ArticleLiterature Review

Emerging epigenetic insights into aging mechanisms and interventions

Authors:
  • Institute of Stem Cell and Regeneration, Chinese Academy of Sciences
  • Institute of Stem Cell and Regeneration, Chinese Academy of Sciences
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Epigenetic dysregulation emerges as a critical hallmark and driving force of aging. Although still an evolving field with much to explore, it has rapidly gained significance by providing valuable insights into the mechanisms of aging and potential therapeutic opportunities for age-related diseases. Recent years have witnessed remarkable strides in our understanding of the epigenetic landscape of aging, encompassing pivotal elements, such as DNA methylation, histone modifications, RNA modifications, and noncoding (nc) RNAs. Here, we review the latest discoveries that shed light on new epigenetic mechanisms and critical targets for predicting and intervening in aging and related disorders. Furthermore, we explore burgeoning interventions and exemplary clinical trials explicitly designed to foster healthy aging, while contemplating the potential ramifications of epigenetic influences.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

Article
Full-text available
Epigenetic changes are changes in gene expression that do not involve alterations to the DNA sequence. These changes lead to establishing a so-called epigenetic code that dictates which and when genes are activated, thus orchestrating gene regulation and playing a central role in development, health, and disease. The brain, being mostly formed by cells that do not undergo a renewal process throughout life, is highly prone to the risk of alterations leading to neuronal death and neurodegenerative disorders, mainly at a late age. Here, we review the main epigenetic modifications that have been described in the brain, with particular attention on those related to the onset of developmental anomalies or neurodegenerative conditions and/or occurring in old age. DNA methylation and several types of histone modifications (acetylation, methylation, phosphorylation, ubiquitination, sumoylation, lactylation, and crotonylation) are major players in these processes. They are directly or indirectly involved in the onset of neurodegeneration in Alzheimer’s or Parkinson’s disease. Therefore, this review briefly describes the roles of these epigenetic changes in the mechanisms of brain development, maturation, and aging and some of the most important factors dynamically regulating or contributing to these changes, such as oxidative stress, inflammation, and mitochondrial dysfunction.
Article
Full-text available
Vitamin D is a natural photoproduct that has many beneficial effects on different organs, including skin. Active forms of vitamin D and its derivatives exert biological effects on skin cells, thus maintaining skin homeostasis. In keratinocytes, they inhibit proliferation and stimulate differentiation, have anti-inflammatory properties, act as antioxidants, inhibit DNA damage and stimulate DNA repair after ultraviolet (UV) exposure. In melanocytes, they also inhibit cell proliferation, inhibit apoptosis and act as antioxidants. In fibroblasts, they inhibit cell proliferation, affect fibrotic processes and collagen production, and promote wound healing and regeneration. On the other hand, skin cells have the ability to activate vitamin D directly. These activities, along with the projected topical application of vitamin D derivatives, are promising for skin care and photo protection and can be used in the prevention or possible reversal of skin aging.
Article
Full-text available
Aging is a complex and heterogeneous process, raising important questions about how aging is differently impacted by underlying genetics and external factors. Recently, migrasomes, newly discovered organelles, have been discovered to play important roles in various physiological and pathological processes by facilitating cell-to-cell communication. Thus far, their involvement in cellular senescence and aging remains largely unexplored. In this study, we aimed to investigate how migrasomes impacts on cellular aging by leveraging multiple cellular senescence models, including replicatively senescent (RS), pathologically senescent and stress-induced senescent human mesenchymal stem cells (hMSCs), as well as RS human primary fibroblasts. In all cellular aging models, we detected an enhanced formation of migrasomes. Notably, migrasomes in senescent cells exhibited an accumulation of numerous aging hallmarks, such as dysfunctional mitochondria, endogenous retroviruses, and senescence-associated pro-inflammatory cytokines. Furthermore, we discovered that migrasomes derived from senescent cells can be taken up by young cells, thereby transferring aging signals and subsequently causing premature senescence phenotypes in recipient cells. Mechanistically, we found that treatment with migrasomes derived from senescent cells activated the innate immune response. Thus, our study sheds light on a pivotal role of migrasomes in mediating the contagiousness of aging.
Article
Full-text available
DNA methylation rates have previously been found to broadly correlate with maximum lifespan in mammals, yet no precise relationship has been observed. We developed a statistically robust framework to compare methylation rates at conserved age-related sites across mammals. We found that methylation rates negatively scale with maximum lifespan in both blood and skin. The emergence of explicit scaling suggests that methylation rates are, or are linked to, an evolutionary constraint on maximum lifespan acting across diverse mammalian lineages.
Article
Full-text available
Despite promising results in myocardial infarction (MI), mesenchymal stem cell (MSC)‐based therapy is limited by cell senescence. N6‐methyladenosine (m6A) messenger RNA methylation has been reported to be closely associated with cell senescence. Nonetheless, its role in the regulation of MSC senescence remains unclear. We examined the role of ALKB homolog 5 (ALKBH5) in regulating MSC senescence and determined whether ALKBH5 downregulation could rejuvenate aged MSCs (AMSCs) to improve their therapeutic efficacy for MI. RNA methylation was determined by m6A dot blotting assay. MSC senescence was evaluated by senescence‐associated β‐galactosidase (SA‐β‐gal) staining. A mouse model of acute MI was established by ligation of the left anterior decedent coronary artery (LAD). Compared with young MSCs (YMSCs), m6A level was significantly reduced but ALKBH5 was greatly increased in AMSCs. Overexpression of ALKBH5 reduced m6A modification and accelerated YMSC senescence. Conversely, ALKBH5 knockdown increased m6A modifications and alleviated AMSC senescence. Mechanistically, ALKBH5 regulated the m6A modification and stability of CDKN1C mRNA, which further upregulated CDKN1C expression, leading to MSC senescence. CDKN1C overexpression ameliorated the inhibition of cellular senescence of ALKBH5 siRNA‐treated AMSCs. More importantly, compared with AMSCs, shALKBH5‐AMSCs transplantation provided a superior cardioprotective effect against MI in mice by improving MSC survival and angiogenesis. We determined that ALKBH5 accelerated MSC senescence through m6A modification‐dependent stabilization of the CDKN1C transcript, providing a potential target for MSC rejuvenation. ALKBH5 knockdown rejuvenated AMSCs and enhanced cardiac function when transplanted into the mouse heart following infarction.
