ArticlePDF Available

Research Progress on Impacts of Human Activities on Carbon Emissions in the Yellow River Delta Wetlands

Authors:

Abstract

Carbon Dioxide (CO2) and Methane (CH4) are pivotal greenhouse gases, now at their highest atmospheric concentrations in 800,000 years. Coastal wetlands are recognized for their significant organic carbon sequestration capabilities, serving as "blue carbon" sinks and natural sources of CO2 and CH4 emissions. The Yellow River Delta wetland, influenced by intense sea-land interactions, is an excellent location for studying wetland carbon dynamics, an area of keen research interest due to its ecological importance and responsiveness to environmental shifts. Utilizing Citespace and data from articles between 2013 and 2023 in the Web of Science core database, this research synthesizes current trends and updates on carbon emissions within the Yellow River Delta's coastal wetland, especially concerning different anthropogenic effects, such as salinization, over-fertilization, heavy metal input, and microplastic pollution. Findings indicate that human actions considerably alter wetland carbon emissions, with salinization and nitrogen overuse being particularly influential in the Yellow River Delta. The potential consequences of heavy metals and microplastics also demand attention. This work lays out future research trajectories for coastal wetland carbon emissions, providing a microbial ecology viewpoint and scientific guidance to support sustainable development, emissions reductions, and China's carbon neutrality goals in the Yellow River Delta region.
22 2 湿 Vol.22 No.2
2024 4WETLAND SCIENCE April 2024
人类活动对黄河三角洲湿地碳排放的影响研究进展
王子豪 1,2,3徐鑫溢 1陈庆锋 1 1颜菲菲 3 1纪林卉 1
李岱珈 1冉俊豪 1徐小亚 1*
(1. 山东师范大学地理与环境学院,山东 济南 2500142. 中国海洋大学深海圈层与地球系统前沿科学中心和海洋化学理论
与工程技术教育部重点实验室,山东 青岛 2661003. 中国海洋大学化学化工学院,山东 青岛 266100)
二氧化碳(CO2)和甲烷(CH4)是大气中重要的
温室气体。据世界气象组(WMO)析报道
类活动的 加剧导致 2020 年大气 CO2CH4浓度达
到新高,其中 CO2度约 4.13×101‰,CH4
约为 1.89×103[1] 20 世纪初以来,温室气体
浓度升高导致的气候变暖使得全球海平面持续上
升,全球河口海岸带地区的极端气候事件频繁发
[2]。当前,中国力 争于 2030 年前实现碳达峰,
划通过提升生态碳汇能力,充分发挥森林、草原
湿地等生境的碳汇作用[3]从而持续推进中国 2060
年的碳中和目标。滨海湿地被认为是重要的
碳生态 系统之一,作为 大气中 CO2CH4重要的
源或汇,该地区的碳循环过程对于减缓气候变化
具有重要意义。微生物是土壤生态系统的重要组
成部分,通过参与有机碳矿化、固碳等过程在碳
循环过程中发挥着重要作用[4]。然而,工农业开发
导致的土地利用类型的变化、农业活动以及化肥
的使用等人类活动改变了微生物生境及其群落结
构,从而影响土壤碳循环过程,最终反馈至大气,
影响气候变化进程。因此探明人类活动对微
物主导的土壤碳循环过程的影响对于可持续的土
地管理和减缓气候变化至关重要。
黄河三角洲作为全球最年轻的三角洲和湿地
生态系统之一,其独特的地理环境(--陆交互
作用显著)使得该地区具有极高的生物多样性和
生产力。近年来,在经济的快速发展以及愈发密
集的人类活动影响下,黄河三角洲湿地的生态环
境变得愈发脆弱和敏感。当前盐渍化加剧过量
化肥输入、重金属和微塑料污染等导致的环境问
题深刻影响了河口地区的生态健康与生物地球化
学循环过程,并对 CO2CH4排放相关的碳循环过
程产生了重要影响[5]。迄今为止,国内外学者基于
摘要:二氧化碳(CO2)和甲烷(CH4)是两种重要的温室气体,全球大气 CO2CH4浓度已达 80 年来新高。滨海
湿地具有极大的碳捕获和埋藏潜力,被认为是地球上重要的蓝色碳汇”同时,滨海湿地也是大气中 CO2CH4
的重要自然来源。黄河三角洲湿地作为中国受强烈海陆相互作用的重要湿地生态系统之一,为湿地碳排放研
究提供 了理想场 所,其碳排 放过程及 其对环境变 化的响应 机制是当前 学术界的 研究热点。 利用 CiteSpace
件, Web of Science 核心数据库中已发表的 20132023 年的相关文章作为数据源,总结了黄河三角洲滨海湿
地碳排放过程对不同人类活动(盐渍化、过度施肥、重金属输入和微塑料污染)的响应特征与机制的研究前沿和
最新研究进展。结果表明不同人类活动对滨海湿地碳排放均具有重要影响,其中盐渍化与过量氮输入对黄
河三角洲滨海湿地碳排放的影响十分显著,重金属与微塑料污染的潜在影响也不容忽视。提出了滨海湿地碳
排放的未来研究方向,为黄河三角洲地区实现可持续发展、温室气体减排以及推进中国碳中和事业提供了微生
物生态学视角和科学指导。
词:黄河三角洲湿地;碳循环;CO2CH4人类活动;环境问题
中图分类号:X142 文献标识码:A文章编号:1672-5948(2024)02-310-17
收稿日期:2023-02-19修订日期:2023-07-20
基金项目:国家自然科学基金项目(421073164187704142077051)山东省自然科学基金项目(ZR202102260221)山东省泰山学者青年
专家项目(TSQN201812086)和山东师范大学本科生科研基金项目(BKJJ2022073BKJJ2023079)资助。
作者简介:王子豪(1997)男,河北省邯郸人,博士研究生,从事微生物介导的湿地碳氮循环过程研究。E-mail: wzh_1023@163.com
*通讯作者:徐小亚,副教授。E-mail: xuxiaoya@sdnu.edu.cn
DOI: 10.13248/j.cnki.wetlandsci.2024.02.016
2 王子豪等:人类活动对黄河三角洲湿地碳排放的影响研究进展
河口湿 CO2CH4排放的环境影响因子及其对
环境变化的响应已开展了大量研究[6-7]。结合黄河
三角洲湿地所面临的重要环境问题,总结湿地碳
循环相关微生物以及 CO2CH4排放过程对这些
环境问题响应特征与机制的相关研究进展,以期
为黄河三角洲湿地管理措施的制定以及明晰黄河
三角洲湿地在减缓气候变化进程中的作用提供理
论依据和微生物生态学视角。
1数据与方法
Web of Science 数据库是由美国科学技术信息
研究所推出的引文索引数据库,已成为国际公认
的进行科学统计和科学评价的检索工具。本文以
科学引文索 Web of Science 核心合集为数据源,
(1)saltYellow River Deltacarbon OR saline
Yellow River Deltacarbon OR salinationwetland,
carbon OR salinizationYellow River Deltacarbon
(2)over-fertilizationYellow River Deltacarbon OR
excessive fertilizerYellow River Deltacarbon OR
excessive fertilizationYellow River Deltacarbon OR
long term fertilizationYellow River Deltacarbon
OR nitrogen inputYellow River Deltacarbon OR
fertilizerYellow River Deltacarbon OR fertilization
Yellow River Delta, carbon(3)heavy metalsYellow
River Deltacarbon OR heavy metals Yellow River
estuarycarbon(4)microplasticYellow River Delta
carbon OR microplasticYellow River DeltaC OR
MPsYellow River Deltacarbon OR MPsYellow
River DeltaC4个序列的关键词,针对不同检索
主题,选取 20132023 年的发表年份,对检索结果
进行筛选 分别得到 271 70 篇、60 7篇论
文。在 CiteSpace 6.1 R2 的聚类功能集群中,采用
数似 (log-likelihood ratioLLR)算法
键词进行聚类和分析。聚类的规模越大,编号越
小;当平均 轮廓值 S0.7 时,表明聚类是有效的和
令人信服的。在本文中,以上 4个序列关键词对应
的平均轮廓 S分别为 0.766 60.767 40.875 9
0.963 1表明聚类结果分类合理。
2盐渍化加剧对黄河三角洲湿地碳
排放的影响
2.1 黄河三角洲湿地盐渍化现状
退
计,中国受土壤盐渍化影响的地区已扩大至 3.6×
105km2主要分布在干旱半干旱地区和滨海滩涂
地区[8]。黄河三角洲是中国北方典型的滨海土壤
盐渍化地区垦利宁海为顶点起套尔河口
南至支脉沟口,大部分区域位于山东省东营市境
内,年降水量具有明显的季节性,这直接导致地表
径流 下水 在年 配极 匀。
时,该区年蒸发量远大于降水量的特点为土壤盐
分向上运移提供了有利条件,使得当地土壤盐渍
化过程先于成土过程,具有良好的盐渍淤泥发育
基础[9]。该区盐度空间分布不均匀,域水盐动态
过程复杂,特殊的自然环境使其易发生土壤盐渍
化等生态问题。近年来,随着黄河流域生态保
与高质量发展相关政策的持续推进,黄河三角洲
湿地土壤盐渍化程度已得到大幅度削减,重度盐
渍化面积不断缩小,盐渍化增长趋势总体上得到
根本性遏制。但是随着社会经济的快速发展,
河流域与黄河三角洲地区的人口数量增加、工农
业不断发展,使得黄河三角洲湿地面临更为复杂
的外部环境,这将潜在地影响湿地的盐渍化过程。
当前,黄河流域绿化提升工程的实施使得入海
泥沙含量减少而引起的海水入侵、渤海粮仓计划
开展过程中的垦荒与灌溉以及生产生活用水量的
不断增加等一系列人类活动对水循环的支配已经
显著改变了黄河三角洲的水盐平衡以及盐碱土壤
的时空分布,使黄河三角洲总盐渍化面积由 2015
年的 4 244 km2增加至 2020 年的 4 629 km2 [10]
幅上升趋势。同时,最新研究显示,位于黄河入海
口的垦利区 约有 76%的地区受到土壤盐渍化的侵
蚀,轻度盐渍化度盐渍化、重度盐渍化土壤的
面积分 别为 43 112 hm256 205 hm230 147 hm2
