauer arrest induced by pheromone as well as by mutations in the TGF-beta pathway. Dauer recovery in these animals is inhibited by the muscarinic antagonist atropine. Muscarinic agonists do not induce dauer recovery of either daf-2 or age-1 mutant animals, which have defects in the insulin-like signaling pathway. These data suggest that a metabotropic acetylcholine signaling pathway activates an insulin-like signal during C. elegans dauer recovery. Analogous and perhaps homologous cholinergic regulation of mammalian insulin release by the autonomic nervous system has been noted. In the parasitic nematode Ancylostoma caninum, the dauer larval stage is the infective stage, and recovery to the reproductive stage normally is induced by host factors. Muscarinic agonists also induce and atropine potently inhibits in vitro recovery of A. caninum dauer arrest. We suggest that host or parasite insulin-like signals may regulate recovery of A. caninum and could be potential targets for antihelminthic drugs.
Article
Full-text available
Bone morphogenetic proteins (BMPs) comprise the largest subfamily of TGF-beta-related ligands and are known to bind to type I and type II receptor serine/threonine kinases. Although several mammalian BMP type I receptors have been identified, the mammalian BMP type II receptors have remained elusive. We have isolated a cDNA encoding a novel transmembrane serine/threonine kinase from human skin fibroblasts which we demonstrate here to be a type II receptor that binds BMP-4. This receptor (BRK-3) is distantly related to other known type II receptors and is distinguished from them by an extremely long carboxyl-terminal sequence following the intracellular kinase domain. The BRK-3 gene is widely expressed in a variety of adult tissues. When expressed alone in COS cells, BRK-3 specifically binds BMP-4, but cross-linking of BMP-4 to BRK-3 is undetectable in the absence of either the BRK-1 or BRK-2 BMP type I receptors. Cotransfection of BRK-2 with BRK-3 greatly enhanced affinity labeling of BMP-4 to the type I receptor, in contrast to the affinity labeling pattern observed with the BRK-1 + BRK-3 heteromeric complex. Furthermore, a subpopulation of super-high affinity binding sites is formed in COS cells upon cotransfection only of BRK-2 + BRK-3, suggesting that the different heteromeric BMP receptor complexes have different signaling potential.
Article
Full-text available
The Caenorhabditis elegans dauer larva is specialized for dispersal without growth and is formed under conditions of overcrowding and limited food. The daf-7 gene, required for transducing environmental cues that support continuous development with plentiful food, encodes a transforming growth factor-β (TGF-β) superfamily member. A daf-7 reporter construct is expressed in the ASI chemosensory neurons. Dauer-inducing pheromone inhibits daf-7 expression and promotes dauer formation, whereas food reactivates daf-7 expression and promotes recovery from the dauer state. When the food/pheromone ratio is high, the level of daf-7 mRNA peaks during the L1 larval stage, when commitment to non-dauer development is made.
Article
Full-text available
A C. elegans neurosecretory signaling system regulates whether animals enter the reproductive life cycle or arrest development at the long-lived dauer diapause stage. daf-2, a key gene in the genetic pathway that mediates this endocrine signaling, encodes an insulin receptor family member. Decreases in DAF-2 signaling induce metabolic and developmental changes, as in mammalian metabolic control by the insulin receptor. Decreased DAF-2 signaling also causes an increase in life-span. Life-span regulation by insulin-like metabolic control is analogous to mammalian longevity enhancement induced by caloric restriction, suggesting a general link between metabolism, diapause, and longevity.