Article
Full-text available
Phase separation, a biophysical segregation of subcellular milieus referred as condensates, is known to regulate transcription, but its impacts on physiological processes are less clear. Here, we demonstrate the formation of liquid-like nuclear condensates by SGF29, a component of the SAGA transcriptional coactivator complex, during cellular senescence in human mesenchymal progenitor cells (hMPCs) and fibroblasts. The Arg 207 within the intrinsically disordered region is identified as the key amino acid residue for SGF29 to form phase separation. Through epigenomic and transcriptomic analysis, our data indicated that both condensate formation and H3K4me3 binding of SGF29 are essential for establishing its precise chromatin location, recruiting transcriptional factors and co-activators to target specific genomic loci, and initiating the expression of genes associated with senescence, such as CDKN1A . The formation of SGF29 condensates alone, however, may not be sufficient to drive H3K4me3 binding or achieve transactivation functions. Our study establishes a link between phase separation and aging regulation, highlighting nuclear condensates as a functional unit that facilitate shaping transcriptional landscapes in aging.
Article
Full-text available
Aging is a critical factor in spinal cord-associated disorders1, yet aging-specific mechanisms underlying this relationship remain poorly understood. To address this knowledge gap, we combined single-nucleus RNA sequencing with behavioral and neurophysiological analysis in non-human primates (NHPs). We identified motor neuron senescence and neuroinflammation with microglial hyperactivation as intertwined hallmarks of spinal cord aging. As an underlying mechanism, we identified a previously unreported neurotoxic microglial state demarcated by elevated expression of CHIT1 (a secreted mammalian chitinase) specific to the aged spinal cords in NHP and human biopsies. In the aged spinal cord, CHIT1-positive microglia preferentially localize around motor neurons (MNs), and they are capable of triggering senescence, partly by activating SMAD signaling. We further validated the driving role of secreted CHIT1 on MN senescence by multi-modal experiments both in vivo, utilizing the NHP spinal cord as a model and in vitro, employing a sophisticated human MN-and-microenvironment interplay modeling system. Moreover, we demonstrated that ascorbic acid, a geroprotective compound, counteracted the pro-senescent effect of CHIT1 and mitigated motor neuron senescence in aged monkeys. Our findings provide the first single-cell resolution cellular and molecular landscape of the aged primate spinal cord and identify a new biomarker and intervention target for spinal cord degeneration.
Article
Full-text available
Advanced age is a primary risk factor for female infertility due to reduced ovarian reserve and declining oocyte quality. However, as an important contributing factor, the role of metabolic regulation during reproductive aging is poorly understood. Here, we applied untargeted metabolomics to identify spermidine as a critical metabolite in ovaries to protect oocytes against aging. In particular, we found that the spermidine level was reduced in ovaries of aged mice and that supplementation with spermidine promoted follicle development, oocyte maturation, early embryonic development and female fertility of aged mice. By microtranscriptomic analysis, we further discovered that spermidine-induced recovery of oocyte quality was mediated by enhancement of mitophagy activity and mitochondrial function in aged mice, and this mechanism of action was conserved in porcine oocytes under oxidative stress. Altogether, our findings suggest that spermidine supplementation could represent a therapeutic strategy to ameliorate oocyte quality and reproductive outcome in cis-gender women and other persons trying to conceive at an advanced age. Future work is needed to test whether this approach can be safely and effectively translated to humans.
Article
Full-text available
Aging is a major risk factor contributing to pathophysiological changes in the heart, yet its intrinsic mechanisms have been largely unexplored in primates. In this study, we investigated the hypertrophic and senescence phenotypes in the hearts of aged cynomolgus monkeys as well as the transcriptomic and proteomic landscapes of young and aged primate hearts. SIRT2 was identified as a key protein decreased in aged monkey hearts, and engineered SIRT2 deficiency in human pluripotent stem cell-derived cardiomyocytes recapitulated key senescence features of primate heart aging. Further investigations revealed that loss of SIRT2 in human cardiomyocytes led to the hyperacetylation of STAT3, which transcriptionally activated CDKN2B and, in turn, triggered cardiomyocyte degeneration. Intra-myocardial injection of lentiviruses expressing SIRT2 ameliorated age-related cardiac dysfunction in mice. Taken together, our study provides valuable resources for decoding primate cardiac aging and identifies the SIRT2–STAT3–CDKN2B regulatory axis as a potential therapeutic target against human cardiac aging and aging-related cardiovascular diseases.