分别占垦利区 总面积的 23.4%30.5%16.4%[8]
可见,黄河三角洲湿地土壤盐渍化问题依旧广泛
且深刻[11]。在全球视角下,湿地盐渍化正在以前所
未有的地理规模和速度发生,对湿地生态系统造
成了深远影响[12]。在人类活动干预下,气候变化与
水文循环之间的相互作用更加紧密,可能会在未
来几十年加剧湿地盐渍化的范围与严重性[13]。同
时,土壤盐渍化导致的湿地退化将改变湿地景观
和土壤微生物进而改变湿地碳循环过程,甚至可
能使湿地由碳汇变成碳源,最终反馈至全球气候
系统[14]
2.2 盐渍化对黄河三角洲湿地碳排放的影响
针对盐渍化对黄河三角洲湿地碳排放影响
的相关英文文献 通过聚类分 析,得到 9个主题的
311
湿 22
plant invasion( )
carbon dioxide( 二氧化碳)biochar( )soil
aggregate(土壤团聚体)salt stress(盐胁迫)saline
soil()soil inorganic carbon( )
estuarine wetlands(河口湿地)fluorescence(
反应)其对应的代表性关键词见表 1。盐渍化对
黄河三角洲湿地碳排放的研究主要集中在:(1)
物入侵引起的盐渍化湿地碳排放增加机制及其生
态效应;(2)盐渍化对土壤有机碳分子组成、稳定性
和分配的影响及其对湿地碳排放的响应;(3)生物
炭应用于盐渍化湿地土壤改良对土壤碳储存和碳
排放的影响及机制;(4)盐渍化湿地土壤微生物对
有机质分解和湿地碳排放的调控作用及其响应机
制;(5)河口湿地碳排放与盐度、潮位和植物入侵的
相互作用机制及模型研究;(6)盐渍化湿地土壤无
机碳组分、来源、固化和分配机制对碳排放的影响
及其生态效应;(7)遥感监测、荧光光谱和稳定同位
素技术在盐渍化湿地碳排放研究中的应用。
IPCC 第五次评估报告指出[15]沿海地区土壤
盐渍化现象在全球范围内普遍存在,大面积湿地
正处于强烈的盐分变化环境之中。黄河三角洲湿
地作为中国最大的滨海湿地之一,其盐渍化问题
备受关注。通过研究黄河三角洲湿地土壤盐渍化
对碳循环与碳排放的影响[16-18]发现土壤盐渍化是
影响土壤理化性质、微生物群落结构和功能的主
要因素之一,并且高盐浓度可以限制微生物活动
与酶活性,降低土壤碳氮含量[19]。探究影 土壤
有机碳含量变化的因素与土壤胞外酶(如碳获取
细胞外酶)的功能,将有助于从机制上理解盐碱地
碳循环[20-21]。研究表明,由于滨海湿地生境的复杂
性,土壤胞外酶活性对盐渍化有着不同的响应,
渍化程度、土壤有机碳损失与碳获取胞外酶三者
之间存在潜在功能关系[22-23]并且在不同盐渍化程
度下土壤有机碳损失的敏感度不同[24]。因此,
壤盐渍化程度可以作为预测土壤有机碳损失的一
个重要指标,为建立盐渍化与有机碳损失之间的
函数模型提供了理论依据。
此外,在讨论盐生植物对土壤微生物活性的
1关于黄河三角洲盐渍化问题研究的文献关键词聚类表
Table 1 Keyword clustering table of the literature on the study of salinization in the Yellow River Delta
编号
0
1
2
3
4
5
6
7
8
聚类
plant invasion(植物入侵)
carbon dioxide(CO2)
biochar(生物炭)
soil aggregate(土壤团聚体)
salt stress(盐胁迫)
saline soil(盐渍土)
soil inorganic carbon(土壤无机碳)
estuarine wetlands(河口湿地)
fluorescence(荧光反应)
关键词
organic carbon(有机碳)spartina alterniflora(互花米草)land use(土地利用)salt
marshes(盐沼)fresh water(淡水)sequestration(封存)
coastal wetlands(滨海湿)organic matter(有机物)plant(植物)Phragmites australis
(芦苇)methane emissions(甲烷排放)greenhouse gas emission(温室气体排放)
dynamics(动力学)reclamation(复垦)vegetation(植被)water(水分)
microbial community( )biomass( 生物量)enzyme activity( 酶活性)
management(管理)
mineralization(矿化)respiration(呼吸作用)forest()climate change(气候变
)responses(响应)ecosystem(生态系统)
carbon()diversity(多样性)
phosphorus()wetlands(湿地)
nitrogen()matter(物质)microbial biomass(微生物量)
impacts(影响)restoration(修复)
提升以及对盐渍化的抗逆性时,需要注意不同盐
度环境 CO2排放量的变化[25]。在种植耐盐植物
盐度 CO2
35% 管理 CO2减排
切,在高盐胁迫环境下尤其需要对 CO2排放进行
[26] 。因此,为了充分了解滨海湿地盐渍化、
土壤有机 碳和 CO2排放之间的复杂关系,需要开
展更深入的研究。
还通 [27- 28] (如土壤有机
质、植物根际分泌物及二者的残留物底物)调控
CH4的产生过程(1)。在盐渍化环境下,CH4产生
的调控方式主要包括渗透胁迫离子毒害、营养失
衡以及盐胁迫的次级反应等[25,29]。研究发现低盐
度环境并未对 CH4产生过程产生抑制作用,反而
促进了 CH4产生,而高盐度环境则会通过抑制产
甲烷菌活性的方式降低 CH4排放量[30]。值得注意
312
2 王子豪等:人类活动对黄河三角洲湿地碳排放的影响研究进展
的是,上述现象在环境中的发生并非绝对,研究人
员曾在高盐环境中检测到嗜盐甲烷菌属的古菌,
该菌属于专性嗜盐产甲烷菌,是专性甲基营养体,
可在盐度高 25%的环境下生长[31-32]。此外,高盐
环境往往导 致土壤 pH 的上升。大多数研究表明,
pH 是影响产甲烷菌活性的重要环境因子而产甲
烷菌 生长的最适 pH 范围为 6.57.5[33]使得盐
碱地 环境 烷菌 性通 受到
制,而降 CH4排放量。但考虑到专性嗜盐产
甲烷菌对高盐环境的强适应能力,其对于湿地碳
减排必然存在一定威胁。在厌氧条件下,微生
氧化 CH4的过程被称为甲烷厌氧氧化(AOM)
被广泛认为是大气 CH4浓度的重要调节器。研究
表明,中度盐渍化(盐度为 4080 mmol/L)会显著
降低土壤 CH4消耗量[34]但该过程并未完全受到抑
制,在高盐度(9%)环境下则完全被抑制[35]
盐度与甲烷厌氧氧化速率显著负相关。通过对黄
河三角洲湿地土壤样品进行室内模拟实验,发现
低水位和高盐度有利于 CH4的固存[36]实现生态
平衡的前提下,通过适度增加土壤盐度影响甲烷
产生以及甲烷厌氧氧化功能微生物的生长,进而
抑制 CH4排放过程,是湿地 CH4减排的优先选择。
总体而言,人类活动造成的盐渍化加剧对土
壤碳排放的影响是一个复杂的过程,涉及到土壤
微生物活性和群落结构的改变,以及盐度对微生
物代谢和生长的限制程度。一方面,高盐浓度会改
变土壤的理化性质,降低土壤碳、氮含量,直接或间
接影响微生物活动和酶活性,导致碳排放减少。另
一方面,盐渍化通过促进土壤中部分耐盐微生物的
生长,加快有机质分解,从而提高土壤呼吸速率,
CH4排放量,导致碳排放量增加。因此盐渍
的影响因土壤环境和盐渍化程度而异,不同程度的
盐渍化可能引起不同的碳通量变化。
3过度施肥问题
3.1 黄河三角洲湿地过度施肥现状
施肥是黄河三角洲周边农田的重要土地管理
措施之一,其可以显著提高作物产量与质量,肥料
的施用方法、肥料类型等都会对微生物介导的碳
循环过程产生重要影响。合理施用肥料对植物根
系生长及农作物生产均有促进作用,对土壤微生
物活性、植物根系分泌物等也有一定积极意义,
利于土壤团聚体的形成和稳定性[28]但过量施肥则
反之。其中氮肥是目前农业生产过程中施用量最
大的肥料之 一,长期施氮将造成 土壤 pH 降低甚至
酸化,导致土壤盐基不饱和度增加、土壤肥力下降
并且活化潜在的毒性 离子 Fe(III)Al(III)从而降
低土壤抗逆性。此外肥的过量施用还会通
1不同盐分条件对黄河三角洲湿地 CH4排放的影响
Fig.1 Effects of different salinity conditions on CH4emissions from wetland in the Yellow River Delta
313
湿 22
(
N2ONONO2)引起大气污染[37]。中国作
界上氮肥用量最大的国家,氮肥施用量占全球氮
肥施用量的 30%左右[38]。根据中国统计信息网[39]
报道,多年来东营市种植区的地下水存在严重的
NO3
污染 题,NO3
含量最高超标 27 倍。 于湿
地中 碳的 很大 上受 氮可
性的控制,因此,人为氮输入的增加会影响湿地
的碳平衡[40]氮的异常浓度将严重影响土壤养分
储备以及微生物介导的温室气体排放过程,并且
该过 造成 费的 严重 当地
生态安全。
3.2 过度施肥对黄河三角洲湿地碳排放的影响
针对过度施肥对黄河三角洲湿地碳排放影
响的相关英文文 献,通过聚类 分析,得到 7个主题
的代表性关键词,包括 media(介质)blue carbon(
)nitrogen input( )carbon sequestration
(碳封存)global warming( 全球变暖)nutrient
enrichment(营养富集)decomposition( )
对应的代表性关键词见表 2。过度施肥对黄河
角洲湿地碳排放影响的主要研究领域包括:(1)
度施肥对湿地介质(如土壤、积物等)结构与性质
的影响;(2)过度施肥对湿地植被的影响以及藻类、
海草等富含有机碳的植物对碳固定和碳封存的作
用;(3)过度施肥对湿地氮素浓度的影响以及氮输
入对湿地碳排放的调节作用(4)过度施肥对湿地
碳封 影响 湿地土 储量 封存
制;(5)过度施肥对湿地温度、湿度等气候因素的影
响以及全球变暖对湿地碳排放的影响;(6)过度施
肥对湿地营养元素浓度的影响以及营养富集对湿
地碳排放的微生物调控机制(7)过度施肥对湿地
分解作用的影响以及分解作用对湿地碳排放的调
节作用。
黄河三角洲湿地是天然的碳汇[29]然而,不断
增长的人口和社会经济变化刺激了人们对更多农
业生产用地的需求。为了满足日益增长的人口对
粮食需求的增大,更多自然湿地被转化为农田,
转化后的农田成为碳排放的重要来[41]。湿地
水转化为农业用地后,土壤有机物暴露在空气中,
其被 氧化 CO2气体的形式释放到大气
中。因此,湿地转为农田将对其碳汇能力造成损
害,还可能使其成为温室气体的重要来源[41]
氮输入增加显著增强了黄河三角洲盐沼湿地
生态系统 CO2吸收能力。植被覆盖是影响生态
系统 CO2净交换的重要生物因素之一,而氮输入增
加了黄河三角洲湿地土壤无机氮的含量,缓解了
养分限制,从而促进了盐地植物的生长,增加了植
物生物 量,进而增强了 生态系统 CO2吸收能力[42]
在低产林地中的研究发现,氮肥输入大大增加了
树群的 CO2汇,但树 CO2汇的增加高于土壤CO2
净排放的增加因此,施肥为基础的林业在十年
的时间范围内 气候冷却的作[43]。但是,
氮输入量的增加 特别是 NH4NO3的过量输入将导
致土壤逐渐酸化,这将改变碳循环相关酶的活性,
从而降低湿地以 CO2形式的碳损失[40]
氮输入还能够提高盐沼湿地土壤碳排放,
2黄河三角洲过度施肥问题研究的文献关键词聚类表
Table 2 Keyword clustering table of the literature on the study of over-fertilization in the Yellow River Delta
编号
0
1
2
3
4
5
6
聚类
media(介质)
blue carbon(蓝碳)
nitrogen input(氮输入)
carbon sequestration(碳封存)
global warming(全球变暖)
nutrient enrichment(营养富集)
decomposition(分解)
关键词
denitrification(反硝化作用)constructed wetlands(人工湿地)dissolved organic carbon(溶解性有机
)fresh water(淡水)nitrogen removal(脱氮)
organic carbon(有机碳)matter(物质)phosphorous()coastal wetlands(滨海湿地)land use(土地
利用)fluxes(通量)