Article
Full-text available
To optimize reproductive success under the limitations determined by conditions within an individual host, parasitic helminths have evolved mechanisms that allow them to detect and respond to host factors such as species, age, sex, reproductive condition, and immune status. Using the model helminth Schistosoma mansoni, we have explored the possibility that parasitic helminths express signal-transducing receptor molecules on their surfaces. Here, we present the identification of a schistosome member of the transforming growth factor beta receptor family of cell-surface receptors, the first member of this family to be identified in a platyhelminth. The putative protein kinase domain of the schistosome receptor displays up to 58% amino acid identity to kinase domains of other type I receptor serine-threonine kinases, and contains a potential "GS domain," suggesting it is a divergent member of the type I receptor subfamily. This receptor is expressed on the surface of the parasite's syncytial tegument and expression of receptor messenger RNA and protein is up-regulated following infection of the mammalian host. The receptor protein can be isolated in a phosphorylated form from adult parasites, which together with its surface location, suggests that it functions in transducing signals across the parasite surface membrane.
Article
Full-text available
Nematode parasites of warm-blooded hosts use chemical and thermal signals in host-finding and in the subsequent resumption of development. The free-living nematode Caenorhabditis elegans is a useful model for investigating the chemo- and thermosensory neurons of such parasites, because the functions of its amphidial neurons are well known from laser microbeam ablation studies. The neurons found in the amphidial channel detect aqueous chemoattractants and repellants; the wing cells—flattened amphidial neurons—detect volatile odorants. The finger cells—digitiform amphidial neurons—are the primary thermoreceptors. Two neuron classes, named ADF and ASI, control entry into the environmentally resistant resting and dispersal dauer larval stage, while the paired ASJ neurons control exit from this stage.
Article
Full-text available
A novel member of the transforming growth factor beta (TGF-beta) family has been identified in the filarial nematode parasite Brugia malayi by searching the recently developed Expressed Sequence Tag (EST) database produced by the Filarial Genome Project. Designated tgh-2, this new gene shows most similarity to a key product regulating dauer larva formation in Caenorhabditis elegans (DAF-7) and to the human down-modulatory cytokine TGF-beta. Homology to DAF-7 extends throughout the length of the 349-amino-acid (aa) protein, which is divided into an N-terminal 237 aa, including a putative signal sequence, a 4-aa basic cleavage site, and a 108-aa C-terminal active domain. Similarity to human TGF-beta is restricted to the C-terminal domain, over which there is a 32% identity between TGH-2 and TGF-beta1, including every cysteine residue. Expression of tgh-2 mRNA has been measured over the filarial life cycle. It is maximal in the microfilarial stage, with lower levels of activity around the time of molting within the mammal, but continues to be expressed by mature adult male and female parasites. Expression in both the microfilaria, which is in a state of arrested development, and the adult, which is terminally differentiated, indicates that tgh-2 may play a role other than purely developmental. This is consistent with our observation that TGH-2 is secreted by adult worms in vitro. Recombinant TGH-2 expressed in baculovirus shows a low level of binding to TGF-beta-receptor bearing mink lung epithelial cells (MELCs), which is partially inhibited (16 to 39%) with human TGF-beta, and activates plasminogen activator inhibitor-1 transcription in MELCs, a marker for TGF-beta-mediated transduction. Further tests will be required to establish whether the major role of B. malayi TGH-2 (Bm-TGH-2) is to modulate the host immune response via the TGF-beta pathway.