Article
Full-text available
Cellular senescence contributes to Alzheimer’s disease (AD) pathogenesis. An open-label, proof-of-concept, phase I clinical trial of orally delivered senolytic therapy, dasatinib (D) and quercetin (Q), was conducted in early-stage symptomatic patients with AD to assess central nervous system (CNS) penetrance, safety, feasibility and efficacy. Five participants (mean age = 76 + 5 years; 40% female) completed the 12-week pilot study. D and Q levels in blood increased in all participants (12.7–73.5 ng ml⁻¹ for D and 3.29–26.3 ng ml⁻¹ for Q). In cerebrospinal fluid (CSF), D levels were detected in four participants (80%) ranging from 0.281 to 0.536 ml⁻¹ with a CSF to plasma ratio of 0.422–0.919%; Q was not detected. The treatment was well-tolerated, with no early discontinuation. Secondary cognitive and neuroimaging endpoints did not significantly differ from baseline to post-treatment further supporting a favorable safety profile. CSF levels of interleukin-6 (IL-6) and glial fibrillary acidic protein (GFAP) increased (t(4) = 3.913, P = 0.008 and t(4) = 3.354, P = 0.028, respectively) with trending decreases in senescence-related cytokines and chemokines, and a trend toward higher Aβ42 levels (t(4) = −2.338, P = 0.079). In summary, CNS penetrance of D was observed with outcomes supporting safety, tolerability and feasibility in patients with AD. Biomarker data provided mechanistic insights of senolytic effects that need to be confirmed in fully powered, placebo-controlled studies. ClinicalTrials.gov identifier: NCT04063124.
Article
Full-text available
N6 -methyladenosine (m6 A) is a dynamic and reversible RNA modification that has emerged as a crucial player in the life cycle of RNA, thus playing a pivotal role in various biological processes. In recent years, the potential involvement of RNA m6 A modification in aging and age-related diseases has gained increasing attention, making it a promising target for understanding the molecular mechanisms underlying aging and developing new therapeutic strategies. This Perspective article will summarize the current advances in aging-related m6 A regulation, highlighting the most significant findings and their implications for our understanding of cellular senescence and aging, and the potential for targeting RNA m6 A regulation as a therapeutic strategy. We will also discuss the limitations and challenges in this field and provide insights into future research directions. By providing a comprehensive overview of the current state of the field, this Perspective article aims to facilitate further advances in our understanding of the molecular mechanisms underlying aging and to identify new therapeutic targets for aging-related diseases.
Article
Full-text available
Osteoarthritis is a prevalent age-related disease characterized by dysregulation of extracellular matrix metabolism, lipid metabolism, and upregulation of senescence-associated secretory phenotypes. Herein, we clarify that CircRREB1 is highly expressed in secondary generation chondrocytes and its deficiency can alleviate FASN related senescent phenotypes and osteoarthritis progression. CircRREB1 impedes proteasome-mediated degradation of FASN by inhibiting acetylation-mediated ubiquitination. Meanwhile, CircRREB1 induces RanBP2-mediated SUMOylation of FASN and enhances its protein stability. CircRREB1-FASN axis inhibits FGF18 and FGFR3 mediated PI3K-AKT signal transduction, then increased p21 expression. Intra-articular injection of adenovirus–CircRreb1 reverses the protective effects in CircRreb1 deficiency mice. Further therapeutic interventions could have beneficial effects in identifying CircRREB1 as a potential prognostic and therapeutic target for age-related OA.
Article
Full-text available
N6-methyladenosine (m6A), the most prevalent mRNA modification in eukaryotic cells, is known to play regulatory roles in a wide array of biological processes, including aging and cellular senescence. To investigate such roles, the m6A modification can be identified across the entire transcriptome by immunoprecipitation of methylated RNA with an anti-m6A antibody, followed by high-throughput sequencing (meRIP-seq or m6A-seq). Presented here is a protocol for employing meRIP-seq to profile the RNA m6A landscape in senescent human cells. We described, in detail, sample preparation, mRNA isolation, immunoprecipitation, library preparation, sequencing, bioinformatic analysis and validation. We also provided tips and considerations for the optimization and interpretation of the results. Our protocol serves as a methodological resource for investigating transcriptomic m6A alterations in cellular senescence as well as a valuable paradigm for the validation of genes of interest.
Article
Full-text available
Cellular senescence, characterized by stable cell cycle arrest, plays an important role in aging and age-associated pathologies. Eliminating senescent cells rejuvenates aged tissues and ameliorates age-associated diseases. Here, we identified that natural killer group 2 member D ligands (NKG2DLs) are up-regulated in senescent cells in vitro, regardless of stimuli that induced cellular senescence, and in various tissues of aged mice and nonhuman primates in vivo. Accordingly, we developed and demonstrated that chimeric antigen receptor (CAR) T cells targeting human NKG2DLs selectively and effectively diminish human cells undergoing senescence induced by oncogenic stress, replicative stress, DNA damage, or P16INK4a overexpression in vitro. Targeting senescent cells with mouse NKG2D-CAR T cells alleviated multiple aging-associated pathologies and improved physical performance in both irradiated and aged mice. Autologous T cells armed with the human NKG2D CAR effectively delete naturally occurring senescent cells in aged nonhuman primates without any observed adverse effects. Our findings establish that NKG2D-CAR T cells could serve as potent and selective senolytic agents for aging and age-associated diseases driven by senescence.
Article
Full-text available
Aging, often considered a result of random cellular damage, can be accurately estimated using DNA methylation profiles, the foundation of pan-tissue epigenetic clocks. Here, we demonstrate the development of universal pan-mammalian clocks, using 11,754 methylation arrays from our Mammalian Methylation Consortium, which encompass 59 tissue types across 185 mammalian species. These predictive models estimate mammalian tissue age with high accuracy (r > 0.96). Age deviations correlate with human mortality risk, mouse somatotropic axis mutations and caloric restriction. We identified specific cytosines with methylation levels that change with age across numerous species. These sites, highly enriched in polycomb repressive complex 2-binding locations, are near genes implicated in mammalian development, cancer, obesity and longevity. Our findings offer new evidence suggesting that aging is evolutionarily conserved and intertwined with developmental processes across all mammals.