fertilization(施肥)enzyme activity(酶活性)forest(森林)soil organic matter(土壤有机质)deposition
()microbial biomass( 微生物量)mineralization(矿化 )respiration( 呼吸作用)temperature
sensitivity(温度敏感性)
nitrogen()organic matter(有机质)dynamics(动态性)carbon sequestration(碳封存)
climate change(候变化), soil(土壤)water(水分)vegetation(植被)soil organic carbon(土壤有机碳)
litter decomposition(凋落物分解)
responses(响应)carbon dioxide(二氧化碳)diversity(多样性)
carbon()decomposition(分解)microbial community(微生物群落)nitrification(硝化作用)
314
2 王子豪等:人类活动对黄河三角洲湿地碳排放的影响研究进展
要表现为生长季的 CO2排放和淹水期的 CH4
放。由于氮输入提高了土壤养分含量,促进了植
物生长,并向土壤中输送了更多活性有机碳,如溶
解性有机碳(DOC)从而产生和排放了更多的 CO2
CH4[42]。这与其他学者的研究结果[44]相似,在美
国北卡罗来纳州弗里曼溪湿地,通过比较施肥和
未施肥地块的碳积累量,发现氮肥的大量施用显
著提高了湿地微生物的呼吸速率,从而显著增加
CO2净排放量。虽然氮肥输入能够促进植物生
长增加植被固碳量,但是碳损失远大于碳积累,
输入增加导致的湿地碳损失将达到原来的 5倍。
目前,随着粮食需求的不断增加和土地利用类型
的不断变化,黄河三角洲湿地在转化为农田时将
经历频繁的淹水和排水过程,盐沼湿地土壤有机
碳流失主要受淹水频率控制,短期的水文操纵会
使CO2排放增 40%这将使其升温潜能增加 7.5
[41]而氮输入可以削弱淹水频率对 CO2CH4
放和溶解性有机碳流失的控制作用[42]。此外,
态系统 CO2交换的季节变化主要与土壤温度相
关,而氮输入强化了温度对盐沼湿地 CO2交换的
影响[42]。在全球变暖的趋势下,氮输入对盐沼湿
地碳循环的影响将变得更加复杂,需要开展更深
入的研究来探讨其作用机制。
长期大量施用氮肥对 CH4排放的影响已受到
生态学家们的广泛关注,但当前的研究结论并不一
致。部分研究认为,长期大量施用氮肥会增加土壤
度, CH4被甲烷单加氧酶
(MMO)氧化为 NO2
−[45] NO2
又会抑制 CH4氧化作
用最后一步反中甲酸脱氢酶的活[46]而抑
制土壤 CH4氧化过程并促进 CH4排放[47]。还有研
究发现,在水稻生长季施氮显著增加了随后休耕期
CH4排放,这可能是因为土壤溶解性有机碳含量
的升高为 CH4产生提供了充足的基质[48]。此外,
与反硝化型厌氧甲烷氧(DAMO)程的主要细菌
M. oxyfera 的最佳 pH7.5[49]明氮肥过量施用
致的土壤酸化可能会阻碍功能细菌的活动,并进一
步阻碍 甲烷厌氧氧化,最终加 CH4排放。因此
为了更好地了解长期施用氮肥对 CH4的影
响,特别是对功能菌活性 和土壤 pH 的影响,有必
要开展进一步的研究。研究发现河三角洲湿
地土壤 NO2
NO3
和总氮含量是影响反硝化型厌氧
甲烷氧化速率的主要环境因子[6]。这一结论在中
国杭州湾湿地也得到证实[50]NO3
浓度与反硝化型
厌氧甲烷氧化细的丰度和活性显著正相关。
因此,氮肥的适量施用可能会通过增加土壤中
NO2
NO3
含量的方式提高甲烷氧化菌的丰度和
活性,从而促进 烷厌氧氧化的发生并降低 CH4
释放。综上所述,过度施肥对黄河三角洲湿地碳
排放产生了重要的影响,但影响程度取决于施肥
量、方式湿地类 条件 种因
因此,在进行湿地保护和管理时,需要针对不同情
况采取相应的措施,以保持湿地的碳平衡。
于以 CH4作为电子供体,具有 NO3
/
NO2
还原能力的反硝化型厌氧甲烷氧化反应被广泛
认为在全球碳循环和氮循环之间发挥着重要联
作用[51]同时该反应已被广泛应用于工业脱氮过
M.oxyfera 细菌与 Anammox 细菌在
CH4氧化与 NH4
+氧化过程之间的耦合联系,即可以
共同利用 CH4NH4
+作为电子供体,在氮污染严重
的土壤中,利用二者的共同功能作用进行土壤脱
氮是十分可行的(2)这对于解决因长期过量施
用氮肥所造成的湿地土壤氮污染和温室气体排放
具有重大意义。
4重金属污染问题
4.1 黄河三角洲湿地重金属污染现状
重金属引起的环境污染是导致滨海湿地生态
系统 功能 降的 原因 。近
来,随着黄河三角洲地区城市化和工业化进程的
2利用反硝化型甲烷厌氧氧化(DAMO)与厌氧氨氧化
过程进行氮污染治理与 CH4减排
Fig.2 Using the denitrifying anaerobic methane oxidation
(DAMO) and Anammox processes for nitrogen pollution
control and CH4reduction
315
湿 22
不断加快,纺织服装、油化工等成为该区的优势
产业[52]工业废弃物中铁(Fe)(Mn)(Cu)
(Cd)(As)(Pb)等重金属的残留量较高,对废
弃物的处理方式不当会使环境面临严重的污染压
力。此外,随着大型生猪、鸡、鸭、羊等养殖业向黄
河三角洲地区聚集,农业活动中的畜禽粪肥经常
被作为肥料用于作物生产,这使得土壤重金属不
断累积[53]。人类活动导致的土壤重金属污染问题
已成为当前社会和学术界关注的热点。土壤中重
金属含量的增加能够改变土壤理化性质,并通过
水源供给、食物摄入、肤接触等方式影响人类健
[52]同时,重金属污染还会作用于湿地生态系统
的一些关键生态过程[54]因此 FeMnCuCd
AsPb 等重金属作为典型的累积性污染物能够对
人类健康和生态环境造成显著影响[55]还可以通
过影响微生物功能及其群落结构对湿地碳循环过
程产生重大影响,但由于重金属对生态环境影响
方式的多样性以及环境的高度复杂性,使得当前
对该过程影响机理的研究依然存在争议。
4.2 重金属污染对黄河三角洲湿地碳排放的影响
通过聚类分析在重金属污染对黄河三角洲湿
地碳排放影响的相关英文文献中,得到 11 个主题
的代表性关键词,包括 source identification(来源识
)respiration rate(呼吸速率)geochemistry(
)spartina alterniflora(互花米草)centrifugal
ultrafiltration( )laizhou bay( 莱州湾)
polluted sludge(污染底泥)episodic deposition(偶发
性沉积)composting()aliphatic hydrocarbons
(脂肪)China()其对应性关键词见表 3
重金属污染对湿地碳排放影响的研究主题涉(1)
重金属来源识别括工业排放业废水
污水等来源;(2)重金属污染对湿地生态系统呼吸
速率的影响,了解其对湿地碳排放的影响;(3)通过
分析湿地中重金属的地球化学特征,揭示重金属
污染物的转化和迁移行为,为研究其对湿地碳排
放的影响提供理论支持;(4)以互花米草为代表的
湿地 对重 染的 性和 能力
究,为湿地修复提供科学依据(5)通过超滤离心技
术,对湿地水体中的重金属进行分离和浓缩,提高
检测灵敏度,为深入研究重金属污染对湿地碳排
放的影响提供实验技术支持(6)研究莱州湾重金
属污染对湿地生态系统的影响,为保护莱州湾湿
地以及中国不同湿地生态系统提供科学依据,
讨湿地生态修复的可行性和科学性(7)重点研
湿地底泥中重金属污染物的来源、迁移和转化规
律,为探明底泥对湿地碳排放的影响机制与湿地
修复提供理论支持;(8)探究重金属污染物的偶发
性沉积中不同沉积通量和沉积类型对湿地生态系
统碳排放的影响;(9)通过堆肥技术,将污染的底泥
转化为肥料,为湿地修复提供可持续性的解决方
3黄河三角洲重金属污染研究相关文献的关键词聚类表
Table 3 Keyword clustering table of the literature on the study of heavy metal pollution in the Yellow River Delta
编号
0
1
2
3
4
5
6
7
8
9
聚类
source identification(来源识别)
respiration rate(呼吸速率)
geochemistry(地球化学)
spartina alterniflora(互花米草)
centrifugal ultrafiltration(超滤离心)
the Laizhou Bay(莱州湾)
polluted sludge(污染底泥)
episodic deposition(偶发性沉积)
composting(堆肥)
aliphatic hydrocarbons(脂肪烃)
关键词
contamination(污染)surface sediments(表面沉积物)fresh water(淡水)bioavailability(
物有效性)ecological risk assessment(生态风险评价)
carbon()fractions(组分)hydrodynamic forces(水动力)alkaline cations(碱性阳离子)
water(水分)Yellow River(黄河)activated carbon(活性炭)amorphous iron(无定形铁)
lower reaches(下游)
microbial community(微生物群落)adsorption(吸附)soil()organic compounds(
机化合物)
transport(运输)yellow river estuary(黄河口)copper()cadmium fractionation(镉形态)
hyperaccumulator Sedum alfredii(超积累植物景天)
estuary(河口)organic matter(有机质)intertidal sediments(潮间带沉积作用)
Yellow River delta(黄河三角洲)beneficial bacteria(有益菌)functional diversity(功能多
样性)community structure(群落结构)
organic carbon(有机碳)ecological risk index(生态风险指数)critical shear stress(临界启
动切应力)accumulation(积累)
heavy metals( 重金属)pollution( )sulfur( )eutrophication( 富营养化)river
intertidal zone(河流潮间带)
Bohai Sea()Yellow Sea(黄海)spatial distribution(空间分布)sediments(沉积物)
trace metals(微量金属)
316
2 王子豪等:人类活动对黄河三角洲湿地碳排放的影响研究进展
案;(10)研究重金属污染物与脂肪烃的相互作用,
探究二者对湿地碳排放的综合影响。
黄河三角洲湿地沉积物一般呈碱性,在碱性
环境中重金属元素不容易发生迁移,并随时间的
推移而聚集[56]。对黄河口及其邻近地区表层沉积
物中微量金属的含量及其粒度分布的研究结果表
明,不同重金属之间存在极显著相关性,说明它们
可能来自于共 的污染源[57]。目河三角洲
沉积物中重金属元素的含量与潜在生态危害程度
存在差异和变化,并且重金属元素的形态和种类
也会影响其潜在的生态风险程度[58]总体来看,
(Cr)CuAsPb 要是复合污染,源于黄河沿岸、
河口地区的石油和矿物资源开采、化石燃料的燃
烧以及自然因 的作[59]属形态以残渣
可还原态为[60]Cd 污染主要来源于工业污染(
镀、工、金属加工等)农业活动(农业用药、污水
灌溉等)和生活废水[59]Cd 以弱酸形态存在[60]
种形态具有极高的迁移性和生物可利用性[61]使
其更容易被植物吸收,从而影响植物的生长和光
合作用,进而影响碳的固定和释放。PbCd
金属元素具有较强的毒性,可导致湿地生态系统
生产力下降、物种多样性减少,从而减少湿地的碳
排放。尽管黄河三角洲湿地沉积物 Pb 含量较高
但其容易随细颗粒悬浮物迁移,矿化埋藏进入沉
积物中使其毒性降低,因此 Pb 的潜在生态风险
度较低[56]。研究表明,湿地沉积物中重金属的含
量可能与湿地有机碳库存在潜在联系,并且大多
数重金属的生物累积与总初级生产力、生态系统
呼吸显示出强烈的相关性[62]。这是因为湿地中的
水生食物网以天然溶解有机碳为基础,重金属随
着有机碳通过消费者的摄食行为进入并影响生物