Article
Full-text available
Smad proteins are essential intracellular signal transducers of the transforming growth factor-beta (TGF-beta) superfamily. The TGF-beta superfamily signals through phosphorylation and activation of R-Smad proteins, receptor-regulated Smads, by heteromeric complexes of ligand-specific type I and type II serine/threonine kinase receptors. R-Smads receive a signal from the activated receptor complex and transmit it to the nucleus. A cDNA was isolated that encodes a 649-amino acid protein found to be homologous to members of R-Smad subfamily with highest homology scored to clawed African frog and human Smad2. The Schistosoma mansoni homologue (SmSmad2) was overexpressed in bacteria as a Sj26-GST fusion protein and used to raise specific antibodies. The IgG fraction of the immunized rabbit serum identified 70- and 72-kDa protein bands in Western analysis of schistosome extracts. Treatment with alkaline phosphatase removed the 72-kDa band, which indicates that this band represents the phosphorylated form of schistosome Smad2. SmSmad2 was localized in the subtegument, parenchymal cells, and sex organs in both male and female worm cryosections. Similar results were also obtained from the analysis of the Smad2 mRNA distribution pattern revealed by in situ hybridization of adult worm pair paraffin sections. SmSmad2 mRNA levels were determined by reverse transcriptase-polymerase chain reaction in different mammalian host developmental stages and found to be constitutively expressed. SmSmad2 was also found to interact with a previously identified SmTbetaR-I, a serine/threonine type I kinase receptor. Furthermore, SmSmad2 was shown to undergo phosphorylation by constitutively active forms of SmTbetaR-I in vitro. In addition, SmSmad2 localized in the nuclei of mink lung epithelial cells upon treatment with TGF-beta(1). These data indicate that the SmSmad2 responds to the TGF-beta signals by interaction with receptor I, which phosphorylates it, whereupon it translocates into the nucleus presumably to regulate target gene transcription and consequently elicit a specific TGF-beta effect.
Article
Full-text available
The activity of the DAF-2 insulin-like receptor is required for Caenorhabditis elegans reproductive growth and normal adult life span. Informatic analysis identified 37 C. elegans genes predicted to encode insulin-like peptides. Many of these genes are divergent insulin superfamily members, and many are clustered, indicating recent diversification of the family. The ins genes are primarily expressed in neurons, including sensory neurons, a subset of which are required for reproductive development. Structural predictions and likely C-peptide cleavage sites typical of mammalian insulins suggest that ins-1 is most closely related to insulin. Overexpression of ins-1, or expression of human insulin under the control of ins-1 regulatory sequences, causes partially penetrant arrest at the dauer stage and enhances dauer arrest in weak daf-2 mutants, suggesting that INS-1 and human insulin antagonize DAF-2 insulin-like signaling. A deletion of the ins-1 coding region does not enhance or suppress dauer arrest, indicating a functional redundancy among the 37 ins genes. Of five other ins genes tested, the only other one bearing a predicted C peptide also antagonizes daf-2 signaling, whereas four ins genes without a C peptide do not, indicating functional diversity within the ins family.
Article
We have cloned ActR-IIB, which encodes four new activin receptor isoforms belonging to the protein serine/threonine kinase receptor family. Two of the ActR-IIB isoforms have higher affinity for activin A than the previously cloned activin receptor and differ from each other by the inclusion of an alternatively spliced segment in the cytoplasmic juxtamembrane region. A second alternative splicing event generates two additional receptor isoforms that lack a proline cluster in the external juxtamembrane region and have lower affinity for activin A. All isoforms bind inhibin A with low affinity. Thus, the repertoire of activin receptors includes species that differ in ligand binding affinity, cytoplasmic domain structure, or both. This receptor heterogeneity might underlie the sharply different responses that activin can elicit in a dose- or cell-specific manner.
Article
Larval development of the nematode Caenorhabditis elegans is controlled by the activities of four classes of chemosensory neurons. The choice between normal development and development into a specialized larval form called a dauer larva is regulated by competing environmental stimuli: food and a dauer pheromone. When the neuron classes ADF, ASG, ASI, and ASJ are killed, animals develop as dauer larvae regardless of environmental conditions. These neurons might sense food or dauer pheromone, or both, to initiate the specialized differentiation of many cell types that occurs during dauer formation. Entry into and exit from the dauer stage are primarily controlled by different chemosensory neurons. The analysis of mutants defective in dauer formation indicates that the chemosensory neurons are active in the absence of sensory inputs and that dauer pheromone inhibits the ability of these neurons to generate a signal necessary for normal development.
