ArticlePDF Available

无人机辅助的非正交多址反向散射通信系统max-min速率优化算法

Authors:

Abstract

无人机(UAV)、非正交多址(NOMA)和反向散射通信(BC)相结合,可以满足热点地区高容量需求,提高通信质量。该文提出一种无人机辅助的NOMA反向散射通信系统最小速率最大化资源分配算法。考虑无人机发射功率、能量收集、反射系数、传输速率以及连续干扰消除(SIC)解码顺序约束,建立基于系统最小速率最大化的资源分配模型。首先利用块坐标下降将原问题分解为无人机发射功率优化、反射系数优化和无人机位置与SIC解码顺序联合优化3个子问题,然后使用反证法给出无人机最优发射功率,再用变量替换法和连续凸逼近将剩余子问题进一步转化为凸优化问题进行求解。仿真结果表明,所提算法在系统和速率与用户公平性之间具有较好折中。
无人机辅助的非正交多址反向散射通信系统max-min速率优化算法
王正强*①樊自甫万晓榆徐勇军
(重庆邮电大学通信与信息工程学院重庆400065)
(成都理工大学计算机与网络安全学院成都610059)
要:无人机(UAV)、非正交多址(NOMA)和反向散射通信(BC)相结合,可以满足热点地区高容量需求,提高
通信质量。该文提出一种无人机辅助的NOMA反向散射通信系统最小速率最大化资源分配算法。考虑无人机发射
功率、能量收集、反射系数、传输速率以及连续干扰消除(SIC)解码顺序约束,建立基于系统最小速率最大化的
资源分配模型。首先利用块坐标下降将原问题分解为无人机发射功率优化、反射系数优化和无人机位置与SIC
码顺序联合优化3个子问题,然后使用反证法给出无人机最优发射功率,再用变量替换法和连续凸逼近将剩余子
问题进一步转化为凸优化问题进行求解。仿真结果表明,所提算法在系统和速率与用户公平性之间具有较好折中。
关键词:反向散射通信;无人机;非正交多址;资源分配
中图分类号:TN929.5 文献标识码:A文章编号:1009-5896(2023)07-2358-08
DOI:10.11999/JEIT221210
Max-min Rate Optimization Algorithm for Non-Orthogonal
Multiple Access Backscatter Communication System
Assisted by Unmanned Aerial Vehicles
WANGZhengqiangHUYangFANZifuWANXiaoyu
XUYongjunDUObin
(School of Communication and Information Engineering, Chongqing University of Posts and
Telecommunications, Chongqing 400065, China)
(College of Computer Science and Cyber Security, Chengdu University of Technology, Chengdu 610059, China)
Abstract:ThecombinationofUnmannedAerialVehicle(UAV),Non-OrthogonalMultipleAccess(NOMA),
andBackscatterCommunication(BC)canmeetthehighcapacitydemandandimprovethecommunication
qualityinhotspots.Amax-minrateoptimizationalgorithmisproposedforUAV-assistedNOMA-based
backscattercommunicationsystems.Specifically,aresourceallocationmodelisdevelopedtomaximizesystems’
minimumrateundertheUAVtransmitpower,energyharvesting,reflectioncoefficient,transmissionrate,and
SuccessiveInterferenceCancellation(SIC)decodingorderconstraints.Theoriginalproblemisdividedinto
threesubproblems:UAVtransmitpoweroptimization,reflectioncoefficientoptimization,andjointoptimization
ofUAVpositionandSICdecodingorderoptimization,whicharehandledbyblockcoordinateddecentmethod.
Then,theUAV’soptimaltransmitpoweroptimizationsubproblemissolvedbycontradiction.Furthermore,the
remainingsubproblemsaresolvedbyconvexoptimizationwithvariablesubstitutionandsuccessiveconvex
approximationmethods.Finally,thesimulationresultsshowthattheproposedalgorithmhasobtainedagood
tradeoffbetweenthesystems’sumrateandusers’fairness.
Key words:BackscatterCommunication(BC);UnmannedAerialVehicle(UAV);Non-OrthogonalMultiple
Access(NOMA);Resourceallocation
收稿日期:2022-09-16;改回日期:2023-02-09;网络出版:2023-02-11
*通信作者:王正强 wangzq@cqupt.edu.cn
基金项目:国家自然科学基金(61701064,62271094),四川省区域创新合作项目(2022YFQ0017),重庆市教委科学技术研究项目(KJZD-
K202200501),重庆市博士后研究项目(2021XM3082),中国博士后科学基金(2022MD723725)