群落,因此,湿地沉积物有机碳含量是间接影响重
金属含量的关键因素。同时,金属污染降低
土壤微生物的 富性和多样性[63]改变了区
微生物群落的 间结[62]会抑制微生物
吸, CO2排放量减少。然而,壤有机碳含量
可以缓冲重金属污染的影响,在有机碳含量较高
的湿地,金属对微生物的毒性降低,将缓解重
金属对 CO2排放的抑制作用。这些研究结果对于
理解重金属污染对黄河三角洲湿地碳排放影响的
复杂性具有重要意义。
在上述研究中,重金属并没有显著抑制产甲
烷菌的活性,但是对甲烷厌氧氧化过程及其相
微生物却具有显著影响,可能是因为与其他土壤
微生物群落相比产甲烷菌对重金属毒性的耐受力
更强。因此,与碳、氮等元素循环相耦合的以金属
原菌 属依 氧氧 (Metal-
AOM)过程在生物地球化学循环过程中起着重要
的驱动作用[64]。例如,FeMn作为黄河三角洲湿地
环境中重要的变价金属元素,在厌氧环境中普遍
存在二者作为电子受体参与甲烷厌氧氧化反应的
过程。2009 年,在加利福尼亚州鳗鱼河流域的研
究中发现了甲烷厌氧氧化依赖 FeMn 的证据[64]
后,在半咸水海岸的相关研究也证明了铁氧化物
还原与 CH4氧化之间存在耦合联系[65] 。还有研究
过在 淡水添加 CH4
和金属 Mn(IV) Candidatus Methano-
peredens manganicusCandidatus Methanoper-
edens manganireducens为主导的 Mn(IV)依赖型
甲烷厌氧氧化 生物[66]。在黄河三角洲地区,
同土 层的甲厌氧氧化力对 Fe(III)Mn(IV)
入的响应存在差异[67-68]但在人工湿地[33]沿海稻
田中[69]铁、锰的输入能有效削减湿地 CH4CO2
排放量。因此 当前关于 Fe Mn 添加是否
进甲烷厌氧氧化的结论仍然不一致,其原因除
生境之间的相 互独立性 外,可能 Fe Mn
输入形式和浓度有关。目前,过对湖泊沉积
中甲烷厌氧氧化的模式径和微生物多样性
行研究,发现尽管有一些证据表明甲烷厌氧氧
依赖于金属氧化物,但非硫酸盐氧化剂对甲烷厌
氧氧化的刺激大多是间接的为日后研究金
耦合甲烷厌氧氧化提供了新的视角[70]
除了Fe(III)Mn(IV)其他金属类型如As(V)
[Se(VI)]Cu(II)Cr(VI)[V(V)][Sb(V)]
[Te(IV)]也能介导烷厌氧氧[71- 76](4)As
以作为甲烷厌氧氧化的替代电子受体,甲烷厌氧
氧化菌通过反向产甲烷和呼吸作用还原 As
其功能基因在自然环境中普遍存在,因此该过程
广 [74]
(Methylomonas)可以在氧化 CH4
SeO4
2还原为 SeO[75]。同时在厌氧环境中,甲烷氧
Candidatus Methanoperedens Candidatus
Methylomirabilis 也可以将 SeO4
2还原为 SeO从而
消除 SeO4
2的毒性[77]。可见,Se 为重要电子受体
具有参与甲烷厌氧氧化过程的潜力。
317
湿 22
综上所述,重金属污染对湿地碳排放的影响
受到多种因素的调控,包括污染物种类、度等
此外,重金属污染对不同类型湿地碳排放过程的
影响也不尽相同。鉴于重金属离子如 FeMn 等在
湿地环境中的广泛分布,重金属介导的甲烷厌氧
氧化过程在未来控制湿地重金属迁移转化与 CH4
减排领域有着重要前景,而其介导自然界中多种
元素循环的生态功能也将为黄河三角洲湿地的可
持续发展提供新的研究路径。
5微塑料污染问题
5.1 黄河三角洲湿地微塑料污染现状
微塑料是指尺寸小 5 mm的塑料碎片或颗粒,
通常将其中直径小于 2 mm 的塑料颗粒定义为塑料
微粒其会进一步分解成纳米级塑(100 nm)
塑料主要成分 聚丙(PP)聚氯乙烯(PVC)
聚乙烯(PE)乳酸(PLA)聚苯乙烯(PS)对苯
甲酸 (PET)等聚 用于
物、物的人工合成纤维类微料,如尼(PA)
人造 (PA)(PET)[81]
角洲湿地土壤中存在颗粒、碎片、纤维和薄膜 4
不同形态的微塑料[82]该地区微塑料污染较为严
重,塑料总体丰度804 640 items/kg平均丰度
1 142.53 items/kg粒径范围5.78 μm/mm[83]。土
壤微 的来 包括 生产 膜与
膜的使用、作物种植、施肥溉、大气沉降等
中以 中残 用薄 解产 微塑
最为主[84]
微塑料对生物和环境的影响表现为,当其被
生物摄入后造成生物体机械损伤,同时增塑剂等
化学成分在微塑料迁移、转化过程中的释放还将
引发生物摄食效率降低,对其发育和繁殖产生毒
害作用[85]。微塑料还能吸附重金属、抗生素等污
染物并长期与污染物共存,使污染物在生物体内
得到富集,改变污染物的毒性效应并对生物产生
复合作用,同时微塑料还会改变土壤 pH
理化性质[81]。此外,微塑料还可以作为微生物、
类、昆虫等生物的“新型生存载体,在进行生物能
量迁移的同时可能会通过物种迁移的方式为新环
境带来生物入 等问[86]因此微塑料输
环境及动植物的健康都会带来不同程度的风险,
并通过食物链的生物富集作用对人类健康产生威
胁,当今社会对于微塑料污染的研究与治理已经
迫在眉睫。
5.2 微塑料污染对黄河三角洲湿地碳排放的影响
通过聚类分析,在微塑料污染对黄河三角洲
湿地碳排放影响的相关英文文献中,获得 3个代
microplastic pollution( 微塑料污
)pollutants adsorption( 污染物吸附)human
activities(活动)其对应的关键词见表 5
塑料 对黄 洲湿 排放 的研
主题有(1)微塑料来源和分布:对黄河三角洲湿地
微塑料来源和分布的调查研究,包括塑料颗粒的
粒径、密度和形态等(2)微塑料的吸附和释放:
究微塑料在湿地环境中的吸附和释放特性,探讨
微塑料对湿地有机碳吸附和释放过程的影响;(3)
微塑料对湿地碳排放的影响:研究微塑料对湿地
有机碳分解和微生物代谢的影响,探讨微塑料污
4金属依赖性厌氧甲烷氧化(Metal-AOM)相关研究进展
Table 4 Advances in researches related to metal-dependent anaerobic methane oxidation(Metal-AOM)
金属类型
Fe(II)Cu(II)
Cr(VI)
Sb(V)
Te(IV)
V(V)
Mn(IV)
Fe(III)
结论
Fe(II)Cu(II)(分别 20 μmol/L10 μmol/L)显著促进 N-DAMO细菌的活性和生长。
证实了以甲烷作为唯一电子供体的铬酸盐[Cr(VI)]的生物还原。
在厌氧生物膜间歇反应器(MBBR)中以甲烷(CH4)为唯一电子供体还原锑酸盐[Sb(V)]甲烷可
能在 Sb(V)还原过程中起着重要作用。
证实了 CH4基质生物膜反应器(MBfR)在碲还原和生成方面的能力。
甲基单胞菌与甲烷氧化或以挥发性脂肪酸(VFAs)为中间体的异养钒酸盐还原剂结合可以还原
钒酸盐,而硝酸盐的引入可以抑制钒酸盐的还原。
在淡水生态系统中发现了 Mn(IV)耦合 AOM的证据,并提出可能与该耦合过程有关的微生物为
甲烷厌氧氧化古菌(ANME-2D)
Kinneret
(Fe-AOM)可以去除湖泊沉积物中约 10%15%的甲烷。
年份
2015
2016
2018
2019
2020
2020
2022
参考文献
序号
[76]
[78]
[72]
[73]
[71]
[79]
[80]
318
2 王子豪等:人类活动对黄河三角洲湿地碳排放的影响研究进展
染对湿地碳循环的影响机制(4)微塑料污染的环
境风险:评估微塑料对湿地生态系统和人类健康
的风险,包括微塑料在湿地生态系统中的累积和
生物放大效应;(5)微塑料治理与减排技术:探索黄
河三角洲湿地微塑料治理与减排的技术和方法,
包括物理、化学和生物处理等手段的应用。
微塑料主要由碳氧等元素组成,是一
高碳含量的人造物质,与传统观点不同的是微塑
料除了易威胁生态环境外,还有一定的生态功
能。一方面,由于微塑料不易分解的特性使其能
够在土壤中积累,有学者发现在所有存在微塑料
污染的区域,土壤微塑料丰度与有机碳含量之间
在正 [87] 尽管贡献率低,但微塑料已
经对沿海沉积物碳库做出了隐性贡献[88]
方面,微塑料中在相对短时间内较易分解的部
分可 为土 物的 或有 物被
生物利用,从而对相关功能微生物的生长产生
促进作用。例如,科研人员证实了部分微生物
对微塑料的生物降解能力,从红树林沉积物中分
离出来的芽孢杆菌菌株 27 (Bacillus sp. strain 27)
和红球菌菌株 36 (Rhodococcus sp. strain 36)
接触 丙烯 时表 来的 反应
降解机制表明,这两种细菌菌株生长都能利用
聚丙烯微[89]
目前,微塑料污染对黄河三角洲湿地碳排放
的影响程度尚不明确。尽管该地区存在微塑料污
染,但污染程度和潜在污染风险均较低[82]。人
密度、经济活动以及河流输入、近海潮汐等自然过
程都会深刻影响微塑料的分布[82]。植被类型也会
影响黄河三角洲地区微塑料的沉积,植被能够减
缓水流速度、降低波浪强度从而加速微塑料在河
口湿地的沉积过程[90-91]。此外不同类型植被的根
系结 微生 也会 塑料 产生
响。因此,在研究微塑料污染对湿地碳排放的影
响时,需要考虑自然因素和人为因素对微塑料分
布和沉积的复合影响。微塑料输入会明显改变湿
地沉积物中微生物的群落组成、代谢特性以及植
物的生长和营养循环[92]。虽然微塑料和根茎层微
生物之间的相互作用可能会影响湿地植物的生长
和健康,但植被的覆盖可能对湿地拦截微塑料起
到重要作[88]并且根茎层的微生物可以成为降
解微塑料的理想候选者,这有助于开发一种新的
微塑料生物降解方法,以帮助减轻塑料和微塑料
聚合物的环境影响。但是当前关于微塑料作为底
物影响 CO2排放的相关机制尚不清楚,需要进一
步研究微塑料与土壤微生物间的互作关系,探明
微塑料对微生物呼吸作用的影响。
作为一种有毒化学聚合物,微塑料对土壤 CH4
排放过程的影响在于其对功能菌群的毒性效应。
研究表明 与参 CH4排放过程的其他微生物相
比,产甲烷菌对微塑料更敏感,并且添加的微塑料
浓度越高,累积产 CH4量越少[93]。这与其他研究的
结果相似[94]即不同微塑料类型中的聚苯乙烯可
以增加 CH4产生量,同时通过建立网络模型发现,
不同微塑料类型对 CH4产生的影响比微塑料直径
和浓度的影响更显著。聚乙烯微塑料可以通过调
节底物中的 NH4
+浓度和产甲烷菌丰度而影响 CH4
的排放[95]。在废水处理中发现,添加聚乙烯微塑
料可减少与产甲烷相关功能酶的丰度,并显著降
CH4产生量[96]。此外,了微塑料本身,浸出
的化学添加剂也会对 CH4排放过程产生影响。研
究发现 微塑料 中剂双酚 A(BPA)的浸出 CH4
生量下降的主要原因[97]。还 有研究发现,聚酰 6
(PA6)的浸出物己内酰胺(CPL)会显著提高土壤
CH4产生量[98]。因此对于不同的微塑料添加剂而
言,其复杂的化学特性会对甲烷功能菌产生不同
的影响,但相关研究目前仍处于起步阶段。同时,
最新研究发现 [99]老化后的微塑料有着粗糙的表
5黄河三角洲微塑料污染研究的文献关键词聚类表
Table 5 Keyword clustering table of the literature on the study of microplastic pollution in the Yellow River Delta
编号
0
1
2
聚类
microplastic pollution(微塑料污染)
pollutants adsorption(污染物吸附)
human activities(人类活动)
关键词
contamination(污染)marine environment(海洋环境)particles(粒子)plastic waste(废塑料)
microplastic distribution(微塑料分布)
environmental risk(环境 )antibiotic resistance genes(抗生素抗性基因)plastic resin
pellets(塑胶粒)tarce metals(微量金属)
polyethylene terephthalate(聚对苯二甲酸乙二醇酯)transport( )coastal areas(沿海地
)sediment(沉积物)
319
湿 22
面,这有助于对电子受体氧化铁的隔离,并进一步
对甲烷厌氧氧化过程产生影响。
此外,微塑料污染还可能通过改变湿地植被、
土壤微生物群落等影响湿地碳储存和碳排放。特
别是在不同类型的湿地中微塑料污染对碳排放的
影响程度不同,例如不同类型的植被和土壤对微
塑料的吸附能力、降解能力存在差异。因此深入
研究微塑料污染对黄河三角洲湿地碳排放的影响
及其机制,对于湿地生态系统保护和推动碳减排
具有重要意义。微塑料中污染物质的浸出特性会
对湿地环境和大气环境产生重大威胁,但是目前
