ArticleLiterature Review

Solving problems in multiplex FISH

Authors:
To read the full-text of this research, you can request a copy directly from the author.

Abstract

Over the last 15 yr, advances in molecular biology have allowed improvements in the sensitivity and versatility of cytogenetic analysis. These advances have included developments in recombinant technology such as fluorescence in situ hybridization (FISH), a means of detecting chromosome rearrangements through the use of DNA-specific probes known as chromosome paints. Recent extensions to this painting technology are multiplex FISH (MFISH) (1) and spectral karyotyping (SKY) (2). These technologies use complex combinatorial probes and sophisticated image analysis software to allow each of the 24 different human chromosomes to be simultaneously identified in 24 discrete colors, making it possible to screen for rearrangements between all chromosomes in one analysis. These techniques have been used to characterize hematological malignancies (3) and bladder (4,5) and prostate cancer (6–8). MFISH represents a useful tool for the genome-wide screening of chromosome rearrangement and is becoming increasingly practiced in both the research and diagnostic professions. It follows that a chapter on the use of these technologies is appropriately included in a series on the methods used in malignancy cytogenetics.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the author.

Article
We developed and describe a practical method by which primary prostate cancer specimens can be screened for recurrent chromosomal translocations, which is a potential source of fusion genes, as well as a process by which identified translocations can be mapped to define the genes involved. A series of 7 prostate cancer cell lines and 25 transiently established primary cell cultures, which were sourced from tissue harvested at 16 radical prostatectomies and 9 channel transurethral prostate resections, were screened for chromosomal translocations using multiplex-fluorescence in situ hybridization technology. A series of fluorescence in situ hybridization based breakpoint mapping experiments were performed to identify candidate genes involved in regions associated with recurrent translocation. Our analysis identified the repetition of 2 translocations in prostate cancer lines, that is t(1;15) and t(4;6), at a frequency of 28% and 57%, respectively. More significantly 4 of the 25 subsequently established primary cultures (16%) also revealed a t(4;6) translocation. Using the LNCaP cell line the breakpoints involved were mapped to the t(4;6)(q22;q15) region and a number of candidate genes were identified. We found that the t(4;6) translocation is also a repeat event in primary cell cultures from malignant prostate cancer. Breakpoint mapping showed that the gene UNC5C loses its promoter and first exon as a direct result of the translocation in the 4q22 region. As such, we identified it as a possible contributor to a putative fusion gene in prostate cancer.
Article
Full-text available
Human prostate cancer is characterized by multiple gross chromosome alterations involving several chromosome regions. However, the specific genes involved in the development of prostate tumors are still largely unknown. Here we have studied the chromosome composition of the three established prostate cancer cell lines, LNCaP, PC-3, and DU145, by spectral karyotyping (SKY). SKY analysis showed complex karyotypes for all three cell lines, with 87, 58/113, and 62 chromosomes, respectively. All cell lines were shown to carry structural alterations of chromosomes 1, 2, 4, 6, 10, 15, and 16; however, no recurrent breakpoints were detected. Compared to previously published findings on these cell lines using comparative genomic hybridization, SKY revealed several balanced translocations and pinpointed rearrangement breakpoints. The SKY analysis was validated by fluorescence in situ hybridization using chromosome-specific, as well as locus-specific, probes. Identification of chromosome alterations in these cell lines by SKY may prove to be helpful in attempts to clone the genes involved in prostate cancer tumorigenesis.
Article
We have developed epifluorescence filter sets and computer software for the detection and discrimination of 27 different DNA probes hybridized simultaneously. For karyotype analysis, a pool of human chromosome painting probes, each labelled with a different fluor combination, was hybridized to metaphase chromosomes prepared from normal cells, clinical specimens, and neoplastic cell lines. Both simple and complex chromosomal rearrangements could be detected rapidly and unequivocally; many of the more complex chromosomal abnormalities could not be delineated by conventional cytogenetic banding techniques. Our data suggest that multiplex-fluorescence in situ hybridization (M-FISH) could have wide clinical utility and complement standard cytogenetics, particularly for the characterization of complex karyotypes.
Article