Article
Full-text available
Using DNA methylation profiles (n = 15,456) from 348 mammalian species, we constructed phyloepigenetic trees that bear marked similarities to traditional phylogenetic ones. Using unsupervised clustering across all samples, we identified 55 distinct cytosine modules, of which 30 are related to traits such as maximum life span, adult weight, age, sex, and human mortality risk. Maximum life span is associated with methylation levels in HOX genes and developmental processes and is potentially regulated by pluripotency transcription factors. The methylation state of some modules responds to perturbations such as caloric restriction, ablation of growth hormone receptors, consumption of high-fat diets, and expression of Yamanaka factors. This study reveals an intertwined evolution of the genome and epigenome that mediates the biological characteristics and traits of different mammalian species.
Article
Full-text available
Improving health and delaying aging is the focus of medical research. Previous studies have shown that mesenchymal stem cell (MSC) senescence is closely related to organic aging and the development of aging-related diseases such as osteoarthritis (OA). m6A is a common RNA modification that plays an important role in regulating cell biological functions, and ALKBH5 is one of the key m6A demethylases. However, the role of m6A and ALKBH5 in MSC senescence is still unclear. Here, we found that the m6A level was enhanced and ALKBH5 expression was decreased in aging MSCs induced by multiple replications, H2O2 stimulation or UV irradiation. Downregulation of ALKBH5 expression facilitated MSC senescence by enhancing the stability of CYP1B1 mRNA and inducing mitochondrial dysfunction. In addition, IGF2BP1 was identified as the m6A reader restraining the degradation of m6A-modified CYP1B1 mRNA. Furthermore, Alkbh5 knockout in MSCs aggravated spontaneous OA in mice, and overexpression of Alkbh5 improved the efficacy of MSCs in OA. Overall, this study revealed a novel mechanism of m6A in MSC senescence and identified promising targets to protect against aging and OA.
Article
Full-text available
Heterochronic parabiosis (HPB) is known for its functional rejuvenation effects across several mouse tissues. However, its impact on biological age and long-term health is unknown. Here we performed extended (3-month) HPB, followed by a 2-month detachment period of anastomosed pairs. Old detached mice exhibited improved physiological parameters and lived longer than control isochronic mice. HPB drastically reduced the epigenetic age of blood and liver based on several clock models using two independent platforms. Remarkably, this rejuvenation effect persisted even after 2 months of detachment. Transcriptomic and epigenomic profiles of anastomosed mice showed an intermediate phenotype between old and young, suggesting a global multi-omic rejuvenation effect. In addition, old HPB mice showed gene expression changes opposite to aging but akin to several life span-extending interventions. Altogether, we reveal that long-term HPB results in lasting epigenetic and transcriptome remodeling, culminating in the extension of life span and health span.
Article
Full-text available
As a type of short noncoding RNAs, microRNA (miRNA) undoubtedly plays a crucial role in cancer development. Since the discovery of the identity and clinical functions of miRNAs, over the past few decades, the roles of miRNAs in cancer have been actively investigated. Numerous pieces of evidence indicate that miRNAs are pivotal factors in most types of cancer. Recent cancer research focused on miRNAs has identified and characterized a large cohort of miRNAs commonly dysregulated in cancer or exclusively dysregulated in specific types of cancer. These studies have suggested the potential of miRNAs as biomarkers in the diagnosis and prognostication of cancer. Moreover, many of these miRNAs have oncogenic or tumor-suppressive functions. MiRNAs have been the focus of research given their potential clinical applications as therapeutic targets. Currently, various oncology clinical trials using miRNAs in screening, diagnosis, and drug testing are underway. Although clinical trials studying miRNAs in various diseases have been reviewed before, there have been fewer clinical trials related to miRNAs in cancer. Furthermore, updated results of recent preclinical studies and clinical trials of miRNA biomarkers and drugs in cancer are needed. Therefore, this review aims to provide up-to-date information on miRNAs as biomarkers and cancer drugs in clinical trials.
Article
Full-text available
Mitochondrial diseases represent a spectrum of disorders caused by impaired mitochondrial function, ranging in severity from mortality during infancy to progressive adult-onset disease. Mitochondrial dysfunction is also recognized as a molecular hallmark of the biological ageing process. Rapamycin, a drug that increases lifespan and health during normative ageing, also increases survival and reduces neurological symptoms in a mouse model of the severe mitochondrial disease Leigh syndrome. The Ndufs4 knockout (Ndufs4−/−) mouse lacks the complex I subunit NDUFS4 and shows rapid onset and progression of neurodegeneration mimicking patients with Leigh syndrome. Here we show that another drug that extends lifespan and delays normative ageing in mice, acarbose, also suppresses symptoms of disease and improves survival of Ndufs4−/− mice. Unlike rapamycin, acarbose rescues disease phenotypes independently of inhibition of the mechanistic target of rapamycin. Furthermore, rapamycin and acarbose have additive effects in delaying neurological symptoms and increasing maximum lifespan in Ndufs4−/− mice. We find that acarbose remodels the intestinal microbiome and alters the production of short-chain fatty acids. Supplementation with tributyrin, a source of butyric acid, recapitulates some effects of acarbose on lifespan and disease progression, while depletion of the endogenous microbiome in Ndufs4−/− mice appears to fully recapitulate the effects of acarbose on healthspan and lifespan in these animals. To our knowledge, this study provides the first evidence that alteration of the gut microbiome plays a significant role in severe mitochondrial disease and provides further support for the model that biological ageing and severe mitochondrial disorders share underlying common mechanisms.
Article
Full-text available
Aging is associated with changes in circulating levels of various molecules, some of which remain undefined. We find that concentrations of circulating taurine decline with aging in mice, monkeys, and humans. A reversal of this decline through taurine supplementation increased the health span (the period of healthy living) and life span in mice and health span in monkeys. Mechanistically, taurine reduced cellular senescence, protected against telomerase deficiency, suppressed mitochondrial dysfunction, decreased DNA damage, and attenuated inflammaging. In humans, lower taurine concentrations correlated with several age-related diseases and taurine concentrations increased after acute endurance exercise. Thus, taurine deficiency may be a driver of aging because its reversal increases health span in worms, rodents, and primates and life span in worms and rodents. Clinical trials in humans seem warranted to test whether taurine deficiency might drive aging in humans.