Article
From autumn (April) to spring (November), groups of pregnant and dry Merino ewes grazed pasture contaminated with infective larvae of Haemonchus contortus, Ostertagia circumcincta and Trichostrongylus colubriformis. A periparturient rise in faecal egg counts occurred in the pregnant ewes, following the maturation in early spring of arrested fourth-stage larvae of H. contortus and failure of pregnant ewes to expel the resulting adult worms. Peak egg counts were seen in September, just before lambing. In dry ewes, egg counts were slightly elevated at the time of the rise in the pregnant ewes, but fell to very low levels as adult worms developing from previously arrested larvae were expelled. Lactating ewes acquired greater burdens of O. circumcincta and T. colubriformis than did dry ewes, but were equally refractory to new infections with H. contortus. It is therefore suggested that the impairment of immunity to helminth infection seen in reproductive ewes may be more specific than was previously envisaged.
Article
Nuclear factor κB (NF-κB), consisting of p50 and p65, is bound to a cytoplasmic retention protein, IκB, in a resting state, and the stimulation of cells with a variety of inflammatory stimuli induces the dissociation of NF-κB from IκB and the nuclear translocation of NF-κB, thereby activating several genes involved in inflammatory responses, such as interleukin (IL)- 6, IL-8, and tumor necrosis factor α. In order to elucidate the precise mechanism of NF-κB activation, we have established lipopolysaccharide (LPS)- dependent NF-κB activation in a cell-free system using plasma membrane- enriched, cytosol, and nuclear fractions extracted from a human monocytic cell line, THP-1, by disruption with sonication followed by a differential centrifugation. The combination of plasma membrane-enriched fraction and cytosol was sufficient to activate NF-κB in a LPS/CD14-dependent manner only in the presence of ATP as judged by the binding of NF-κB to the IL-8 gene κB site on an electrophoretic mobility shift assay. LPS-dependent NF-κB activation was inhibited by protein kinase inhibitors, such as staurosporine, herbimycin A, tyrphostin, and genistein, but not mitogen-activated protein kinase substrate, cGMP-dependent protein kinase, cAMP-dependent protein kinase, protein kinase C, and calmodulin-dependent protein kinase II inhibitory peptides, suggesting that staurosporine-sensitive kinase(s) as well as tyrosine kinase(s) are involved in LPS-mediated NF-κB activation. In addition, LPS induced the phosphorylation of IκB-α, starting at 5 min after the stimulation in a cell-free system. Moreover, the phosphorylation was inhibited by herbimycin A and tyrphostin, but not staurosporine, suggesting that these protein kinase inhibitors act at distinct steps of signal transmission. Establishment of ligand-dependent activation of NF-κB in a cell-free system will facilitate identification of protein kinase(s) and its substrate(s) involved in LPS-mediated NF-κB activation.
Article
The full length cDNA sequence of a Type I transforming growth factor-beta (TGF-beta) receptor has been isolated from the filarial parasitic nematode Brugia pahangi. This new gene, designated Bp-trk-1, encodes a predicted 645 amino acid sequence with an N-terminal hydrophobic stretch which may act as a signal peptide. The extracellular portion (residues 15-187) is cysteine-rich and has three potential N-glycosylation sites. At positions 250-255 the protein contains the glycine-serine rich motif characteristic of Type I receptors. The closest homologue is a Caenorhabditis elegans gene (Q09488) in cosmid C32D5.2 which shares 67% amino acid identity with Bp-trk-1 in the most conserved kinase domain (aa 259-482). Other type I receptors such as C. elegans daf-1 and Drosophila tkv show 38-53% identity in the same region. Some residues conserved in Drosophila and vertebrates are not present in the B. pahangi sequence. RT-PCR amplification has been used to show that the transcript is expressed in the three main stages of the B. pahangi life cycle: microfilariae, infective larvae and adults. The ligand remains unknown at this time but is likely to be most similar to that for C. elegans Q09488.