Cytogenetic analysis provides critical information of diagnostic and prognostic importance for haematological malignancies. In fact, the identification of recurring chromosomal breakpoints in leukaemias and lymphomas has expedited the cloning of genes whose translocation-induced deregulation causes malignant transformation. The pillar of karyotype analysis rests on chromosome banding techniques that have the distinct advantage that the entire genome can be analysed in a single experiment. However, poorly spread or contracted metaphase chromosomes and highly rearranged karyotypes with numerous marker chromosomes, common in tumour cell preparations, are often difficult to interpret unambiguously and subtle chromosomal aberrations, in particular the exchange of telomeric chromatin or small insertions remain elusive. Fluorescence in situ hybridization (FISH) overcomes some of these limitations, but is mainly utilized to confirm the presence of previously characterized or suspected aberrations. We have developed a novel approach, termed spectral karyotyping or SKY based on the hybridization of 24 fluorescently labelled chromosome painting probes that allows the simultaneous and differential colour display of all human chromosomes. We have used SKY to complement conventional banding techniques in haematological malignancies by analysing 15 cases with unidentified chromosome aberrations. In all instances SKY provided additional cytogenetic information, including the identification of marker chromosomes, the detection of subtle chromosomal translocations and the clarification of complex chromosomal rearrangements. Thus, SKY in combination with standard chromosome banding allows the characterization of chromosomal aberrations in leukaemia with unprecedented accuracy.
Article
The bladder cancer cell line BK-10 was established from a grade III-IV transitional cell carcinoma (TCC). BK-10 is near-tetraploid (+/-4n) and consists of two subclones with 20-25 structural aberrations. Here we report the cytogenetic analysis of BK-10 by G-banding, spectral karyotyping (SKY), and FISH. SKY refers to the hybridization of 24 differentially labeled chromosome painting probes and the simultaneous visualization of all human chromosomes using spectral imaging. SKY enabled us to confirm 12 markers in BK-10 previously described by G-banding, redefine 11 aberrations, and detect 4 hidden chromosomal rearrangements, 2 of which had been identified as normal or deleted copies of chromosome 20 and 1 as a normal chromosome 3. Twenty out of 21 translocations identified were unbalanced. FISH analysis of BK-10 using chromosome arm-specific paints, centromere probes, and oncogene/tumor suppressor gene-specific probes revealed a deletion of CDKN2A (p16) in all copies of chromosome 9, a low-level amplification of MYC (five copies), and loss of one copy of TP53; detected the presence of the Y chromosome in a hidden translocation; and detected four copies of ERBB-2. A probe set for BCR and ABL verified breakpoints for all translocations involving chromosomes 9 and 22. A new karyotype presentation, "SKY-gram," is introduced by combining data from G-banding, SKY, and FISH analysis. This study demonstrates the approach of combining molecular cytogenetic techniques to characterize fully the multiple complex chromosomal rearrangements found in the bladder cancer cell line BK-10, and to refine the chromosomal breakpoints for all translocations.
Article
Currently, prostate cancer (CaP) cytogenetics is not well defined, largely because of technical difficulties in obtaining primary tumor metaphases. We examined three CaP cell lines (LNCaP, DU145, PC-3) using sequential Giemsa banding and spectral karyotyping (SKY) to search for a common structural aberration or translocation breakpoint. No consistent rearrangement common to all three cell lines was detected. A clustering of centromeric translocation breakpoints was detected in chromosomes 4, 5, 6, 8, 11, 12, 14, and 15 in DU145 and PC-3. Both these lines were found to have karyotypes with a greater level of complexity than LNCaP. The large number of structural aberrations present in DU145 and PC-3 implicate an underlying chromosomal instability and subsequent accumulation of cytogenetic alterations that confer a selective growth advantage. The high frequency of centromeric rearrangements in these lines indicates a potential role for mitotic irregularities associated with the centromere in CaP tumorigenesis.
Article
Recent studies have identified several chromosome regions that are altered in primary prostate cancer and prostatic carcinoma cell lines. These targeted regions may harbor genes involved in tumor suppression. We used multiplex fluorescence in situ hybridization (M-FISH) to screen for genetic rearrangements in four prostate cancer cell lines, LNCaP, LNCaP.FCG, DU145, and PC3, and compared our results with those recently obtained using spectral karyotyping (SKY). A number of differences was noted between abnormalities characterized by SKY and M-FISH, suggesting variation in karyotype evolution and characterization by these two methodologies. M-FISH analysis showed that hormone-resistant cell lines (DU145 and PC3) contained many genetic alterations (> or =15 per cell), suggesting high levels of genetic instability in hormone-refractory prostate cancer. Most chromosome regions previously implicated in prostate cancer were altered in one or more of these cell lines. Several specific chromosome aberrations were also detected, including a del(4)(p14) and a del(6)(q21) in the hormone-insensitive cell lines, a t(1;15)(p?;q?) in LNCaP, LNCaP, and PC3, and a i(5p) in LNCaP.FCG, DU145, and PC3. These clonal chromosome abnormalities may pinpoint gene loci associated with prostate tumourigenesis, cancer progression, and hormone sensitivity.