Article
Full-text available
Regulatory T (Treg) cells modulate several aging-related liver diseases. However, the molecular mechanisms regulating Treg function in this context are unknown. Here we identified a long noncoding RNA, Altre (aging liver Treg-expressed non-protein-coding RNA), which was specifically expressed in the nucleus of Treg cells and increased with aging. Treg-specific deletion of Altre did not affect Treg homeostasis and function in young mice but caused Treg metabolic dysfunction, inflammatory liver microenvironment, liver fibrosis and liver cancer in aged mice. Depletion of Altre reduced Treg mitochondrial integrity and respiratory capacity, and induced reactive oxygen species accumulation, thus increasing intrahepatic Treg apoptosis in aged mice. Moreover, lipidomic analysis identified a specific lipid species driving Treg aging and apoptosis in the aging liver microenvironment. Mechanistically, Altre interacts with Yin Yang 1 to orchestrate its occupation on chromatin, thereby regulating the expression of a group of mitochondrial genes, and maintaining optimal mitochondrial function and Treg fitness in the liver of aged mice. In conclusion, the Treg-specific nuclear long noncoding RNA Altre maintains the immune-metabolic homeostasis of the aged liver through Yin Yang 1-regulated optimal mitochondrial function and the Treg-sustained liver immune microenvironment. Thus, Altre is a potential therapeutic target for the treatment of liver diseases affecting older adults.
Article
Full-text available
The accumulation of senescent cells is associated with aging, inflammation and cellular dysfunction. Senolytic drugs can alleviate age-related comorbidities by selectively killing senescent cells. Here we screened 2,352 compounds for senolytic activity in a model of etoposide-induced senescence and trained graph neural networks to predict the senolytic activities of >800,000 molecules. Our approach enriched for structurally diverse compounds with senolytic activity; of these, three drug-like compounds selectively target senescent cells across different senescence models, with more favorable medicinal chemistry properties than, and selectivity comparable to, those of a known senolytic, ABT-737. Molecular docking simulations of compound binding to several senolytic protein targets, combined with time-resolved fluorescence energy transfer experiments, indicate that these compounds act in part by inhibiting Bcl-2, a regulator of cellular apoptosis. We tested one compound, BRD-K56819078, in aged mice and found that it significantly decreased senescent cell burden and mRNA expression of senescence-associated genes in the kidneys. Our findings underscore the promise of leveraging deep learning to discover senotherapeutics.
Article
Full-text available
Organismal aging exhibits wide-ranging hallmarks in divergent cell types across tissues, organs, and systems. The advancement of single-cell technologies and generation of rich datasets have afforded the scientific community the opportunity to decode these hallmarks of aging at an unprecedented scope and resolution. In this review, we describe the technological advancements and bioinformatic methodologies enabling data interpretation at the cellular level. Then, we outline the application of such technologies for decoding aging hallmarks and potential intervention targets and summarize common themes and context-specific molecular features in representative organ systems across the body. Finally, we provide a brief summary of available databases relevant for aging research and present an outlook on the opportunities in this emerging field. Expected final online publication date for the Annual Review of Biomedical Data Science, Volume 6 is August 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Article
Full-text available
While the relationship between exercise and life span is well-documented, little is known about the effects of specific exercise protocols on modern measures of biological age. Transcriptomic age (TA) predictors provide an opportunity to test the effects of high-intensity interval training (HIIT) on biological age utilizing whole-genome expression data. A single-site, single-blinded, randomized controlled clinical trial design was utilized. Thirty sedentary participants (aged 40-65) were assigned to either a HIIT group or a no-exercise control group. After collecting baseline measures, HIIT participants performed three 10 × 1 HIIT sessions per week for 4 weeks. Each session lasted 23 min, and total exercise duration was 276 min over the course of the 1-month exercise protocol. TA, PSS-10 score, PSQI score, PHQ-9 score, and various measures of body composition were all measured at baseline and again following the conclusion of exercise/control protocols. Transcriptomic age reduction of 3.59 years was observed in the exercise group while a 3.29-years increase was observed in the control group. Also, PHQ-9, PSQI, BMI, body fat mass, and visceral fat measures were all improved in the exercise group. A hypothesis-generation gene expression analysis suggested exercise may modify autophagy, mTOR, AMPK, PI3K, neurotrophin signaling, insulin signaling, and other age-related pathways. A low dose of HIIT can reduce an mRNA-based measure of biological age in sedentary adults between the ages of 40 and 65 years old. Other changes in gene expression were relatively modest, which may indicate a focal effect of exercise on age-related biological processes.
Article
Full-text available
Aging biomarkers are a combination of biological parameters to (i) assess age-related changes, (ii) track the physiological aging process, and (iii) predict the transition into a pathological status. Although a broad spectrum of aging biomarkers has been developed, their potential uses and limitations remain poorly characterized. An immediate goal of biomarkers is to help us answer the following three fundamental questions in aging research: How old are we? Why do we get old? And how can we age slower? This review aims to address this need. Here, we summarize our current knowledge of biomarkers developed for cellular, organ, and organismal levels of aging, comprising six pillars: physiological characteristics, medical imaging, histological features, cellular alterations, molecular changes, and secretory factors. To fulfill all these requisites, we propose that aging biomarkers should qualify for being specific, systemic, and clinically relevant.