Article
Transforming growth factor-beta (TGF-beta) superfamily genes encode products controlling pattern formation, cell differentiation, and immune-mediated inflammation. Members of this superfamily are known in multicellular organisms from mammals to the model nematode Caenorhabditis elegans. Using PCR with oligonucleotides complementary to highly conserved motifs in the TGF-beta superfamily, we first isolated a genomic clone from the filarial nematode Brugia malayi. This gene, termed Bm-tgh-1 (TGF-beta homolog-1), spans 2.5 kb of genomic DNA and contains seven exons. Transcripts of this gene are poorly represented in cDNA libraries, but a full-length cDNA was isolated by RACE from B. pahangi (Bp-tgh-1). The tgh-1 genes from the two species are >98% identical at the nucleotide and amino acid levels, differing at 18/1576 base pairs and 5/428 amino acids; all nonsynonymous substitutions are in the long N-terminal propeptide. They show a high level of similarity throughout all seven exons to a C. elegans gene on cosmid T25F10. Homology to other members of the TGF-beta superfamily is restricted to the C-terminal domain which contains the mature active protein. Key features shared with other members of the superfamily include the tetrabasic proteolytic cleavage site to release an active C-terminal peptide, seven cysteines arrayed in identical fashion, and conserved sequence motifs. tgh-1 is most similar to the BMP-1 subfamily involved in developmental signaling in nematodes, insects, and vertebrates. RT-PCR on first-strand cDNA from both Brugia species, with primers specific to the 3' end, showed that tgh-1 is not expressed in the microfilarial stage, but is detectable in the mosquito-derived infective larvae and is maximal in maturing parasites around the time of molting in the mammalian host. Adult parasites show a relatively low level of expression. The identification of tgh-1, and its preferential expression in developing parasites, suggests that it may be involved in key developmental events in the complex filarial life cycle.
Article
Parasitic nematodes of the genus Strongyloides are remarkable for their ability to switch between alternative free-living developmental pathways in response to changing internal environmental conditions. After exiting the host, soil-dwelling larval stages may develop either to infectivity via 2 microbiverous stages (homogonic development) or to free-living adulthood via 4 microbiverous larval stages (heterogonic development). The progeny of these adults then give rise to the infective stage. In the latter case, free-living existence is extended in time and the number of infective larvae is greatly amplified. Anterior chemosensory neurons (amphidial neurons) are thought to respond to environmental cues and via signal transduction pathways control the direction of larval development. We now demonstrate by laser microbeam ablation that 2 classes of amphidial neurons (ASF and ASI), acting together, control the direction of free-living larval development. Larvae in which the neurons were killed developed to infectivity via the homogonic route rather than to adulthood via the otherwise predominant heterogonic route. These neurons are probable homologues of neurons ADF (=ASF) and ASI in Caenorhabditis elegans, suggesting the control of development at the cellular level is conserved among divergent taxa of nematodes. These observations also have important implications for the evolution of nematode parasitism and the design of new prophylactic measures against parasitic nematodes of medical and veterinary medical importance.
Article
The insulin/IGF receptor homolog DAF-2 regulates the aging in C. elegans. Decreasing daf-2 activity causes fertile adults to remain active much longer than normal and to live more than twice as long. A more severe decrease in daf-2 function causes young larvae to enter a state of diapause rather than progressing to adulthood. We have asked which cells require daf-2 gene activity in order for the animal to develop to adulthood and to age normally. We found that daf-2 functions cell nonautonomously in both processes. Our findings imply that the life span of C. elegans is determined by a signaling cascade in which the DAF-2 receptor acts in multiple cell lineages to regulate the production or activity of a secondary signal (or signals), which, in turn, controls the growth and longevity of individual tissues in the animal.
Article
Caenorhabditis elegans dauer formation is controlled by multiple environmental factors. The chemosensory neuron ASI regulates dauer formation by secretion of DAF-7/TGF-beta, but the molecular targets of the DAF-7 ligand are incompletely defined and the cellular targets are unknown. We genetically characterized and cloned a putative transducer of DAF-7 signaling called daf-14 and found that it encodes a Smad protein. DAF-14 Smad has a highly unusual structure completely lacking the N-terminal domain found in all other Smad proteins known to date. daf-14 genetically interacts with daf-8, which encodes another Smad, and the interaction suggests partial functional redundancy between these two Smad proteins. We also studied the cellular targets of DAF-7 signaling by studying the sites of action of daf-14 and daf-4, the putative receptor for DAF-7. daf-14::gfp is expressed in multiple tissues that are remodeled during dauer formation. However, analysis of mosaics generated by free duplication loss and tissue-specific expression constructs indicate cell-nonautonomous function of daf-4, arguing against direct DAF-7 signaling to tissues throughout the animal. Instead, these experiments suggest the nervous system as a target of DAF-7 signaling and that the nervous system in turn regulates dauer formation by other tissues.