FoundationItems:TheNationalNaturalScienceFoundationofChina(61701064,62271094),TheSichuanRegionalInnovationCoopera-
tionProject(2022YFQ0017),TheScientificandTechnologicalResearchProgramofChongqingMunicipalEducationCommission(KJZD-
K202200501),ChongqingPostdoctoralResearchProject(2021XM3082),ChinaPostdoctoralScienceFoundation(2022MD723725)
45卷第7Vol.45No.7
20237JournalofElectronics&InformationTechnology Jul.2023
1 引言
5×1010
近年来,基于物联网在智能家居、智能城市等
广泛应用前景,连接到网络的无线设备数量呈爆炸
性增长,预计到2025年将有 台设备接入网
[1]。由于电池容量的限制,无线设备的能量有
限,传统更换电池的方式会给大规模无线设备的维
护带来极高的制造成本和环境压力。在此背景下,
研究人员提出了反向散射通信技术[2](Backscatter
Communication,BC)。在BC中,反向散射器
(BackscatterDevice,BD)是一种无源器件,它可
以反射入射的射频(RadioFrequency,RF)信号来
传输信息,而不使用复杂和耗电的有源射频元件,
还可以从入射的RF信号中获取能量进行工作,从
而大大降低电路的功耗[3]
另外,在无线通信中,无人机辅助通信由于易
于部署、移动性强以及与地面用户具有良好的视距
(LineofSight,LoS)吸引了许多研究人员[4]。同时,
非正交多址(Non-OrthogonalMultipleAccess,
NOMA)技术在基站处复用多个用户传输信号进行
传输,接收端使用连续干扰消除(SuccessiveInter-
ferenceCancellation,SIC)技术对信息进行解码,
可同时服务大量用户[5]。为提高通信质量,研究人
员对BC,NOMA和无人机做了大量研究。
目前,对BC的研究已取得了许多成果。文献[6]
研究了多载波无线供电BC系统的总速率最大化问
题,通过联合优化功率分配、时间分配、反射系
数、能量分配系数来最大化信息传输阶段的反向散
射数据速率和传输速率的总和速率。文献[7]提出在
不完美SIC的情况下对NOMA辅助的BC系统进行
资源分配,通过联合优化基站的发射功率和BD
反射系数,提高系统的总速率。文献[8]研究了考虑
用户服务质量的基于NOMABC系统的资源分
配,提出了一种基于丁克巴赫(Dinkelbach)2
变换方法的迭代算法,通过联合优化基站的发射功
率和反射系数,最大化用户的能效。文献[9]研究了
一个地面上的多个BD由其相关的地面载波发射器
激活,并以时分多址的方式向无人机传输信息的
BC系统。通过联合优化BD调度、反射系数、载波
发射器的发射功率和无人机轨迹来最大化能效,并
提出了一种基于块坐标下降(BlockCoordinated
Decent,BCD)和连续凸逼近(SuccessiveConvex
Approximation,SCA)方法的迭代算法来解决问
题。文献[10]研究了全双工无人机辅助的BC系统,
上行链路采用NOMA协议,通过优化无人机的高
度最大限度地增加上行链路中成功解码的比特数,
同时最小化无人机的飞行时间。文献[6–8]研究均考
虑地面固定基站且只有单个BD的情况,没有考虑
无人机作为基站和多个BD的情况。文献[9]考虑了
无人机辅助的BC系统能效优化问题,但用户间公
平性没有考虑。文献[10]研究了全双工无人机辅助
BC系统的成功解码的比特数最大化问题,没有
考虑对SIC解码顺序优化和BD之间速率公平性问
题。在无人机作为基站情况下,基于NOMA
BC系统的解码顺序将依赖无人机的位置,因此需
要联合考虑优化无人机位置以提高系统性能。
为了解决上述问题,本文针对无人机辅助的NOMA
反向散射系统,研究系统最小速率最大化问题,主
要贡献如下:
(1)建立了无人机辅助的NOMA反向散射通信
系统模型。在无人机发射功率、能量收集、反射系
数、传输速率以及SIC解码顺序约束下,提出了多
变量耦合的非凸最小速率最大化资源分配问题。
(2)为求解上述非凸问题,利用BCD方法将原
问题分解为无人机发射功率优化、反射系数优化和
无人机位置与SIC解码顺序联合优化3个子问题;
然后使用反证法求解无人机发射功率优化子问题,
再用变量替换法和SCA将剩余子问题进一步转化为
凸优化问题;最后,通过凸优化求解工具CVX[11]
求解剩余子问题并迭代更新得到原问题的解。
(3)仿真结果表明,与现有算法比较,所提算
法具有较好的最小速率。
2 系统模型
n N ={1,2,..., N }
H
q= [xu, yu]T
wn= [xn, yn]T
n
hn=β0/d2
n
dn=H2+qwn2
如图1所示,本文考虑由1个全双工无人机、
NBD组成的BC系统。其中无人机配备双天线,
BD配备单天线,BD集合定义为
无人机飞行高度为 ,无人机的水平位置为
,第nBD的位置为
本文假设无人机完全了解信道状态信息,并考虑
BD和无人机之间的链路以LoS链路为主,基于自
由空间路径损耗模型[9],无人机到第 BD的信道
功率增益为 ,其中
BD和无人机之间的距离, 为参考距离1m处的
信道功率增益。
x
E|x|2= 1
n
hnPux
Pr
BDn=Puhn
Pu
(1 rn)hnPux
En=ηn(1 rn)Puhn
ηn[0,1]
n
rn[0,1]
n
假设无人机发送的RF信号为 满足
则第 BD从无人机接收的信号为 BD
接收功率为 ,其中 是无人机的发射
功率。BD将接收到的信号分为两部分,一部分反
射到无人机,另一部分用于自身的供能。用于自身
供能部分信号为 BD采集的能量
,其中 是第
BD的能量效率转换系数, 为第 BD
7王正强等:无人机辅助的非正交多址反向散射通信系统max-min速率优化算法 2359
Pt
BDn=rnPr
BDn
xn=rnPuhnan
n
E|an|2= 1
y=N
n=1
Pt
BDnhnan+n0+xuu
n0CN 0, σ 2
xuu
反射系数。BD的反射功率为 且反射