Article
Full-text available
Epigenetic ageing, i.e., age-associated changes in DNA methylation patterns, is a sensitive marker of biological ageing, a major determinant of morbidity and functional decline. We examined the association of physical activity with epigenetic ageing and the role of immune function and cardiovascular risk factors in mediating this relation. Moreover, we aimed to identify novel molecular processes underlying the association between physical activity and epigenetic ageing. We analysed cross-sectional data from 3567 eligible participants (mean age: 55.5 years, range: 30-94 years, 54.8% women) of the Rhineland Study, a community-based cohort study in Bonn, Germany. Physical activity components (metabolic equivalent (MET)-Hours, step counts, sedentary, light-intensity and moderate-to-vigorous intensity activities) were recorded with accelerometers. DNA methylation was measured with the Illumina HumanMethylationEPIC BeadChip. Epigenetic age acceleration (Hannum's age, Horvath's age, PhenoAge and GrimAge) was calculated based on published algorithms. The relation between physical activity and epigenetic ageing was examined with multivariable regression, while structural equation modeling was used for mediation analysis. Moreover, we conducted an epigenome-wide association study of physical activity across 850,000 CpG sites. After adjustment for age, sex, season, education, smoking, cell proportions and batch effects, physical activity (step counts, MET-Hours and %time spend in moderate-to-vigorous activities) was non-linearly associated with slower epigenetic ageing, in part through its beneficial effects on immune function and cardiovascular health. Additionally, we identified 12 and 7 CpGs associated with MET-Hours and %time spent in moderate-to-vigorous activities, respectively (p < 1 × 10-5 ). Our findings suggest that regular physical activity slows epigenetic ageing by counteracting immunosenescence and lowering cardiovascular risk.
Article
Full-text available
To date, over 170 different kinds of chemical modifications on RNAs have been identified, some of which are involved in multiple aspects of RNA fate, ranging from RNA processing, nuclear export, translation, and RNA decay. m 6A, also known as N 6-methyladenosin, is a prominent internal RNA modification that is catalyzed primarily by the METTL3-METTL14-WTAP methyltransferase complex in higher eukaryotic mRNA and long noncoding RNA (lncRNA). In recent years, abnormal m 6A modification has been linked to the occurrence, development, progression, and prognosis of the majority of cancers. In this review, we provide an update on the most recent m 6A modification discoveries as well as the critical roles of m 6A modification in cancer development and progression. We summarize the mechanisms of m 6A involvement in cancer and list potential cancer therapy inhibitors that target m6A regulators such as “writer” METTL3 and “eraser” FTO.
Article
Full-text available
How N⁶-methyladenosine (m⁶A), the most abundant mRNA modification, contributes to primate tissue homeostasis and physiological aging remains elusive. Here, we characterize the m⁶A epitranscriptome across the liver, heart and skeletal muscle in young and old nonhuman primates. Our data reveal a positive correlation between m⁶A modifications and gene expression homeostasis across tissues as well as tissue-type-specific aging-associated m⁶A dynamics. Among these tissues, skeletal muscle is the most susceptible to m⁶A loss in aging and shows a reduction in the m⁶A methyltransferase METTL3. We further show that METTL3 deficiency in human pluripotent stem cell-derived myotubes leads to senescence and apoptosis, and identify NPNT as a key element downstream of METTL3 involved in myotube homeostasis, whose expression and m⁶A levels are both decreased in senescent myotubes. Our study provides a resource for elucidating m⁶A-mediated mechanisms of tissue aging and reveals a METTL3–m⁶A–NPNT axis counteracting aging-associated skeletal muscle degeneration.
Article
Full-text available
Epigenetics regulates gene expression and has been confirmed to play a critical role in a variety of metabolic diseases, such as diabetes, obesity, non-alcoholic fatty liver disease (NAFLD), osteoporosis, gout, hyperthyroidism, hypothyroidism and others. The term ‘epigenetics’ was firstly proposed in 1942 and with the development of technologies, the exploration of epigenetics has made great progresses. There are four main epigenetic mechanisms, including DNA methylation, histone modification, chromatin remodelling, and noncoding RNA (ncRNA), which exert different effects on metabolic diseases. Genetic and non-genetic factors, including ageing, diet, and exercise, interact with epigenetics and jointly affect the formation of a phenotype. Understanding epigenetics could be applied to diagnosing and treating metabolic diseases in the clinic, including epigenetic biomarkers, epigenetic drugs, and epigenetic editing. In this review, we introduce the brief history of epigenetics as well as the milestone events since the proposal of the term ‘epigenetics’. Moreover, we summarise the research methods of epigenetics and introduce four main general mechanisms of epigenetic modulation. Furthermore, we summarise epigenetic mechanisms in metabolic diseases and introduce the interaction between epigenetics and genetic or non-genetic factors. Finally, we introduce the clinical trials and applications of epigenetics in metabolic diseases.
Article
Cullin-RING E3 ubiquitin ligases (CRLs), the largest family of multi-subunit E3 ubiquitin ligases in eukaryotic cells, represent core cellular machinery for executing protein degradation and maintaining proteostasis. Here, we asked what roles Cullin proteins play in human mesenchymal stem cell (hMSC) homeostasis and senescence. To this end, we conducted a comparative aging phenotype analysis by individually knocking down Cullin members in three senescence models: replicative senescent hMSCs, Hutchinson-Gilford Progeria Syndrome hMSCs, and Werner syndrome hMSCs. Among all family members, we found that CUL2 deficiency rendered hMSCs the most susceptible to senescence. To investigate CUL2-specific underlying mechanisms, we then applied CRISPR/Cas9-mediated gene editing technology to generate CUL2-deficient human embryonic stem cells (hESCs). When we differentiated these into hMSCs, we found that CUL2 deletion markedly accelerates hMSC senescence. Importantly, we identified that CUL2 targets and promotes ubiquitin proteasome-mediated degradation of TSPYL2 (a known negative regulator of proliferation) through the substrate receptor protein APPBP2, which in turn down-regulates one of the canonical aging marker-P21waf1/cip1, and thereby delays senescence. Our work provides important insights into how CRL2APPBP2-mediated TSPYL2 degradation counteracts hMSC senescence, providing a molecular basis for directing intervention strategies against aging and aging-related diseases.