Article
Genetic and molecular analysis in Caenorhabditis elegans has produced new insights into how TGF beta-related pathways transduce signals and the developmental processes in which they function. These pathways are essential regulators of dauer formation, body-size determination, male copulatory structures and axonal guidance. Here, we review the insights that have come from standard molecular genetic experiments and discuss how the recently completed genome sequence has contributed to our understanding of these pathways.
Article
Transforming growth factor beta is a multi-functional growth and differentiation factor responsible for regulating many diverse biological processes in both vertebrate and invertebrate species. Among the most dramatic of TGFbeta's effects are those associated with specification of cell fates during development and inhibition of cell cycle progression. The core TGFbeta signaling pathway has now been described using a synergistic combination of genetic and biochemical approaches. Transmembrane receptors with intrinsic protein serine kinase activity bind ligand in the extracellular milieu and then phosphorylate intracellular proteins known as Smads. Phosphorylated Smads form heterooligomers and translocate into the nucleus where they can modulate transcriptional responses. More recent studies indicate that many other proteins serve as modulators of Smad activity, and utimately define specific cellular responses to TGFbeta. Here we describe both the simplistic core TGFbeta signaling pathway and the growing number of proteins that impinge on this pathway at the level of Smad function to either enhance or inhibit TGFbeta responses.
Article
The daf-4 gene encodes a type II bone morphogenetic protein receptor in Caenorhabditis elegans that regulates dauer larva formation, body size and male tail patterning. The putative type I receptor partner for DAF-4 in regulating dauer larva formation is DAF-1. Genetic tests of the mechanism of activation of these receptors show that DAF-1 can signal in the absence of DAF-4 kinase activity. A daf-1 mutation enhances dauer formation in a daf-4 null background, whereas overexpression of daf-1 partially rescues a daf-4 mutant. DAF-1 alone cannot fully compensate for the loss of DAF-4 activity, indicating that nondauer development normally results from the activities of both receptors. DAF-1 signaling in the absence of a type II kinase is unique in the type I receptor family. The activity may be an evolutionary remnant, owing to daf-1's origin near the type I/type II divergence, or it may be an innovation that evolved in nematodes. daf-1 and daf-4 promoters both mediated expression of green fluorescent protein in the nervous system, indicating that a DAF-1/DAF-4 receptor complex may activate a neuronal signaling pathway. Signaling from a strong DAF-1/DAF-4 receptor complex or a weaker DAF-1 receptor alone may provide larvae with more precise control of the dauer/nondauer decision in a range of environmental conditions.
Article
The induction of an appropriate cellular response to a stimulus often depends on the intricate interplay between multiple signaling pathways. Recent work utilizing Caenorhabditis elegans has enabled the identification of points of convergence between signaling pathways and permitted the elucidation of how multiple signals work in concert to ensure a proper response.
Article
An insulinlike signaling pathway controlsCaenorhabditis elegans aging, metabolism, and development. Mutations in the daf-2 insulin receptor–like gene or the downstream age-1 phosphoinositide 3-kinase gene extend adult life-span by two- to threefold. To identify tissues where this pathway regulates aging and metabolism, we restored daf-2pathway signaling to only neurons, muscle, or intestine. Insulinlike signaling in neurons alone was sufficient to specify wild-type life-span, but muscle or intestinal signaling was not. However, restoring daf-2 pathway signaling to muscle rescued metabolic defects, thus decoupling regulation of life-span and metabolism. These findings point to the nervous system as a central regulator of animal longevity.