到无人机的信号表示为 ,其中
为第 BD的符号信号满足 。由NOMA
原理[12],无人机收到来自BD的信号为
,其中 是加
性高斯白噪声, 是噪声方差, 为无人机的自
干扰。
αnm {0,1},n, m N
αnm = 1
m
n
n
m
αnm = 0
αnm
无人机使用SIC对来自不同BD的消息进行解
码,本文假设来自信道增益较差的BD的消息被视
为对信道增益较强的BD的干扰,在解码来自信道
增益较差BD的消息时,从接收到的消息中减去来
自信道增益较强BD的消息[13]。具体地,本文引入
变量 来表示SIC解码顺序,
其中 表示第 BD比第 BD到无人机的
信道增益小,在无人机解码第 BD的消息时,第
BD的消息被视为干扰;否则 。因此,
的定义如式(1)
αnm =
0, dn> dm
1, dn< dm
0 1, dn=dm
(1)
(1)可以等价写为式(2)
αnm {0,1},n=m, (2a)
αnn = 0,n, (2b)
αnm +αmn = 1,n=m, (2c)
αnm H2+qwn2H2+qwm2,n=m
(2d)
n
Rn=log2
1+ Purnhn2
N
m=1,m=n
αnmPurmhm2+σ2
,n
假设无人机接收来自BD的信号时可以通过自干
扰消除技术完全消除自身发射信号的干扰,且可用带
宽是归一化的,因此第 BD到无人机的速率可以表示
考虑在无人机发射功率、反射系数、能量采
集、传输速率以及SIC解码顺序约束下,建立最小
速率最大化资源分配问题为
max
Pu,q,R,Amin
1nNlog2
1+ Purnhn2
N
m=1,m=n
αnmPurmhm2+σ2
,
s.t.C1 : 0 PuPmax,
C2 : 0 rn1,n,
C3 : Pcηn(1 rn)Puhn,n,
C4 : log2
1+ Purnhn2
N
m=1,m=n
αnmPurmhm2+σ2
Rmin,n
(2a)—式(2d)(3)
R={rn,n}
A={αnm,n, m}
Rmin
其中, 为反射系数,
SIC解码顺序, BD维持自身电路工作需要消
耗的功率, 为最小速率门限。问题式(4)是多
变量耦合的非凸问题,不能直接采用凸优化求解。
3 资源分配算法
首先利用BCD方法将问题式(4)分解为无人机
发射功率优化、反射系数优化和无人机位置与
SIC解码顺序联合优化3个子问题。
Pu
3.1 求解最优无人机发射功率
q
R
A
固定无人机位置 、反射系数 SIC解码顺序
,可得优化问题
max
Pu
min
1nNlog2
1+ Purnhn2
N
m=1,m=n
αnmPurmhm2+σ2
,
s.t.C1,C3,C4(4)
对于问题式(4),通过反证法证明无人机的最
优发射功率为最大发射功率,即定理1
P
u
P
u=Pmax
定理1 假设 为优化问题式(4)的最优解,则
P
u
P
u<
Pmax
L=Pmax
λ=Pmax/P
u
P
u< Pmax
λ > 1
L
C3
C4
证明 假设 为问题式(4)的最优解且
成立。接下来,构造一个新的可行解
,因为 ,得到 。接下
来,分别证明 也满足 约束。
P
u
C3
Pcηn(1 rn)P
uhn
λ=Pmax/P
u
P
u
对于 满足约束 ,通
替代得到
1系统模型
2360 45
PcλPcηn(1 rn)Lhn(5)
P
u
C4
log2
1 + P
urnhn2
N
m=1,m=n
αnmP
urmhm2+σ2
Rmin
P
u
对于 满足约束
,类
似地,将 替代得到
log2
1 + Lrnhn2
N
m=1,m=n
αnmLrmhm2+σ2
log2
1 + Lrnhn2
N
m=1,m=n
αnmLrmhm2+λσ2
Rmin
(6)
L
C3
C4
L
P
u
L
由式(5)和式(6)可看出 满足 约束且
得到系统最小速率大于 。这表明 是优化问题
(4)的最优解,与假设相互矛盾,因此定理1成立。
R
3.2 求解最优反射系数
q
A
t
固定无人机位置 SIC解码顺序 ,引入辅助
变量 并根据定理1,可得优化问题
max
R,t t,
s.t.C2,C3,
¯
C4 : log2
1+ Pmax rnhn2
N
m=1,m=n
αnmPmax rmhm2+σ2
t, n
¯
C5 : tRmin (7)
rn=exn
¯
C4
etln 2
1 = ek
使用变量替换令 ,对于 ,再令
可写为
k+ln
N
m=1,m=n
αnmPmax exmhm2+σ2
Pmaxexnhn2
0,n
(8)
ln
N
m=1,m=n
αnmPmax exmhm2+σ2
Pmaxexnhn2
其中, 是一个
log-sum-exp函数所以是凸函数,因此式(8)是凸函
数的下水平集为凸集。因此问题式(7)可以等价为
max
x,k k,
s.t.C1:exn1,n,
C2:exn1Pc
ηnPmaxhn
,n
C3:k+ln
N
m=1,m=n
αnmPmax exmhm2+σ2
Pmaxexnhn2
0,n
C4:kln(2Rmin 1) (9)
问题式(9)是凸问题,因此可以使用凸优化内
点算法,通过CVX工具箱求解最优解。
A
3.3 求解最优无人机位置 SIC解码顺序
对于约束式(2a),这是一个非凸约束,它等价
于式(10)
0αnm 1,n, m (10a)
αnm α2
nm 0,n, m (10b)
(10a)是凸的,式(10b)仍然是非凸的。若对式(10b)
使用SCA,由于式(10a)和式(10b)的联合存在,会
产生一些不可行的迭代问题[14,15],因此在目标函
数中引入惩罚函数来松弛约束式(10b)并得到约束
(11)
αnm α2
nm φnm (11)
P
u
R
s
代入3.1节和3.2节求得的无人机发射功率
反射系数 ,并引入辅助变量 可得优化问题
max
Y,q,A,s sµ
N
n=1
N
m=1
φnm
s.t.C1′′ :log2
1 + Pmaxr
nhn2
N
m=1,m=n
αnmPmax r
mhm2+σ2
s, n
C2′′ :sRmin
C3′′ :H2+qwn2ηn(1 r
n)Pmaxβ0
Pc
,n
(2b)—式(2d),(10a),(11)
φnm 0,n, m
(12)
Y={φnm >0,n, m}
µ > 0
φnm = 0,n, m
¯αnm
其中, 是扩展约束式(10b)
行域的松弛变量集, 是惩罚参数。问题式(12)
在收敛时有 [14],所以它和原问题是