Article
The lifespan extension induced by 40% caloric restriction (CR) in rodents is accompanied by postponement of disease, preservation of function, and increased stress resistance. Whether CR elicits the same physiological and molecular responses in humans remains mostly unexplored. In the CALERIE study, 12% CR for 2 years in healthy humans induced minor losses of muscle mass (leg lean mass) without changes of muscle strength, but mechanisms for muscle quality preservation remained unclear. We performed high ‐depth RNA‐Seq (387–618 million paired reads) on human vastus lateralis muscle biopsies collected from the CALERIE participants at baseline, 12‐ and 24‐month follow‐up from the 90 CALERIE participants randomized to CR and “ad libitum” control. Using linear mixed effect model, we identified protein‐coding genes and splicing variants whose expression was significantly changed in the CR group compared to controls, including genes related to proteostasis, circadian rhythm regulation, DNA repair, mitochondrial biogenesis, mRNA processing/splicing, FOXO3 metabolism, apoptosis, and inflammation. Changes in some of these biological pathways mediated part of the positive effect of CR on muscle quality. Differentially expressed splicing variants were associated with change in pathways shown to be affected by CR in model organisms. Two years of sustained CR in humans positively affected skeletal muscle quality, and impacted gene expression and splicing profiles of biological pathways affected by CR in model organisms, suggesting that attainable levels of CR in a lifestyle intervention can benefit muscle health in humans.
Article
Aging is a major risk factor for impaired cardiovascular health. Because the aging myocardium is characterized by microcirculatory dysfunction, and because nerves align with vessels, we assessed the impact of aging on the cardiac neurovascular interface. We report that aging reduces nerve density in the ventricle and dysregulates vascular-derived neuroregulatory genes. Aging down-regulates microRNA 145 (miR-145) and derepresses the neurorepulsive factor semaphorin-3A. miR-145 deletion, which increased Sema3a expression or endothelial Sema3a overexpression, reduced axon density, mimicking the aged-heart phenotype. Removal of senescent cells, which accumulated with chronological age in parallel to the decline in nerve density, rescued age-induced denervation, reversed Sema3a expression, preserved heart rate patterns, and reduced electrical instability. These data suggest that senescence-mediated regulation of nerve density contributes to age-associated cardiac dysfunction.
Article
Glucose metabolism is known to orchestrate oncogenesis. Whether glucose serves as a signaling molecule directly regulating oncoprotein activity for tumorigenesis remains elusive. Here, we report that glucose is a cofactor binding to methyltransferase NSUN2 at amino acid 1-28 to promote NSUN2 oligomerization and activation. NSUN2 activation maintains global m5C RNA methylation, including TREX2, and stabilizes TREX2 to restrict cytosolic dsDNA accumulation and cGAS/STING activation for promoting tumorigenesis and anti-PD-L1 immunotherapy resistance. An NSUN2 mutant defective in glucose binding or disrupting glucose/NSUN2 interaction abolishes NSUN2 activity and TREX2 induction leading to cGAS/STING activation for oncogenic suppression. Strikingly, genetic deletion of the glucose/NSUN2/TREX2 axis suppresses tumorigenesis and overcomes anti-PD-L1 immunotherapy resistance in those cold tumors through cGAS/STING activation to facilitate apoptosis and CD8+ T cell infiltration. Our study identifies NSUN2 as a direct glucose sensor whose activation by glucose drives tumorigenesis and immunotherapy resistance by maintaining TREX2 expression for cGAS/STING inactivation.
Article
Using DNA methylation profiles (n = 15,456) from 348 mammalian species, we constructed phyloepigenetic trees that bear marked similarities to traditional phylogenetic ones. Using unsupervised clustering across all samples, we identified 55 distinct cytosine modules, of which 30 are related to traits such as maximum life span, adult weight, age, sex, and human mortality risk. Maximum life span is associated with methylation levels in HOXL subclass homeobox genes and developmental processes and is potentially regulated by pluripotency transcription factors. The methylation state of some modules responds to perturbations such as caloric restriction, ablation of growth hormone receptors, consumption of high-fat diets, and expression of Yamanaka factors. This study reveals an intertwined evolution of the genome and epigenome that mediates the biological characteristics and traits of different mammalian species.
Article
Alzheimer's disease (AD) remains one of the grand challenges facing human society. Much controversy exists around the complex and multifaceted pathogenesis of this prevalent disease. Given strong human genetic evidence, there is little doubt, however, that microglia play an important role in preventing degeneration of neurons. For example, loss of function of the microglial gene Trem2 renders microglia dysfunctional and causes an early-onset neurodegenerative syndrome, and Trem2 variants are among the strongest genetic risk factors for AD. Thus, restoring microglial function represents a rational therapeutic approach. Here, we show that systemic hematopoietic cell transplantation followed by enhancement of microglia replacement restores microglial function in a Trem2 mutant mouse model of AD.
Article
Background: Translating aging rejuvenation strategies into clinical practice has the potential to address the unmet needs of the global aging population. However, to successfully do so requires precise quantification of aging and its reversal in a way that encompasses the complexity and variation of aging. Methods: Here, in a cohort of 113 healthy women, tiled in age from young to old, we identified a repertoire of known and previously unknown markers associated with age based on multimodal measurements, including transcripts, proteins, metabolites, microbes, and clinical laboratory values, based on which an integrative aging clock and a suite of customized aging clocks were developed. Findings: A unified analysis of aging-associated traits defined four aging modalities with distinct biological functions (chronic inflammation, lipid metabolism, hormone regulation, and tissue fitness), and depicted waves of changes in distinct biological pathways peak around the third and fifth decades of life. We also demonstrated that the developed aging clocks could measure biological age and assess partial aging deceleration by hormone replacement therapy, a prevalent treatment designed to correct hormonal imbalances. Conclusions: We established aging metrics that capture systemic physiological dysregulation, a valuable framework for monitoring the aging process and informing clinical development of aging rejuvenation strategies. Funding: This work was supported by the National Natural Science Foundation of China (32121001), the National Key Research and Development Program of China (2022YFA1103700 and 2020YFA0804000), the National Natural Science Foundation of China (81502304), and the Quzhou Technology Projects (2022K46).