关于微塑料对碳排放的影响研究仍较为缺乏,
塑料及其添加剂的种类对碳循环相关微生物的丰
度、功能基因的影响尚不清楚,这必然成为滨海湿
地实现碳减排的重要挑战。
5不同人类活动对湿地碳排放影响
的综合分析
通过综合分析当前的研究结果,发现盐度变
化对 三角 湿碳排 程具 强的
响,即随着盐度的增加,其对碳排放的抑制作用逐
渐增强高可增2 151.98%(6)。这主要与
高盐 境下 活性 态过 变化
关,但需要进一步的研究来揭示其机制。氮输入
对碳排放的影响相对较强,尤其是在高浓度和长
期输入下,氮作为影响生态系统的关键营养元素,
能够促进土壤微生物的生长和代谢活动,进而促
进土壤有机质的分解和碳释放过程。氮输入对碳
排放的影响受季节和水文条件的影响较为深刻,
即季节变化和水文条件通过调节氮素与土壤呼吸
之间的相互作用,进而影响碳排放的量级和趋势,
在植物生长季施以高水平的氮肥,将显著促进湿
地碳排放(142.86%)。因此,在评估氮输入对碳
排放的影响时,需要综合考虑其他因素的影响。
重金 属输入 CH4排放的影响较为复杂,
同土层和重金属的组合可能导致 CH4排放的增加
或减少,这是因为重金属输入会影响湿地土壤中
的微生物群落并进一步影响 CH4产生过程。具体
而言,不同土层中微生物群落的差异以及重金属
与土 其他 质的 作用 能导
CH4产生过程的变化。此外,不同重金属元素的性
质和毒性 差异也会对 CH4排放产生不同的影响。
因此 究重金属输 入对 CH4排放的影响需要考
虑土层差异和重金属元素之间的相互作用,以便
更好地理解其影响机制。目前,微塑料对碳排
的影响较不明确,具体影响程度取决于微塑料的
浓度和种类。总体而言,盐渍化与过量氮输入
黄河三角洲湿地碳排放的影响十分显著,但重金
属与微塑料对其的潜在影响也不应忽略。
尽管本研究对不同人类活动影响下黄河三角
洲湿地碳排放的响应特征与机制进行了系统梳理
和比较,但是关于温室气体通量的一般性结论可
能因 的现 因子 有内 不确
性。其中,数据的局限性,特别是不同研究中实验
方法和实验条件的差异性,都使得对不同人类活
动影响下黄河三角洲湿地碳排放通量的估算不够
精确。因此,在未来的研究中需要采用更大时空
尺度下黄河三角洲湿地的标准化且连续的野外观
测数据进行验证,以实现对不同人类活动影响下
湿地碳排放通量的量化研究,从而对湿地长期净
碳平衡进行准确评估。
6总结与展望
近年来,作为世界上陆海相互作用最活跃的
地区之一,黄河三角洲湿地正在经历持续严重的
人为干扰,如盐渍化加剧、氮过量输入、重金属和
微塑料输入等,这直接或间接导致该区湿地面积
减少、生态功能退化等一系列环境问题,并对湿地
碳排放过程造成严重影响。
人类活动造成的盐渍化加剧对黄河三角洲湿
地碳排放的影响较为严重,主要表现在湿地生产
力和植物多样性的降低,导致土壤碳储存能力下
降。尽管近年来已经采取了相关措施来遏制盐渍
化加剧的情况但该问题仍然存在。因此,人为因
素导致的湿地土壤盐渍化不可忽视。目前,碳循
环相关微生物与酶活性对高盐环境的响应机制尚
不统一,这可能是由湿地生境的差异以及湿地盐
分组成的地域性差异造成的,如不同离子及其多
样化组合都会对湿地土壤微生物产生影响,进而
导致一系列湿地碳循环过程的差异。
关于过量施氮是否会将湿地的碳汇角色转化
为碳排放源的问题目前还存在争议。过度施肥会
增加土壤有机碳和全氮含量,但同时也会导致土
壤中矿质氮的损失和硝化作用的增强,并且降低
湿地 呼吸 植被 碳能 总体
看,过度施肥对湿地碳排放的影响取决于施肥量、
320
2 王子豪等:人类活动对黄河三角洲湿地碳排放的影响研究进展
施肥频率、施肥方式以及湿地生态系统自身特征等
因素。对于黄河三角洲湿地而言,过度施肥还可能
导致盐渍化加剧等问题,增加湿地生态系统的环境
风险。针对过量施氮所引发的各种环境问题可以
引导农民合理施肥,并且尝试应用反硝化型厌氧甲
烷氧化脱氮机制来缓解氮污染,改善农田环境。此
外,高效的氮肥利用模式也亟待开发与探索。
黄河三角洲湿地土壤重金属的富集主要来源
于工农业的聚集,重金属污染对黄河三角洲湿地
碳排放的影响较为显著。重金属的形态和种类会
对湿地造成潜在的生态风险,其中镉对黄河三角
洲湿地生态环境及碳储存的影响较大。总的来
说,重金属污染对湿地生态环境和碳排放过程具有
一定的负面影响,同时,金属还原菌介导的多数重
6不同人类活动对黄河三角洲湿地碳排放影响的综合分析
Table 6 Comprehensive analysis of the impacts of different human activities on wetland carbon
emissions in the Yellow River Delta
人类活动
不同氮素处理
不同氮量处理
不同氮量与季节处理
不同氮量与水文状况
处理
盐度变化
重金属 Fe输入
重金属 Mn输入
微塑料
碳通量/[nmol/(m2· h)]
* 0.1200.1450.1470.151
CKNH4ClNH4NO3KNO3
* 0.1150.1240.1230.140
CKNH4ClNH4NO3KNO3
* 0.1220.1710.1600.1522019年)
NH4NO3/[g N/(m2· a)]051020
* 0.1150.1380.1240.1192020 年)
NH4NO3/[g N/(m2· a)]051020
* 0.0490.06400780.0810.0800.008
NaNO3/[g N/(m2· a)]025102050
# 0.0690.0060.0070.0080.0082
NaNO3/[g N/(m2· a)]025102050
#生长季:0.0640.1020.1020.1030.1070.155
NaNO3/[g N/(m2· a)]025102050
#非生长季:0.0070.0070.0050.0030.0080.013
NaNO3/[g N/(m2· a)]025102050
#淹水季:0.0270.0370.0460.0450.0540.061
NaNO3/[g N/(m2· a)]025102050
#干旱季:0.0050.0020.0010.0030.0030.003
NaNO3/[g N/(m2· a)]025102050
* 0.6480.1860.2650.1393.619
NaCl/(g/L)0.61.261224
# 0.180.7540.153.75
NaCl/(g/L)0.61.261224
* 0.1170.1010.0830.085
电导率/(dS/m)0.921.803.2617.28
# 5.343.314.144.43
FeCl3/(mmol/L)061836
# 2.603.265.994.58
FeCl3/(mmol/L)061836
# 5.364.843.882.73
MnO2/(mmol/L)092554
# 2.633.463.624.77
MnO2/(mmol/L)092554
* 17.2724.0928.8620.4522.73
轮胎颗粒(TP)和聚丙烯(PP)浓度:00.2%TP
2.0%TP0.2%PP2.0%PP
碳排放潜力变化
+20.95%+22.86%+25.71%
+7.92%+6.93%+21.78%
+26.17%+25.23%+24.30%
+19.81%+7.92%+2.97%
+30.23%+58.14%+65.17%+62.79%
+139.53%
13.33%10.00%+6.67%+16.67%
+20.00%
生长季:+58.93%+58.93%+60.71%
+67.86%+142.86%
非生长季:033.33%50.00%
+16.67%+83.33%
淹水季:+33.33%+66.67%+62.50%
+100%+120.83%
干旱季:50%75%25%25%25%
+128.75%+140.95%+78.52%
458.29%
521.88%+2097.54%181.99%
2151.98%
16.09%41.68%37.72%
+38.05%+22.44%+17.07%
25.13%130.23%76.18%
+9.27%+27.32%+48.78%
31.68%37.62%81.19%
+39.35%+66.89%+17.94%+31.23%
文献序号
[42]
[42]
[42]
[42]
[100]
[100]
[100]
[100]
[36]
[36]
[16]
[67]
[67]
[67]
[67]
[101]
注:*代表 CO2排放通量,#代表 CH4排放通量。
321
湿 22
金属能够通过耦合甲烷厌氧氧化从而实现重金属
消减以及 CH4减排,未来甲烷厌氧氧化过程对于控
制重金属污染以及由 CH4排放带来的温室效应具
有重要潜力。
微塑料污染对湿地碳排放的影响尚不明确,
但其潜在危害不可忽视。黄河三角洲湿地微塑料
主要来源于土壤残留农用薄膜的裂解过程,其中
不同种类的微塑料及其浸出物对碳排放过程存在
不同影响,但目前关于微塑料对碳排放的影响研
究仍处于起步阶段,对湿地碳排放的影响尚未有
明确的定量研究结果。鉴于微塑料在湿地环境中
的广泛分布以及湿地碳排放的重要生态意义,
者间的强烈耦合关系必将成为新的研究热点。
将增进对不同人类活动影响下黄河三角洲湿
地碳 通量 主要 因素 制的
解,但未来仍需开展更系统的时空耦合研究以及
控制碳排放通量的关键驱动因素研究。鉴于当前
方法学的限制,目前对湿地碳排放路径的研究大
多为室内模拟研究,而在原位揭示其产生机制的
研究还相对较少。因此,未来可以更多地采用
位监测方式,进一步探究湿地碳排放过程对人为
因素干扰的响应机制,这无疑对于缓解全球气候
变化 保护 湿态系 样性 重要
义。
感谢绘图网站(https://pixy.org/search.php?
search=tubehttps://www.vecteezy.com https://hu-
aban.com)的技术支持。
参考文献
[1]WMO. WMO greenhouse gas bulletin: The state of greenhouse
gases in the atmosphere based on global observations through
2020[M]. Geneva: World Meteorological Organization, 2021.
[2]LACERDA L D D, MARINS R V, DIAS F J D S. An arctic
paradox: response of fluvial Hg inputs and bioavailability to global
climate change in an extreme coastal environment[J]. Frontiers in
earth science, 2020, 88: 93.
[3],李佳欣.湿地保护立法的目的构设与制度优化:以碳达
峰、碳中和为引领[J]. 中国土地科学, 2021, 3535(9): 17-23.
[4]李金,陈庆锋,李青,.黄河三角洲滨海湿地微生物多样性
及其驱动因子[J]. 生态学报, 2021, 4141(15): 12.
[5]TIAN H, XU R, CANADELL J G, et al. A comprehensive
quantification of global nitrous oxide sources and sinks[J].
Nature, 2020, 586586(7828): 248-256.
[6]WANG Z, LI J, XU X, et al. Denitrifying anaerobic methane
oxidation and mechanisms influencing it in Yellow River Delta
coastal wetland soil, China [J]. Chemosphere, 2022, 298298: 134345.
[7]GAO D, SHENG R, WHITELEY A S, et al. Effect of phosphorus
amendments on rice rhizospheric methanogens and methanotrophs
in a phosphorus deficient soil[J]. Geoderma, 2020, 368368: 114312.
[8]BIAN L, WANG J, LIU J, et al. Spatiotemporal changes of soil
salinization in the Yellow River Delta of China from 2015 to 2019
[J]. Sustainability, 2021, 1313(2): 822.