等价的,对约束式(11)1阶泰勒展开有凸约束
¯α2
nm + 2 ¯αnm (αnm ¯αnm) + φnm αnm,n, m (13)
此时2元约束式(2a)转化为式(10a)和式(13)
7王正强等:无人机辅助的非正交多址反向散射通信系统max-min速率优化算法 2361
q
¯αnm
个凸约束。对于约束式(2d),在 1阶泰勒展 开有凸约束
H2+qwn2¯αnmH2+qwn2+ 2( ¯
qwn)T(qq)αnm
2+H2+¯
qwm2+ 2( ¯
qwm)T
·(qq)H2+qwn2+αnm2
4+H2+qwn2¯αnm2
4,n=m(14)
{bn,n}
{cn,n}
C1′′
引入辅助变量 ,由于目标函
数式(12)关于变量s的单调性,约束 可以等价表
示为式(15)
log21 + ebncns, n(15a)
ρ0r
n
(H2+qwn2)2ebn,n(15b)
1 +
N
m=1,m=n
ρ0αnmr
m
(H2+qwm2)2ecn,n(15c)
ρ0=Pmaxβ2
0/σ2
¯
bn
¯cn
其中, 。约束式(15a)—(15c)均是
非凸的,下面使用SCA将它们转化为凸约束。对于
约束式(15a),与式(14)类似,在 1阶泰勒展
开有凸约束
log21 + e¯
bn¯cn+e¯
bn¯cn
(1 + e¯
bn¯cn)ln 2
·bn¯
bncn+ ¯cns, n(16)
对于约束式(15b),使用SCA得到凸约束
H2+qwn22
ρ0r
ne¯
bn(1 bn+¯
bn),n(17)
{gn,n}
{unm,n, m}
对于约束式(15c),引入辅助变量
并将其改写为
gn(H2+qwn2)2,n(18a)
ρ0αnmr
m
gmunm,n=m(18b)
1 +
N
m=1,m=n
unm ecn,n(18c)
与式(14)类似,使用SCA,式(18a)—(18c)可近
似为凸约束
gnH2+qwn22+ 4 H2+qwn2
·(qwn)T(qq),n
(19)
ρ0(αnm +r
m)2+ (unm gm)22 unm + ¯gm)
·(unm +gm)unm + ¯gm)2+ρ02 ( ¯αnm r
m)
·(αnm r
m)(¯αnm r
m)2,n=m(20)
1 +
N
m=1,m=n
unm e¯cn(cn¯cn+ 1),n(21)
¯gm
¯unm
¯cn
C1′′
其中, , 是给出的可行点。综上,约束
已经转换为凸约束式(16)、式(17)、式(19)—(21)
根据上述转换,问题式(12)转化为凸优化问题
(22)
max
Y,q,A,s,B,
C,U,G
sµ
nm
φnm
s.t.C2′′C3′′ 、式(2b)、式(2c)、式(10a)、式(13)
(14)(16)(17)(19)(20)(21)
φnm 0,n, m
(22)
B={bn,n}
C={cn,n}
U={unm,n, m}
G={gn,n}
其中, , , ,
,问题式(22)可采用凸优化内点算法
求解。
3.4 算法求解及复杂度分析
µ
αnm
综上,3个子问题全部解决。本节基于SCA迭代
的最小速率最大化资源分配算法如算法1所示。在
内循环中,更新无人机位置和反射系数,直到收
敛。在外循环中,最初将惩罚参数 设置为足够小
的值,以便为 提供足够的自由度,然后逐步更
算法1 最小速率最大化资源分配算法
R0
max min
l= 0
t= 0
µ=µ0
γ=γ0
Pmax
q0,A0,B0,C0,U0,G0
ς1
ς2
Tmax
 初始化:max-min速率 ,内层迭代次数 ,外层迭
 代次数 ,惩罚参数 ,步长 ;无人机最大发射
 功率 max-min速率收敛精度
  ,惩罚收敛精度 ,外层最大迭代次数为
 (1)repeat
 (2) repeat
ql
R
 (3)   根据给定的 利用凸优化内点法求解问题式(9)
     到反射系数
R,Bl,Cl,Ul,Gl
q
A
 (4)   根据 利用凸优化内点法求解问题
     (22)得到无人机位置 SIC解码顺序
l=l+ 1
 (5)   更新
Rl+1
max min Rl
max min
< ς1
 (6)  until
max {φnm}> ς2
 (7)   if
µ=γµ
 (8)    更新
 (9)   else
t=t+ 1
 (10)    更新
 (11)   endif
tTmax
 (12)until
2362 45
µ
K1
K2
OK1K2N7log2(1/ς1)
新惩罚参数 。假设算法1的外循环迭代次数为
,内循环迭代次数为 ,由文献[16]分析方法可
知算法1复杂度为
4 仿真结果与分析
60 m×60 m
β0=10 dB
η=0.6
σ2=70 dBm
Pc=0.25 µW
Pmax = 1.5W
H= 15 m
Rmin = 0.8bit/(s·Hz)
Tmax = 30
本节通过分析仿真结果来验证所提算法的性
能,仿真结果是通过200次蒙特卡罗模拟实验得到
的。假设系统中有10BD,它们随机部署在一个
的正方形区域。其他参数设置如下,
, , , [17],
, , ,
[13],无人机的初始位置部署在所有BD
几何中心。
为了进行比较,本文考虑以下3个基准方案:
(1)几何中心方案:无人机被部署在所有BD
几何中心,只通过问题式(9)来优化反射系数。
(2)频分多址(FrequencyDivisionMultiple
Access,FDMA)方案:类似于文献[18]中的OMA-
TYPE-I,其中可用带宽被归一化,每个BD占用带
宽与可用带宽比为1/N,联合优化BD的反射系数
和无人机位置。
(3)和速率最大化方案:联合优化BD的反射系
数和无人机的位置使该系统和速率最大。
从图2可以看出,本文方案在经过7次迭代后趋
于收敛,验证了本算法的收敛性。
Pmax
Rmin
J=N
n=1 Rn2NN
n=1 R2
n
在图3中,从图3(a)可以看出,系统最小速率
随无人机发射功率门限的增加而增加。当 较小
时,FDMA方案不能满足传输速率约束,因此最小
速率为0。和速率最大化方案中,无人机会悬停在
信道最强的BD附近,使其有最大的速率,而其余
BD满足传输速率约束,因此最小速率接近
从图3(b)可以看出,本文方案的和速率并不是最大,这
是由于本文方案为了保证系统用户间速率分配公平性。
从图3(c)可以看出,本文方案的公平性最好,其中
公平指数由 [19]