Article
Guidelines for submitting commentsPolicy: Comments that contribute to the discussion of the article will be posted within approximately three business days. We do not accept anonymous comments. Please include your email address; the address will not be displayed in the posted comment. Cell Press Editors will screen the comments to ensure that they are relevant and appropriate but comments will not be edited. The ultimate decision on publication of an online comment is at the Editors' discretion. Formatting: Please include a title for the comment and your affiliation. Note that symbols (e.g. Greek letters) may not transmit properly in this form due to potential software compatibility issues. Please spell out the words in place of the symbols (e.g. replace “α” with “alpha”). Comments should be no more than 8,000 characters (including spaces ) in length. References may be included when necessary but should be kept to a minimum. Be careful if copying and pasting from a Word document. Smart quotes can cause problems in the form. If you experience difficulties, please convert to a plain text file and then copy and paste into the form.
Article
To begin to understand the molecular basis of communication between the parasite Schistosoma mansoni and its mammalian host, we are studying the signaling pathway downstream of S. mansoni receptor kinase-1 (SmRK1), a divergent type I transforming growth factor-beta (TGF-beta) receptor found on the tegumental surface of the parasite. In this study, we have used a homology based PCR approach to clone two S. mansoni Smad (SmSmad) genes; Smads play a pivotal role in the most well understood signaling pathways initiated by the TGF-beta family of ligands in other organisms. Comparison of the amino acid sequences with those of other Smads reveals that the conserved MH1 and MH2 domains of SmSmads show a high degree of identity to homologues in Drosophila. Transcripts for both SmSmads are detected in the same developmental stages as SmRK1, and both are capable of interacting with the intracellular domain of the receptor in vitro. Functional characterization using the human type I TGF-beta receptor further confirms the highly conserved nature of these proteins, as both SmSmads show TGF-beta dependent enhancement of luciferase activity and nuclear translocation in mammalian cells. These data are the first to show a TGF-beta-like receptor/Smad signaling pathway in parasitic helminths and by analogy with other systems, is likely important in regulating schistosome development.
Article
Cell proliferation, differentiation and death are controlled by a multitude of cell-cell signals, and loss of this control has devastating consequences. Prominent among these regulatory signals is the transforming growth factor-beta (TGF-beta) family of cytokines, which can trigger a bewildering diversity of responses, depending on the genetic makeup and environment of the target cell. What are the networks of cell-specific molecules that mould the TGF-beta response to each cell's needs?
Article
The nervous system acts as a major regulator of the life span of Caenorhabditis elegans. Temperature and chemical stimuli from the environment are integrated with internal signals from the reproductive system to specify adult longevity. An insulin-like signaling cascade acts in neurons and coordinates control of senescence of the entire organism by regulating metabolism and a stress response mechanism. Caloric restriction extends life span, possibly by activation of the stress response program.
Characterization of two receptor tyrosine kinases in the parasite Schistosoma mansoni
  • J Vicogne
  • V Lardans
  • J.-P Pin
  • J.-F Coppin
  • R J Pierce
  • C Dissous
Vicogne, J., Lardans, V., Pin, J.-P., Coppin, J.-F., Pierce, R.J., Dissous, C. 2001. Characterization of two receptor tyrosine kinases in the parasite Schistosoma mansoni. In: Nowell, F., (Ed.), Meeting of the British Society for Parasitology, University of Keele.
Parasitic nematodes C. elegans II Getting signals crossed in C. elegans
  • M Blaxter
  • D Bird
Blaxter, M., Bird, D., 1997. Parasitic nematodes. In: Riddle, D.L. (Ed.). C. elegans II, Cold Spring Harbor Laboratory Press, New York, NY, pp. Hanna-Rose, W., Han, M., 2000. Getting signals crossed in C. elegans. Curr. Opin. Genet. Dev. 10, 523–8.