[9]JIA J, BAI J, ZHANG G, et al. Changes of biogenic elements in
Phragmites australis and Suaeda salsa from salt marshes in
Yellow River Delta, China[J]. Chinese geographical science,
2018, 2828: 411-419.
[10]洪梦梦,王卷乐,韩保民.黄河三角洲 20152020 盐渍化时空
变化及成因分析[J]. 资源与生态学报, 2022, 1313(5): 786-796.
[11]刘玉斌,王晓利,侯西勇,.四个时期和模拟情景下2025 年黄
河三角洲的土地利用格局 和生态系统服务价值评估 [J]. 湿地
科学, 2020, 1818(4): 424-436.
[12]MOREIRA M, THEY N, RIBEIRO RODRIGUES L, et al. Salty
freshwater macrophytes: The effects of salinization in freshwaters
upon non- halophyte aquatic plants[J]. Science of the total
environment, 2022, 857857: 159608.
[13]HALABOWSKI D, BĄK M, LEWIN I. Distribution and
ecology of two interesting diatom species Navicula flandriae
Van de Vijver et Mertens and Planothidium nanum Bąk, Kryk et
Halabowski in rivers of Southern Poland and their spring areas
[J]. Oceanological and hydrobiological studies, 2021, 5050: 137-
149.
[14]SANTOS C, EGEA L, MARTINS M, et al. Sedimentary organic
carbon and nitrogen sequestration across a vertical gradient on a
temperate wetland seascape including salt marshes, seagrass
meadows and rhizophytic macroalgae beds[J]. Ecosystems,
2023, 2626: 826-842.
[15]IPCC. Climate change 2013: The physical science basis, in
contribution of working group I to the fifth assessment report of
the Intergovernmental Panel on Climate Change[M]. Cambridge:
Cambridge University Press, 2013.
[16]YANG C, LV D, JIANG S, et al. Soil salinity regulation of soil
microbial carbon metabolic function in the Yellow River Delta,
China[J]. Science of the total environment, 2021, 790790: 148258.
[17]YANG C, SUN J. Soil salinity drives the distribution patterns
and ecological functions of fungi in saline- alkali land in the
Yellow River Delta, China[J]. Frontiers in microbiology, 2020,
1111: 594284.
[18]JI L, XIN Y, GUO D. Soil fungal community structure and its
effect on CO2emissions in the Yellow River Delta[J]. International
journal of environmental research and public health, 2023, 2020
322
2 王子豪等:人类活动对黄河三角洲湿地碳排放的影响研究进展
(5): 4190.
[19]CHI Z, JU S, LI H, et al. Deciphering edaphic bacterial
community and function potential in a Chinese delta under
exogenous nutrient input and salinity stress[J]. Catena, 2021,
201201: 105212.
[20]MARGIDAM G,LASHERMES G, MOORHEAD D L. Estimating
relative cellulolytic and ligninolytic enzyme activities as
functions of lignin and cellulose content in decomposing plant
litter[J]. Soil biology and biochemistry, 2020, 141141: 107689.
[21]CHEN J, ELSGAARD L, VAN GROENIGEN K J, et al. Soil
carbon loss with warming: New evidence from carbon-degrading
enzymes[J]. Global change biology, 2020, 2626: 1944-1952.
[22]BAI J, LUO M, YANG Y, et al. Iron- bound carbon increases
along a freshwater- oligohaline gradient in a subtropical tidal
wetland[J]. Soil biology and biochemistry, 2021, 154154: 108128.
[23]LI X, GAO D, HOU L, et al. Salinity stress changed the
biogeochemical controls on CH4and N2O emissions of estuarine
and intertidal sediments[J]. Science of the total environment,
2019, 652652: 593-601.
[24]YANG Y, MOORHEAD D, CRAIG H, et al. Differential
responses of soil extracellular enzyme activities to salinization:
Implications for soil carbon cycling in tidal wetlands[J]. Global
biogeochemical cycles, 2022, 3636(6): 7285.
[25]XIN Y, JI L, WANG Z, et al. Functional diversity and CO2
emission characteristics of soil bacteria during the succession of
halophyte vegetation in the Yellow River Delta[J]. International
journal of environmental research and public health, 2022, 1919:
12919.
[26]CHEN X, LUO M, TAN J, et al. Salt- tolerant plant moderates
the effect of salinity on soil organic carbon mineralization in a
subtropical tidal wetland[J]. Science of the total environment,
2022, 837837: 155855.
[27]冯小平,王义东,王博祺,.盐分对湿地甲烷排放影响的研究
进展[J]. 生态学杂志, 2015, 3434(1): 237-246.
[28]赵娇,慧君,张建.黄河三角洲盐碱土根际微环境的微生物
多样性及理化性质分析[J]. 环境科学, 2020, 4141(3): 1449-1455.
[29]杜书栋,白军红,贾佳,.黄河三角洲芦苇湿地土壤有机碳储
量沿盐分梯度的变化特征[J]. 环境科学报, 2022, 4242(1):80-87.
[30]刘紫玟,魏雪馨,许运凯,.盐度对长江河口芦苇湿地甲烷排
放的影响[J]. 海洋环境科学, 2018, 3737(3): 356-361, 388.
[31]OREMLAND R S, MARSH L, DESMARAIS D J. Methanogenesis
in Big Soda Lake, Nevada: an alkaline, moderately hypersaline
desert lake[J]. Applied and environmental microbiology, 1982, 4343
(2): 462-468.
[32]ORPHAN V J, JAHNKE L L, EMBAYE T, et al.
Characterization and spatial distribution of methanogens and
methanogenic biosignatures in hypersaline microbial mats of
Baja California[J]. Geobiology, 2008, 66(4): 376-393.
[33]MA L, JIANG X, LIU G, et al. Environmental factors and
microbial diversity and abundance jointly regulate soil nitrogen
and carbon biogeochemical processes in Tibetan Wetlands[J].
Environmental science and technology, 2020, 5454(6): 3267-3277.
[34]WANG Z, LI K, SHEN X, et al. Soil nitrogen substances and
denitrifying communities regulate the anaerobic oxidation of
methane in wetlands of Yellow River Delta, China[J]. Science of
the total environment, 2022, 857857(2): 159439.
[35]CONRAD R, FRENZEL P, COHEN Y. Methane emission from
hypersaline microbial mats: Lack of aerobic methane oxidation
activity[J]. FEMS microbiology ecology, 1995, 1616(4): 297-305.
[36]CHEN Q, GUO B, ZHAO C, et al. Characteristics of CH4and
CO2emissions and influence of water and salinity in the Yellow
River delta wetland, China[J]. Environmental pollution, 2018,
239239: 289-299.
[37]张健.连续施氮对土壤氨氧化菌及细菌群落结构的影响[D].
兰州:甘肃农业大学, 2018.
[38]孙菁菁.氮肥及生物炭对土壤微生物活性和氨氧化影响的研
[D]. 北京:北京科技大学, 2016.
[39]东营市统计局,国家统计局东营调查队. 2018 年东营市国民经
济和社会发展统计公报[N]. 东营日报, 2019-03-20(003).
[40]MIN K, KANG H, LEE D. Effects of ammonium and nitrate
additions on carbon mineralization in wetland soils[J]. Soil
biology and biochemistry, 2011, 4343(12): 2461-2469.
[41]BONETTI G, LIMPERT K E, BRODERSEN K E, et al. The
combined effect of short- term hydrological and N- fertilization
manipulation of wetlands on CO2, CH4, and N2O emissions[J].
Environmental pollution, 2022, 294294: 118637.
[42]屈文笛.模拟氮沉降对黄河三角洲湿地土壤碳收支的影响
[D]. 烟台:中国科学院烟台海岸带研究所, 2023.
[43]CZAPLA K, ANDERSON I, CURRIN C. Net ecosystem carbon
balance in a North Carolina, USA, salt marsh[J]. Journal of
geophysical research: Biogeosciences, 2020, 125125(10): 5509.
[44]OJANEN P, PENTTILÄ T, TOLVANEN A, et al. Long-term
effect of fertilization on the greenhouse gas exchange of
low- productive peatland forests[J]. Forest ecology and
management, 2019, 432432: 786-798.
[45]BÉDARD C, KNOWLES R. Physiology, biochemistry, and
specific inhibitors of CH4, NH4+, and CO oxidation by
methanotrophs and nitrifiers[J]. Fems microbiology reviews,
1989, 5353(1): 68-84.
[46]KING G, SCHNELL S. Effect of increasing atmospheric
methane concentration on ammonium inhibition of soil methane
consumption[J]. Nature, 1994: 370370: 282-284.
[47]AERTS R, TOET S. Nutritional controls on carbon dioxide and
methane emission from Carex- dominated peat soils[J]. Soil
biology and biochemistry, 1997, 2929(11): 1683-1690.
[48]XU P, ZHOU W, JIANG M, et al. Nitrogen fertilizer application
in the rice- growing season can stimulate methane emissions
during the subsequent flooded fallow period[J]. Science of the to-
323
湿 22
tal environment, 2020, 744744: 140632.
[49]赵荣,朱雷,吴箐,.亚硝酸盐型甲烷厌氧氧化过程影响因素
研究[J]. 环境科学学报, 2017, 3737(1): 178-184.
[50]SHEN L D, HU B L, LIU S, et al. Anaerobic methane oxidation
coupled to nitrite reduction can be a potential methane sink in
coastal environments[J]. Applied microbiology and biotechnology,
2016, 100100(16): 7171-7180.
[51]SHI Y, HU S, LOU J, et al. Nitrogen removal from wastewater
by coupling anammox and methane-dependent denitrification in
a membrane biofilm reactor[J]. Environmental science and
technology, 2013, 4747(20): 11577-11583.
[52]于元,吕建树,王亚梦.黄河下游典型区域土壤重金属来源
解析及空间分布[J]. 环境科学, 2018, 3939(6): 2865-2874.
[53]欧阳竹,王竑晟,来剑斌,.黄河三角洲农业高质量发展新模
[J]. 中国科学院院刊, 2020, 3535(2): 145-153.
[54]李晶,雷茵茹,崔丽娟,.我国滨海滩涂湿地现状及研究进展
[J]. 林业资源管理, 2018(2): 24-28.
[55]FANG X, PENG B, WANG X, et al. Distribution, contamination
and source identification of heavy metals in bed sediments from
the lower reaches of the Xiangjiang River in Hunan province,
China[J]. Science of the total environment, 2019, 689689: 557-570.
[56]陈雪娟,高放,王青,.黄河三角洲湿地淡水恢复区重金属分
布特征及潜在风险[J]. 环境工程, 2023, 4141(1): 232-239.
[57]LIU H, LIU G, WANG S, et al. Distribution of heavy metals,
stable isotope ratios (δ13C and δ15N) and risk assessment of fish
from the Yellow River estuary, China[J]. Chemosphere, 2018,
208208: 731-739.
[58]胡榆,伍钧,杨刚,.不同微塑料对水稻土性质、镉有效性
其形 [J]. 农业环境科学学报, 2023, 4242(8): 1721-
1728.
[59]包敏,宁梓亨.黄河三角洲北部海域沉积物重金属污染和生态
风险评价[J]. 环境与发展, 2020, 3232(11): 1-3.
[60]李晓.黄河口湿地土壤重金属分布及其形态对水盐的响应机
[D]. 烟台:鲁东大学, 2020.
[61]彭红丽,谭海霞,王颖,.不同种植模式下土壤重金属形态分
布差异与生态风险评价[J]. 生态环境学报, 2022, 3131(6): 1235-
1243.
[62]MA J, ZHOU T, XU C, et al. Spatial and temporal variation in
microbial diversity and community structure in a contaminated
mangrove wetland[J]. Applied sciences, 2020, 1010: 5850.
[63]MA J, ULLAH S, NIU A, et al. Heavy metal pollution increases
CH4and decreases CO2emissions due to soil microbial changes
in a mangrove wetland: microcosm experiment and field
examination[J]. Chemosphere, 2021, 269269: 128735.