计算。其中,和速率最大化方案的公平指数随着无
人机发射功率门限增大而降低。这是因为无人机会
悬停在信道最强的BD附近,使其有最大的速率,
而其余BD满足传输速率约束,信道最强的BD速率
会随着无人机发射功率增大而增大,导致公平性下降。
从图4(a)可以看出,系统最小速率随着无人机
飞行高度的增加而减少。从图4(b)可以看出,本文
方案的和速率并不是最大。从图4(c)可以看出随着
无人机飞行高度增加,除了FDMA方案,其他方案
的公平指数均增加。这是因为当无人机飞行高度增
加到一定值时,每个BD到无人机的距离趋近一
致,分配的速率也会趋近一致。无人机飞行高度增
加到9m后,FDMA方案的公平指数降低,这是因
为无人机高度增加,信道增益变小,FDMA方案不
能满足传输速率约束。
从图5(a)可以看出,系统最小速率随着BD
目增加而减少。从图5(b)可以看出,本文方案的和
速率并不是最大。当BD数目增加到10FDMA
案和速率下降,这是因为FDMA方案不能满足传输
速率约束,此时和速率为0。从图5(c)可以看出,
2本文方案迭代图
Pmax
3不同方案下系统最小速率、和速率和公平指数与无人机最大发射功率 之间的关系
7王正强等:无人机辅助的非正交多址反向散射通信系统max-min速率优化算法 2363
本文方案的公平性最好。随着BD数目增加,和速
率最大化方案公平指数增加,这是因为BD数目增
加,信道最强的BD分配的资源减少,每个BD的速
率差距减小。当BD数目增加到10FDMA方案的
公平指数下降,这是因为FDMA方案不能满足传输
速率约束。
5 结束语
本文研究了无人机辅助的NOMA反向散射通
信系统最小速率优化问题,考虑无人机发射功率、
能量收集、反射系数、传输速率以及SIC解码顺序
约束,建立了系统最小速率最大化资源分配模型。
针对提出的优化问题,首先利用BCD将原问题分
解为无人机发射功率优化、反射系数优化和无人机
位置与SIC解码顺序联合优化3个子问题,然后使
用反证法求解无人机发射功率优化子问题,再用变
量替换法和SCA将剩余子问题转化为凸优化问题处
理。仿真结果表明,本文方案相对于其他基准方案
使得系统用户最小速率最大化,在系统和速率与用
户公平性之间具有较好折中。在下一步的研究中可
以进一步考虑物理层安全[20]、隐蔽通信[21]和智能反
射面[22]的场景,并考虑实际应用中会遇到的一些问
题,如BD采用的是非线性采集模型[23]和系统由于
估计误差、量化误差等存在非理想信道状态信息[24]
情况。
参 考 文 献
AL-FUQAHAA, GUIZANIM, MOHAMMADIM, et al.
Internetofthings: A survey onenablingtechnologies,
protocols,andapplications[J].IEEE Communications
Surveys & Tutorials,2015,17(4):2347–2376.doi:10.1109/
COMST.2015.2444095.
[1]
VANHUYNHN,HOANGDT,LUXiao,et al.Ambient
backscattercommunications: Acontemporarysurvey[J].
IEEE Communications Surveys & Tutorials,2018,20(4):
2889–2922.doi:10.1109/COMST.2018.2841964.
[2]
BOYERCandROYS.Backscatter communicationand
RFID:Coding, energy, and MIMO analysis[J]. IEEE
Transactions on Communications,2014, 62(3):770–785.
doi:10.1109/TCOMM.2013.120713.130417.
[3]
WANGZhe,DUANLingjie,andZHANGRui.Adaptive
deploymentforUAV-aided communicationnetworks[J].
IEEE Transactions on Wireless Communications,2019,
18(9):4531–4543.doi:10.1109/TWC.2019.2926279.
[4]
H
4不同方案下系统最小速率、和速率和公平指数与无人机飞行高度 之间的关系
5不同方案下系统最小速率、和速率和公平指数与BD数目之间的关系
2364 45
WANGZhengqiang,CHENGQu,FANZifu,et al.Areview
ofresourceallocationstudiesfornon-orthogonalmultiple
accesssystem[J].Telecommunication Science,2018,34(8):
136–146.doi:10.11959/j.issn.1000-0801.2018236.
[5]
XUYongjunandGUIGuan.Optimalresourceallocation
forwirelesspoweredmulti-carrierbackscattercommunication
networks[J].IEEE Wireless Communications Letters,2020,
9(8):1191–1195.doi:10.1109/LWC.2020.2985010.
[6]
KHANWU,LIXingwang,ZENGMing,et al.Backscatter-
enabledNOMAforfuture6Gsystems:Anewoptimization
frameworkunderimperfectSIC[J].IEEE Communications
Letters,2021,25(5):1669–1672.doi:10.1109/LCOMM.2021.
3052936.
[7]
XU Yongjun, QIN Zhijin, GUI Guan, et al. Energy
efficiencymaximizationin NOMA enabledbackscatter
communicationswithQoS guarantee[J].IEEE Wireless
Communications Letters,2021,10(2): 353–357.doi:10.