Article
Nicotinamide riboside is a precursor to the important cofactor nicotinamide adenine dinucleotide and has elicited metabolic benefits in multiple preclinical studies. In 2016, the first clinical trial of nicotinamide riboside was conducted to test the safety and efficacy of human supplementation. Many trials have since been conducted aiming to delineate benefits to metabolic health and severe diseases in humans. This review endeavors to summarize and critically assess the 25 currently published research articles on human nicotinamide riboside supplementation to identify any poorly founded claims and assist the field in elucidating the actual future potential for nicotinamide riboside. Collectively, oral nicotinamide riboside supplementation has displayed few clinically relevant effects, and there is an unfortunate tendency in the literature to exaggerate the importance and robustness of reported effects. Even so, nicotinamide riboside may play a role in the reduction of inflammatory states and has shown some potential in the treatment of diverse severe diseases.
Article
Growing life expectancy poses important societal challenges, placing an increasing burden on ever more strained health systems. Digital technologies offer tremendous potential for shifting from traditional medical routines to remote medicine and transforming our ability to manage health and independence in aging populations. In this Perspective, we summarize the current progress toward, and challenges and future opportunities of, harnessing digital technologies for effective geriatric care. Special attention is given to the role of wearables in assisting older adults to monitor their health and maintain independence at home. Challenges to the widespread future use of digital technologies in this population will be discussed, along with a vision for how such technologies will shape the future of healthy aging.
Article
Background: Metformin, a first-line medication for type 2 diabetes, might also have a protective effect against ageing-related diseases, but so far little experimental evidence is available. We sought to assess the target-specific effect of metformin on biomarkers of ageing in the UK Biobank. Methods: In this drug target mendelian randomisation study, we assessed the target-specific effect of four putative targets of metformin (AMPK, ETFDH, GPD1, and PEN2), involving ten genes. Genetic variants with evidence of causation of gene expression, glycated haemoglobin A1c (HbA1c), and colocalisation were used as instruments mimicking the target-specific effect of metformin via HbA1c lowering. The biomarkers of ageing considered were phenotypic age (PhenoAge) and leukocyte telomere length. To triangulate the evidence, we also assessed the effect of HbA1c on the outcomes using a polygenic mendelian randomisation design and assessed the effect of metformin use on these outcomes using a cross-sectional observational design. Findings: GPD1-induced HbA1c lowering was associated with younger PhenoAge (β -5·26, 95% CI -6·69 to -3·83) and longer leukocyte telomere length (β 0·28, 0·03 to 0·53), and AMPKγ2 (PRKAG2)-induced HbA1c lowering was associated with younger PhenoAge (β -4·88, -7·14 to -2·62) but not with longer leukocyte telomere length. Genetically predicted HbA1c lowering was associated with younger PhenoAge (β -0·96 per SD lowering of HbA1c, 95% CI -1·19 to -0·74) but not associated with leukocyte telomere length. In the propensity score matched analysis, metformin use was associated with younger PhenoAge (β -0·36, 95% CI -0·59 to -0·13) but not with leukocyte telomere length. Interpretation: This study provides genetic validation evidence that metformin might promote healthy ageing via targets GPD1 and AMPKγ2 (PRKAG2), and the effect could be in part due to its glycaemic property. Our findings support further clinical research into metformin and longevity. Funding: Healthy Longevity Catalyst Award, National Academy of Medicine, and Seed Fund for Basic Research, The University of Hong Kong.
Article
Hunger is an ancient drive, yet the molecular nature of pressures of this sort and how they modulate physiology are unknown. We find that hunger modulates aging in Drosophila. Limitation of branched-chain amino acids (BCAAs) or activation of hunger-promoting neurons induced a hunger state that extended life span despite increased feeding. Alteration of the neuronal histone acetylome was associated with BCAA limitation, and preventing these alterations abrogated the effect of BCAA limitation to increase feeding and extend life span. Hunger acutely increased feeding through usage of the histone variant H3.3, whereas prolonged hunger seemed to decrease a hunger set point, resulting in beneficial consequences for aging. Demonstration of the sufficiency of hunger to extend life span reveals that motivational states alone can be deterministic drivers of aging.
Article
Inhibition of the protein kinase mechanistic target of rapamycin (mTOR) with the Food and Drug Administration (FDA)-approved therapeutic rapamycin promotes health and longevity in diverse model organisms. More recently, specific inhibition of mTORC1 to treat aging-related conditions has become the goal of basic and translational scientists, clinicians and biotechnology companies. Here, we review the effects of rapamycin on the longevity and survival of both wild-type mice and mouse models of human diseases. We discuss recent clinical trials that have explored whether existing mTOR inhibitors can safely prevent, delay or treat multiple diseases of aging. Finally, we discuss how new molecules may provide routes to the safer and more selective inhibition of mTOR complex 1 (mTORC1) in the decade ahead. We conclude by discussing what work remains to be done and the questions that will need to be addressed to make mTOR inhibitors part of the standard of care for diseases of aging.
Article
Rapid advances in aging research and clinical translation come with numerous ethical and societal issues that the current regulatory framework may not be sufficient to address. To fill this gap, we propose a responsible and comprehensive governance framework to cope with these issues while maximizing the benefits of aging research.