[64]BEAL E J, HOUSE C H, ORPHAN V J. Manganese- and iron-
dependent marine methane oxidation[J]. Science, 2009, 325325
(5937): 184-187.
[65]EGGER M, RASIGRAF O, SAPART C J, et al. Iron-mediated
anaerobic oxidation of methane in brackish coastal sediments[J].
Environmental science and technology, 2015, 4949(1): 277-283.
[66]LEU A O, CAI C, MCILROY S J, et al. Anaerobic methane
oxidation coupled to manganese reduction by members of the
Methanoperedenaceae[J]. ISME journal, 2020, 1414(4): 1030-
1041.
[67]王子豪,陈庆锋,李金业,.黄河三角洲盐沼湿地甲烷厌氧氧
化潜力及微生物群落对铁 锰输入的响应研[J]. 环境科 学学
, 2022, 4242(10): 452-461.
[68]CHENG S, QIN C, XIE H, et al. A new insight on the effects of
iron oxides and dissimilated metal- reducing bacteria on CH4
emissions in constructed wetland matrix systems[J]. Bioresource
technology, 2021, 320320: 124296.
[69]LUO D, MENG X, ZHENG N, et al. The anaerobic oxidation of
methane in paddy soil by ferric iron and nitrate, and the microbial
communities involved[J]. Science of the total environment,
2021, 788788: 147773.
[70]SU G, ZOPFI J, HAOYI Y, et al. Manganese/iron-supported
sulfate-dependent anaerobic oxidation of methane by archaea in
lake sediments[J]. Limnology and oceanography, 2019, 6565(4):
863-875.
[71]ZHANG B, JIANG Y, ZUO K, et al. Microbial vanadate and
nitrate reductions coupled with anaerobic methane oxidation in
groundwater[J]. Journal of hazardous materials, 2020, 382382:
121228.
[72]LAI C Y, DONG Q Y, RITTMANN B E, et al. Bioreduction of
Antimonate by Anaerobic Methane Oxidation in a Membrane
Biofilm Batch Reactor[J]. Environmental science and technology,
2018, 5252(15): 8693-8700.
[73]SHI L D, DU J J, WANG L B, et al. Formation of nanoscale Te0
and its effect on TeO3
2reduction in CH4- based membrane
biofilm reactor[J]. Science of the total environment, 2019, 655655:
1232-1239.
[74]SHI L- D, GUO T, LV P, et al. Coupled anaerobic
methane oxidation and reductive arsenic mobilization in wetland
soils[J]. Nature geoscience, 2020, 1313: 799-805.
[75]LAI C Y, WEN L L, SHI L D, et al. Selenate and nitrate
bioreductions using methane as the electron donor in a
membrane biofilm reactor[J]. Environmental science and
technology, 2016, 5050(18): 10179-10186.
[76]HE Z, GENG S, PAN Y, et al. Improvement of the trace metal
composition of medium for nitrite-dependent anaerobic methane
oxidation bacteria: iron (II) and copper (II) make a difference[J].
Water research, 2015, 8585: 235-243.
[77]LUO J-H, CHEN H, HU S, et al. Microbial selenate reduction
driven by a denitrifying anaerobic methane oxidation biofilm[J].
Environmental science and technology, 2018, 527527: 4006-4012.
[78]LAI C Y, ZHONG L, ZHANG Y, et al. Bioreduction of
chromate in a methane-based membrane biofilm reactor[J].
324
2 王子豪等:人类活动对黄河三角洲湿地碳排放的影响研究进展
Environmental science and technology, 2016, 5050(11): 5832-5839.
[79]LIU W, XIAO H, MA H, et al. Reduction of methane emissions
from manganese-rich constructed wetlands: role of manganese-
dependent anaerobic methane oxidation[J]. Chemical engineering
journal, 2019, 387387: 123402.
[80]VIGDEROVICH H, ECKERT W, ELUL M, et al. Long-term
incubations provide insight into the mechanisms of anaerobic
oxidation of methane in methanogenic lake sediments[J].
Biogeosciences, 2022, 1919: 2313-2331.
[81]延雨宸,杨忠芳,余涛.土壤中微塑料的来源,生态环境危害及
治理技术[J]. 中国地质, 2022, 4949(3): 770-788.
[82]耿娜,赵广明,张大海,.黄河三角洲湿地表层沉积物中微塑
料的 分布 源和风险 评价 [J]. 环境科学, 2023, 4444(9): 5046-
5054.
[83]赵爽.黄河三角洲湿地微塑料调查及健康风险评价[D]. 天津:
天津理工大学, 2020.
[84]郝爱红,赵保卫,张建,.土壤中微塑料污染现状及其生态风
险研究进展[J]. 环境化学, 2021, 4040(4): 1100-1111.
[85]朱莹,,罗景阳.微塑料的环境影响行为及其在我国的分
布状况[J]. 环境科学研究, 2019, 3232(9): 1437-1447.
[86]薛润泽,刘卓苗,王萌,.海洋生物对微塑料迁移转化的调控
作用[J]. 地球与环境, 2022, 5050(2): 291-303.
[87]HUANG Y, XIAO X, EFFIONG K, et al. New insights into the
microplastic enrichment in the blue carbon ecosystem: evidence
from seagrass meadows and mangrove forests in coastal South
China Sea[J]. Environmental science and technology, 2021, 5555
(8): 4804-4812.
[88]CHEN Z L, LEE S. Contribution of microplastics to carbon
storage in coastal wetland sediments[J]. Environmental science
and technology, 2021, 88(12): 1045-1050.
[89]AUTAH S, EMENIKE C U, JAYANTHI B, et al. Growth kinetics
and biodeterioration of polypropylene microplastics by Bacillus
sp. and Rhodococcus sp. isolated from mangrove sediment[J].
Marine pollution bulletin, 2018, 127127: 15-21.
[90]宋劼,易雨君,周扬,.黄河三角洲潮上带和潮间带不同生境
微塑料分布规律[J]. 海洋与湖沼, 2022, 5353(3): 607-615.
[91]岳俊杰,赵爽,程昊东,.不同植物覆盖下黄河三角洲湿地土
壤中微塑料的分布[J]. 环境科学, 2021, 4242(1): 204-210.
[92]YU H, LIU M, GANG D, et al. Polyethylene microplastics
interfere with the nutrient cycle in water-plant-sediment systems
[J]. Water research, 2022, 214214: 118191.
[93]张静静.微塑料对废水厌氧消化产甲烷过程的影响研究[D].
无锡:江南大学, 2021.
[94]XU R Z, CAO J S, YE T, et al. Automated machine learning-
based prediction of microplastics induced impacts on methane
production in anaerobic digestion[J]. Water research, 2022, 223223:
118975.
[95]ZHANG Z, YANG Z, YUE H, et al. Discrepant impact of
polyethylene microplastics on methane emissions from different
paddy soils[J]. Applied soil ecology, 2023, 181181: 104650.
[96]WANG S, WANG X, FESSLER M, et al. Insights into the
impact of polyethylene microplastics on methane recovery from
wastewater via bioelectrochemical anaerobic digestion[J]. Water
research, 2022, 221221: 118844.
[97]WEI W, HUANG Q S, SUN J, et al. Polyvinyl chloride
microplastics affect methane production from the anaerobic
digestion of waste activated sludge through leaching toxic
bisphenol-A[J]. Environmental science and technology, 2019, 5353
(5): 2509-2517.
[98]CHEN H, TANG M, XIAO Y, et al. Polyamide 6 microplastics
facilitate methane production during anaerobic digestion of
waste activated sludge[J]. Chemical engineering journal, 2021,
408408: 127251.
[99]FENG J C, YANG Z, ZHOU W, et al. Interactions of
microplastics and methane seepage in the deep-sea environment
[J]. Engineering, 2023, 2929(10): 159-167.
[100]李隽永.模拟氮输入对黄河三角洲盐沼湿地碳循环关键过
的影响[D]. 烟台:中国科学院烟台海岸带研究所, 2022.
[101]TANG X, CHEN W, LIU Q, et al. Effect of microplastics on
CO2emission from Yellow River Delta wetland[J]. IOP
conference series: Earth and environmental science, 2022, 10351035
(1): 012016.
325
湿 22
Research Progress on Impacts of Human Activities on Carbon EmissionsResearch Progress on Impacts of Human Activities on Carbon Emissions
in the Yellow River Delta Wetlandsin the Yellow River Delta Wetlands
WANG Zihao1,2,3, XU Xinyi1, CHEN Qingfeng1, LI Kun1, Yan Feifei3, XIN Yu1,
JI Linhui1, LI Daijia1, RAN Junhao1, XU Xiaoya1,
(1. College of Geography and Environment,Shandong Normal University,Jinan 250014, Shandong,P.R.China;
2. Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry
Theory and Technology,Ministry of Education,Ocean University of China,Qingdao 266100, Shandong,P.R.China;
3. College of Chemistry and Chemical Engineering,Ocean University of China,Qingdao 266100, Shandong,P.R.China)
Abstract:Abstract: Carbon dioxide (CO2) and methane (CH4) are two pivotal greenhouse gases, and their atmospheric
concentrations have reached the highest levels in 800 000 years. Coastal wetlands have great potential for
carbon capture and burial, and are considered to be importantblue carbonsinks on Earth. At the same time,
coastal wetlands are also important natural sources of CO2and CH4in the atmosphere. The Yellow River Delta
wetland, influenced by intense sea-land interactions, is an excellent location for studying wetland carbon
emissions. The carbon emission processes and their response mechanisms to environmental changes are the
current research hotspots. Using CiteSpace software and relevant articles published in the core database of
Web of Science from 2013 to 2023, we summarized the research frontiers and latest progresses on the
response characteristics and mechanisms of carbon emissions in coastal wetlands of the Yellow River Delta,
especially concerning different anthropogenic effects, such as salinization, over-fertilization, heavy metal
input, and microplastic pollution. The results showed that salinization and excessive nitrogen input have
significant impacts on carbon emissions of coastal wetlands in the Yellow River Delta, and the potential
impacts of heavy metal and microplastic pollution cannot be ignored. We proposed the future research
direction of coastal wetland carbon emissions, and provided the microbial ecological perspective and scientific
guidance for sustainable development, greenhouse gas emission reduction in the Yellow River Delta and
carbon neutrality in China.
Keywords:Keywords: the Yellow River Delta wetlands; carbon cycle; CO2; CH4; human activities; environmental issues
326
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Carbon dioxide (CO2) is the most important greenhouse gas in the atmosphere, which is mainly derived from microbial respiration in soil. Soil bacteria are an important part of the soil ecosystem and play an important role in the process of plant growth, mineralization, and decomposition of organic matter. In this paper, we discuss a laboratory incubation experiment that we conducted to investigate the CO2 emissions and the underlying bacterial communities under the natural succession of halophyte vegetation in the Yellow River Delta by using high-throughput sequencing technology and PICRUSt functional prediction. The results showed that the bacterial abundance and diversity increased significantly along with the succession of halophyte vegetation. Metabolic function is the dominant function of soil bacteria in the study area. With the succession of halophyte vegetation, the rate of CO2 emissions gradually increased, and were significantly higher in soil covered with vegetation than that of the bare land without vegetation coverage. These results helped to better understand the relationships of soil bacterial communities under the background of halophyte vegetation succession, which can help to make efficient strategies to mitigate CO2 emissions and enhance carbon sequestration.
Article
Full-text available
As natural carbon sinks, coastal wetlands are of great significance to alleviate global climate change. However, due to environmental pollution, the soil carbon sequestration capacity of coastal wetlands is decreasing, and then the emission of CO 2 is accelerated. The Yellow River Delta is one of the largest deltas in China. Economic development and human activities have led to the input of large quantities of microplastics. Microplastics can alter soil properties, causing the emission of CO 2 to be affected. However, the impact of common microplastics in coastal wetlands on CO 2 generation and emission is not clear. In this study, tread particles (TP) and polypropylene (PP) particles were applied to coastal wetland soil to study their effects on greenhouse gas CO 2 emissions. The results showed that the cumulative emission of CO 2 increased by 32.7% - 49.5% and 13.9% - 24.6% respectively compared with CK 14 days after the addition of TP and PP. The promoting effect of TP was stronger than that of PP. The results provided theoretical and basic data support for the evaluation of greenhouse gas emissions and atmospheric environmental effects of Yellow River Delta wetlands under microplastics pollution.