1109/LWC.2020.3031042.
[8]
YANGGang,DAIRao,andLIANGYingchang.Energy-
efficient UAV backscatter communication with joint
trajectorydesignandresourceoptimization[J].IEEE
Transactions on Wireless Communications,2021, 20(2):
926–941.doi:10.1109/TWC.2020.3029225.
[9]
FARAJZADEHA,ERCETINO,andYANIKOMEROGLU
H.UAVdatacollectionoverNOMAbackscatternetworks:
UAValtitudeandtrajectoryoptimization[C].2019IEEE
InternationalConference onCommunications,Shanghai,
China,2019:1–7.doi:10.1109/ICC.2019.8761125.
[10]
GRANTMandBOYDS.CVX:Matlabsoftwarefor
disciplinedconvexprogramming[EB/OL].http://cvxr.
com/cvx,2020.
[11]
ZHANGNingbo,WANGJing,KANGGuixia,et al.Uplink
nonorthogonalmultipleaccess in 5Gsystems[J].IEEE
Communications Letters,2016,20(3): 458–461.doi:10.
1109/LCOMM.2016.2521374.
[12]
LUJinhui, WANGYuntian,LIUTingting,et al.UAV-
enableduplinknon-orthogonalmultipleaccesssystem:Joint
deploymentandpowercontrol[J].IEEE Transactions on
Vehicular Technology,2020,69(9):10090–10102.doi:10.
1109/TVT.2020.3005732.
[13]
VUQD,NGUYENKG,andJUNTTIM.Max-min
fairnessfor multicastmultigroupmulticell transmission
under backhaul constraints[C]. 2016 IEEE Global
CommunicationsConference,Washington,USA,2016:1–6.
doi:10.1109/GLOCOM.2016.7841981.
[14]
NGUYENTM,AJIBW,andASSIC.Anovelcooperative
NOMAfordesigningUAV-assistedwirelessbackhaul
networks[J]. IEEE Journal on Selected Areas in
Communications,2018,36(11):2497–2507.doi:10.1109/
JSAC.2018.2874136.
[15]
WANGZhengqiang,DU Jin, FAN Zifu,et al.Energy
efficiencymaximizationformulti-carriercooperativenon-
[16]
orthogonal multiple access systems[J]. Digital Signal
Processing,2022,130: 103725.doi:10.1016/j.dsp.2022.
103725.
LIDong.Twobirdswithonestone:Exploitingdecode-and-
forward relaying for opportunistic ambient
backscattering[J].IEEE Transactions on Communications,
2020, 68(3): 1405–1416. doi: 10.1109/TCOMM.2019.
2957490.
[17]
CHENZhiyong,DINGZhiguo, DAI Xuchu, et al. An
optimizationperspectiveofthesuperiorityofNOMA
comparedtoconventionalOMA[J].IEEE Transactions on
Signal Processing,2017,65(19):5191–5202.doi:10.1109/
TSP.2017.2725223.
[18]
WANGZhengqiang,WAN Xiaoyu,WEIXiao, et al.A
closed-formpowercontrol algorithmincognitiveradio
networksbasedonNashbargainingsolution[C].The3rd
IEEE International Conference on Computer and
Communications,Chengdu,China,2017:681–685.doi:10.
1109/CompComm.2017.8322630.
[19]
LIXingwang,ZHENGYike,KHANWU,et al.Physical
layer security of cognitive ambient backscatter
communicationsforgreenInternet-of-Things[J]. IEEE
Transactions on Green Communications and Networking,
2021,5(3):1066–1076.doi:10.1109/TGCN.2021.3062060.
[20]
ZHANGYanliang,HEWenjing,LIXingwang,et al.Covert
communicationindownlinkNOMAsystemswithchannel
uncertainty[J]. IEEE Sensors Journal, 2022, 22(19):
19101–19112.doi:10.1109/JSEN.2022.3201319.
[21]
LIGeng, LIUHuiling, HUANGGaojian, et al.Effective
capacityanalysisofreconfigurableintelligentsurfacesaided
NOMA network[J]. EURASIP Journal on Wireless
Communications and Networking,2021,2021(1):198.
doi:10.1186/s13638-021-02070-7.
[22]
HUAMengandWUQingqing.Throughputmaximization
for IRS-aided MIMO FD-WPCN with non-linear EH
model[J].IEEE Journal of Selected Topics in Signal
Processing,2022,16(5):918–932.doi:10.1109/JSTSP.2022.
3179840.
[23]
LIXingwang,ZHAOMengle,ZENGMing,et al.Hardware
impairedambientbackscatterNOMAsystems:Reliability
andsecurity[J]. IEEE Transactions on Communications,
2021, 69(4): 2723–2736. doi: 10.1109/TCOMM.2021.
3050503.
[24]
王正强:男,副教授,博士生导师,研究方向为无人机通信.
胡 扬:男,硕士生,研究方向为反向散射通信.
樊自甫:男,教授,硕士生导师,研究方向为下一代无线通信.
万晓榆:男,教授,博士生导师,研究方向为下一代无线通信.
徐勇军:男,副教授,博士生导师,研究方向为反向散射通信.
多 滨:男,教授,硕士生导师,研究方向为无人机通信.