Article
Full-text available
Rising sea levels are expected to cause salinization in many historically low‐salinity tidal wetlands. However, the response of soil extracellular enzyme activities to salinization in tidal wetlands and their links to soil organic carbon (SOC) decomposition are largely unknown. Here, we conducted a global meta‐analysis to examine the effect of salinization on hydrolytic and oxidative carbon‐acquiring enzyme activities and their relationships with SOC storage in tidal wetlands. The results showed that salinization reduced hydrolytic carbon‐acquiring enzyme activities by 33% but increased oxidative carbon‐acquiring enzyme activities by 15%. Meanwhile, salinization decreased SOC storage by 14%, and the change in SOC storage was negatively associated with oxidative carbon‐acquiring enzyme activities. These results indicate an important role for oxidative carbon‐acquiring enzymes in SOC loss in tidal wetlands. Moreover, the effect of salinization on oxidative carbon‐acquiring enzyme activities logarithmically declined with increasing salinization, implying that SOC loss was highly sensitive to even minor increases in salinity at the initial stage of salinization. Given increasing salinization over time with rising sea levels in most global tidal wetlands, our results suggest that SOC loss might be greater during early than later stages. Consequently, salinization‐induced SOC loss may be overstated in the long term if extrapolations are merely based on a constant SOC loss rate determined from short‐term studies. Future modeling frameworks should account for this changing sensitivity of microbially mediated SOC loss with increasing salinization over time.
Article
Full-text available
Anaerobic oxidation of methane (AOM) is among the main processes limiting the release of the greenhouse gas methane from natural environments. Geochemical profiles and experiments with fresh sediments from Lake Kinneret (Israel) indicate that iron-coupled AOM (Fe-AOM) sequesters 10 %–15 % of the methane produced in the methanogenic zone (>20 cm sediment depth). The oxidation of methane in this environment was shown to be mediated by a combination of mcr-gene-bearing archaea and pmoA-gene-bearing aerobic bacterial methanotrophs. Here, we used sediment slurry incubations under controlled conditions to elucidate the electron acceptors and microorganisms that are involved in the AOM process over the long term (∼ 18 months). We monitored the process with the addition of 13C-labeled methane and two stages of incubations: (i) enrichment of the microbial population involved in AOM and (ii) slurry dilution and manipulations, including the addition of several electron acceptors (metal oxides, nitrate, nitrite and humic substances) and inhibitors (2-bromoethanesulfonate, acetylene and sodium molybdate) of methanogenesis, methanotrophy and sulfate reduction and sulfur disproportionation. Carbon isotope measurements in the dissolved inorganic carbon pool suggest the persistence of AOM, consuming 3 %–8 % of the methane produced at a rate of 2.0 ± 0.4 nmol per gram of dry sediment per day. Lipid carbon isotopes and metagenomic analyses point towards methanogens as the sole microbes performing the AOM process by reverse methanogenesis. Humic substances and iron oxides, although not sulfate, manganese, nitrate or nitrite, are the likely electron acceptors used for this AOM. Our observations support the contrast between methane oxidation mechanisms in naturally anoxic lake sediments, with potentially co-existing aerobes and anaerobes, and long-term incubations, wherein anaerobes prevail.
Article
Microplastics (MPs) are important exempla of the Anthropocene and are exerting an increasing impact on Earth’s carbon cycle. The huge imbalance between the MPs floating on the marine surface and those that are estimated to have been introduced into the ocean necessitates a detailed assessment of marine MP sinks. Here, we demonstrate that cold seep sediments, which are characterized by methane fluid seepage and a chemosynthetic ecosystem, effectively capture and accommodate small-scale (< 100 μm) MPs, with 16 types of MPs being detected. The abundance of MPs is higher in methane-seepage locations than in non-seepage areas. Methane seepage is beneficial to the accumulation, fragmentation, increased diversity, and aging of MPs. In turn, the rough surfaces of MPs contribute to the sequestration of the electron acceptor ferric oxide, which is associated with the anaerobic oxidation of methane (AOM). The efficiency of the AOM determines whether the seeping methane (which has a greenhouse effect 83 times greater than that of CO2 over a 20-year period) can enter the atmosphere, which is important to the global methane cycle, since the deep-sea environment is regarded as the largest methane reservoir associated with natural gas hydrates.
Article
Microplastics (MPs) can affect soil organic carbon (C) cycling in paddy soil by changing microbial function and soil properties. In this study, a laboratory incubation experiment was applied to explore the effect of poly-ethylene (PE) MP on methane (CH4) and carbon dioxide (CO2) emissions from paddy soils after rice straw addition. Moreover, the microbial functional genes encoding CH4 oxidation and production and organic C degradation were measured. MP addition significantly (p < 0.05) affected the release of CH4 , but this effect varied with soil type. The amendment of PE MPs significantly (p < 0.05) reduced CH4 emission by 16.9 % for the acidic soil (pH = 5.0) and 16.1 % for the alkaline soil (pH = 8.2), which was probably due to these plastic particles inhibiting CH4 production by reducing the abundance of the mcrA gene or stimulating CH4 oxidation with the increasing number of pmoA gene copies, respectively. For the neutral soils, the presence of PE MPs did not significantly (p > 0.05) alter CH4 emissions and their associated microbial functional genes. Across the experimental paddy soils, the response of CH4 emissions to MPs was negatively and positively correlated with those of soil ammonium (NH4+) content and mcrA gene abundance, respectively, suggesting that the change in these variables may control the release of CH4 in the presence of MPs. In addition, PE MPs had a negligible effect on soil CO2 emissions and the abundances of all functional genes encoding starch, hemicellulose, and lignin degradation. Our results demonstrated that the presence of MPs affects the release of CH4 , probably by regulating NH4+ substrates and methanogens, and this emerging environmental factor should be considered when estimating CH4 emissions from paddy fields.
Article
Microplastics as emerging pollutants have been heavily accumulated in the waste activated sludge (WAS) during biological wastewater treatment, which showed significantly diverse impacts on the subsequent anaerobic sludge digestion for methane production. However, a robust modeling approach for predicting and unveiling the complex effects of accumulated microplastics within WAS on methane production is still missing. In this study, four automated machine learning (AutoML) approach was applied to model the effects of microplastics on anaerobic digestion processes, and integrated explainable analysis was explored to reveal the relationships between key variables (e.g., concentration, type, and size of microplastics) and methane production. The results showed that the gradient boosting machine had better prediction performance (mean squared error (MSE)=17.0) than common neural networks models (MSE=58.0), demonstrating that the AutoML algorithms succeeded in predicting the methane production and could select the best machine learning model without human intervention. Explainable analysis results indicated that the variable of microplastic types was more important than the variable of microplastic diameter and concentration. The existence of polystyrene was associated with higher methane production, whereas increasing microplastic diameter and concentration both inhibited methane production. This work also provided a novel modeling approach for comprehensively understanding the complex effects of microplastics on methane production, which revealed the dependence relationships between methane production and key variables and may be served as a reference for optimizing operational adjustments in anaerobic digestion processes.
Article
Bioelectrochemical anaerobic digestion (BEAD) is a promising next-generation technology for simultaneous wastewater treatment and bioenergy recovery. While knowledge on the inhibitory effect of emerging pollutants, such as microplastics, on the conventional wastewater anaerobic digestion processes is increasing, the impact of microplastics on the BEAD process remains unknown. This study shows that methane production decreased by 30.71% when adding 10 mg/L polyethylene microplastics (PE-MP) to the BEAD systems. The morphology of anaerobic granular sludge, which was the biocatalysts in the BEAD, changed with microbes shedding and granule crack when PE-MP existed. Additionally, the presence of PE-MP shifted the microbial communities, leading to a lower diversity but higher richness and tight clustering. Moreover, fewer fermentative bacteria, acetogens, and hydrogenotrophic methanogens (BEAD enhanced) grew under PE-MP stress, suggesting that PE-MP had an inhibitory effect on the methanogenic pathways. Furthermore, the abundance of genes relevant to extracellular electron transfer (omcB and mtrC) and methanogens (hupL and mcrA) decreased. The electron transfer efficiency reduced with extracellular cytochrome c down and a lower electron transfer system activity. Finally, phylogenetic investigation of communities by reconstruction of unobserved states analysis predicted the decrease of key methanogenic enzymes, including EC 1.1.1.1 (Alcohol dehydrogenase), EC 1.2.99.5 (Formylmethanofuran dehydrogenase), and EC 2.8.4.1 (Coenzyme-B sulfoethylthiotransferase). Altogether, these results provide insight into the inhibition mechanism of microplastics in wastewater methane recovery and further optimisation of the BEAD process.
Article
Although salinization is widely known to affect cycling of soil carbon (C) in tidal freshwater wetlands, the role of the presence or absence of plants in mediating the responses of soil organic carbon (SOC) mineralization to salinization is poorly understood. In this study, we translocated soils collected from a tidal freshwater wetland to sites with varying salinities along a subtropical estuarine gradient and established unplanted and planted (with the salt-tolerant plant Cyperus malaccensis Lam.) mesocosms at each site. We simultaneously investigated cumulative soil CO2 emissions, C-acquiring enzyme activities, availability of labile organic C (LOC), and structures of bacterial and fungal communities. Overall, in the planted mesocosm, the soil LOC content and the activities of β-1,4-glucosidase, cellobiohydrolase, phenol oxidase, and peroxidase increased with salinization. However, in the unplanted mesocosm, soil LOC content decreased with increasing salinity, whereas all the C-acquiring enzyme activities did not change. In addition, salinization favored the dominance of bacterial and fungal copiotrophs (e.g., γ-Proteobacteria, Bacteroidetes, Firmicutes, and Ascomycota) in the planted mesocosms. Contrarily, in the unplanted mesocosms salinization favored bacterial and fungal oligotrophs (e.g., α-Proteobacteria, Chloroflexi, Acidobacteria, and Basidiomycota). In both planted and unplanted mesocosms, cumulative soil CO2 emissions were affected by soil LOC content, activities of C-acquiring enzymes, and microbial C-use trophic strategies. Overall, cumulative soil CO2 emissions increased by 35% with increasing salinity in the planted mesocosm but decreased by 37% as salinity increased in the unplanted mesocosm. Our results demonstrate that the presence or absence of salt-tolerant plants can moderate the effect of salinity on SOC mineralization in tidal wetland soils. Future C prediction models should embed both planted and unplanted modules to accurately simulate cycling of soil C in tidal wetlands under sea level rise.
Article
Increasing microplastic (MP) pollution and its effects on aquatic systems have become a global issue; however, the impact of MPs on biogeochemical cycles is poorly understood. A simulation study was performed to analyse the influence of polyethylene (PE) microplastics on the morphological, physiological, and stoichiometric (C, N, P) characteristics of submerged plants, and to investigate their effects on the nutrient cycle and microbial community in freshwater sediment. The results showed that PE-MP treatments significantly decreased leaf nitrogen and carbon contents. Exposure to 1% PE-MPs suppressed the plant height, total biomass, root activity, and relative growth rate of Vallisneria natans. Decrease in dissolved oxygen (DO) concentrations (19.93–40.26%) were observed in the 1% PE-MP treatment group compared to that in the control between 1–6 days. The activities of enzymes (ammonia monooxygenase and nitrate reductase) related to the nitrogen cycle were significantly altered by the addition of PE-MPs. We found that PE-MPs acted as obstacle disruptors, resulting in a reduction in the release of nitrogen and phosphorus from the sediment to the overlying water. This is because PE-MPs significantly alter the composition and metabolic properties of the microbial communities in sediments, the plant growth, and the nutrient cycle. These findings helped evaluate the impacts of PE-MPs on the water-plant-sediment system and on the biogeochemical cycles of the freshwater ecosystems.