责任编辑: 余 蓉
7王正强等:无人机辅助的非正交多址反向散射通信系统max-min速率优化算法 2365
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
With the gradual promotion of the fifth generation mobile communication and Internet of Things (IoT) applications, wireless communication transmission will be more vulnerable to illegal interceptions and/or attacks. To ensure communication security, we study covert communication of downlink non-orthogonal multiple access (NOMA) systems, where the channel knowledge of users is uncertain. A multi-antenna transmitter tries to covertly transmit information to a covert user (strong user) through the shield of a public communication link (weak user), while the warden tries to detect the communication behavior between the transmitter and covert user. To improve security and energy efficiency, the k-th best antenna of the transmitter is selected, since the optimal antenna may be not available due to some schedule and/or other reasons. Aiming to evaluate the proposed framework performance, we start by deriving exact expressions for the minimum detection error probability and the optimal detection threshold of the warden, followed by a calculation analysis of the expected minimum detection error probability and the outage probability of NOMA users. The asymptotic behavior for the outage probability is investigated at high signal-to-noise ratio in order to acquire greater useful insights. With the goal of improving the system covertness performance, we propose that a scheme is optimized to enhance the covert throughput of the system to the maximum. Simulation results show that: 1) channel estimation errors have a significant effect on system performance; 2) reliability performance tends to build up as the total number of antennas grows large; 3) as the transmitting power and number of antennas increases, there is an upper bound for maximizing the covert throughput.
Article
Full-text available
The future sixth generation (6G) is going to face the significant challenges of massive connections and green communication. Recently, reconfigurable intelligent surfaces (RIS) and non-orthogonal multiple access (NOMA) have been proposed as two key technologies to solve the above problems. Motivated by this fact, we consider a downlink RIS-aided NOMA system, where the source aims to communicate with the two NOMA users via RIS. Considering future network supporting real-time service, we investigate the system performance with the view of effective capacity (EC), which is an important evaluation metric of delay sensitive systems. Specifically, we derive the analytical expressions of the EC of the near and far users. To obtain more useful insights, we deduce the analytical approximation expressions of the EC in the low signal-to-noise-ratio approximation by utilizing Taylor expansion. Moreover, we provide the results of orthogonal multiple access (OMA) for the purpose of comparison. It is found that (1) The number of RIS components and the transmission power of the source have important effects on the performance of the considered system; (2) Compared with OMA, NOMA system has higher EC due to the short transmission time.
Article
Full-text available
The future sixth generation (6G) wireless communication networks will face the challenges of large-scale connections green communication. To meet these requirements, cognitive ambient backscatter communication(C-AmBC) has been proposed as a new spectrum paradigm for the green Internet-of-things (IoT) with stringent energy and spectrum constraints, in which the backscatter device (BD) can achieve communications by simultaneously sharing both spectrum and radio-frequency (RF) sources. However, due to the broadcasting nature of wireless communication channels, BD is vulnerable to eavesdropping from unlicensed eavesdroppers. To address this, this paper proposes a framework of C-AmBC networks in the presence of an unlicensed eavesdropper. Specifically, we investigate the reliability and security of the proposed framework by invoking the outage probability (OP) and intercept probability (IP) with analytical derivations. In addition, the asymptotic behaviors are conducted for the OP in the high signal-to-noise ratio (SNR) regime and IP in the high main-to-eavesdropper ratio (MER) regime. Extensive analytical and computer simulated performance evaluation results show that: i) when the considered system is under high SNR, the OP of the legitimate user and BD tends to be a non-zero fixed constant, indicating that the existence of error floors for the diversity orders; ii) the performance trade-off of reliability and security can be optimized by adjusting various parameters of the considered system; iii) with the increase of MER, the security of the legitimate user increases, while that of BD decreases.
Article
Full-text available
This paper proposes a new optimization framework for power-domain non-orthogonal multiple access (PD-NOMA) ambient backscatter communication (AmBC) system with imperfect successive interference cancellation decoding. In particular, we jointly optimize the transmit power of the source and the reflection coefficient of the backscatter tag to enhance the sumrate of the system. Closed-form solutions are derived for the considered joint optimization problem via iteratively computing the Lagrange multipliers by the sub-gradient method. Simulation results validate the superiority of the proposed joint optimization framework over other benchmark frameworks, namely suboptimal PD-NOMA AmBC, optimal pure PD-NOMA, and orthogonal multiple access.
Article
Full-text available
Non-orthogonal multiple access (NOMA) and ambient backscatter communication have been envisioned as two promising technologies for the Internet-of-things due to their high spectral efficiency and energy efficiency. Motivated by this fact, we consider an ambient backscatter NOMA system in the presence of a malicious eavesdropper. Under some realistic assumptions of residual hardware impairments (RHIs), channel estimation errors (CEEs) and imperfect successive interference cancellation (ipSIC), we investigate the physical layer security (PLS) of the ambient backscatter NOMA systems focusing on reliability and security. In order to further improve the security of the considered system, an artificial noise scheme is proposed where the radio frequency (RF) source acts as a jammer that transmits interference signal to the legitimate receivers and eavesdropper. On this basis, the analytical expressions for the outage probability (OP) and the intercept probability (IP) are derived. To gain more insights, the asymptotic analysis and diversity orders for the OP in the high signal-to-noise ratio (SNR) regime are carried out, and the asymptotic behaviors of the IP in the high main-to-eavesdropper ratio (MER) region are explored as well. Numerical results show that: 1) RHIs, CEEs and ipSIC have negative effects on the OP but positive effects on the IP; 2) Compared with CEEs, RHIs have a more serious impact on the reliability and security of the considered system; 3) There exists a trade-off between reliability and security, and this trade-off can be optimized by reducing the power coefficient of the artificial noise or increasing the interfering factor of readers; 4) There are error floors for the OP due to the CEEs and the reflection coefficient; 5) As MER grows large, the security for Rn and Rf is improved, while the security for T is reduced.
Article
Full-text available
Energy efficiency (EE) is an important performance metric in communication systems. However, to the best of our knowledge, the energy-efficient resource allocation (RA) problem in non-orthogonal multiple access enabled backscatter communication networks (NOMA-BackComNet) comprehensively considering the user’s quality of service (QoS) has not been investigated. In this letter, we present the first attempt to solve the EE-based RA problem for NOMA-BackComNet with QoS guarantee. The objective is to maximize the EE of users subject to the QoS requirements of users, the decoding order of successive interference cancellation and the reflection coefficient (RC) constraint, where the transmit power of the base station and the RC of the backscatter device are jointly optimized. To solve this non-convex problem, we develop a novel iteration algorithm by using Dinkelbach’s method and the quadratic transformation approach. Simulation results verify the effectiveness of the proposed scheme in improving the EE by comparing it with the other schemes.
Article
Driven by massive connections and exponential growth of data in mobile devices, Non-orthogonal multiple access (NOMA) has become a candidate access technology to meet the requirement of Internet of things (IoT) in the future network. The combination of multi-carrier technology and cooperative communication is an efficient solution to significantly improve the energy efficiency of NOMA systems. Hence, we consider the energy efficiency (EE) maximization problem for the multi-carrier cooperative NOMA (MC-C-NOMA) systems with amplifying-and-forward (AF) protocol. As the EE maximization problem is mixed-integer nonlinear programming (MINLP), it is difficult to design the resource allocation algorithm to find the optimal solution. To make the EE maximization problem easier to handle, we decouple the EE maximization problem into sub-channel selection and power allocation sub-problems. First, under each user's minimum data rate and maximum transmit power constraints, a matching algorithm is proposed to achieve sub-channel allocation, which first matches the user with the sub-channel. Secondly, the Dinkelbach-like algorithm is used to achieve power allocation. Then, a joint sub-channel selection and power allocation algorithm is proposed to maximize the total energy efficiency (EE) of users in the MC-C-NOMA system. Finally, simulation results are presented to show that the proposed algorithm can achieve higher energy efficiency compared with the existing algorithms.
Article
This paper studies an intelligent reflecting surface (IRS)-aided multiple-input-multiple-output (MIMO) full-duplex (FD) wireless-powered communication network (WPCN), where a hybrid access point (HAP) operating in FD broadcasts energy signals to multiple devices for their energy harvesting (EH) in the downlink (DL) and meanwhile receives information signals from devices in the uplink (UL) with the help of an IRS. Taking into account the practical finite self-interference (SI) and the non-linear EH model, we formulate the weighted sum throughput maximization optimization problem by jointly optimizing DL/UL time allocation, precoding matrices at devices, transmit covariance matrices at the HAP, and phase shifts at the IRS. Since the resulting optimization problem is non-convex, there are no standard methods to solve it optimally in general. To tackle this challenge, we first propose an element-wise (EW) based algorithm, where each IRS phase shift is alternately optimized in an iterative manner. To reduce the computational complexity, a minimum mean-square error (MMSE) based algorithm is proposed, where we transform the original problem into an equivalent form based on the MMSE method, which facilities the design of an efficient iterative algorithm. In particular, the IRS phase shift optimization problem is recast as an second-order cone program (SOCP), where all the IRS phase shifts are simultaneously optimized. For comparison, we also study two suboptimal IRS beamforming configurations in simulations, namely partially dynamic IRS beamforming (PDBF) and static IRS beamforming (SBF), which strike a balance between the system performance and practical complexity. Simulation results demonstrate the effectiveness of proposed two algorithms. Besides, the results show the superiority of our proposed scheme over other benchmark schemes and also unveil the importance of the joint design of passive beamforming and resource allocation for achieving energy efficient MIMO FD-WPCNs.
Article
Backscatter communication which enables wireless-powered backscatter devices (BDs) to transmit information by reflecting incident signals, is an energy- and cost-efficient communication technology for Internet-of-Things. This paper considers an unmanned aerial vehicle (UAV)-assisted backscatter communication network (UBCN) consisting of multiple BDs and carrier emitters (CEs) on the ground as well as a UAV. A communicate-while-fly scheme is first designed, in which the BDs illuminated by their associated CEs transmit information to the flying UAV in a time-division-multiple-access manner. Considering the critical issue of the UAV’s limited on-board energy and the CEs’ transmission energy, we maximize the energy efficiency (EE) of the UBCN by jointly optimizing the UAV’s trajectory, the BDs’ scheduling, and the CEs’ transmission power, subject to the BDs’ throughput constraints and harvested energy constraints, as well as other practical constraints. Furthermore, we propose an iterative algorithm based on the block coordinated decent method to solve the formulated mixed-integer non-convex problem, in each iteration of which the variables are alternatively optimized by leveraging the cutting-plane technique, the Dinkelbach’s method and the successive convex approximation technique. Also, the convergence and complexity of the proposed algorithm are analyzed. Finally, simulation results show that the proposed communicate-while-fly scheme achieves significant EE gains compared with the hover-and-fly scheme, the state-of-the-art scheme, and the CE-relay scheme. Useful insights on the optimal trajectory design and resource allocation are also obtained.
Article
In order to overcome the inherent latency in multi-user orthogonal multiple access (OMA) unmanned aerial vehicle (UAV) networks. In this paper, we investigate a UAV-enabled uplink non-orthogonal multiple access (NOMA) network, where a UAV is deployed to collect the messages transmitted by the ground users. To maximize the users' sum-rate, we formulate a optimization problem, in which the UAV deployment position and the power control are jointly optimized subject to the transmission power constraints and the quality of service (QoS) constraints. However, this problem is a mixed integer non-convex optimization problem and thus it is difficult to solve directly. Therefore, we first transform the non-convex optimization problem into a convex one based on the first-order approximation technique and the penalty function method. Then, a successive convex approximate (SCA) technique based iterative algorithm as well as its initialization scheme are developed to find a suboptimal solution to the original problem. Afterwards, a low-complexity approximate algorithm is proposed to reduce the high computational complexity of the iterative algorithm. Numerical results show that our proposed iterative algorithm and low-complexity approximate algorithm can achieve a similar performance, and they can efficiently improve the sum-rate compared with OMA scheme and conventional NOMA scheme.